技术领域Technical Field
本发明涉及半导体集成电路制造领域,特别是涉及一种电子束发射电路以及电子束直写装置。The invention relates to the field of semiconductor integrated circuit manufacturing, and in particular to an electron beam emission circuit and an electron beam direct writing device.
背景技术Background technique
半导体微细加工产业的发展,对电子束直写技术的要求越来越高。要求保证精细图形成像的准确性,以及要求大幅度提升直写速度。The development of the semiconductor micro-fabrication industry has placed higher and higher demands on electron beam direct writing technology, requiring the accuracy of fine graphics imaging to be guaranteed and the direct writing speed to be greatly improved.
具体来讲,在半导体制造中,高技术节点图形(包括光掩模的图形和器件各层次的结构图形)的成像既需要更精细、更准确地直写,还需要在图形数据量剧增的情况下实现高速直写。从精细图形的准确直写角度,一方面,如果保证图象精准,就需要把电子束斑变小,以便进行更精准地扫描。然而,由于电流密度维持不变,电子束斑变小就意味着把电子束的电流变小,其结果是导致直写时间变长。另一方面,需要直写的图形尺寸在几十纳米以下时,线宽越小,散粒噪声(shot noise)的影响就越显著,严重影响关键线宽的均匀性(critical dimension uniformity)和线边缘的粗糙度(line edge roughness)。基于此,为了确保小线宽图形的关键线宽均匀性线边缘粗糙度足以满足产品性能需求,在图形直写时,线宽越小则需要使用灵敏度越低的电子束光刻胶。其结果是导致越小线宽图形需要的直写曝光量越大。这就意味着,在电流密度不变的情况下,线宽越小需要的直写时间越长。为了提高电子束直写设备单位时间内的生产能力,增加电流密度是一个很有效的方法。但是,一般的多电子束直写机的电子源只由一个电子源单元构成,从单一电子源单元发射出来的一束源电子束被拆分成复数个(有时可能大于10万个)直写电子束。为了增加直写电子束的电流密度,就需要增加源电子束的总电流。而源电子束的总电流的可调增量比较有限,每个直写电子束的电流密度增加就非常有限。而如果直接增加电子束的数目,电子束数量过大又不利于精确控制。Specifically, in semiconductor manufacturing, the imaging of high-tech node graphics (including the graphics of photomasks and the structural graphics of each level of the device) requires not only more precise and accurate direct writing, but also high-speed direct writing when the amount of graphic data increases dramatically. From the perspective of accurate direct writing of fine graphics, on the one hand, if the image is accurate, the electron beam spot needs to be smaller for more accurate scanning. However, since the current density remains unchanged, the smaller the electron beam spot means that the current of the electron beam is reduced, resulting in a longer direct writing time. On the other hand, when the size of the graphics to be written is below tens of nanometers, the smaller the line width, the more significant the impact of shot noise, which seriously affects the uniformity of the critical line width and the roughness of the line edge. Based on this, in order to ensure that the critical line width uniformity and line edge roughness of small line width graphics are sufficient to meet the product performance requirements, when the graphics are written directly, the smaller the line width, the lower the sensitivity of the electron beam photoresist. As a result, the smaller the line width graphics require a larger direct writing exposure. This means that, when the current density remains unchanged, the smaller the line width, the longer the direct writing time required. In order to improve the production capacity of electron beam direct writing equipment per unit time, increasing the current density is a very effective method. However, the electron source of a general multi-electron beam direct writing machine is composed of only one electron source unit, and a source electron beam emitted from a single electron source unit is split into multiple (sometimes more than 100,000) direct writing electron beams. In order to increase the current density of the direct writing electron beam, it is necessary to increase the total current of the source electron beam. However, the adjustable increment of the total current of the source electron beam is relatively limited, and the increase in the current density of each direct writing electron beam is very limited. If the number of electron beams is directly increased, the excessive number of electron beams is not conducive to precise control.
因此,要有效增大源电子束流强度,同时保证直写图形精度以及直写效率成为急需解决的技术问题。Therefore, effectively increasing the source electron beam intensity while ensuring the direct writing graphics accuracy and direct writing efficiency has become a technical problem that needs to be solved urgently.
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above introduction to the technical background is only for the convenience of providing a clear and complete description of the technical solutions of the present application and facilitating the understanding of those skilled in the art. It cannot be considered that the above technical solutions are well known to those skilled in the art simply because they are described in the background technology section of the present application.
发明内容Summary of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种电子束发射电路以及电子束直写装置,用于解决现有技术中电子束流强度低、图形精度不足、直写效率不够以及不易控制的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide an electron beam emission circuit and an electron beam direct writing device to solve the problems of low electron beam current intensity, insufficient graphic accuracy, insufficient direct writing efficiency and difficult control in the prior art.
为实现上述目的及其他相关目的,本发明提供一种电子束发射电路,包括:M个电子束源发射模块以及电子束源控制模块;M为大于等于1的整数;To achieve the above-mentioned object and other related objects, the present invention provides an electron beam emission circuit, comprising: M electron beam source emission modules and an electron beam source control module; M is an integer greater than or equal to 1;
电子束源控制模块用于产生N种选通信号,N为大于等于2的整数;The electron beam source control module is used to generate N kinds of gating signals, where N is an integer greater than or equal to 2;
各电子束源发射模块分别连接电子束源控制电路;其中,各电子束源发射模块中任一电子束源发射模块在同时接收到N种选通信号时导通,进而发射对应的电子束。Each electron beam source emission module is connected to an electron beam source control circuit respectively; wherein, any electron beam source emission module among the electron beam source emission modules is turned on when receiving N kinds of gating signals at the same time, and then emits the corresponding electron beam.
可选地,所述电子束源控制电路包括T根第一控制线、L根第二控制线;T、L为大于等于1的整数且T×L≥M;各第一控制线与各第二控制线交叉排布,且各第一控制线分别产生第一选通信号、各第二控制线分别产生第二选通信号;各电子束源发射模块的第一控制端分别连接对应的第一控制线,第二控制端分别连接对应的第二控制线;任一电子束源发射模在同时接收到对应的第一选通信号以及对应的第二选通信号后导通以发射对应的电子束。Optionally, the electron beam source control circuit includes T first control lines and L second control lines; T and L are integers greater than or equal to 1 and T×L≥M; the first control lines are cross-arranged with the second control lines, and the first control lines generate a first selection signal respectively, and the second control lines generate a second selection signal respectively; the first control end of each electron beam source emission module is respectively connected to the corresponding first control line, and the second control end is respectively connected to the corresponding second control line; any electron beam source emission module is turned on to emit the corresponding electron beam after receiving the corresponding first selection signal and the corresponding second selection signal at the same time.
