Movatterモバイル変換


[0]ホーム

URL:


CN117838244A - A shock wave system - Google Patents

A shock wave system
Download PDF

Info

Publication number
CN117838244A
CN117838244ACN202211216582.8ACN202211216582ACN117838244ACN 117838244 ACN117838244 ACN 117838244ACN 202211216582 ACN202211216582 ACN 202211216582ACN 117838244 ACN117838244 ACN 117838244A
Authority
CN
China
Prior art keywords
shock wave
voltage
module
generator
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211216582.8A
Other languages
Chinese (zh)
Other versions
CN117838244B (en
Inventor
丁上上
陈剑锋
张一�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peijia Medical Technology Suzhou Co ltd
Original Assignee
Peijia Medical Technology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peijia Medical Technology Suzhou Co ltdfiledCriticalPeijia Medical Technology Suzhou Co ltd
Priority to CN202211216582.8ApriorityCriticalpatent/CN117838244B/en
Priority to CN202510619963.8Aprioritypatent/CN120477876A/en
Publication of CN117838244ApublicationCriticalpatent/CN117838244A/en
Application grantedgrantedCritical
Publication of CN117838244BpublicationCriticalpatent/CN117838244B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The shock wave system of the application comprises at least one shock wave emitter, at least one emitter sensing device, at least one shock wave generator and an emitter monitoring module; the relative position between the transmitter sensing device and the shock wave transmitter is fixed; the shock wave transmitter is electrically connected with the shock wave generator, and the transmitter monitoring module is respectively electrically connected with the transmitter sensing device and the shock wave generator; the transmitter sensing device is used for collecting target state parameters of the shock wave transmitter in the working state; the transmitter monitoring module is used for receiving the target state parameter transmitted by the transmitter sensing device, and outputting a generator negative feedback signal to the shock wave generator when the target state parameter does not meet the preset discharging condition, wherein the generator negative feedback signal is used for indicating the shock wave generator to stop charging. The shock wave system can effectively monitor the discharge energy of the shock wave emitter, so that the treatment safety, controllability and working efficiency are improved.

Description

Translated fromChinese
一种冲击波系统A shock wave system

技术领域Technical Field

本申请涉及冲击波医疗器械技术领域,特别涉及一种冲击波系统。The present application relates to the technical field of shock wave medical devices, and in particular to a shock wave system.

背景技术Background technique

冲击波是一种通过振动、高速运动等导致介质快速或极速压缩而聚集产生能量的具有力学特性的声波,可引起介质的压强、温度、密度等物理性质发生跳跃式改变,已被应用于体外碎石、消炎和缓解疼痛等医疗场景。Shock waves are sound waves with mechanical properties that gather energy by causing rapid or extreme compression of a medium through vibration, high-speed movement, etc. They can cause a sudden change in the medium's physical properties such as pressure, temperature, and density. They have been used in medical scenarios such as extracorporeal lithotripsy, anti-inflammatory, and pain relief.

近年来的研究工作表明,冲击波还能够用于体内治疗,如可使心脏瓣膜和血管钙化板块松动破裂等,在治疗过程中,可将进入人体的冲击波发射器与体外的冲击波发生器电连接,冲击波发射器接受体外冲击波发生器发出的电压或电流并释放冲击波,以作用于目标病变区。然而现有的体内冲击波设备仍存在诸多挑战,如无法检测冲击波发射器的能量输出情况,安全性和可控性较差。Research in recent years has shown that shock waves can also be used for in vivo treatment, such as loosening and rupturing heart valves and calcified blood vessels. During the treatment process, the shock wave transmitter that enters the human body can be electrically connected to the shock wave generator outside the body. The shock wave transmitter receives the voltage or current emitted by the shock wave generator outside the body and releases shock waves to act on the target lesion area. However, existing in vivo shock wave equipment still faces many challenges, such as the inability to detect the energy output of the shock wave transmitter, and poor safety and controllability.

发明内容Summary of the invention

本申请提供了一种冲击波系统,可以有效的对冲击波发射器的放电能量进行监测,从而提高治疗安全性、可控性和工作效率。The present application provides a shock wave system that can effectively monitor the discharge energy of a shock wave transmitter, thereby improving treatment safety, controllability and work efficiency.

本申请提供的冲击波系统包括至少一个冲击波发射器、至少一个发射器感应装置、至少一个冲击波发生器和发射器监测模块;The shock wave system provided by the present application includes at least one shock wave transmitter, at least one transmitter sensing device, at least one shock wave generator and a transmitter monitoring module;

所述发射器感应装置和所述冲击波发射器间的相对位置固定;The relative position between the transmitter sensing device and the shock wave transmitter is fixed;

所述冲击波发射器与所述冲击波发生器电连接,所述发射器监测模块分别与所述发射器感应装置和所述冲击波发生器电连接;The shock wave transmitter is electrically connected to the shock wave generator, and the transmitter monitoring module is electrically connected to the transmitter sensing device and the shock wave generator respectively;

所述发射器感应装置用于采集所述冲击波发射器工作状态下的目标状态参数,所述目标状态参数与所述冲击波发射器的放电能量间具有预设对应关系;The transmitter sensing device is used to collect target state parameters of the shock wave transmitter under working state, and there is a preset corresponding relationship between the target state parameters and the discharge energy of the shock wave transmitter;

所述发射器监测模块用于接收所述发射器感应装置传输的目标状态参数,以及在所述目标状态参数不满足预设放电条件的情况下,向所述冲击波发生器输出发生器负反馈信号,所述发生器负反馈信号用于指示所述冲击波发生器停止充电。The transmitter monitoring module is used to receive the target state parameters transmitted by the transmitter sensing device, and when the target state parameters do not meet the preset discharge conditions, output a generator negative feedback signal to the shock wave generator, and the generator negative feedback signal is used to instruct the shock wave generator to stop charging.

优选的,所述冲击波系统还包括至少一个球囊,所述球囊内设置有所述冲击波发射器、所述发射器感应装置和定位内管;Preferably, the shock wave system further comprises at least one balloon, in which the shock wave transmitter, the transmitter sensing device and the positioning inner tube are arranged;

所述冲击波发射器与所述定位内管固定连接,所述发射器感应装置与所述定位内管固定连接;The shock wave transmitter is fixedly connected to the positioning inner tube, and the transmitter sensing device is fixedly connected to the positioning inner tube;

在所述定位内管的轴向上,所述发射器感应装置的探测点与所述冲击波发射器的放电点间具有预设距离。In the axial direction of the positioning inner tube, there is a preset distance between the detection point of the transmitter sensing device and the discharge point of the shock wave transmitter.

优选的,所述冲击波系统包括多个所述球囊,所述冲击波系统还包括介入导管,多个所述球囊均匀布置在所述介入导管的外周。Preferably, the shock wave system comprises a plurality of the balloons, and the shock wave system further comprises an interventional catheter, and the plurality of balloons are evenly arranged on the periphery of the interventional catheter.

优选的,所述预设距离大于等于3mm且小于等于5mm。Preferably, the preset distance is greater than or equal to 3 mm and less than or equal to 5 mm.

优选的,所述发射器感应装置包括压力传感器、光电传感器和温度传感器中的至少一种,所述目标状态参数包括所述球囊内的声波压力参数、放电电火花强度参数和温度参数中的至少一种。Preferably, the transmitter sensing device includes at least one of a pressure sensor, a photoelectric sensor and a temperature sensor, and the target state parameter includes at least one of an acoustic wave pressure parameter, a discharge spark intensity parameter and a temperature parameter in the balloon.

优选的,所述冲击波系统还包括调节电压监测模块、充电电压监测模块和第一电压比较模块,所述第一电压比较模块分别与所述调节电压监测模块和充电电压监测模块电连接;Preferably, the shock wave system further comprises a regulating voltage monitoring module, a charging voltage monitoring module and a first voltage comparison module, wherein the first voltage comparison module is electrically connected to the regulating voltage monitoring module and the charging voltage monitoring module respectively;

所述冲击波发生器包括电连接的电压调节模块、充电模块和高压储能模块;所述调节电压监测模块与所述电压调节模块电连接,所述充电电压监测模块与所述高压储能模块电连接;The shock wave generator comprises a voltage regulating module, a charging module and a high-voltage energy storage module which are electrically connected; the regulating voltage monitoring module is electrically connected to the voltage regulating module, and the charging voltage monitoring module is electrically connected to the high-voltage energy storage module;

所述调节电压监测模块用于检测所述电压调节模块输出的电压设置信号,并将所述电压设置信号传输至所述第一电压比较模块;所述充电电压监测模块用于检测所述高压储能模块的当前电压信号,并将所述当前电压信号传输至所述第一电压比较模块;所述第一电压比较模块用于对所述电压设置信号和所述当前电压信号进行比较处理,以生成电压比较反馈信号,所述电压比较反馈信号用于指示所述充电模块和所述高压储能模块间的通断状态。The regulating voltage monitoring module is used to detect the voltage setting signal output by the voltage regulating module, and transmit the voltage setting signal to the first voltage comparison module; the charging voltage monitoring module is used to detect the current voltage signal of the high-voltage energy storage module, and transmit the current voltage signal to the first voltage comparison module; the first voltage comparison module is used to compare and process the voltage setting signal and the current voltage signal to generate a voltage comparison feedback signal, and the voltage comparison feedback signal is used to indicate the on-off state between the charging module and the high-voltage energy storage module.

优选的,所述冲击波系统还包括第二电压比较模块,所述第二电压比较模块与所述调节电压监测模块电连接;Preferably, the shock wave system further comprises a second voltage comparison module, and the second voltage comparison module is electrically connected to the regulation voltage monitoring module;

所述第二电压比较模块用于接收所述调节电压监测模块传输的所述电压设置信号,以及将所述电压设置信号与输出电压阈值进行比较,以生成输出电压反馈信号,所述输出电压反馈信号用于指示所述充电模块和所述高压储能模块间的通断状态。The second voltage comparison module is used to receive the voltage setting signal transmitted by the regulating voltage monitoring module, and compare the voltage setting signal with the output voltage threshold to generate an output voltage feedback signal, and the output voltage feedback signal is used to indicate the on/off state between the charging module and the high-voltage energy storage module.

优选的,所述充电电压监测模块至少包括互为备份设置的第一充电电压监测电路和第二充电电压监测电路。Preferably, the charging voltage monitoring module comprises at least a first charging voltage monitoring circuit and a second charging voltage monitoring circuit which are arranged as backup for each other.

优选的,所述冲击波系统还包括发生器温度监测模块和设置在所述冲击波发生器上的发生器感应装置,所述发生器感应装置与所述发生器温度监测模块电连接;Preferably, the shock wave system further comprises a generator temperature monitoring module and a generator sensing device arranged on the shock wave generator, wherein the generator sensing device is electrically connected to the generator temperature monitoring module;

所述发生器感应装置用于采集所述冲击波发生器中目标元器件的工作温度,并将所述工作温度传输至所述发生器温度监测模块;The generator sensing device is used to collect the operating temperature of the target components in the shock wave generator and transmit the operating temperature to the generator temperature monitoring module;

所述发生器温度监测模块用于基于所述工作温度和预设工作温度阈值生成发生器温度反馈信号,所述发生器温度反馈信号用于指示所述充电模块和所述高压储能模块间的通断状态。The generator temperature monitoring module is used to generate a generator temperature feedback signal based on the operating temperature and a preset operating temperature threshold, and the generator temperature feedback signal is used to indicate the on/off state between the charging module and the high-voltage energy storage module.

优选的,所述冲击波系统还包括启动信号监测模块,所述启动信号监测模块用于接收发生器启动信号,以及在接收到所述发生器启动信号的情况下生成启动反馈信号,所述启动反馈信号用于指示所述充电模块和所述高压储能模块间的通断状态。Preferably, the shock wave system also includes a start signal monitoring module, which is used to receive a generator start signal and generate a start feedback signal when receiving the generator start signal, and the start feedback signal is used to indicate the on/off status between the charging module and the high-voltage energy storage module.