可选地,各电子束源发射模块均包括控制单元以及电子束源;所述控制单元的第一控制端连接对应的第一控制线,第二控制端连接对应的第二控制线,输出端连接对应的电子束源,基于接收的所述第一选通信号和所述第二选通信号向对应的电子束源提供开关信号;所述电子束源接收对应的开关信号并发射对应的电子束。Optionally, each electron beam source emission module includes a control unit and an electron beam source; the first control end of the control unit is connected to the corresponding first control line, the second control end is connected to the corresponding second control line, the output end is connected to the corresponding electron beam source, and a switching signal is provided to the corresponding electron beam source based on the received first selection signal and the second selection signal; the electron beam source receives the corresponding switching signal and emits the corresponding electron beam.
可选地,所述控制单元包括第一晶体管以及第二晶体管;所述第一晶体管的第一端以及第二端分别作为所述控制单元的第一控制端以及第二控制端,第三端连接所述第二晶体管的第一端;所述第二晶体管的第二端连接第一偏置电压,第三端作为所述控制单元的输出端。Optionally, the control unit includes a first transistor and a second transistor; the first end and the second end of the first transistor serve as the first control end and the second control end of the control unit respectively, and the third end is connected to the first end of the second transistor; the second end of the second transistor is connected to a first bias voltage, and the third end serves as the output end of the control unit.
可选地,所述电子束源控制电路还包括P根第三控制线、Q根第四控制线;P、Q为大于等于1的整数且Q=L、P=T;各第三控制线分别产生第三选通信号;各第四控制线分别产生第四选通信号;各电子束源发射模块分别连接所述第三控制线以及所述第四控制线,并在同时接收到对应的第一选通信号、对应的第二选通信号、对应的第三选通信号以及对应的第四选通信号时导通以发射对应的电子束。Optionally, the electron beam source control circuit also includes P third control lines and Q fourth control lines; P and Q are integers greater than or equal to 1 and Q=L, P=T; each third control line generates a third selection signal respectively; each fourth control line generates a fourth selection signal respectively; each electron beam source emission module is respectively connected to the third control line and the fourth control line, and is turned on to emit the corresponding electron beam when receiving the corresponding first selection signal, the corresponding second selection signal, the corresponding third selection signal and the corresponding fourth selection signal at the same time.
可选地,各电子束源发射模块均包括控制单元以及电子束源;所述控制单元的第一控制端连接对应的第一控制线,第二控制端连接对应的第二控制线、第三控制端连接对应的第三控制线、第四控制端连接对应的第四控制线,输出端连接对应的电子束源,基于接收到的所述第一选通信号、所述第二选通信号、所述第三选通信号以及所述第四选通信号向对应的电子束源提供开关信号;所述电子束源接收对应的开关信号并发射对应的电子束。Optionally, each electron beam source emission module includes a control unit and an electron beam source; the first control end of the control unit is connected to the corresponding first control line, the second control end is connected to the corresponding second control line, the third control end is connected to the corresponding third control line, the fourth control end is connected to the corresponding fourth control line, the output end is connected to the corresponding electron beam source, and a switching signal is provided to the corresponding electron beam source based on the received first selection signal, the second selection signal, the third selection signal and the fourth selection signal; the electron beam source receives the corresponding switching signal and emits the corresponding electron beam.
可选地,所述控制单元包括第三晶体管、第四晶体管以及第五晶体管;所述第三晶体管的第一端以及第二端分别作为所述控制单元的第一控制端以及第二控制端;所述第四晶体管的第一端以及第二端分别作为所述控制单元的第三控制端以及第四控制端;所述第三晶体管的第三端以及所述第四晶体管的第三端相连;所述第五晶体管的第一端连接所述第三晶体管的第三端,第二端连接第二偏置电压,第三端作为所述控制单元的输出端。Optionally, the control unit includes a third transistor, a fourth transistor and a fifth transistor; the first end and the second end of the third transistor serve as the first control end and the second control end of the control unit respectively; the first end and the second end of the fourth transistor serve as the third control end and the fourth control end of the control unit respectively; the third end of the third transistor and the third end of the fourth transistor are connected; the first end of the fifth transistor is connected to the third end of the third transistor, the second end is connected to the second bias voltage, and the third end serves as the output end of the control unit.
可选地,所述电子束源的第一端连接所述控制单元的输出端,第二端连接第三偏置电压,第三端输出所述电子束。Optionally, a first end of the electron beam source is connected to an output end of the control unit, a second end is connected to a third bias voltage, and a third end outputs the electron beam.
为实现上述目的及其他相关目的,本发明提供一种电子束直写装置,所述电子束直写装置包括电子束路径调控模块以及上述的电子束发射电路;To achieve the above-mentioned purpose and other related purposes, the present invention provides an electron beam direct writing device, which includes an electron beam path control module and the above-mentioned electron beam emission circuit;
所述电子束路径调控模块用于产生一组环绕发射的所述电子束的偏置电压,以调控电子束的运动路径。The electron beam path control module is used to generate a set of bias voltages for the electron beam emitted in a circular manner, so as to control the movement path of the electron beam.
可选地,所述电子束路径调控模块包括第一路径调控单元以及第二路径调控单元;所述第一路径调控单元以及所述第二路径调控单元均包括一组电极;每组电极分别环绕发射的所述电子束设置;各电子束依次经过所述第一路径调控单元所产生的磁场以及所述第二路径调控单元所产生的磁场发生偏转,从而达到预设位置。Optionally, the electron beam path control module includes a first path control unit and a second path control unit; the first path control unit and the second path control unit each include a group of electrodes; each group of electrodes is arranged around the emitted electron beam; each electron beam is deflected by passing through the magnetic field generated by the first path control unit and the magnetic field generated by the second path control unit in turn, so as to reach a preset position.
可选地,所述电子束直写装置还包括总控模块以及偏压配置模块;所述总控模块连接所述偏压配置模块,用于产生控制信号以调控偏压配置模块输出的偏压;所述偏压配置模块分别连接各电子束源发射模块以及电子束源控制模块,基于所述电子束源控制电路以选择导通对应的电子束源发射模块进而发射电子束,以及调节所述电子束源发射模块中的偏置电压以调控发射的电子束的束流强度。Optionally, the electron beam direct writing device also includes a master control module and a bias configuration module; the master control module is connected to the bias configuration module to generate a control signal to adjust the bias output by the bias configuration module; the bias configuration module is respectively connected to each electron beam source emission module and the electron beam source control module, based on the electron beam source control circuit to select and turn on the corresponding electron beam source emission module to emit an electron beam, and adjust the bias voltage in the electron beam source emission module to adjust the beam current intensity of the emitted electron beam.
如上所述,本发明的电子束发射电路以及电子束直写装置,具有以下有益效果:As described above, the electron beam emitting circuit and the electron beam direct writing device of the present invention have the following beneficial effects:
1、本发明的电子束发射电路以及电子束直写装置,采用多个呈阵列式排布的电子束源,能有效的解决单个电子束源发出电子束强度不够、精度不高以及直写效率低的问题。1. The electron beam emission circuit and electron beam direct writing device of the present invention use a plurality of electron beam sources arranged in an array, which can effectively solve the problems of insufficient electron beam intensity, low precision and low direct writing efficiency emitted by a single electron beam source.