本申请提供的一种冲击波系统,具有如下有益效果:The shock wave system provided by the present application has the following beneficial effects:

通过在冲击波发射器设置发射器感应装置和发射器监测模块,能够实时监测冲击波发射器工作状态下的目标状态参数,进而基于目标状态参数与预设放电条件判断是否向冲击波发生器输出发生器负反馈信号,以实现冲击波发射器能量输出的实时监测和反馈,进而及时控制冲击波发生器的充电状态,从而显著提高系统安全性和可控性。By setting up a transmitter sensing device and a transmitter monitoring module on the shock wave transmitter, the target state parameters of the shock wave transmitter in the working state can be monitored in real time, and then based on the target state parameters and the preset discharge conditions, it is determined whether to output a generator negative feedback signal to the shock wave generator, so as to realize real-time monitoring and feedback of the shock wave transmitter energy output, and then timely control the charging state of the shock wave generator, thereby significantly improving the system safety and controllability.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。In order to more clearly illustrate the technical solutions and advantages in the embodiments of the present application or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.

图1为本申请实施例提供的一种冲击波系统的结构示意图;FIG1 is a schematic structural diagram of a shock wave system provided in an embodiment of the present application;

图2为本申请实施例提供的一种冲击波系统的局部结构示意图;FIG2 is a schematic diagram of a partial structure of a shock wave system provided in an embodiment of the present application;

图3为本申请实施例提供的一种冲击波系统中球囊的剖视图;FIG3 is a cross-sectional view of a balloon in a shock wave system provided in an embodiment of the present application;

图4为本申请实施例提供的另一种冲击波系统的局部结构示意图;FIG4 is a schematic diagram of a partial structure of another shock wave system provided in an embodiment of the present application;

图5为本申请实施例提供的另一种冲击波系统中球囊的剖视图;FIG5 is a cross-sectional view of a balloon in another shock wave system provided in an embodiment of the present application;

图6为本申请实施例提供的一种冲击波系统的结构图;FIG6 is a structural diagram of a shock wave system provided in an embodiment of the present application;

图7为本申请实施例提供的一种冲击波系统的框图。FIG. 7 is a block diagram of a shock wave system provided in an embodiment of the present application.

以下对附图作补充说明:The following is a supplementary description of the attached drawings:

10-定位内管;20-冲击波发射器;30-发射器感应装置;40-球囊;50-冲击波发生器;60-调节电压监测模块;70-充电电压监测模块;80-第一电压比较模块;90-电压调节模块;100-充电模块;110-高压储能模块;120-第二电压比较模块;130-发生器温度监测模块;140-发生器感应装置;150-发射器监测模块;160-触发信号监测模块;170-启动信号监测模块;180-整流模块;190-高压储能电容;200-高压触发开关;210-充电控制模块;220-第一变压装置;230-第二变压装置;240-阈值电压调节模块;250-介入导管。10-positioning inner tube; 20-shock wave transmitter; 30-transmitter sensing device; 40-balloon; 50-shock wave generator; 60-regulating voltage monitoring module; 70-charging voltage monitoring module; 80-first voltage comparison module; 90-voltage regulating module; 100-charging module; 110-high-voltage energy storage module; 120-second voltage comparison module; 130-generator temperature monitoring module; 140-generator sensing device; 150-transmitter monitoring module; 160-trigger signal monitoring module; 170-start signal monitoring module; 180-rectifier module; 190-high-voltage energy storage capacitor; 200-high-voltage trigger switch; 210-charging control module; 220-first transformer; 230-second transformer; 240-threshold voltage regulating module; 250-interventional catheter.

具体实施方式Detailed ways

为了使本技术领域的人员更好地的理解本申请的方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to enable those skilled in the art to better understand the solution of the present application, the technical solution in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without making creative work are within the scope of protection of this application.

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second", etc. in the specification and claims of the present application and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable where appropriate, so that the embodiments of the present application described herein can be implemented in an order other than those illustrated or described herein. In addition, the terms "including" and "having" and any of their variations are intended to cover non-exclusive inclusions, for example, a process, method, system, product or server that includes a series of steps or units is not necessarily limited to those steps or units that are clearly listed, but may include other steps or units that are not clearly listed or inherent to these processes, methods, products or devices.

请参考图1-7,本申请实施例提供的一种冲击波系统,包括至少一个冲击波发射器20、至少一个发射器感应装置30、至少一个冲击波发生器50和发射器监测模块150;发射器感应装置30和冲击波发射器20间的相对位置固定;冲击波发射器20与冲击波发生器50电连接,发射器监测模块150分别与发射器感应装置30和冲击波发生器50电连接;发射器感应装置30用于采集冲击波发射器20工作状态下的目标状态参数,目标状态参数与冲击波发射器20的放电能量间具有预设对应关系;发射器监测模块150用于接收发射器感应装置30传输的目标状态参数,以及在目标状态参数不满足预设放电条件的情况下,向冲击波发生器50输出发生器负反馈信号,发生器负反馈信号用于指示冲击波发生器50停止充电。Please refer to Figures 1-7. A shock wave system provided in an embodiment of the present application includes at least one shock wave transmitter 20, at least one transmitter sensing device 30, at least one shock wave generator 50 and a transmitter monitoring module 150; the relative position between the transmitter sensing device 30 and the shock wave transmitter 20 is fixed; the shock wave transmitter 20 is electrically connected to the shock wave generator 50, and the transmitter monitoring module 150 is electrically connected to the transmitter sensing device 30 and the shock wave generator 50 respectively; the transmitter sensing device 30 is used to collect target state parameters of the shock wave transmitter 20 under the working state, and there is a preset corresponding relationship between the target state parameters and the discharge energy of the shock wave transmitter 20; the transmitter monitoring module 150 is used to receive the target state parameters transmitted by the transmitter sensing device 30, and when the target state parameters do not meet the preset discharge conditions, output a generator negative feedback signal to the shock wave generator 50, and the generator negative feedback signal is used to instruct the shock wave generator 50 to stop charging.

一些实施例中,冲击波发射器20置于人体内需要治疗的钙化病变处,如心脏瓣膜和血管中的钙化病变处,冲击波发生器50置于体外,体内的冲击波发射器20和体外的冲击波发生器50通过线缆电性连接。体内冲击波发射器20接收体外冲击波发生器50发出的电压或电流脉冲以产生冲击波,冲击波的能量可以使心脏瓣膜和血管中的钙化板块松动破裂,以达到治疗的效果。In some embodiments, the shock wave transmitter 20 is placed in the body at the calcified lesion that needs to be treated, such as the calcified lesion in the heart valve and blood vessels, and the shock wave generator 50 is placed outside the body, and the shock wave transmitter 20 in the body and the shock wave generator 50 outside the body are electrically connected through a cable. The shock wave transmitter 20 in the body receives the voltage or current pulses emitted by the shock wave generator 50 outside the body to generate shock waves, and the energy of the shock waves can loosen and rupture the calcified plates in the heart valve and blood vessels to achieve the treatment effect.

进一步的,在冲击波发射器20的放电过程中,冲击波发射器20的目标状态参数用于指示冲击波发射器20当前工作状态下的放电能量大小,与冲击波发射器20对应的发射器感应装置30采集冲击波发射器20每一次放电产生的目标状态参数,并将其传输至发射器监测模块150;发射器监测模块150接收目标状态参数并判断目标状态参数进行是否满足预设放电条件,若目标状态参数不满足预设放电条件,则说明冲击波发射器20的当前放电无效,在任一冲击波发射器20的当前放电无效的情况下,发射器监测模块150向冲击波发生器50传输发生器负反馈信号,冲击波发生器50响应于发生器负反馈信号而停止充电;若目标状态参数满足预设放电条件,则说明冲击波发射器20的当前放电有效,在所有冲击波发射器20的当前放电有效的情况下,发射器监测模块150向冲击波发生器50传输发生器正反馈信号,冲击波发生器50响应于发生器正反馈信号而进行充电。具体的,满足预设放电条件可以为目标状态参数中的各参数均在各参数的预设范围内。Further, during the discharge process of the shock wave transmitter 20, the target state parameter of the shock wave transmitter 20 is used to indicate the discharge energy size of the shock wave transmitter 20 in the current working state. The transmitter sensing device 30 corresponding to the shock wave transmitter 20 collects the target state parameter generated by each discharge of the shock wave transmitter 20 and transmits it to the transmitter monitoring module 150; the transmitter monitoring module 150 receives the target state parameter and determines whether the target state parameter satisfies the preset discharge condition. If the target state parameter does not satisfy the preset discharge condition, it means that the current discharge of the shock wave transmitter 20 is invalid. In the case that the current discharge of any shock wave transmitter 20 is invalid, the transmitter monitoring module 150 transmits a generator negative feedback signal to the shock wave generator 50, and the shock wave generator 50 stops charging in response to the generator negative feedback signal; if the target state parameter satisfies the preset discharge condition, it means that the current discharge of the shock wave transmitter 20 is valid. In the case that the current discharge of all shock wave transmitters 20 is valid, the transmitter monitoring module 150 transmits a generator positive feedback signal to the shock wave generator 50, and the shock wave generator 50 charges in response to the generator positive feedback signal. Specifically, satisfying the preset discharge condition may be that each parameter in the target state parameter is within a preset range of each parameter.

在一个实施例中,在冲击波发射器20放电无效的情况下,表明冲击波系统异常,控制冲击波发射器20停止工作。可选的,在冲击波发射器20放电无效的情况下,生成并显示故障警告信息。具体的,通过冲击波发生器50的显示装置显示故障信息,或冲击波发生器50的故障灯闪烁。In one embodiment, when the shock wave transmitter 20 fails to discharge, it indicates that the shock wave system is abnormal, and the shock wave transmitter 20 is controlled to stop working. Optionally, when the shock wave transmitter 20 fails to discharge, a fault warning message is generated and displayed. Specifically, the fault message is displayed by the display device of the shock wave generator 50, or the fault light of the shock wave generator 50 flashes.

本申请通过在冲击波发射器设置发射器感应装置并将其与发射器监测模块电连接,能够实时监测冲击波发射器工作状态下的目标状态参数,进而基于目标状态参数与预设放电条件判断是否向冲击波发生器输出发生器负反馈信号,以实现冲击波发射器能量输出的实时监测和反馈,进而及时控制冲击波发生器的充电状态,从而显著提高系统安全性和可控性。The present application provides a transmitter sensing device on the shock wave transmitter and electrically connects it to the transmitter monitoring module, so as to monitor the target state parameters of the shock wave transmitter in real time under the working state, and then judge whether to output a generator negative feedback signal to the shock wave generator based on the target state parameters and the preset discharge conditions, so as to realize the real-time monitoring and feedback of the energy output of the shock wave transmitter, and then timely control the charging state of the shock wave generator, thereby significantly improving the safety and controllability of the system.

本申请实施例中,冲击波系统还包括至少一个球囊40,球囊40内设置有冲击波发射器20、发射器感应装置30和定位内管10;冲击波发射器20与定位内管10固定连接,发射器感应装置30与定位内管10固定连接;在定位内管10的轴向上,发射器感应装置30的探测点与冲击波发射器20的放电点间具有预设距离,预设距离是基于发射器感应装置30的有效感应区域和冲击波发射器20的放电能力确定的,在发射器感应装置30的探测点与冲击波发射器20的放电点间的间距满足预设距离的情况下,冲击波发射器20的放电点放电时产生的冲击波能够被发射器感应装置30精准采集,且发射器感应装置30接收到的冲击波信号的放电能量值小于预设预警值,预设预警值表征发射器感应装置30被损坏时所能够承受的放电能量的下限值。In the embodiment of the present application, the shock wave system also includes at least one balloon 40, in which a shock wave transmitter 20, a transmitter sensing device 30 and a positioning inner tube 10 are arranged; the shock wave transmitter 20 is fixedly connected to the positioning inner tube 10, and the transmitter sensing device 30 is fixedly connected to the positioning inner tube 10; in the axial direction of the positioning inner tube 10, there is a preset distance between the detection point of the transmitter sensing device 30 and the discharge point of the shock wave transmitter 20, and the preset distance is determined based on the effective sensing area of the transmitter sensing device 30 and the discharge capacity of the shock wave transmitter 20. When the distance between the detection point of the transmitter sensing device 30 and the discharge point of the shock wave transmitter 20 meets the preset distance, the shock wave generated when the discharge point of the shock wave transmitter 20 discharges can be accurately collected by the transmitter sensing device 30, and the discharge energy value of the shock wave signal received by the transmitter sensing device 30 is less than the preset warning value, and the preset warning value represents the lower limit of the discharge energy that the transmitter sensing device 30 can withstand when it is damaged.