2、本发明的电子束发射电路以及电子束直写装置,通过设置电子束源控制模块,使得多个电子束源之间各自独立工作,进而保障了精准调控电子束的发射。2. The electron beam emission circuit and the electron beam direct writing device of the present invention, by providing an electron beam source control module, enable multiple electron beam sources to work independently, thereby ensuring precise control of electron beam emission.
3、本发明的电子束发射电路以及电子束直写装置通过调控各个偏置电压的大小,可以独立控制各电子束源的开关状态以及强度大小,能适用于半导体的微细加工。3. The electron beam emission circuit and electron beam direct writing device of the present invention can independently control the switching state and intensity of each electron beam source by adjusting the magnitude of each bias voltage, and can be applied to semiconductor micro-machining.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1显示为本发明的电子束直写装置的结构示意图。FIG. 1 is a schematic structural diagram of an electron beam direct writing device according to the present invention.
图2显示为本发明的一种电子束发射电路的结构示意图。FIG. 2 is a schematic diagram showing the structure of an electron beam emission circuit according to the present invention.
图3显示为本发明的图2的电子束发射电路的俯视图。FIG. 3 is a top view of the electron beam emission circuit of FIG. 2 according to the present invention.
图4显示为本发明的电子束源的结构示意图。FIG. 4 is a schematic diagram showing the structure of the electron beam source of the present invention.
图5显示为本发明的另一种电子束发射电路的结构示意图。FIG. 5 is a schematic diagram showing the structure of another electron beam emission circuit of the present invention.
图6显示为本发明的图5的电子束发射电路的俯视图。FIG. 6 is a top view of the electron beam emission circuit of FIG. 5 according to the present invention.
元件标号说明Component number description
1 电子束直写装置1 Electron beam direct writing device
10 机台10 Machines
101 晶圆加工层101 Wafer processing layer
11 电子束发射电路11 Electron beam emission circuit
111 电子束源控制模块111 Electron beam source control module
112 电子束源发射模块112 Electron beam source emission module
112a 控制单元112a Control unit
112b 电子束源112b Electron beam source
12 电子束路径调控模块12 Electron beam path control module
121 第一路径调控单元121 First Path Control Unit
122 第二路径调控单元122 Second Path Control Unit
123 遮挡结构123 Occlusion Structure
13 偏压配置模块13 Bias Configuration Module
14 总控模块14 Master control module
21 电子束发射电路21 Electron beam emission circuit
211a 控制单元211a Control Unit
211b 电子束源211b Electron beam source
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The following describes the embodiments of the present invention through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and the details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1~图6。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figures 1 to 6. It should be noted that the illustrations provided in this embodiment are only schematic illustrations of the basic concept of the present invention, and the drawings only show components related to the present invention rather than the number, shape and size of components in actual implementation. In actual implementation, the type, quantity and proportion of each component may be changed arbitrarily, and the component layout may also be more complicated.
实施例一Embodiment 1
如图1和图2所示,本实施例提供了一种电子束发射电路11,包括:M个电子束源发射模块112以及电子束源控制模块111;M为大于等于1的整数;As shown in FIG. 1 and FIG. 2 , this embodiment provides an electron beam emission circuit 11, comprising: M electron beam source emission modules 112 and an electron beam source control module 111; M is an integer greater than or equal to 1;
如图1和图2所示,电子束源控制模块111用于产生N种选通信号,N为大于等于2的整数。As shown in FIG. 1 and FIG. 2 , the electron beam source control module 111 is used to generate N types of gating signals, where N is an integer greater than or equal to 2.
具体地,在本实施例中,所述电子束源控制电路111包括T根第一控制线、L根第二控制线;T、L为大于等于1的整数且T×L≥M。各第一控制线与各第二控制线交叉排布,且各第一控制线分别产生第一选通信号vc1、各第二控制线分别产生第二选通信号vc2;各电子束源发射模块112的第一控制端分别连接对应的第一控制线,第二控制端分别连接对应的第二控制线;各电子束源发射模块112中的任一电子束源发射模112在同时接收到对应的第一选通信号vc1以及对应的第二选通信号vc2后导通以发射对应的电子束。Specifically, in this embodiment, the electron beam source control circuit 111 includes T first control lines and L second control lines; T and L are integers greater than or equal to 1 and T×L≥M. Each first control line is arranged crosswise with each second control line, and each first control line generates a first selection signal vc1, and each second control line generates a second selection signal vc2; the first control end of each electron beam source emission module 112 is connected to the corresponding first control line, and the second control end is connected to the corresponding second control line; any electron beam source emission module 112 in each electron beam source emission module 112 is turned on to emit the corresponding electron beam after receiving the corresponding first selection signal vc1 and the corresponding second selection signal vc2 at the same time.
在本实施例中,如图2所示,所述电子束源控制电路111包括3根第一控制线(在本实施例中,如图2分别记为第一行线T1、第二行线T2、第三行线T3)、3根第二控制线(分别记为第一列线L1、第二列线L2、第二列线L3)。在本实施例中,设置T与L分为3,则最多可控制9个(即:3×3=9)电子束源发射模块112。在本实施例中,设置电子束源发射模块112为9个。每一个电子束源发射模块112均分别连接对应的第一控制线以第二控制线,进而在连接的第一控制线以第二控制线均导通时发射信号。如图2所示,若控制第一行线T1和第一列线L1为导通状态,则第一行线T1提供了第一选通信号vc1,第一列线L1提供了第二选通信号vc2,使得对应的电子束源发射模块112(在本实施例中为,第一行第一列所在的电子束源发射模块112)导通。In this embodiment, as shown in FIG. 2 , the electron beam source control circuit 111 includes 3 first control lines (in this embodiment, as shown in FIG. 2 , they are respectively recorded as the first row line T1, the second row line T2, and the third row line T3), and 3 second control lines (respectively recorded as the first column line L1, the second column line L2, and the second column line L3). In this embodiment, T and L are set to be divided into 3, so that a maximum of 9 (i.e., 3×3=9) electron beam source emission modules 112 can be controlled. In this embodiment, 9 electron beam source emission modules 112 are set. Each electron beam source emission module 112 is respectively connected to the corresponding first control line and the second control line, and then transmits a signal when the connected first control line and the second control line are both turned on. As shown in FIG. 2 , if the first row line T1 and the first column line L1 are controlled to be in an on state, the first row line T1 provides a first selection signal vc1, and the first column line L1 provides a second selection signal vc2, so that the corresponding electron beam source emission module 112 (in this embodiment, the electron beam source emission module 112 in the first row and the first column) is turned on.
在本实施例中,为了便于布线,设置各第一控制线之间相互平行,各第二控制线之间相互平行。各第一控制线以及第二控制线之间的夹角为直角。In this embodiment, in order to facilitate wiring, the first control lines are parallel to each other, the second control lines are parallel to each other, and the angle between the first control lines and the second control lines is a right angle.