同时,通过针对每一冲击波发射器20设置对应的发射器感应装置30,并分别采集各发射器感应装置30的感应信号,确保各冲击波发射器20冲击波能量的精准采集和反馈,同时,能够精准定位工作状态异常的冲击波发射器20。At the same time, by setting a corresponding transmitter sensing device 30 for each shock wave transmitter 20 and collecting the sensing signals of each transmitter sensing device 30 respectively, the accurate collection and feedback of the shock wave energy of each shock wave transmitter 20 is ensured, and at the same time, the shock wave transmitter 20 with abnormal working status can be accurately located.

进一步的,球囊40内填充有电解质液体,电解质液体用于传导冲击波发射器20发射的冲击波。具体的,电解质液体包括但不限于肝素生理盐水和造影剂。Furthermore, the balloon 40 is filled with an electrolyte liquid, and the electrolyte liquid is used to conduct the shock wave emitted by the shock wave transmitter 20. Specifically, the electrolyte liquid includes but is not limited to heparin saline and contrast agent.

进一步的,冲击波发射器20与定位内管10的固定连接方式包括但不限于胶接、铆接、热缩管固定和焊接,发射器感应装置30与定位内管10的固定连接方式包括但不限于胶接、铆接、热缩管固定和焊接。Furthermore, the fixed connection methods between the shock wave emitter 20 and the positioning inner tube 10 include but are not limited to gluing, riveting, heat shrink tube fixing and welding, and the fixed connection methods between the emitter sensing device 30 and the positioning inner tube 10 include but are not limited to gluing, riveting, heat shrink tube fixing and welding.

在一些实施例中,请参见图4和图5,冲击波系统包括多个球囊40,冲击波系统还包括介入导管250,多个球囊40相邻平行地均设在介入导管250的外周。In some embodiments, referring to FIG. 4 and FIG. 5 , the shock wave system includes a plurality of balloons 40 , and the shock wave system also includes an interventional catheter 250 . The plurality of balloons 40 are adjacently and parallelly disposed on the periphery of the interventional catheter 250 .

具体的,在介入导管250的带动下,球囊40、冲击波发射器20、发射器感应装置30和定位内管10能够进入人体内需要治疗的钙化病变处。Specifically, driven by the interventional catheter 250, the balloon 40, the shock wave transmitter 20, the transmitter sensing device 30 and the positioning inner tube 10 can enter the calcified lesion that needs to be treated in the human body.

进一步的,请参见图2和图3,在冲击波系统包括一个球囊40的情况下,介入导管250伸入球囊40,介入导管250伸入球囊40的部分导管即为定位内管10。具体的,冲击波发射器20与介入导管250伸入球囊40的部分导管固定连接,发射器感应装置30与介入导管250伸入球囊40的部分导管固定连接。如此,能够减少冲击波系统的零件数量,进而降低冲击波系统的结构复杂性。Further, referring to FIG. 2 and FIG. 3 , when the shock wave system includes a balloon 40, the interventional catheter 250 extends into the balloon 40, and the portion of the catheter of the interventional catheter 250 extending into the balloon 40 is the positioning inner tube 10. Specifically, the shock wave transmitter 20 is fixedly connected to the portion of the catheter of the interventional catheter 250 extending into the balloon 40, and the transmitter sensing device 30 is fixedly connected to the portion of the catheter of the interventional catheter 250 extending into the balloon 40. In this way, the number of parts of the shock wave system can be reduced, thereby reducing the structural complexity of the shock wave system.

本申请实施例中,预设距离大于等于3mm且小于等于5mm。具体的,预设距离的设置需要考虑冲击波发射器20的放电能量,如此,既能够精准地采集冲击波发射器20产生的目标状态参数,也能够防止高能量的冲击波对发射器感应装置30的损坏,从而延长发射器感应装置30的使用寿命。In the embodiment of the present application, the preset distance is greater than or equal to 3 mm and less than or equal to 5 mm. Specifically, the setting of the preset distance needs to take into account the discharge energy of the shock wave transmitter 20, so that the target state parameters generated by the shock wave transmitter 20 can be accurately collected, and the high-energy shock wave can be prevented from damaging the transmitter sensing device 30, thereby extending the service life of the transmitter sensing device 30.

本申请实施例中,发射器感应装置30包括压力传感器、光电传感器和温度传感器中的至少一种,目标状态参数包括球囊内的声波压力参数、放电电火花强度参数和温度参数中的至少一种。In the embodiment of the present application, the transmitter sensing device 30 includes at least one of a pressure sensor, a photoelectric sensor and a temperature sensor, and the target state parameter includes at least one of an acoustic wave pressure parameter in the balloon, a discharge spark intensity parameter and a temperature parameter.

在一个实施例中,发射器感应装置30包括压力传感器,相应的,目标状态参数包括球囊内的声波压力参数。在冲击波发射器20放电的情况下,若压力传感器采集到的冲击波发射器20当前放电产生的声波压力参数大于或等于预设压力,则说明冲击波发射器20的当前放电满足第一预设放电条件,冲击波发射器20的当前放电有效,反之,则说明冲击波发射器20的当前放电不满足第一预设放电条件,冲击波发射器20的当前放电无效。具体的,压力传感器的采样频率可以大于或等于1MHz;预设压力可以为7-9MPa,优选的,预设压力可以为8MPa。In one embodiment, the transmitter sensing device 30 includes a pressure sensor, and accordingly, the target state parameter includes the acoustic wave pressure parameter in the balloon. When the shock wave transmitter 20 is discharged, if the acoustic wave pressure parameter generated by the current discharge of the shock wave transmitter 20 collected by the pressure sensor is greater than or equal to the preset pressure, it means that the current discharge of the shock wave transmitter 20 meets the first preset discharge condition, and the current discharge of the shock wave transmitter 20 is valid. Otherwise, it means that the current discharge of the shock wave transmitter 20 does not meet the first preset discharge condition, and the current discharge of the shock wave transmitter 20 is invalid. Specifically, the sampling frequency of the pressure sensor can be greater than or equal to 1MHz; the preset pressure can be 7-9MPa, and preferably, the preset pressure can be 8MPa.

在另一个实施例中,发射器感应装置30包括光电传感器,相应的,目标状态参数包括放电电火花强度参数。光电传感器的延时需小于或等于冲击波发射器20的放电时间,具体的,冲击波发射器20的放电时间为1μs,相应的,光电传感器的延时需小于或等于1μs。在冲击波发射器20放电的情况下,若光电传感器采集到的冲击波发射器20当前放电产生的放电电火花强度参数大于或等于预设放电电火花强度,则说明冲击波发射器20的当前放电满足第二预设放电条件,冲击波发射器20的当前放电有效,反之,则说明冲击波发射器20的当前放电不满足第二预设放电条件,冲击波发射器20的当前放电无效。具体的,预设放电电火花强度可以为100cd。In another embodiment, the transmitter sensing device 30 includes a photoelectric sensor, and correspondingly, the target state parameter includes a discharge spark intensity parameter. The delay of the photoelectric sensor needs to be less than or equal to the discharge time of the shock wave transmitter 20. Specifically, the discharge time of the shock wave transmitter 20 is 1 μs, and correspondingly, the delay of the photoelectric sensor needs to be less than or equal to 1 μs. In the case of the shock wave transmitter 20 discharging, if the discharge spark intensity parameter generated by the current discharge of the shock wave transmitter 20 collected by the photoelectric sensor is greater than or equal to the preset discharge spark intensity, it means that the current discharge of the shock wave transmitter 20 meets the second preset discharge condition, and the current discharge of the shock wave transmitter 20 is valid. Otherwise, it means that the current discharge of the shock wave transmitter 20 does not meet the second preset discharge condition, and the current discharge of the shock wave transmitter 20 is invalid. Specifically, the preset discharge spark intensity can be 100 cd.

在另一个实施例中,发射器感应装置30包括温度传感器,相应的,目标状态参数包括球囊内的温度参数。在冲击波发射器20放电的情况下,若温度传感器采集到的冲击波发射器20当前放电下球囊内的电解质液体的温度参数在预设温度范围内,则说明冲击波发射器20的当前放电满足第三预设放电条件,冲击波发射器20的当前放电有效;若温度参数低于预设温度范围的最小值,则说明冲击波发射器20的当前放电不满足第三预设放电条件,冲击波发射器20的当前放电无效;若温度参数高于预设温度范围的最大值,则说明冲击波发射器20的当前放电不满足第三预设放电条件,指示冲击波系统停止工作。具体的,预设温度范围可以为20-40℃。In another embodiment, the transmitter sensing device 30 includes a temperature sensor, and accordingly, the target state parameter includes a temperature parameter in the balloon. When the shock wave transmitter 20 is discharged, if the temperature parameter of the electrolyte liquid in the balloon under the current discharge of the shock wave transmitter 20 collected by the temperature sensor is within the preset temperature range, it means that the current discharge of the shock wave transmitter 20 meets the third preset discharge condition, and the current discharge of the shock wave transmitter 20 is valid; if the temperature parameter is lower than the minimum value of the preset temperature range, it means that the current discharge of the shock wave transmitter 20 does not meet the third preset discharge condition, and the current discharge of the shock wave transmitter 20 is invalid; if the temperature parameter is higher than the maximum value of the preset temperature range, it means that the current discharge of the shock wave transmitter 20 does not meet the third preset discharge condition, indicating that the shock wave system stops working. Specifically, the preset temperature range can be 20-40°C.

本申请实施例中,请参考图7,冲击波系统还包括调节电压监测模块60、充电电压监测模块70和第一电压比较模块80,第一电压比较模块80分别与调节电压监测模块60和充电电压监测模块70电连接;冲击波发生器50包括电连接的电压调节模块90、充电模块100和高压储能模块110;调节电压监测模块60与电压调节模块90电连接,充电电压监测模块70与高压储能模块110电连接;调节电压监测模块60用于检测电压调节模块90输出的电压设置信号,并将电压设置信号传输至第一电压比较模块80;充电电压监测模块70用于检测高压储能模块110的当前电压信号,并将当前电压信号传输至第一电压比较模块80;第一电压比较模块80用于对电压设置信号和当前电压信号进行比较处理,以生成电压比较反馈信号,电压比较反馈信号用于指示充电模块100和高压储能模块110间的通断状态。In the embodiment of the present application, please refer to Figure 7, the shock wave system also includes a regulating voltage monitoring module 60, a charging voltage monitoring module 70 and a first voltage comparison module 80, and the first voltage comparison module 80 is electrically connected to the regulating voltage monitoring module 60 and the charging voltage monitoring module 70 respectively; the shock wave generator 50 includes an electrically connected voltage regulating module 90, a charging module 100 and a high-voltage energy storage module 110; the regulating voltage monitoring module 60 is electrically connected to the voltage regulating module 90, and the charging voltage monitoring module 70 is electrically connected to the high-voltage energy storage module 110; the regulating voltage monitoring module 60 is used to detect the voltage setting signal output by the voltage regulating module 90, and transmit the voltage setting signal to the first voltage comparison module 80; the charging voltage monitoring module 70 is used to detect the current voltage signal of the high-voltage energy storage module 110, and transmit the current voltage signal to the first voltage comparison module 80; the first voltage comparison module 80 is used to compare and process the voltage setting signal and the current voltage signal to generate a voltage comparison feedback signal, and the voltage comparison feedback signal is used to indicate the on-off state between the charging module 100 and the high-voltage energy storage module 110.

具体的,响应于冲击波发生器50的第一控制模块发出的控制信号,电压调节模块90调节并输出电压设置信号,电压设置信号表征当前设置的充电模块100对高压储能模块110充电的电压上限。Specifically, in response to the control signal sent by the first control module of the shock wave generator 50, the voltage regulating module 90 adjusts and outputs a voltage setting signal, which represents the upper voltage limit of the currently set charging module 100 charging the high-voltage energy storage module 110.

在一个实施例中,电压调节模块90包括电连接的第一隔离放大电路和第一电压调节电路,具体的,第一电压调节电路包括第一可调电阻。In one embodiment, the voltage regulating module 90 includes a first isolation amplifier circuit and a first voltage regulating circuit that are electrically connected. Specifically, the first voltage regulating circuit includes a first adjustable resistor.

具体的,充电模块100响应于电压比较反馈信号,对高压储能模块110进行充电或停止充电。Specifically, the charging module 100 charges or stops charging the high-voltage energy storage module 110 in response to the voltage comparison feedback signal.

进一步的,在当前电压信号小于电压设置信号的情况下,第一电压比较模块80生成第一电压比较正反馈信号,第一电压比较正反馈信号用于指示充电模块100对高压储能模块110进行充电;在当前电压信号大于或等于电压设置信号的情况下,第一电压比较模块80生成第一电压比较负反馈信号,第一电压比较负反馈信号用于指示充电模块100对高压储能模块110停止充电。如此,能够保证冲击波系统的充放电安全。Further, when the current voltage signal is less than the voltage setting signal, the first voltage comparison module 80 generates a first voltage comparison positive feedback signal, and the first voltage comparison positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110; when the current voltage signal is greater than or equal to the voltage setting signal, the first voltage comparison module 80 generates a first voltage comparison negative feedback signal, and the first voltage comparison negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110. In this way, the charging and discharging safety of the shock wave system can be guaranteed.

本申请实施例中,高压储能模块110包括高压储能电容190,第一电压比较模块80包括第一比较器。In the embodiment of the present application, the high-voltage energy storage module 110 includes a high-voltage energy storage capacitor 190, and the first voltage comparison module 80 includes a first comparator.

本申请实施例中,请参见图7,冲击波系统还包括第二电压比较模块120,第二电压比较模块120与调节电压监测模块60电连接;第二电压比较模块120用于接收调节电压监测模块60传输的电压设置信号,以及将电压设置信号与输出电压阈值进行比较,以生成输出电压反馈信号,输出电压反馈信号用于指示充电模块100和高压储能模块110间的通断状态。输出电压阈值表征冲击波系统中充电模块100对高压储能模块110充电的安全电压上限。In the embodiment of the present application, please refer to FIG. 7 , the shock wave system further includes a second voltage comparison module 120, which is electrically connected to the voltage adjustment monitoring module 60; the second voltage comparison module 120 is used to receive the voltage setting signal transmitted by the voltage adjustment monitoring module 60, and compare the voltage setting signal with the output voltage threshold to generate an output voltage feedback signal, and the output voltage feedback signal is used to indicate the on-off state between the charging module 100 and the high-voltage energy storage module 110. The output voltage threshold represents the upper limit of the safe voltage for the charging module 100 to charge the high-voltage energy storage module 110 in the shock wave system.

进一步的,冲击波发生器50还包括阈值电压调节模块240,阈值电压调节模块240和第二电压比较模块120电连接。具体的,响应于冲击波发生器50的第一控制模块发出的控制信号,阈值电压调节模块240调节并输出输出电压阈值。Furthermore, the shock wave generator 50 further includes a threshold voltage adjustment module 240, which is electrically connected to the second voltage comparison module 120. Specifically, in response to the control signal sent by the first control module of the shock wave generator 50, the threshold voltage adjustment module 240 adjusts and outputs the output voltage threshold.

在一个实施例中,阈值电压调节模块240包括电连接的第二隔离放大电路和第二电压调节电路,具体的,第二电压调节电路包括第二可调电阻。In one embodiment, the threshold voltage adjustment module 240 includes a second isolation amplifier circuit and a second voltage adjustment circuit that are electrically connected. Specifically, the second voltage adjustment circuit includes a second adjustable resistor.

进一步的,第二电压比较模块120接收调节电压监测模块60传输的电压设置信号和阈值电压调节模块240传输的输出电压阈值,在电压设置信号小于输出电压阈值的情况下,第二电压比较模块120生成第一输出电压反馈信号,第一输出电压反馈信号用于指示充电模块100对高压储能模块110进行充电;在电压设置信号大于或等于输出电压阈值的情况下,第二电压比较模块120生成第二输出电压反馈信号,第二输出电压反馈信号用于指示充电模块100对高压储能模块110停止充电。如此,能够进一步保证冲击波系统的充放电安全。Further, the second voltage comparison module 120 receives the voltage setting signal transmitted by the voltage adjustment monitoring module 60 and the output voltage threshold transmitted by the threshold voltage adjustment module 240. When the voltage setting signal is less than the output voltage threshold, the second voltage comparison module 120 generates a first output voltage feedback signal, and the first output voltage feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110; when the voltage setting signal is greater than or equal to the output voltage threshold, the second voltage comparison module 120 generates a second output voltage feedback signal, and the second output voltage feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110. In this way, the charging and discharging safety of the shock wave system can be further guaranteed.

优选的,第二电压比较模块120包括第二比较器。Preferably, the second voltage comparison module 120 includes a second comparator.

本申请实施例中,充电电压监测模块70至少包括互为备份设置的第一充电电压监测电路和第二充电电压监测电路。In the embodiment of the present application, the charging voltage monitoring module 70 at least includes a first charging voltage monitoring circuit and a second charging voltage monitoring circuit which are provided as backup for each other.

进一步的,第一充电电压监测电路和第二充电电压监测电路均可以检测高压储能模块110的当前电压信号,并将当前电压信号传输至第一电压比较模块80,如此,能够保证在第一充电电压监测电路和第二充电电压监测电路中的二者其一出现故障时,第一充电电压监测电路和第二充电电压监测电路中的另一仍能检测高压储能模块110的当前电压信号,从而增加冲击波系统的电路安全性。Furthermore, both the first charging voltage monitoring circuit and the second charging voltage monitoring circuit can detect the current voltage signal of the high-voltage energy storage module 110, and transmit the current voltage signal to the first voltage comparison module 80. In this way, it can be ensured that when one of the first charging voltage monitoring circuit and the second charging voltage monitoring circuit fails, the other of the first charging voltage monitoring circuit and the second charging voltage monitoring circuit can still detect the current voltage signal of the high-voltage energy storage module 110, thereby increasing the circuit safety of the shock wave system.

在一个实施例中,第一充电电压监测电路包括与高压储能模块110串联的第一分压电阻,以使高压储能模块110两端的高压信号转换为弱电信号,具体的,高压信号和弱电信号之比可以至少为10000:3,如此,能够避免高压储能模块110两端的高压信号对第一充电电压监测电路的损坏。此外,第一充电电压监测电路还包括信号处理电路,具体的,信号处理电路包括瞬态电压抑制器(TVS)、电压追随器、反相器和放大器。瞬态电压抑制器(TVS)用于对电路信号进行电压钳制,以避免可能出现的尖峰电压对后续电路的破坏;电压追随器和反相器用于对电路信号进行稳定处理;放大器用于对电路信号进行放大,放大后的电路信号即为第一充电电压监测电路检测到的当前电压信号。第二充电电压监测电路和第一充电电压监测电路互为备份设置。In one embodiment, the first charging voltage monitoring circuit includes a first voltage-dividing resistor connected in series with the high-voltage energy storage module 110, so that the high-voltage signal at both ends of the high-voltage energy storage module 110 is converted into a weak-current signal. Specifically, the ratio of the high-voltage signal to the weak-current signal can be at least 10000:3, so that the high-voltage signal at both ends of the high-voltage energy storage module 110 can be prevented from damaging the first charging voltage monitoring circuit. In addition, the first charging voltage monitoring circuit also includes a signal processing circuit. Specifically, the signal processing circuit includes a transient voltage suppressor (TVS), a voltage follower, an inverter, and an amplifier. The transient voltage suppressor (TVS) is used to clamp the voltage of the circuit signal to avoid possible damage to the subsequent circuit by the spike voltage; the voltage follower and the inverter are used to stabilize the circuit signal; the amplifier is used to amplify the circuit signal, and the amplified circuit signal is the current voltage signal detected by the first charging voltage monitoring circuit. The second charging voltage monitoring circuit and the first charging voltage monitoring circuit are backed up for each other.

本申请实施例中,冲击波系统还包括触发信号监测模块160,触发信号监测模块160用于基于有无接收发生器触发信号生成触发反馈信号,触发反馈信号用于指示高压储能模块110的工作状态。In the embodiment of the present application, the shock wave system also includes a trigger signal monitoring module 160, which is used to generate a trigger feedback signal based on whether a generator trigger signal is received, and the trigger feedback signal is used to indicate the working status of the high-voltage energy storage module 110.

进一步的,响应于脚踏开关或手柄开关的闭合,冲击波发生器50的第二控制模块生成发生器触发信号。在触发信号监测模块160接收到发生器触发信号的情况下,触发信号监测模块160生成第一触发反馈信号,第一触发反馈信号用于指示高压储能模块110放电;在触发信号监测模块160没有接收到发生器触发信号的情况下,触发信号监测模块160生成第二触发反馈信号,第二触发反馈信号用于指示高压储能模块110停止放电。Further, in response to the closing of the foot switch or the handle switch, the second control module of the shock wave generator 50 generates a generator trigger signal. When the trigger signal monitoring module 160 receives the generator trigger signal, the trigger signal monitoring module 160 generates a first trigger feedback signal, and the first trigger feedback signal is used to instruct the high-voltage energy storage module 110 to discharge; when the trigger signal monitoring module 160 does not receive the generator trigger signal, the trigger signal monitoring module 160 generates a second trigger feedback signal, and the second trigger feedback signal is used to instruct the high-voltage energy storage module 110 to stop discharging.

进一步的,高压储能模块110包括电连接的高压储能电容190和高压触发开关200,在高压触发开关200处于闭合的情况下,高压储能电容190向冲击波发射器20放电,在高压触发开关200处于断开的情况下,高压储能电容190则无法向冲击波发射器20放电。在触发信号监测模块160接收到发生器触发信号的情况下,触发信号监测模块160生成第一触发反馈信号,第一触发反馈信号控制高压触发开关200闭合,高压储能电容190向冲击波发射器20放电;在触发信号监测模块160没有接收到发生器触发信号的情况下,触发信号监测模块160生成第二触发反馈信号,第二触发反馈信号控制高压触发开关200断开,高压储能电容190无法向冲击波发射器20放电。Further, the high-voltage energy storage module 110 includes a high-voltage energy storage capacitor 190 and a high-voltage trigger switch 200 that are electrically connected. When the high-voltage trigger switch 200 is closed, the high-voltage energy storage capacitor 190 discharges to the shock wave transmitter 20. When the high-voltage trigger switch 200 is disconnected, the high-voltage energy storage capacitor 190 cannot discharge to the shock wave transmitter 20. When the trigger signal monitoring module 160 receives the generator trigger signal, the trigger signal monitoring module 160 generates a first trigger feedback signal, which controls the high-voltage trigger switch 200 to close, and the high-voltage energy storage capacitor 190 discharges to the shock wave transmitter 20; when the trigger signal monitoring module 160 does not receive the generator trigger signal, the trigger signal monitoring module 160 generates a second trigger feedback signal, which controls the high-voltage trigger switch 200 to disconnect, and the high-voltage energy storage capacitor 190 cannot discharge to the shock wave transmitter 20.

本申请实施例中,冲击波系统还包括发生器温度监测模块130和设置在冲击波发生器50上的发生器感应装置140,发生器感应装置140与发生器温度监测模块130电连接;发生器感应装置140用于采集冲击波发生器50中目标元器件的工作温度,并将工作温度传输至发生器温度监测模块130;发生器温度监测模块130用于基于工作温度和预设工作温度阈值生成发生器温度反馈信号,发生器温度反馈信号用于指示充电模块100和高压储能模块110间的通断状态。In an embodiment of the present application, the shock wave system also includes a generator temperature monitoring module 130 and a generator sensing device 140 arranged on the shock wave generator 50, and the generator sensing device 140 is electrically connected to the generator temperature monitoring module 130; the generator sensing device 140 is used to collect the operating temperature of the target components in the shock wave generator 50, and transmit the operating temperature to the generator temperature monitoring module 130; the generator temperature monitoring module 130 is used to generate a generator temperature feedback signal based on the operating temperature and a preset operating temperature threshold, and the generator temperature feedback signal is used to indicate the on/off state between the charging module 100 and the high-voltage energy storage module 110.