需要说明的是,本发明中通过第一控制线以及第二控制线之间的交叉结构可以形成点阵阵列,进而使得各电子束源发射模块112也设置为阵列排布。因此,第一控制线以及第二控制线之间的交叉关系越复杂,可以形成的点阵数量就越多。在本发明中,至少可以在两个控制维度(第一控制线以及第二控制线)上对各电子束源发射模块112进行选通操作,进而容易地控制各电子束源发射模块112中的每个电子束源112b的工作状态,使得直写的精准度得到提高。除此之外,本实施例中,为了便于理解将图2中的第一控制线以及第二控制线分别记为第一行线T1、第二行线T2、第三行线T3、第一列线L1、第二列线L2、第二列线L3,但是实际上第一控制线以及第二控制线形成的阵列并不以本实施例为限。It should be noted that, in the present invention, a lattice array can be formed by the cross structure between the first control line and the second control line, so that each electron beam source emission module 112 is also set to an array arrangement. Therefore, the more complex the cross relationship between the first control line and the second control line, the more lattice number that can be formed. In the present invention, at least each electron beam source emission module 112 can be gated on two control dimensions (the first control line and the second control line), so as to easily control the working state of each electron beam source 112b in each electron beam source emission module 112, so that the accuracy of direct writing is improved. In addition, in the present embodiment, for ease of understanding, the first control line and the second control line in Fig. 2 are respectively recorded as the first row line T1, the second row line T2, the third row line T3, the first column line L1, the second column line L2, and the second column line L3, but in fact the array formed by the first control line and the second control line is not limited to the present embodiment.
如图1和图2所示,各电子束源发射模块112分别连接电子束源控制电路111;其中,各电子束源发射模块中任一电子束源发射模块112在同时接收到N种选通信号时导通,进而发射对应的电子束。As shown in FIG. 1 and FIG. 2 , each electron beam source emission module 112 is respectively connected to an electron beam source control circuit 111 ; wherein any electron beam source emission module 112 among the electron beam source emission modules is turned on when receiving N selection signals at the same time, thereby emitting a corresponding electron beam.
具体地,如图3所示,在本实施例中,各电子束源发射模块112均包括控制单元112a以及电子束源112b;所述控制单元112a的第一控制端连接对应的第一控制线,第二控制端连接对应的第二控制线,输出端连接对应的电子束源112b,基于接收到的所述第一选通信号vc1和所述第二选通信号vc2向对应的电子束源112b提供开关信号;所述电子束源112b接收对应的开关信号并发射对应的电子束。Specifically, as shown in Figure 3, in this embodiment, each electron beam source emission module 112 includes a control unit 112a and an electron beam source 112b; the first control end of the control unit 112a is connected to the corresponding first control line, the second control end is connected to the corresponding second control line, and the output end is connected to the corresponding electron beam source 112b, and a switching signal is provided to the corresponding electron beam source 112b based on the received first selection signal vc1 and the second selection signal vc2; the electron beam source 112b receives the corresponding switching signal and emits the corresponding electron beam.
作为示例,如图3所示,所述控制单元112a包括第一晶体管T1以及第二晶体管T2;所述第一晶体管T1的第一端以及第二端分别作为所述控制单元112a的第一控制端以及第二控制端,第三端连接所述第二晶体管T2的第一端;所述第二晶体管T2的第二端连接第一偏置电压VB1,第三端作为所述控制单元112a的输出端。在本实施例中,第一选通信号vc1输入所述第一晶体管T1的第一端,第二选通信号vc2输入所述第一晶体管T1的第二端,进而导通第一晶体管T1并为第一晶体管T1的第三端提供开启电压。所述第二晶体管T2的第一端作为控制端接受开启电压,进而导通第二晶体管T2使其为电子束源112b提供开关信号。As an example, as shown in FIG3 , the control unit 112a includes a first transistor T1 and a second transistor T2; the first end and the second end of the first transistor T1 are respectively used as the first control end and the second control end of the control unit 112a, and the third end is connected to the first end of the second transistor T2; the second end of the second transistor T2 is connected to the first bias voltage VB1, and the third end is used as the output end of the control unit 112a. In this embodiment, the first selection signal vc1 is input to the first end of the first transistor T1, and the second selection signal vc2 is input to the second end of the first transistor T1, thereby turning on the first transistor T1 and providing a start voltage for the third end of the first transistor T1. The first end of the second transistor T2 receives the start voltage as the control end, thereby turning on the second transistor T2 to provide a switch signal for the electron beam source 112b.
需要说明的是,在本实施例中,第一晶体管T1以及第二晶体管T2均为隧穿晶体管。在本实施例提供的电子束发射电路11中,由于各节点的电压出现不同的变化,会导致各节点的温度差异较大,影响到了系统发射电子束的准确性和稳定性。基于此,通过设置对温度不敏感的隧穿晶体管,可以有效抑制温度对电子束源112b的工作状态的影响。实际上第一晶体管T1和第二晶体管T2还可以设置为其他任意类型的MOS管、BJT管、IGBT管等,其实际连接的方式可基于实际使用的器件设置,并不以本实施例为限。除此之外,本实施例中的各晶体管中可至少有一个设置有电荷存储功能,通过存储不同大小的电荷以调节晶体管的阈值电压,从而针对性的调节单一电子束源112b的电子束发射性能,进而保证各电子束源112b具有分离调节的作用。同时能够保证在掉电的情况下晶体管仍能保持调节后的工作性能,即:掉电再开启后,无需再进行校正配置,电子束源即可正常工作,从而避免由于上电前后过程中的电压变化导致前后发射的电子束不一致,最终影响到样品的均匀性。It should be noted that, in the present embodiment, the first transistor T1 and the second transistor T2 are both tunneling transistors. In the electron beam emission circuit 11 provided in the present embodiment, due to the different changes in the voltage of each node, the temperature difference of each node will be large, which affects the accuracy and stability of the system emitting electron beams. Based on this, by setting a tunneling transistor that is insensitive to temperature, the influence of temperature on the working state of the electron beam source 112b can be effectively suppressed. In fact, the first transistor T1 and the second transistor T2 can also be set to any other type of MOS tube, BJT tube, IGBT tube, etc., and the actual connection method can be set based on the actual device used, and is not limited to the present embodiment. In addition, at least one of the transistors in the present embodiment can be provided with a charge storage function, and the threshold voltage of the transistor can be adjusted by storing charges of different sizes, so as to specifically adjust the electron beam emission performance of a single electron beam source 112b, thereby ensuring that each electron beam source 112b has a separate adjustment function. At the same time, it can ensure that the transistor can still maintain the adjusted working performance in the event of a power outage, that is, after the power is turned on again, there is no need to perform calibration configuration and the electron beam source can work normally, thereby avoiding the inconsistency of the electron beams emitted before and after due to the voltage change before and after power-on, which ultimately affects the uniformity of the sample.
需要进一步说明的是,第二晶体管T2的导通、关断由第一晶体管T1决定,第一晶体管T1并不直接与电子束源112b相连,实现了开关控制与电子源发射之间的相对隔离,进而使得电子束源112b在工作过程中产生的扰动信号仅能微弱地影响第二晶体管T2的工作状态,而无法影响第一晶体管T1的工作状态(也就是不会影响到电子束源控制电路111),可保证系统稳定性。It should be further explained that the on/off state of the second transistor T2 is determined by the first transistor T1, and the first transistor T1 is not directly connected to the electron beam source 112b, thereby achieving relative isolation between switch control and electron source emission, so that the disturbance signal generated by the electron beam source 112b during operation can only weakly affect the working state of the second transistor T2, but cannot affect the working state of the first transistor T1 (that is, it will not affect the electron beam source control circuit 111), thereby ensuring system stability.
作为示例,如图3和图4所示,所述电子束源112b的第一端连接所述控制单元112a的输出端(接收开关信号),第二端(阴极)连接第二偏置电压VB2,第三端(阳极)输出电子束。在本实施例中,所述电子束源112b的源极连接第二偏置电压VB2,栅极连接所述控制单元112a的输出端,漏极作为输出端。在本实施例中,将电子束源112b的源极作为阴极,将所述电子束源112b的漏极作为阳极,保证了电子束源112b在导通情况下,电子经过电压充能具有较高的能量进行跃迁,进而发射电子束。在本实施例中,未被第一控制信号vc1和第二控制信号vc2同时选通的电子束源112b保持关闭状态。在另一实施例中,未被第一控制信号vc1和第二控制信号vc2同时选通的电子束源112b维持稳定的电子束发射强度持续发射。本发明引入了电子束源控制电路11,可以实现控制信号的稳定输出,可有效提升电子束的使用效率。在需要连续直写的情况下,电子束可保持稳定开启,实现接近100%的开启状态占空比,有效提升直写速率。As an example, as shown in Figures 3 and 4, the first end of the electron beam source 112b is connected to the output end of the control unit 112a (receiving a switch signal), the second end (cathode) is connected to the second bias voltage VB2, and the third end (anode) outputs an electron beam. In this embodiment, the source of the electron beam source 112b is connected to the second bias voltage VB2, the gate is connected to the output end of the control unit 112a, and the drain is used as the output end. In this embodiment, the source of the electron beam source 112b is used as a cathode, and the drain of the electron beam source 112b is used as an anode, which ensures that when the electron beam source 112b is turned on, the electrons have a higher energy to transition after voltage charging, thereby emitting an electron beam. In this embodiment, the electron beam source 112b that is not simultaneously selected by the first control signal vc1 and the second control signal vc2 remains in a closed state. In another embodiment, the electron beam source 112b that is not simultaneously selected by the first control signal vc1 and the second control signal vc2 maintains a stable electron beam emission intensity and continues to emit. The present invention introduces an electron beam source control circuit 11, which can achieve stable output of control signals and effectively improve the efficiency of electron beam use. When continuous direct writing is required, the electron beam can remain stably turned on, achieving a duty cycle of nearly 100% of the on state, effectively improving the direct writing rate.
需要说明的是,在另一示例中,可将所述电子束源112b的栅极连接第二偏置电压VB2,源极连接所述控制单元112a的输出端,进而实现电子束的稳定发射。在本实施例中,第二偏置电压VB2的电位可设置为由公共电极提供的公共偏置电位,也可以是通过偏置电路提供的特殊偏置电位,在本实施例中还可基于偏压配置模块13对偏置电压的大小进行调节,以调控发射的电子束的束流强度。除此之外,本实施例中的阳极可以部分地被制备在电子束源112b上,也可以是独立的部件结构,还可以是由电子束源112b上的阳极结构和外部独立阳极结构部件共同组成;基于此,阳极可以是单层结构,也可以是复合层结构,同时每一层阳极结构上可被施加不同强度的电压。It should be noted that, in another example, the gate of the electron beam source 112b can be connected to the second bias voltage VB2, and the source can be connected to the output end of the control unit 112a, so as to achieve stable emission of the electron beam. In this embodiment, the potential of the second bias voltage VB2 can be set to a common bias potential provided by a common electrode, or a special bias potential provided by a bias circuit. In this embodiment, the magnitude of the bias voltage can also be adjusted based on the bias configuration module 13 to regulate the beam current intensity of the emitted electron beam. In addition, the anode in this embodiment can be partially prepared on the electron beam source 112b, or it can be an independent component structure, or it can be composed of the anode structure on the electron beam source 112b and an external independent anode structure component; based on this, the anode can be a single-layer structure or a composite layer structure, and voltages of different strengths can be applied to each layer of the anode structure.
需要进一步说明的是,M个电子束源发射模块112以及电子束源控制模块111可以是制备在同一晶圆衬底上的,也可以是后期通过3D封装集成的方式组合在一起,并不以本实施例为限。除此之外,在本实施例中,第二晶体管T2与提供的第二偏置电压VB2的偏置电路分别连接电子束源112b的两端,因此实现了电子束源112b的开关调控与电子束源112b的束流强度调控可以分别设置,进而能够保证偏置电路可以为电子源提供稳定的工作偏压、或稳定的恒定工作电流而不受第二晶体管T2的影响,从而避免因第二晶体管的性能波动影响电子束源的工作状态。It should be further explained that the M electron beam source emission modules 112 and the electron beam source control module 111 can be prepared on the same wafer substrate, or can be combined together in a 3D packaging integration manner at a later stage, and are not limited to this embodiment. In addition, in this embodiment, the second transistor T2 and the bias circuit of the provided second bias voltage VB2 are respectively connected to the two ends of the electron beam source 112b, thereby achieving that the switch control of the electron beam source 112b and the beam intensity control of the electron beam source 112b can be set separately, thereby ensuring that the bias circuit can provide a stable working bias voltage or a stable constant working current for the electron source without being affected by the second transistor T2, thereby avoiding the working state of the electron beam source being affected by the performance fluctuation of the second transistor.
如图1所示,本实施例还提供一种电子束直写装置1,包括电子束路径调控模块12以及所述的电子束发射电路11。As shown in FIG. 1 , this embodiment further provides an electron beam direct writing device 1 , comprising an electron beam path control module 12 and the electron beam emission circuit 11 .
具体地,所述电子束路径调控模块12用于产生一组环绕发射的所述电子束的偏置电压,以调控电子束的运动路径。Specifically, the electron beam path control module 12 is used to generate a set of bias voltages for the electron beam emitted in a circular manner, so as to control the movement path of the electron beam.