具体的,目标元器件包括冲击波发生器50中的易发热元器件,相应的,发生器温度监测模块130包括多个发生器温度监测电路。设置发生器温度监测模块130以实时监测易发热目标元器件的工作温度,如此,可以避免因易发热目标元器件过热而导致的电路风险,从而增加冲击波系统的电路安全性。Specifically, the target components include heat-prone components in the shock wave generator 50, and accordingly, the generator temperature monitoring module 130 includes a plurality of generator temperature monitoring circuits. The generator temperature monitoring module 130 is configured to monitor the operating temperature of the heat-prone target components in real time, so that the circuit risk caused by overheating of the heat-prone target components can be avoided, thereby increasing the circuit safety of the shock wave system.

进一步的,在目标元器件的工作温度小于或等于预设工作温度阈值的情况下,发生器温度监测模块130生成发生器温度正反馈信号,发生器温度正反馈信号用于指示充电模块100对高压储能模块110进行充电;在目标元器件的工作温度大于预设工作温度阈值的情况下,发生器温度监测模块130生成发生器温度负反馈信号,发生器温度负反馈信号用于指示充电模块100对高压储能模块110停止充电。Furthermore, when the operating temperature of the target component is less than or equal to the preset operating temperature threshold, the generator temperature monitoring module 130 generates a generator temperature positive feedback signal, and the generator temperature positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110; when the operating temperature of the target component is greater than the preset operating temperature threshold, the generator temperature monitoring module 130 generates a generator temperature negative feedback signal, and the generator temperature negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110.

在一些实施例中,请参见图6,冲击波系统还包括整流模块180和充电控制模块210,充电模块100分别与整流模块180和充电控制模块210电连接,充电模块100在接收到充电控制模块210发出的充电控制信号的情况下,接收整流模块180输送的电压,并对高压储能电容190进行充电;冲击波系统还包括第一变压装置220,第一变压装置220和整流模块180电连接,第一变压装置220的输入端电压小于第一变压装置220的输出端电压,以提高充电模块100对高压储能电容190的充电电压;冲击波系统还包括第二变压装置230,第二变压装置230和高压触发开关200电连接,高压触发开关200在接收到第二变压装置230产生的导通信号的情况下,高压触发开关200导通,此时,高压储能电容190向冲击波发射器20放电。In some embodiments, please refer to Figure 6, the shock wave system also includes a rectifier module 180 and a charging control module 210, the charging module 100 is electrically connected to the rectifier module 180 and the charging control module 210 respectively, and the charging module 100 receives the voltage delivered by the rectifier module 180 and charges the high-voltage energy storage capacitor 190 when receiving the charging control signal sent by the charging control module 210; the shock wave system also includes a first transformer 220, the first transformer 220 is electrically connected to the rectifier module 180, the input terminal voltage of the first transformer 220 is less than the output terminal voltage of the first transformer 220, so as to increase the charging voltage of the high-voltage energy storage capacitor 190 by the charging module 100; the shock wave system also includes a second transformer 230, the second transformer 230 is electrically connected to the high-voltage trigger switch 200, and the high-voltage trigger switch 200 is turned on when receiving the conduction signal generated by the second transformer 230, at which time, the high-voltage energy storage capacitor 190 discharges to the shock wave transmitter 20.

在一些实施例中,目标元器件可以包括但不限于高压储能电容190、高压触发开关200和第一变压装置220。In some embodiments, the target components may include but are not limited to a high-voltage energy storage capacitor 190 , a high-voltage trigger switch 200 , and a first voltage transformation device 220 .

在一个实施例中,冲击波系统包括第一发生器温度监测电路和设置在高压储能电容190上的第一发生器感应装置,第一发生器温度监测电路和第一发生器感应装置电连接;第一发生器感应装置用于采集高压储能电容190的第一工作温度,并将第一工作温度传输至第一发生器温度监测电路;在第一工作温度小于或等于第一预设工作温度阈值的情况下,第一发生器温度监测电路生成第一发生器温度正反馈信号,第一发生器温度正反馈信号用于指示充电模块100对高压储能电容190进行充电,在第一工作温度大于第一预设工作温度阈值的情况下,第一发生器温度监测电路生成第一发生器温度负反馈信号,第一发生器温度负反馈信号用于指示充电模块100对高压储能电容190停止充电。In one embodiment, the shock wave system includes a first generator temperature monitoring circuit and a first generator sensing device arranged on the high-voltage energy storage capacitor 190, and the first generator temperature monitoring circuit and the first generator sensing device are electrically connected; the first generator sensing device is used to collect the first operating temperature of the high-voltage energy storage capacitor 190, and transmit the first operating temperature to the first generator temperature monitoring circuit; when the first operating temperature is less than or equal to the first preset operating temperature threshold, the first generator temperature monitoring circuit generates a first generator temperature positive feedback signal, and the first generator temperature positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage capacitor 190; when the first operating temperature is greater than the first preset operating temperature threshold, the first generator temperature monitoring circuit generates a first generator temperature negative feedback signal, and the first generator temperature negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage capacitor 190.

在上述实施例中,冲击波系统还包括第二发生器温度监测电路和设置在第一变压装置220上的第二发生器感应装置,第二发生器温度监测电路和第二发生器感应装置电连接;第二发生器感应装置用于采集第一变压装置220的第二工作温度,并将第二工作温度传输至第二发生器温度监测电路;在第二工作温度小于或等于第二预设工作温度阈值的情况下,第二发生器温度监测电路生成第二发生器温度正反馈信号,第二发生器温度正反馈信号用于指示充电模块100对高压储能模块110进行充电,在第二工作温度大于第二预设工作温度阈值的情况下,第二发生器温度监测电路生成第二发生器温度负反馈信号,第二发生器温度负反馈信号用于指示充电模块100对高压储能模块110停止充电。In the above embodiment, the shock wave system also includes a second generator temperature monitoring circuit and a second generator sensing device arranged on the first transformer 220, and the second generator temperature monitoring circuit is electrically connected to the second generator sensing device; the second generator sensing device is used to collect the second operating temperature of the first transformer 220, and transmit the second operating temperature to the second generator temperature monitoring circuit; when the second operating temperature is less than or equal to the second preset operating temperature threshold, the second generator temperature monitoring circuit generates a second generator temperature positive feedback signal, and the second generator temperature positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110, and when the second operating temperature is greater than the second preset operating temperature threshold, the second generator temperature monitoring circuit generates a second generator temperature negative feedback signal, and the second generator temperature negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110.

本申请实施例中,冲击波系统还包括启动信号监测模块170,启动信号监测模块170用于接收发生器启动信号,以及在接收到发生器启动信号的情况下生成启动反馈信号,启动反馈信号用于指示冲击波发生器50的工作状态。In the embodiment of the present application, the shock wave system also includes a start signal monitoring module 170, which is used to receive a generator start signal and generate a start feedback signal when the generator start signal is received. The start feedback signal is used to indicate the working status of the shock wave generator 50.

具体的,响应于冲击波系统的启动开关,冲击波发生器50的第三控制模块生成发生器启动信号。Specifically, in response to the start switch of the shock wave system, the third control module of the shock wave generator 50 generates a generator start signal.

本申请提供的冲击波系统,请参见图7,当且仅当在发射器监测模块150生成发生器正反馈信号、第一电压比较模块80生成第一电压比较正反馈信号、第二电压比较模块120生成第一输出电压反馈信号、发生器温度监测模块130生成发生器温度正反馈信号且启动信号监测模块170生成发生器启动信号的情况下,充电模块100对高压储能模块110进行充电,否则充电模块100对高压储能模块110停止充电,如此,不仅增加冲击波系统的电路安全,而且可以提高冲击波系统的治疗效果。The shock wave system provided in the present application, please refer to Figure 7. The charging module 100 charges the high-voltage energy storage module 110 when and only when the transmitter monitoring module 150 generates a generator positive feedback signal, the first voltage comparison module 80 generates a first voltage comparison positive feedback signal, the second voltage comparison module 120 generates a first output voltage feedback signal, the generator temperature monitoring module 130 generates a generator temperature positive feedback signal, and the start signal monitoring module 170 generates a generator start signal. Otherwise, the charging module 100 stops charging the high-voltage energy storage module 110. In this way, not only the circuit safety of the shock wave system is increased, but also the therapeutic effect of the shock wave system can be improved.

以下基于上述技术方案介绍本申请的具体实施例。The following introduces specific embodiments of the present application based on the above technical solution.

实施例1Example 1

请参考图1-3和图6-7,实施例1提供一种冲击波系统,包括至少一个冲击波发射器20、至少一个发射器感应装置30、至少一个冲击波发生器50和发射器监测模块150;发射器感应装置30和冲击波发射器20间的相对位置固定;冲击波发射器20与冲击波发生器50电连接,发射器监测模块150分别与发射器感应装置30和冲击波发生器50电连接;发射器感应装置30用于采集冲击波发射器20工作状态下的目标状态参数,目标状态参数与冲击波发射器20的放电能量间具有预设对应关系;发射器监测模块150用于接收发射器感应装置30传输的目标状态参数,以及在目标状态参数不满足预设放电条件的情况下,向冲击波发生器50输出发生器负反馈信号,发生器负反馈信号用于指示冲击波发生器50停止充电。Please refer to Figures 1-3 and Figures 6-7. Example 1 provides a shock wave system, including at least one shock wave transmitter 20, at least one transmitter sensing device 30, at least one shock wave generator 50 and a transmitter monitoring module 150; the relative position between the transmitter sensing device 30 and the shock wave transmitter 20 is fixed; the shock wave transmitter 20 is electrically connected to the shock wave generator 50, and the transmitter monitoring module 150 is electrically connected to the transmitter sensing device 30 and the shock wave generator 50 respectively; the transmitter sensing device 30 is used to collect target state parameters of the shock wave transmitter 20 under the working state, and there is a preset corresponding relationship between the target state parameters and the discharge energy of the shock wave transmitter 20; the transmitter monitoring module 150 is used to receive the target state parameters transmitted by the transmitter sensing device 30, and when the target state parameters do not meet the preset discharge conditions, output a generator negative feedback signal to the shock wave generator 50, and the generator negative feedback signal is used to instruct the shock wave generator 50 to stop charging.

进一步的,冲击波系统包括一个球囊40和定位内管10,球囊40内设置有冲击波发射器20和发射器感应装置30,定位内管10伸入球囊40,冲击波发射器20与定位内管10伸入球囊40的部分导管固定连接,发射器感应装置30与定位内管10伸入球囊40的部分导管固定连接。Furthermore, the shock wave system includes a balloon 40 and a positioning inner tube 10, a shock wave transmitter 20 and a transmitter sensing device 30 are arranged in the balloon 40, the positioning inner tube 10 extends into the balloon 40, the shock wave transmitter 20 is fixedly connected to the part of the catheter where the positioning inner tube 10 extends into the balloon 40, and the transmitter sensing device 30 is fixedly connected to the part of the catheter where the positioning inner tube 10 extends into the balloon 40.

冲击波发射器20与定位内管10伸入球囊40的部分导管的固定连接方式为胶接,发射器感应装置30与定位内管10伸入球囊40的部分导管的固定连接方式为胶接。The shock wave transmitter 20 is fixedly connected to the part of the catheter where the positioning inner tube 10 extends into the balloon 40 by gluing, and the transmitter sensing device 30 is fixedly connected to the part of the catheter where the positioning inner tube 10 extends into the balloon 40 by gluing.

在定位内管10的轴向上,发射器感应装置30的探测点与冲击波发射器20的放电点间的距离为4mm。如此,既能够精准地采集冲击波发射器20产生的目标状态参数,也能够防止高能量的冲击波对发射器感应装置30的损坏,从而延长发射器感应装置30的使用寿命。In the axial direction of the positioning inner tube 10, the distance between the detection point of the transmitter sensing device 30 and the discharge point of the shock wave transmitter 20 is 4 mm. In this way, the target state parameters generated by the shock wave transmitter 20 can be accurately collected, and the damage to the transmitter sensing device 30 by the high-energy shock wave can be prevented, thereby extending the service life of the transmitter sensing device 30.

进一步的,冲击波系统还包括第一电压比较模块80、第二电压比较模块120、第一发生器温度监测模块、第二发生器温度监测模块和启动信号监测模块170,冲击波系统还包括调节电压监测模块60、充电电压监测模块70、电压调节模块90、充电模块100、高压储能模块110、第一发生器感应装置、第二发生器感应装置和阈值电压调节模块240。Furthermore, the shock wave system also includes a first voltage comparison module 80, a second voltage comparison module 120, a first generator temperature monitoring module, a second generator temperature monitoring module and a start signal monitoring module 170, and the shock wave system also includes a regulating voltage monitoring module 60, a charging voltage monitoring module 70, a voltage regulating module 90, a charging module 100, a high-voltage energy storage module 110, a first generator sensing device, a second generator sensing device and a threshold voltage adjustment module 240.

进一步的,发射器感应装置30为压力传感器,相应的,目标状态参数包括球囊内的声波压力参数。在冲击波发射器20放电的情况下,若压力传感器采集到的对应的冲击波发射器20当前放电产生的声波压力参数大于或等于预设压力,则说明冲击波发射器20的当前放电满足第一预设放电条件,冲击波发射器20的当前放电有效,在所有冲击波发射器20的当前放电有效的情况下,发射器监测模块150向冲击波发生器50传输发生器正反馈信号,冲击波发生器50响应于发生器正反馈信号而进行充电;反之,则说明冲击波发射器20的当前放电不满足第一预设放电条件,冲击波发射器20的当前放电无效,在任一冲击波发射器20的当前放电无效的情况下,发射器监测模块150向冲击波发生器50传输发生器负反馈信号,冲击波发生器50响应于发生器负反馈信号而停止充电。具体的,压力传感器的采样频率可以大于或等于1MHz,预设压力可以为8MPa。Further, the transmitter sensing device 30 is a pressure sensor, and accordingly, the target state parameter includes the acoustic wave pressure parameter in the balloon. When the shock wave transmitter 20 is discharged, if the acoustic wave pressure parameter generated by the current discharge of the corresponding shock wave transmitter 20 collected by the pressure sensor is greater than or equal to the preset pressure, it means that the current discharge of the shock wave transmitter 20 meets the first preset discharge condition, and the current discharge of the shock wave transmitter 20 is valid. When the current discharge of all shock wave transmitters 20 is valid, the transmitter monitoring module 150 transmits the generator positive feedback signal to the shock wave generator 50, and the shock wave generator 50 charges in response to the generator positive feedback signal; otherwise, it means that the current discharge of the shock wave transmitter 20 does not meet the first preset discharge condition, and the current discharge of the shock wave transmitter 20 is invalid. When the current discharge of any shock wave transmitter 20 is invalid, the transmitter monitoring module 150 transmits the generator negative feedback signal to the shock wave generator 50, and the shock wave generator 50 stops charging in response to the generator negative feedback signal. Specifically, the sampling frequency of the pressure sensor can be greater than or equal to 1MHz, and the preset pressure can be 8MPa.

同时,第一电压比较模块80分别与调节电压监测模块60和充电电压监测模块70电连接,电压调节模块90、充电模块100和高压储能模块110电连接,调节电压监测模块60与电压调节模块90电连接,充电电压监测模块70与高压储能模块110电连接。At the same time, the first voltage comparison module 80 is electrically connected to the regulating voltage monitoring module 60 and the charging voltage monitoring module 70 respectively, the voltage regulating module 90, the charging module 100 and the high-voltage energy storage module 110 are electrically connected, the regulating voltage monitoring module 60 is electrically connected to the voltage regulating module 90, and the charging voltage monitoring module 70 is electrically connected to the high-voltage energy storage module 110.

进一步的,响应于冲击波发生器50的第一控制模块发出的控制信号,电压调节模块90调节并输出电压设置信号,电压设置信号表征当前设置的充电模块100对高压储能模块110充电的电压上限。调节电压监测模块60用于检测电压调节模块90输出的电压设置信号,并将电压设置信号传输至第一电压比较模块80;充电电压监测模块70用于检测高压储能模块110的当前电压信号,并将当前电压信号传输至第一电压比较模块80;第一电压比较模块80用于对电压设置信号和当前电压信号进行比较处理,在当前电压信号小于电压设置信号的情况下,第一电压比较模块80生成第一电压比较正反馈信号,第一电压比较正反馈信号用于指示充电模块100对高压储能模块110进行充电;在当前电压信号大于或等于电压设置信号的情况下,第一电压比较模块80生成第一电压比较负反馈信号,第一电压比较负反馈信号用于指示充电模块100对高压储能模块110停止充电。Further, in response to the control signal sent by the first control module of the shock wave generator 50, the voltage regulating module 90 adjusts and outputs a voltage setting signal, and the voltage setting signal represents the upper limit of the voltage of the charging module 100 charging the high-voltage energy storage module 110. The voltage regulating monitoring module 60 is used to detect the voltage setting signal output by the voltage regulating module 90, and transmit the voltage setting signal to the first voltage comparison module 80; the charging voltage monitoring module 70 is used to detect the current voltage signal of the high-voltage energy storage module 110, and transmit the current voltage signal to the first voltage comparison module 80; the first voltage comparison module 80 is used to compare and process the voltage setting signal and the current voltage signal. When the current voltage signal is less than the voltage setting signal, the first voltage comparison module 80 generates a first voltage comparison positive feedback signal, and the first voltage comparison positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110; when the current voltage signal is greater than or equal to the voltage setting signal, the first voltage comparison module 80 generates a first voltage comparison negative feedback signal, and the first voltage comparison negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110.

进一步的,充电电压监测模块70包括互为备份设置的第一充电电压监测电路和第二充电电压监测电路,第一充电电压监测电路和第二充电电压监测电路均可以检测高压储能模块110的当前电压信号,并将当前电压信号传输至第一电压比较模块80,如此,能够保证在第一充电电压监测电路和第二充电电压监测电路中的二者其一出现故障时,第一充电电压监测电路和第二充电电压监测电路中的另一仍能检测高压储能模块110的当前电压信号。Furthermore, the charging voltage monitoring module 70 includes a first charging voltage monitoring circuit and a second charging voltage monitoring circuit which are backed up to each other. Both the first charging voltage monitoring circuit and the second charging voltage monitoring circuit can detect the current voltage signal of the high-voltage energy storage module 110 and transmit the current voltage signal to the first voltage comparison module 80. In this way, it can be ensured that when one of the first charging voltage monitoring circuit and the second charging voltage monitoring circuit fails, the other of the first charging voltage monitoring circuit and the second charging voltage monitoring circuit can still detect the current voltage signal of the high-voltage energy storage module 110.

同时,阈值电压调节模块240和第二电压比较模块120电连接,响应于冲击波发生器50的第一控制模块发出的控制信号,阈值电压调节模块240调节并输出输出电压阈值;第二电压比较模块120与调节电压监测模块60电连接;第二电压比较模块120用于接收调节电压监测模块60传输的电压设置信号和阈值电压调节模块240传输的输出电压阈值,以及将电压设置信号与输出电压阈值进行比较,在电压设置信号小于输出电压阈值的情况下,第二电压比较模块120生成第一输出电压反馈信号,第一输出电压反馈信号用于指示充电模块100对高压储能模块110进行充电;在电压设置信号大于或等于输出电压阈值的情况下,第二电压比较模块120生成第二输出电压反馈信号,第二输出电压反馈信号用于指示充电模块100对高压储能模块110停止充电。At the same time, the threshold voltage adjustment module 240 is electrically connected to the second voltage comparison module 120. In response to the control signal sent by the first control module of the shock wave generator 50, the threshold voltage adjustment module 240 adjusts and outputs the output voltage threshold; the second voltage comparison module 120 is electrically connected to the adjustment voltage monitoring module 60; the second voltage comparison module 120 is used to receive the voltage setting signal transmitted by the adjustment voltage monitoring module 60 and the output voltage threshold transmitted by the threshold voltage adjustment module 240, and compare the voltage setting signal with the output voltage threshold. When the voltage setting signal is less than the output voltage threshold, the second voltage comparison module 120 generates a first output voltage feedback signal, and the first output voltage feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110; when the voltage setting signal is greater than or equal to the output voltage threshold, the second voltage comparison module 120 generates a second output voltage feedback signal, and the second output voltage feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110.

同时,高压储能模块110包括电连接的高压储能电容190和高压触发开关200,第一发生器感应装置设置在冲击波发生器50中的高压储能电容190上,第一发生器温度监测电路和第一发生器感应装置电连接;第一发生器感应装置用于采集高压储能电容190的第一工作温度,并将第一工作温度传输至第一发生器温度监测电路;在第一工作温度小于或等于第一预设工作温度阈值的情况下,第一发生器温度监测电路生成第一发生器温度正反馈信号,第一发生器温度正反馈信号用于指示充电模块100对高压储能电容190进行充电,在第一工作温度大于第一预设工作温度阈值的情况下,第一发生器温度监测电路生成第一发生器温度负反馈信号,第一发生器温度负反馈信号用于指示充电模块100对高压储能电容190停止充电。At the same time, the high-voltage energy storage module 110 includes an electrically connected high-voltage energy storage capacitor 190 and a high-voltage trigger switch 200, the first generator sensing device is arranged on the high-voltage energy storage capacitor 190 in the shock wave generator 50, and the first generator temperature monitoring circuit is electrically connected to the first generator sensing device; the first generator sensing device is used to collect the first operating temperature of the high-voltage energy storage capacitor 190 and transmit the first operating temperature to the first generator temperature monitoring circuit; when the first operating temperature is less than or equal to the first preset operating temperature threshold, the first generator temperature monitoring circuit generates a first generator temperature positive feedback signal, and the first generator temperature positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage capacitor 190, and when the first operating temperature is greater than the first preset operating temperature threshold, the first generator temperature monitoring circuit generates a first generator temperature negative feedback signal, and the first generator temperature negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage capacitor 190.

同时,第二发生器感应装置设置在充电模块100中的变压器上,第二发生器温度监测电路和第二发生器感应装置电连接;第二发生器感应装置用于采集变压器的第二工作温度,并将第二工作温度传输至第二发生器温度监测电路;在第二工作温度小于或等于第二预设工作温度阈值的情况下,第二发生器温度监测电路生成第二发生器温度正反馈信号,第二发生器温度正反馈信号用于指示充电模块100对高压储能模块110进行充电,在第二工作温度大于第二预设工作温度阈值的情况下,第二发生器温度监测电路生成第二发生器温度负反馈信号,第二发生器温度负反馈信号用于指示充电模块100对高压储能模块110停止充电。At the same time, a second generator sensing device is arranged on the transformer in the charging module 100, and the second generator temperature monitoring circuit is electrically connected to the second generator sensing device; the second generator sensing device is used to collect the second operating temperature of the transformer and transmit the second operating temperature to the second generator temperature monitoring circuit; when the second operating temperature is less than or equal to the second preset operating temperature threshold, the second generator temperature monitoring circuit generates a second generator temperature positive feedback signal, and the second generator temperature positive feedback signal is used to instruct the charging module 100 to charge the high-voltage energy storage module 110, and when the second operating temperature is greater than the second preset operating temperature threshold, the second generator temperature monitoring circuit generates a second generator temperature negative feedback signal, and the second generator temperature negative feedback signal is used to instruct the charging module 100 to stop charging the high-voltage energy storage module 110.

同时,响应于冲击波系统的启动开关,冲击波发生器50的第三控制模块生成发生器启动信号;启动信号监测模块170用于接收发生器启动信号,以及在接收到发生器启动信号的情况下生成启动反馈信号,启动反馈信号用于指示冲击波发生器50的工作状态。At the same time, in response to the start switch of the shock wave system, the third control module of the shock wave generator 50 generates a generator start signal; the start signal monitoring module 170 is used to receive the generator start signal, and generate a start feedback signal when the generator start signal is received, and the start feedback signal is used to indicate the working status of the shock wave generator 50.