作为示例,所述电子束路径调控模块12包括第一路径调控单元121以及第二路径调控单元122。所述第一路径调控单元121以及所述第二路径调控单元122均包括一组电极;每组电极分别环绕发射的所述电子束设置。通过调节每组电极上的偏置电压大小,进而调控每组电极产生的磁场。各电子束依次经过所述第一路径调控单元121所产生的磁场以及所述第二路径调控单元122所产生的磁场发生偏转,从而达到预设位置。其中,第一路径调控单元121可用于将电子束的运动路径进行大偏转,第二路径调控单元122用于将电子束的运动路径进行小偏转,进而更加准确的控制电子束达到的位置。在本实施例中,发射的电子束最终达到设置在机台10上表面的晶圆加工层101。所述晶圆加工层101可设置为图案加工掩膜层或者晶圆衬底。在本实施例中,通过调节第一路径调控单元121以及第二路径调控单元122中各电极上的电压,控制各电子束源112b发出的电子束的到达机台10的预设位置,进而控制图案直写。As an example, the electron beam path control module 12 includes a first path control unit 121 and a second path control unit 122. The first path control unit 121 and the second path control unit 122 each include a group of electrodes; each group of electrodes is respectively arranged around the emitted electron beam. By adjusting the bias voltage on each group of electrodes, the magnetic field generated by each group of electrodes is regulated. Each electron beam is deflected by the magnetic field generated by the first path control unit 121 and the magnetic field generated by the second path control unit 122 in turn, thereby reaching a preset position. Among them, the first path control unit 121 can be used to deflect the movement path of the electron beam greatly, and the second path control unit 122 is used to deflect the movement path of the electron beam slightly, thereby more accurately controlling the position reached by the electron beam. In this embodiment, the emitted electron beam finally reaches the wafer processing layer 101 arranged on the upper surface of the machine 10. The wafer processing layer 101 can be set as a pattern processing mask layer or a wafer substrate. In this embodiment, by adjusting the voltage on each electrode in the first path control unit 121 and the second path control unit 122 , the electron beams emitted by each electron beam source 112 b are controlled to reach a preset position of the machine 10 , thereby controlling the pattern direct writing.
在本实施例中,第一路径调控单元121以及第二路径调控单元122之间还设置有遮挡结构123。所述遮挡结构123为设置有一间隙的遮挡板,所述间歇位置设置于电子束经过第一路径调控单元121后的预设路径位置。所述遮挡板用于对多余的电子束以及不符合预设路径的电子束进行遮挡,进而控制进入第二路径调控单元122的电子束的数量以及运动角度。In this embodiment, a shielding structure 123 is further provided between the first path control unit 121 and the second path control unit 122. The shielding structure 123 is a shielding plate provided with a gap, and the intermittent position is provided at a preset path position after the electron beam passes through the first path control unit 121. The shielding plate is used to shield the redundant electron beams and the electron beams that do not conform to the preset path, thereby controlling the number and movement angle of the electron beams entering the second path control unit 122.
需要说明的是,所述第一路径调控单元121以及所述第二路径调控单元122还可以设置磁线圈,并使得磁线圈设置于所述电子束的外部,进而保证磁线圈产生的磁场方向能作用于所述电子束的运动路径。实际上,所述第一路径调控单元121以及所述第二路径调控单元122的设置并不以本实施例为限,任一能调控电子束的运动路径的设置均为本实施例的保护范围。It should be noted that the first path control unit 121 and the second path control unit 122 may also be provided with magnetic coils, and the magnetic coils are provided outside the electron beam, thereby ensuring that the direction of the magnetic field generated by the magnetic coils can act on the movement path of the electron beam. In fact, the configuration of the first path control unit 121 and the second path control unit 122 is not limited to this embodiment, and any configuration that can control the movement path of the electron beam is within the protection scope of this embodiment.
具体地,所述电子束直写装置1还包括总控模块14以及偏压配置模块13。所述总控模块14连接所述偏压配置模块13,用于产生控制信号以调控偏压配置模块13输出的偏压;所述偏压配置模块13分别连接各电子束源发射模块112以及电子束源控制模块111,基于所述电子束源控制电路112以选择导通对应的电子束源发射模块111进而发射电子束,以及调节所述电子束源发射模块111中的偏置电压(在本实施例中为第一偏置电压VB1)以调控发射的电子束的束流强度。通过总控模块14(如:计算机控制端)解析需要描画的图形,并将其转化为控制信号,进而控制电子束直写装置1中的其它部件进行直写工作。Specifically, the electron beam direct writing device 1 also includes a master control module 14 and a bias configuration module 13. The master control module 14 is connected to the bias configuration module 13, and is used to generate a control signal to adjust the bias output by the bias configuration module 13; the bias configuration module 13 is respectively connected to each electron beam source emission module 112 and the electron beam source control module 111, and based on the electron beam source control circuit 112, the corresponding electron beam source emission module 111 is selected to be turned on to emit an electron beam, and the bias voltage in the electron beam source emission module 111 (in this embodiment, the first bias voltage VB1) is adjusted to adjust the beam current intensity of the emitted electron beam. The graphics to be drawn are parsed by the master control module 14 (such as a computer control terminal), and converted into control signals, thereby controlling other components in the electron beam direct writing device 1 to perform direct writing.
本实施例通过电子束源控制模块112进行选通控制,且将电子束源控制模块112分为了两类控制线,进而减轻了各电子束源发射模块111的连线密度、布线难度,也减轻了总控模块14(计算机控制端)的算力需求,在设备制造上更容易实现。与此同时,本实施例对每个电子束源112b配置了独立的控制电路,可以使电子束源112b保持稳定的工作状态、实现高效率直写。This embodiment performs gating control through the electron beam source control module 112, and divides the electron beam source control module 112 into two types of control lines, thereby reducing the connection density and wiring difficulty of each electron beam source emission module 111, and also reducing the computing power requirements of the master control module 14 (computer control end), which is easier to implement in equipment manufacturing. At the same time, this embodiment configures an independent control circuit for each electron beam source 112b, which can keep the electron beam source 112b in a stable working state and achieve high-efficiency direct writing.
实施例二Embodiment 2
如图5所示,本实施例提供了一种电子束发射电路21,与实施例一基本相同,不同之处在于:本实施例中的电子束源控制电路21所需的选通信号不同。As shown in FIG. 5 , this embodiment provides an electron beam emission circuit 21 , which is basically the same as the first embodiment, except that the gating signal required by the electron beam source control circuit 21 in this embodiment is different.
具体地,如图5和图6所示,所述电子束源控制电路还包括P根第三控制线(在本实施例中记为P1)、Q根第四控制线(在本实施例中记为Q1);P、Q为大于等于1的整数且Q=L、P=T;各第三控制线分别产生第三选通信号vc3、各第四控制线分别产生第四选通信号vc4;各电子束源发射模块211的第三控制端分别连接对应的第三控制线,第四控制端分别连接对应的第四控制线;各电子束源发射模块211分别连接所述第三控制线以及所述第四控制线,并在同时接收到对应的第一选通信号vc1、对应的第二选通信号vc2、对应的第三选通信号vc3以及对应的第四选通信号vc4时导通以发射对应的电子束。Specifically, as shown in Figures 5 and 6, the electron beam source control circuit also includes P third control lines (denoted as P1 in this embodiment) and Q fourth control lines (denoted as Q1 in this embodiment); P and Q are integers greater than or equal to 1 and Q=L, P=T; each third control line generates a third selection signal vc3, and each fourth control line generates a fourth selection signal vc4; the third control end of each electron beam source emission module 211 is respectively connected to the corresponding third control line, and the fourth control end is respectively connected to the corresponding fourth control line; each electron beam source emission module 211 is respectively connected to the third control line and the fourth control line, and is turned on to emit the corresponding electron beam when receiving the corresponding first selection signal vc1, the corresponding second selection signal vc2, the corresponding third selection signal vc3 and the corresponding fourth selection signal vc4 at the same time.
作为示例,第一控制线之间相互平行,第二控制线之间相互平行;第三控制线均与第一控制线平行,第四控制线均与第二控制线平行。在本实施例中,为了便于排布,还设置有第一控制线与第二控制线之间的夹角为直角。As an example, the first control lines are parallel to each other, the second control lines are parallel to each other, the third control lines are parallel to the first control lines, and the fourth control lines are parallel to the second control lines. In this embodiment, for ease of arrangement, the angle between the first control line and the second control line is a right angle.
作为进一步示例,如图5和图6所示,各电子束源发射模块112均包括控制单元211a以及电子束源211b;所述控制单元211a的第一控制端连接对应的第一控制线,第二控制端连接对应的第二控制线、第三控制端连接对应的第三控制线、第四控制端连接对应的第四控制线,输出端连接对应的电子束源211b,基于接收到的所述第一选通信号vc1、所述第二选通信号vc2、所述第三选通信号vc3以及所述第四选通信号vc4向对应的电子束源211b提供开关信号;所述电子束源211b接收对应的开关信号并发射对应的电子束。As a further example, as shown in Figures 5 and 6, each electron beam source emission module 112 includes a control unit 211a and an electron beam source 211b; the first control end of the control unit 211a is connected to the corresponding first control line, the second control end is connected to the corresponding second control line, the third control end is connected to the corresponding third control line, and the fourth control end is connected to the corresponding fourth control line, and the output end is connected to the corresponding electron beam source 211b, and a switching signal is provided to the corresponding electron beam source 211b based on the received first selection signal vc1, the second selection signal vc2, the third selection signal vc3 and the fourth selection signal vc4; the electron beam source 211b receives the corresponding switching signal and emits the corresponding electron beam.
在本实施例中,如图6所示,所述控制单元211a包括第三晶体管T3、第四晶体管T4以及第五晶体管T5;所述第三晶体管T3的第一端以及第二端分别作为所述控制单元211a的第一控制端以及第二控制端;所述第四晶体管T4的第一端以及第二端分别作为所述控制单元211a的第三控制端以及第四控制端;所述第三晶体管T3的第三端以及所述第四晶体管T4的第三端相连;所述第五晶体管T5的第一端连接所述第三晶体管T3的第三端,第二端连接第二偏置电压VB3,第三端作为所述控制单元211a的输出端。In this embodiment, as shown in Figure 6, the control unit 211a includes a third transistor T3, a fourth transistor T4 and a fifth transistor T5; the first end and the second end of the third transistor T3 serve as the first control end and the second control end of the control unit 211a respectively; the first end and the second end of the fourth transistor T4 serve as the third control end and the fourth control end of the control unit 211a respectively; the third end of the third transistor T3 and the third end of the fourth transistor T4 are connected; the first end of the fifth transistor T5 is connected to the third end of the third transistor T3, the second end is connected to the second bias voltage VB3, and the third end serves as the output end of the control unit 211a.
需要说明的是,在本实施例中,第三晶体管T3、第四晶体管T4以及第五晶体管T5均为隧穿晶体管,可以有效抑制温度对电子束源112b的工作状态的影响。实际上,第三晶体管T3、第四晶体管T4以及第五晶体管T5还可以设置为其他任意类型的MOS管、BJT管、IGBT管等,其实际连接的方式可基于实际使用的器件设置,并不以本实施例为限。除此之外,本实施例中的各晶体管中可至少有一个设置有电荷存储功能,通过存储不同大小的电荷以调节晶体管的阈值电压,从而针对性的调节单一电子束源112b的电子束发射性能,进而保证各电子束源112b具有分离调节的作用。同时能够保证在掉电的情况下晶体管仍能保持调节后的工作性能。It should be noted that, in the present embodiment, the third transistor T3, the fourth transistor T4 and the fifth transistor T5 are all tunneling transistors, which can effectively suppress the influence of temperature on the working state of the electron beam source 112b. In fact, the third transistor T3, the fourth transistor T4 and the fifth transistor T5 can also be set to any other type of MOS tube, BJT tube, IGBT tube, etc., and the actual connection method can be based on the device setting actually used, and is not limited to the present embodiment. In addition, at least one of the transistors in the present embodiment can be provided with a charge storage function, and the threshold voltage of the transistor can be adjusted by storing charges of different sizes, so as to specifically adjust the electron beam emission performance of a single electron beam source 112b, thereby ensuring that each electron beam source 112b has a separate adjustment function. At the same time, it can ensure that the transistor can still maintain the adjusted working performance in the case of power failure.
本实施例还提供了一种电子束直写装置(图中未示出),与实施例一所提供的电子束直写装置1基本相同,不同之处在于电子束源控制电路21,此处不再一一赘述。This embodiment also provides an electron beam direct writing device (not shown in the figure), which is basically the same as the electron beam direct writing device 1 provided in the first embodiment, and the difference lies in the electron beam source control circuit 21, which will not be described here one by one.