实施例1中的冲击波系统当且仅当在发射器监测模块150生成发生器正反馈信号、第一电压比较模块80生成第一电压比较正反馈信号、第二电压比较模块120生成第一输出电压反馈信号、发生器温度监测模块130生成发生器温度正反馈信号且启动信号监测模块170生成发生器启动信号的情况下,充电模块100对高压储能模块110进行充电,否则充电模块100对高压储能模块110停止充电,如此,不仅增加冲击波系统的电路安全,而且可以提高冲击波系统的治疗效果。In the shock wave system of Example 1, the charging module 100 charges the high-voltage energy storage module 110 only when the transmitter monitoring module 150 generates a generator positive feedback signal, the first voltage comparison module 80 generates a first voltage comparison positive feedback signal, the second voltage comparison module 120 generates a first output voltage feedback signal, the generator temperature monitoring module 130 generates a generator temperature positive feedback signal, and the start signal monitoring module 170 generates a generator start signal. Otherwise, the charging module 100 stops charging the high-voltage energy storage module 110. In this way, not only the circuit safety of the shock wave system is increased, but also the therapeutic effect of the shock wave system can be improved.

实施例2Example 2

实施例2和实施例1的不同之处在于冲击波发射器20和发射器感应装置30的数量,以及实施例2中的冲击波系统包括触发信号监测模块160,实施例2和实施例1的共同之处在此不再赘述,仅描述实施例2和实施例1的不同之处。The difference between Example 2 and Example 1 lies in the number of shock wave transmitters 20 and transmitter sensing devices 30, and the shock wave system in Example 2 includes a trigger signal monitoring module 160. The similarities between Example 2 and Example 1 are not repeated here, and only the differences between Example 2 and Example 1 are described.

请参见图4和图5,实施例2中的冲击波系统包括三个球囊40和介入导管250,单个球囊40内设置有冲击波发射器20、发射器感应装置30和定位内管10;冲击波发射器20与定位内管10固定连接,发射器感应装置30与定位内管10固定连接;三个球囊40相邻平行地均设在介入导管250的外周。Please refer to Figures 4 and 5. The shock wave system in Example 2 includes three balloons 40 and an interventional catheter 250. A shock wave transmitter 20, a transmitter sensing device 30 and a positioning inner tube 10 are arranged in a single balloon 40; the shock wave transmitter 20 is fixedly connected to the positioning inner tube 10, and the transmitter sensing device 30 is fixedly connected to the positioning inner tube 10; the three balloons 40 are adjacently and parallelly arranged on the periphery of the interventional catheter 250.

冲击波发射器20与定位内管10的固定连接方式为胶接,发射器感应装置30与定位内管10的固定连接方式为胶接。The shock wave transmitter 20 and the positioning inner tube 10 are fixedly connected by adhesive bonding, and the transmitter sensing device 30 and the positioning inner tube 10 are fixedly connected by adhesive bonding.

在定位内管10的轴向上,发射器感应装置30探测点与冲击波发射器20的放电点间的距离为4mm。如此,既能够精准地采集冲击波发射器20产生的目标状态参数,也能够防止高能量的冲击波对发射器感应装置30的损坏,从而延长发射器感应装置30的使用寿命。In the axial direction of the positioning inner tube 10, the distance between the detection point of the transmitter sensing device 30 and the discharge point of the shock wave transmitter 20 is 4 mm. In this way, the target state parameters generated by the shock wave transmitter 20 can be accurately collected, and the damage to the transmitter sensing device 30 by the high-energy shock wave can be prevented, thereby extending the service life of the transmitter sensing device 30.

同时,发射器感应装置30为光电传感器,相应的,目标状态参数包括放电电火花强度参数。光电传感器的延时需小于或等于冲击波发射器20的放电时间,具体的,冲击波发射器20的放电时间为1μs,相应的,光电传感器的延时需小于或等于1μs。在冲击波发射器20放电的情况下,若光电传感器采集到的对应的冲击波发射器20当前放电产生的放电电火花强度参数大于或等于预设放电电火花强度,则说明冲击波发射器20的当前放电满足第二预设放电条件,冲击波发射器20的当前放电有效,在所有冲击波发射器20的当前放电有效的情况下,发射器监测模块150向冲击波发生器50传输发生器正反馈信号,冲击波发生器50响应于发生器正反馈信号而进行充电;反之,则说明冲击波发射器20的当前放电不满足第二预设放电条件,冲击波发射器20的当前放电无效,在任一冲击波发射器20的当前放电无效的情况下,发射器监测模块150向冲击波发生器50传输发生器负反馈信号,冲击波发生器50响应于发生器负反馈信号而停止充电。具体的,预设放电电火花强度可以为100cd。Meanwhile, the transmitter sensing device 30 is a photoelectric sensor, and accordingly, the target state parameter includes a discharge spark intensity parameter. The delay of the photoelectric sensor needs to be less than or equal to the discharge time of the shock wave transmitter 20. Specifically, the discharge time of the shock wave transmitter 20 is 1 μs, and accordingly, the delay of the photoelectric sensor needs to be less than or equal to 1 μs. When the shock wave transmitter 20 is discharged, if the discharge spark intensity parameter generated by the current discharge of the corresponding shock wave transmitter 20 collected by the photoelectric sensor is greater than or equal to the preset discharge spark intensity, it means that the current discharge of the shock wave transmitter 20 meets the second preset discharge condition, and the current discharge of the shock wave transmitter 20 is valid. When the current discharge of all shock wave transmitters 20 is valid, the transmitter monitoring module 150 transmits the generator positive feedback signal to the shock wave generator 50, and the shock wave generator 50 charges in response to the generator positive feedback signal; otherwise, it means that the current discharge of the shock wave transmitter 20 does not meet the second preset discharge condition, and the current discharge of the shock wave transmitter 20 is invalid. When the current discharge of any shock wave transmitter 20 is invalid, the transmitter monitoring module 150 transmits the generator negative feedback signal to the shock wave generator 50, and the shock wave generator 50 stops charging in response to the generator negative feedback signal. Specifically, the preset discharge spark intensity can be 100cd.

同时,在高压触发开关200处于闭合的情况下,高压储能电容190向冲击波发射器20放电,在高压触发开关200处于断开的情况下,高压储能电容190则无法向冲击波发射器20放电。在触发信号监测模块160接收到发生器触发信号的情况下,触发信号监测模块160生成第一触发反馈信号,第一触发反馈信号控制高压触发开关200闭合,高压储能电容190向冲击波发射器20放电;在触发信号监测模块160没有接收到发生器触发信号的情况下,触发信号监测模块160生成第二触发反馈信号,第二触发反馈信号控制高压触发开关200断开,高压储能电容190无法向冲击波发射器20放电。如此,能够进一步提高冲击波系统的安全性。At the same time, when the high-voltage trigger switch 200 is closed, the high-voltage energy storage capacitor 190 discharges to the shock wave transmitter 20, and when the high-voltage trigger switch 200 is disconnected, the high-voltage energy storage capacitor 190 cannot discharge to the shock wave transmitter 20. When the trigger signal monitoring module 160 receives the generator trigger signal, the trigger signal monitoring module 160 generates a first trigger feedback signal, the first trigger feedback signal controls the high-voltage trigger switch 200 to close, and the high-voltage energy storage capacitor 190 discharges to the shock wave transmitter 20; when the trigger signal monitoring module 160 does not receive the generator trigger signal, the trigger signal monitoring module 160 generates a second trigger feedback signal, the second trigger feedback signal controls the high-voltage trigger switch 200 to disconnect, and the high-voltage energy storage capacitor 190 cannot discharge to the shock wave transmitter 20. In this way, the safety of the shock wave system can be further improved.

实施例2中的冲击波系统当且仅当在发射器监测模块150生成发生器正反馈信号、第一电压比较模块80生成第一电压比较正反馈信号、第二电压比较模块120生成第一输出电压反馈信号、发生器温度监测模块130生成发生器温度正反馈信号且启动信号监测模块170生成发生器启动信号的情况下,充电模块100对高压储能模块110进行充电,否则充电模块100对高压储能模块110停止充电,如此,不仅增加冲击波系统的电路安全,而且可以提高冲击波系统的治疗效果。In the shock wave system of Example 2, the charging module 100 charges the high-voltage energy storage module 110 only when the transmitter monitoring module 150 generates a generator positive feedback signal, the first voltage comparison module 80 generates a first voltage comparison positive feedback signal, the second voltage comparison module 120 generates a first output voltage feedback signal, the generator temperature monitoring module 130 generates a generator temperature positive feedback signal, and the start signal monitoring module 170 generates a generator start signal. Otherwise, the charging module 100 stops charging the high-voltage energy storage module 110. In this way, not only the circuit safety of the shock wave system is increased, but also the therapeutic effect of the shock wave system can be improved.

以上仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application should be included in the protection scope of the present application.

Claims (10)