综上所述,本发明提供一种电子束发射电路以及电子束直写装置,包括:M个电子束源发射模块以及电子束源控制模块;M为大于等于1的整数;电子束源控制模块用于产生N种选通信号,N为大于等于2的整数;各电子束源发射模块分别连接电子束源控制电路;其中,各电子束源发射模块中任一电子束源发射模块在同时接收到N种选通信号时导通,进而发射对应的电子束。本发明能解决现有的电子直写技术存在的电子束流强度低、图形精度不足、直写效率不够以及不易控制等问题。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention provides an electron beam emission circuit and an electron beam direct writing device, including: M electron beam source emission modules and an electron beam source control module; M is an integer greater than or equal to 1; the electron beam source control module is used to generate N kinds of gating signals, and N is an integer greater than or equal to 2; each electron beam source emission module is respectively connected to the electron beam source control circuit; wherein, any electron beam source emission module in each electron beam source emission module is turned on when receiving N kinds of gating signals at the same time, and then emits the corresponding electron beam. The present invention can solve the problems of low electron beam current intensity, insufficient graphic accuracy, insufficient direct writing efficiency, and difficulty in control existing in the existing electron direct writing technology. Therefore, the present invention effectively overcomes the various shortcomings in the prior art and has a high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Anyone familiar with the art may modify or alter the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or alterations made by a person of ordinary skill in the art without departing from the spirit and technical ideas disclosed by the present invention shall still be covered by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311608393.XACN117850169B (en) | 2023-11-28 | 2023-11-28 | Electron beam emission circuit and electron beam direct writing device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311608393.XACN117850169B (en) | 2023-11-28 | 2023-11-28 | Electron beam emission circuit and electron beam direct writing device |
| Publication Number | Publication Date |
|---|---|
| CN117850169Atrue CN117850169A (en) | 2024-04-09 |
| CN117850169B CN117850169B (en) | 2025-01-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311608393.XAActiveCN117850169B (en) | 2023-11-28 | 2023-11-28 | Electron beam emission circuit and electron beam direct writing device |
| Country | Link |
|---|---|
| CN (1) | CN117850169B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025113161A1 (en)* | 2023-11-28 | 2025-06-05 | 上海集成电路材料研究院有限公司 | Electron beam direct writing device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4021636A (en)* | 1974-10-29 | 1977-05-03 | Steigerwald Strahltechnik Gmbh | Beam current control device for a technical corpuscular beam apparatus |
| JPH05166707A (en)* | 1991-03-13 | 1993-07-02 | Fujitsu Ltd | Electron beam exposure method |
| US20040061065A1 (en)* | 2002-09-27 | 2004-04-01 | Advantest Corporation | Electron beam exposure apparatus, electron beam exposure apparatus calibration method, and semiconductor element manufacturing method |
| FR2881270A1 (en)* | 2005-01-27 | 2006-07-28 | Commissariat Energie Atomique | Microelectronic electron emitting device for direct write electron lithography device, has insulating layer with openings forming nano-sources to emit secondary electrons, where number of openings is less than that of micro electron sources |
| CN108181790A (en)* | 2016-12-08 | 2018-06-19 | 纽富来科技股份有限公司 | More charged particle beam exposure methods and more charged particle beam exposure apparatus |
| CN207706145U (en)* | 2018-02-01 | 2018-08-07 | 重庆理工大学 | A kind of high-voltage pulse generation circuit in high energy strong current electron beam source |
| CN109859678A (en)* | 2017-11-30 | 2019-06-07 | 乐金显示有限公司 | Gate drive circuit and light-emitting display device including the same |
| JP2022081185A (en)* | 2020-11-19 | 2022-05-31 | 株式会社ニューフレアテクノロジー | Operation control method of electron emission source, electron beam drawing method, and electron beam drawing device |
| CN115128913A (en)* | 2022-07-08 | 2022-09-30 | 西湖大学 | Multi-beam electron beam exposure machine |
| US20230335365A1 (en)* | 2022-04-13 | 2023-10-19 | John Bennett | Electron source and pattern modulator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4021636A (en)* | 1974-10-29 | 1977-05-03 | Steigerwald Strahltechnik Gmbh | Beam current control device for a technical corpuscular beam apparatus |
| JPH05166707A (en)* | 1991-03-13 | 1993-07-02 | Fujitsu Ltd | Electron beam exposure method |
| US20040061065A1 (en)* | 2002-09-27 | 2004-04-01 | Advantest Corporation | Electron beam exposure apparatus, electron beam exposure apparatus calibration method, and semiconductor element manufacturing method |
| FR2881270A1 (en)* | 2005-01-27 | 2006-07-28 | Commissariat Energie Atomique | Microelectronic electron emitting device for direct write electron lithography device, has insulating layer with openings forming nano-sources to emit secondary electrons, where number of openings is less than that of micro electron sources |
| CN108181790A (en)* | 2016-12-08 | 2018-06-19 | 纽富来科技股份有限公司 | More charged particle beam exposure methods and more charged particle beam exposure apparatus |
| CN109859678A (en)* | 2017-11-30 | 2019-06-07 | 乐金显示有限公司 | Gate drive circuit and light-emitting display device including the same |
| CN207706145U (en)* | 2018-02-01 | 2018-08-07 | 重庆理工大学 | A kind of high-voltage pulse generation circuit in high energy strong current electron beam source |
| JP2022081185A (en)* | 2020-11-19 | 2022-05-31 | 株式会社ニューフレアテクノロジー | Operation control method of electron emission source, electron beam drawing method, and electron beam drawing device |
| US20230335365A1 (en)* | 2022-04-13 | 2023-10-19 | John Bennett | Electron source and pattern modulator |
| CN115128913A (en)* | 2022-07-08 | 2022-09-30 | 西湖大学 | Multi-beam electron beam exposure machine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025113161A1 (en)* | 2023-11-28 | 2025-06-05 | 上海集成电路材料研究院有限公司 | Electron beam direct writing device |
| Publication number | Publication date |
|---|---|
| CN117850169B (en) | 2025-01-21 |
| Publication | Publication Date | Title |
|---|---|---|
| TWI483290B (en) | Method of drawing and method of manufacturing articles | |
| CN117850167B (en) | Electron beam direct writing device and electron beam direct writing system | |
| US9373424B2 (en) | Electron beam writing apparatus and electron beam writing method | |
| TWI553689B (en) | Multi charged particle beam writing apparatus, and multi charged particle beam writing method | |
| US20020027198A1 (en) | Method and apparatus for charged particle beam exposure | |
| CN117850169A (en) | Electron beam emission circuit and electron beam direct writing device | |
| CN102023489A (en) | Method for breaking up and patterning using curved characters using charged particle beam lithography | |
| US11062878B2 (en) | Method and system for determining a charged particle beam exposure for a local pattern density | |
| US9543120B2 (en) | Blanking device for multi charged particle beams, and multi charged particle beam writing apparatus | |
| US11592802B2 (en) | Method and system of reducing charged particle beam write time | |
| US20120286174A1 (en) | Charged particle beam writing apparatus and charged particle beam writing method | |
| JP2019176049A (en) | Charged particle beam drawing apparatus and charged particle beam drawing method | |
| KR20200049622A (en) | Multi-charged particle beam writing apparatus and multi-charged particle beam writing method | |
| WO2025113161A1 (en) | Electron beam direct writing device | |
| Brodie et al. | A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography | |
| US11756765B2 (en) | Method and system for determining a charged particle beam exposure for a local pattern density | |
| JPH03174715A (en) | Blanking aperture array, manufacture thereof and apparatus and method for charged particle beam exposure | |
| US12243712B2 (en) | Method and system for determining a charged particle beam exposure for a local pattern density | |
| US6288406B1 (en) | Electron beam lithography system having variable writing speed | |
| JP2001015428A (en) | Electron beam exposure system | |
| US20240395493A1 (en) | Blanking aperture array mechanism and writing apparatus | |
| US20240429022A1 (en) | Multiple charged particle beam writing apparatus and multiple charged particle beam writing method | |
| KR102857729B1 (en) | Multi charged particle beam writing method, multi charged particle beam writing apparatus, and computer readable recording medium | |
| US20250079119A1 (en) | Method for determining line segment intersections in figure of writing data, apparatus for determining line segment intersections in figure of writing data, storage medium, and electron beam lithography apparatus | |
| KR20240051886A (en) | Shielding strategy for mitigating stray fields for permanent magnet arrays |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| OL01 | Intention to license declared | ||
| OL01 | Intention to license declared |