Translated fromChinese
1.一种冲击波系统,其特征在于,包括至少一个冲击波发射器(20)、至少一个发射器感应装置(30)、至少一个冲击波发生器(50)和发射器监测模块(150);1. A shock wave system, characterized in that it comprises at least one shock wave transmitter (20), at least one transmitter sensing device (30), at least one shock wave generator (50) and a transmitter monitoring module (150);所述发射器感应装置(30)和所述冲击波发射器(20)间的相对位置固定;The relative position between the transmitter sensing device (30) and the shock wave transmitter (20) is fixed;所述冲击波发射器(20)与所述冲击波发生器(50)电连接,所述发射器监测模块(150)分别与所述发射器感应装置(30)和所述冲击波发生器(50)电连接;The shock wave transmitter (20) is electrically connected to the shock wave generator (50), and the transmitter monitoring module (150) is electrically connected to the transmitter sensing device (30) and the shock wave generator (50) respectively;所述发射器感应装置(30)用于采集所述冲击波发射器(20)工作状态下的目标状态参数,所述目标状态参数与所述冲击波发射器(20)的放电能量间具有预设对应关系;The transmitter sensing device (30) is used to collect target state parameters when the shock wave transmitter (20) is in a working state, and there is a preset corresponding relationship between the target state parameters and the discharge energy of the shock wave transmitter (20);所述发射器监测模块(150)用于接收所述发射器感应装置(30)传输的目标状态参数,以及在所述目标状态参数不满足预设放电条件的情况下,向所述冲击波发生器(50)输出发生器负反馈信号,所述发生器负反馈信号用于指示所述冲击波发生器(50)停止充电。The transmitter monitoring module (150) is used to receive the target state parameter transmitted by the transmitter sensing device (30), and when the target state parameter does not meet the preset discharge condition, output a generator negative feedback signal to the shock wave generator (50), wherein the generator negative feedback signal is used to instruct the shock wave generator (50) to stop charging.2.根据权利要求1中所述的冲击波系统,其特征在于,所述冲击波系统还包括至少一个球囊(40),所述球囊(40)内设置有所述冲击波发射器(20)、所述发射器感应装置(30)和定位内管(10);2. The shock wave system according to claim 1, characterized in that the shock wave system further comprises at least one balloon (40), wherein the shock wave transmitter (20), the transmitter sensing device (30) and the positioning inner tube (10) are arranged in the balloon (40);所述冲击波发射器(20)与所述定位内管(10)固定连接,所述发射器感应装置(30)与所述定位内管(10)固定连接;The shock wave transmitter (20) is fixedly connected to the positioning inner tube (10), and the transmitter sensing device (30) is fixedly connected to the positioning inner tube (10);在所述定位内管(10)的轴向上,所述发射器感应装置(30)的探测点与所述冲击波发射器(20)的放电点间具有预设距离。In the axial direction of the positioning inner tube (10), there is a preset distance between the detection point of the transmitter sensing device (30) and the discharge point of the shock wave transmitter (20).3.根据权利要求2中所述的冲击波系统,其特征在于,所述冲击波系统包括多个所述球囊(40),所述冲击波系统还包括介入导管(250),多个所述球囊(40)均匀布置在所述介入导管(250)的外周。3. The shock wave system according to claim 2 is characterized in that the shock wave system comprises a plurality of the balloons (40), and the shock wave system further comprises an interventional catheter (250), and the plurality of balloons (40) are evenly arranged on the periphery of the interventional catheter (250).4.根据权利要求2所述的冲击波系统,其特征在于,所述预设距离大于等于3mm且小于等于5mm。4 . The shock wave system according to claim 2 , wherein the preset distance is greater than or equal to 3 mm and less than or equal to 5 mm.5.根据权利要求2-4中任一项所述的冲击波系统,其特征在于,所述发射器感应装置(30)包括压力传感器、光电传感器和温度传感器中的至少一种,所述目标状态参数包括所述球囊(40)内的声波压力参数、放电电火花强度参数和温度参数中的至少一种。5. The shock wave system according to any one of claims 2 to 4, characterized in that the transmitter sensing device (30) includes at least one of a pressure sensor, a photoelectric sensor and a temperature sensor, and the target state parameter includes at least one of an acoustic wave pressure parameter, a discharge spark intensity parameter and a temperature parameter in the balloon (40).6.根据权利要求1中所述的冲击波系统,其特征在于,所述冲击波系统还包括调节电压监测模块(60)、充电电压监测模块(70)和第一电压比较模块(80),所述第一电压比较模块(80)分别与所述调节电压监测模块(60)和充电电压监测模块(70)电连接;6. The shock wave system according to claim 1, characterized in that the shock wave system further comprises a regulating voltage monitoring module (60), a charging voltage monitoring module (70) and a first voltage comparison module (80), wherein the first voltage comparison module (80) is electrically connected to the regulating voltage monitoring module (60) and the charging voltage monitoring module (70), respectively;所述冲击波发生器(50)包括电连接的电压调节模块(90)、充电模块(100)和高压储能模块(110);所述调节电压监测模块(60)与所述电压调节模块(90)电连接,所述充电电压监测模块(70)与所述高压储能模块(110)电连接;The shock wave generator (50) comprises a voltage regulating module (90), a charging module (100) and a high-voltage energy storage module (110) which are electrically connected; the regulating voltage monitoring module (60) is electrically connected to the voltage regulating module (90), and the charging voltage monitoring module (70) is electrically connected to the high-voltage energy storage module (110);所述调节电压监测模块(60)用于检测所述电压调节模块(90)输出的电压设置信号,并将所述电压设置信号传输至所述第一电压比较模块(80);所述充电电压监测模块(70)用于检测所述高压储能模块(110)的当前电压信号,并将所述当前电压信号传输至所述第一电压比较模块(80);所述第一电压比较模块(80)用于对所述电压设置信号和所述当前电压信号进行比较处理,以生成电压比较反馈信号,所述电压比较反馈信号用于指示所述充电模块(100)和所述高压储能模块(110)间的通断状态。The regulating voltage monitoring module (60) is used to detect the voltage setting signal output by the voltage regulating module (90), and transmit the voltage setting signal to the first voltage comparison module (80); the charging voltage monitoring module (70) is used to detect the current voltage signal of the high-voltage energy storage module (110), and transmit the current voltage signal to the first voltage comparison module (80); the first voltage comparison module (80) is used to compare and process the voltage setting signal and the current voltage signal to generate a voltage comparison feedback signal, and the voltage comparison feedback signal is used to indicate the on-off state between the charging module (100) and the high-voltage energy storage module (110).7.根据权利要求6中所述的冲击波系统,其特征在于,所述冲击波系统还包括第二电压比较模块(120),所述第二电压比较模块(120)与所述调节电压监测模块(60)电连接;7. The shock wave system according to claim 6, characterized in that the shock wave system further comprises a second voltage comparison module (120), wherein the second voltage comparison module (120) is electrically connected to the regulation voltage monitoring module (60);所述第二电压比较模块(120)用于接收所述调节电压监测模块(60)传输的所述电压设置信号,以及将所述电压设置信号与输出电压阈值进行比较,以生成输出电压反馈信号,所述输出电压反馈信号用于指示所述充电模块(100)和所述高压储能模块(110)间的通断状态。The second voltage comparison module (120) is used to receive the voltage setting signal transmitted by the regulating voltage monitoring module (60), and compare the voltage setting signal with the output voltage threshold to generate an output voltage feedback signal, wherein the output voltage feedback signal is used to indicate the on/off state between the charging module (100) and the high-voltage energy storage module (110).8.根据权利要求6中所述的冲击波系统,其特征在于,所述充电电压监测模块(70)至少包括互为备份设置的第一充电电压监测电路和第二充电电压监测电路。8. The shock wave system according to claim 6, characterized in that the charging voltage monitoring module (70) comprises at least a first charging voltage monitoring circuit and a second charging voltage monitoring circuit which are arranged as backup for each other.9.根据权利要求6中所述的冲击波系统,其特征在于,所述冲击波系统还包括发生器温度监测模块(130)和设置在所述冲击波发生器(50)上的发生器感应装置(140),所述发生器感应装置(140)与所述发生器温度监测模块(130)电连接;9. The shock wave system according to claim 6, characterized in that the shock wave system further comprises a generator temperature monitoring module (130) and a generator sensing device (140) arranged on the shock wave generator (50), and the generator sensing device (140) is electrically connected to the generator temperature monitoring module (130);所述发生器感应装置(140)用于采集所述冲击波发生器(50)中目标元器件的工作温度,并将所述工作温度传输至所述发生器温度监测模块(130);The generator sensing device (140) is used to collect the operating temperature of the target components in the shock wave generator (50), and transmit the operating temperature to the generator temperature monitoring module (130);所述发生器温度监测模块(130)用于基于所述工作温度和预设工作温度阈值生成发生器温度反馈信号,所述发生器温度反馈信号用于指示所述充电模块(100)和所述高压储能模块(110)间的通断状态。The generator temperature monitoring module (130) is used to generate a generator temperature feedback signal based on the operating temperature and a preset operating temperature threshold, and the generator temperature feedback signal is used to indicate the on/off state between the charging module (100) and the high-voltage energy storage module (110).10.根据权利要求6中所述的冲击波系统,其特征在于,所述冲击波系统还包括启动信号监测模块(170),所述启动信号监测模块(170)用于接收发生器启动信号,以及在接收到所述发生器启动信号的情况下生成启动反馈信号,所述启动反馈信号用于指示所述充电模块(100)和所述高压储能模块(110)间的通断状态。10. The shock wave system according to claim 6, characterized in that the shock wave system further comprises a start signal monitoring module (170), wherein the start signal monitoring module (170) is used to receive a generator start signal, and generate a start feedback signal when receiving the generator start signal, wherein the start feedback signal is used to indicate the on/off state between the charging module (100) and the high-voltage energy storage module (110).
CN202211216582.8A2022-09-302022-09-30Shock wave systemActiveCN117838244B (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
CN202211216582.8ACN117838244B (en)2022-09-302022-09-30Shock wave system
CN202510619963.8ACN120477876A (en)2022-09-302022-09-30 A shock wave system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202211216582.8ACN117838244B (en)2022-09-302022-09-30Shock wave system

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
CN202510619963.8ADivisionCN120477876A (en)2022-09-302022-09-30 A shock wave system

Publications (2)

Publication NumberPublication Date
CN117838244Atrue CN117838244A (en)2024-04-09
CN117838244B CN117838244B (en)2025-06-06

Family

ID=90546422

Family Applications (2)

Application NumberTitlePriority DateFiling Date
CN202211216582.8AActiveCN117838244B (en)2022-09-302022-09-30Shock wave system
CN202510619963.8APendingCN120477876A (en)2022-09-302022-09-30 A shock wave system

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
CN202510619963.8APendingCN120477876A (en)2022-09-302022-09-30 A shock wave system

Country Status (1)

CountryLink
CN (2)CN117838244B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20050228319A1 (en)*1996-12-302005-10-13Kenny Daniele JNeoplasm cell destruction device
US20120203255A1 (en)*2011-02-042012-08-09Daniel HawkinsHigh pressure balloon shockwave catheter and method
US20120221013A1 (en)*2008-06-132012-08-30Daniel HawkinsNon-cavitation shockwave balloon catheter system
CN110604607A (en)*2019-08-062019-12-24沛嘉医疗科技(苏州)有限公司Shock wave device for treating calcification of heart valve
CN113100909A (en)*2021-04-072021-07-13杭州维那泰克医疗科技有限责任公司Electric signal output method, device, equipment and system
CN113490459A (en)*2019-01-242021-10-08艾奥迪可实验室有限责任公司Device for treating tissue calcification
CN215458401U (en)*2021-06-232022-01-11苏州中荟医疗科技有限公司Shock wave generating device for angiostenosis lesion
CN215739152U (en)*2021-09-022022-02-08深圳市理康医疗器械有限责任公司Electromagnetic shock wave generator and shock wave therapeutic instrument
CN114746032A (en)*2019-09-242022-07-12冲击波医疗公司 Small Electrodes for Shockwave Guides

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20050228319A1 (en)*1996-12-302005-10-13Kenny Daniele JNeoplasm cell destruction device
US20120221013A1 (en)*2008-06-132012-08-30Daniel HawkinsNon-cavitation shockwave balloon catheter system
US20120203255A1 (en)*2011-02-042012-08-09Daniel HawkinsHigh pressure balloon shockwave catheter and method
CN113490459A (en)*2019-01-242021-10-08艾奥迪可实验室有限责任公司Device for treating tissue calcification
CN110604607A (en)*2019-08-062019-12-24沛嘉医疗科技(苏州)有限公司Shock wave device for treating calcification of heart valve
CN114746032A (en)*2019-09-242022-07-12冲击波医疗公司 Small Electrodes for Shockwave Guides
CN113100909A (en)*2021-04-072021-07-13杭州维那泰克医疗科技有限责任公司Electric signal output method, device, equipment and system
CN215458401U (en)*2021-06-232022-01-11苏州中荟医疗科技有限公司Shock wave generating device for angiostenosis lesion
CN215739152U (en)*2021-09-022022-02-08深圳市理康医疗器械有限责任公司Electromagnetic shock wave generator and shock wave therapeutic instrument

Also Published As

Publication numberPublication date
CN120477876A (en)2025-08-15
CN117838244B (en)2025-06-06

Similar Documents

PublicationPublication DateTitle
US10052120B2 (en)Systems and methods for controlling delivery of ultrasonic energy to a bodily tissue
CN109561912B (en)Ultrasonic surgical instrument with piezoelectric central lumen transducer
US7744593B2 (en)High-frequency power supply device and electrosurgical device
JP2014534870A (en) Improvements related to laparoscopic instruments
CN108404292A (en)A kind of method and its system of the external defibrillation based on thorax impedance detection
CN115804628B (en) Medical device and control method thereof, IVL system and energy regulation system
CN114098897A (en)Balloon type shock wave generation system capable of controlling energy and control method thereof
CN117100360A (en) Catheter components and shock wave generation system of shock wave balloon catheter system
JP4221687B2 (en) ELECTROTHERAPY DEVICE AND ITS ELECTRIC ENERGY OUTPUT METHOD
CN108714046A (en)A kind of lumen organization's welding system and control method based on RF energy
CN111494003A (en)Digital minimally invasive high-frequency energy working system
CN111474886A (en)Adaptive matching method and circuit for multiple types of ultrasonic treatment heads
CN117838244A (en) A shock wave system
CN114869453A (en) A Steep Pulse Electric Field Ablation Control System
CN115580269A (en)Multi-channel high-voltage electric pulse generator
WO2024250844A1 (en)Shockwave catheter, electrode connection structure, and control system
CN219354067U (en)Control system for shock wave device
CN115024817A (en)Control method of pulse ablation equipment with double MCU control systems
US20250226685A1 (en)Charging system, electrical isolation system, control system, and shockwave device
CN218922763U (en) A high-frequency high-voltage nano-knife system
EP4595941A1 (en)Charging system, electrical isolation system, control system, and shockwave device
WO2021023128A1 (en)Charging and discharging monitoring circuit and tumor therapy instrument
JPH067362A (en)Device for shock wave medical treatment
CN219207276U (en)Impedance monitor for negative plate of high-frequency electrotome
CN220172839U (en)Ultrasonic therapeutic apparatus and no-load protection circuit thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp