技术领域Technical field
本公开涉及照明器、视觉显示设备以及相关部件和模块。The present disclosure relates to luminaires, visual display devices, and related components and modules.
背景技术Background technique
视觉显示器向一位或多位观看者提供信息,这些信息包括静止图像、视频、数据等。视觉显示器应用于包括例如娱乐、教育、工程、科学、专业培训、广告等的不同领域,这里仅举几个示例。一些视觉显示器(诸如,电视机)向多位用户显示图像,而一些视觉显示系统(诸如,近眼显示器(near-eye display,NED)旨在供个人用户使用。Visual displays provide information, including still images, video, data, etc., to one or more viewers. Visual displays are used in diverse fields including entertainment, education, engineering, science, professional training, advertising, just to name a few. Some visual displays, such as televisions, display images to multiple users, while some visual display systems, such as near-eye displays (NED), are intended for use by individual users.
人工现实系统通常包括被配置成向用户呈现内容的NED(例如,头戴式设备(headset)或一副眼镜)。近眼显示器可以如在虚拟现实(virtual reality,VR)应用、增强现实(augmented reality,AR)应用或混合现实(mixed reality,MR)应用中显示虚拟对象或将真实对象的图像与虚拟对象进行组合。例如,在AR系统中,用户可以通过透视“组合器”来观看与周围环境叠加的虚拟对象的图像(例如,计算机生成的图像(computer-generatedimage,CGI))。可穿戴显示器的组合器通常对外部光是可穿透的,但包括一些光学路由器件以将显示光引导到用户的视野中。Artificial reality systems typically include a NED (eg, a headset or a pair of glasses) configured to present content to a user. The near-eye display can display virtual objects or combine images of real objects with virtual objects, such as in virtual reality (VR) applications, augmented reality (AR) applications, or mixed reality (MR) applications. For example, in an AR system, a user can view an image of a virtual object superimposed with the surrounding environment through a perspective "combiner" (eg, computer-generated image (CGI)). The combiner of a wearable display is typically transparent to external light but includes some optical routing components to direct the display light into the user's field of view.
因为头戴式显示器(HMD)或NED的显示器通常佩戴在用户的头部上,所以具有沉重电池的大型、笨重、不平衡和/或沉重的显示设备对于用户穿戴来说将是麻烦且不舒适的。因此,头戴式显示设备可以受益于紧凑且高效的构造,该构造包括提供显示面板的照明的高效光源和照明器、高吞吐量的目视透镜以及图像形成序列中的其它光学元件。Because the display of a head-mounted display (HMD) or NED is typically worn on the user's head, a large, bulky, unbalanced, and/or heavy display device with a heavy battery would be cumbersome and uncomfortable for the user to wear. of. Accordingly, a head mounted display device may benefit from a compact and efficient construction that includes efficient light sources and illuminators to provide illumination of the display panel, high throughput viewing lenses, and other optical elements in the image forming sequence.
发明内容Contents of the invention
根据本公开的第一方面,提供了一种波导照明器,该波导照明器包括:第一波导分束器和第二波导分束器,该第一波导分束器和该第二波导分束器被配置成分别接收第一光束和第二光束,以用于将第一光束和第二光束分别分成第一多个子光束和第二多个子光束;第一波导阵列和第二波导阵列,该第一波导阵列和该第二波导阵列分别耦接到第一波导分束器和第二波导分束器,并且被配置成分别传播第一多个子光束的子光束和第二多个子光束的子光束;其中,第一波导阵列的波导和第二波导阵列的波导交错并且彼此平行;以及耦出器的行的阵列,该阵列的每一行耦出器沿着在第一波导阵列或第二波导阵列中的一波导的长度耦接到该波导,以形成第一多个子光束和第二多个子光束的交错的耦出的子光束部分的二维阵列。According to a first aspect of the present disclosure, a waveguide illuminator is provided. The waveguide illuminator includes: a first waveguide beam splitter and a second waveguide beam splitter, the first waveguide beam splitter and the second waveguide beam splitter. The device is configured to receive the first light beam and the second light beam respectively, for dividing the first light beam and the second light beam into a first plurality of sub-beams and a second plurality of sub-beams respectively; the first waveguide array and the second waveguide array, the The first waveguide array and the second waveguide array are coupled to the first waveguide beam splitter and the second waveguide beam splitter, respectively, and are configured to propagate sub-beams of the first plurality of sub-beams and sub-beams of the second plurality of sub-beams, respectively. a light beam; wherein the waveguides of the first waveguide array and the waveguides of the second waveguide array are interleaved and parallel to each other; and an array of rows of couplers, each row of couplers of the array being along either the first waveguide array or the second waveguide A length of waveguide in the array is coupled to the waveguide to form a two-dimensional array of interleaved outcoupled beamlet portions of the first plurality of beamlets and the second plurality of beamlets.
在一些实施例中,第一波导阵列和第二波导阵列在第一波导阵列和第二波导阵列的相反端处耦接到第一波导分束器和第二波导分束器,使得第一多个子光束的子光束和第二多个子光束的子光束在相应的波导阵列中反向传播。相邻行耦出器的耦出器可以在沿着第一波导阵列的波导和第二波导阵列的波导的方向上相对于彼此偏移,以形成耦出器的菱形阵列。该波导照明器还可以包括第一半导体光源和第二半导体光源,该第一半导体光源和该第二半导体光源分别耦接到第一波导分束器和第二波导分束器,以用于向第一波导分束器和第二波导分束器提供第一光束和第二光束。第一半导体光源和第二半导体光源可以被配置成发射相同颜色通道的不同波长的光。第一半导体光源和第二半导体光源可以包括不同发射波长的激光二极管。控制器可以耦接到第一半导体光源和第二半导体光源。该控制器可以被配置成以时间顺序方式交替地操作第一半导体光源和第二半导体光源。In some embodiments, the first waveguide array and the second waveguide array are coupled to the first waveguide beam splitter and the second waveguide beam splitter at opposite ends of the first waveguide array and the second waveguide array such that the first plurality of waveguide beam splitters The sub-beams of the sub-beams and the sub-beams of the second plurality of sub-beams propagate in opposite directions in corresponding waveguide arrays. The couplers of adjacent rows of couplers may be offset relative to each other in directions along the waveguides of the first waveguide array and the waveguides of the second waveguide array to form a diamond-shaped array of couplers. The waveguide illuminator may further include a first semiconductor light source and a second semiconductor light source, the first semiconductor light source and the second semiconductor light source being coupled to the first waveguide beam splitter and the second waveguide beam splitter, respectively, for directing light to The first waveguide beam splitter and the second waveguide beam splitter provide the first beam and the second beam. The first semiconductor light source and the second semiconductor light source may be configured to emit light of different wavelengths of the same color channel. The first semiconductor light source and the second semiconductor light source may include laser diodes emitting different wavelengths. The controller may be coupled to the first semiconductor light source and the second semiconductor light source. The controller may be configured to alternately operate the first semiconductor light source and the second semiconductor light source in a time-sequential manner.
根据本公开的第二方面,提供了一种显示设备,该显示设备包括:显示面板,该显示面板包括二维像素阵列;波导照明器,该波导照明器被配置成对显示面板照明,并且该波导照明器包括:波导分束器,该波导分束器被配置成接收光束并将该光束分成多个子光束;波导阵列,该波导阵列耦接到波导分束器,并且被配置成在该波导阵列中传播子光束,该波导阵列的波导彼此平行;以及耦出器的行的阵列,该阵列的每一行耦出器沿着波导阵列的一波导的长度耦接到该波导,以形成耦出的子光束部分的二维阵列;以及空间可变偏振器,该空间可变偏振器设置在显示面板的下游,并且被配置成传播第一偏振态的耦出的子光束部分,并且阻挡正交的第二偏振态的耦出的相邻子光束部分。According to a second aspect of the present disclosure, a display device is provided, the display device comprising: a display panel including a two-dimensional pixel array; a waveguide illuminator configured to illuminate the display panel, and the The waveguide illuminator includes: a waveguide beam splitter configured to receive a light beam and split the light beam into a plurality of sub-beams; a waveguide array coupled to the waveguide beam splitter and configured to Propagating sub-beams in an array, the waveguides of the waveguide array being parallel to each other; and an array of rows of couplers, each row of couplers of the array being coupled to a waveguide of the waveguide array along a length of the waveguide to form a coupler a two-dimensional array of sub-beam portions; and a spatially variable polarizer disposed downstream of the display panel and configured to propagate the coupled out sub-beam portions of the first polarization state and block the orthogonal The coupled-out adjacent sub-beam portion of the second polarization state.
空间可变偏振器可以包括横向接合的多个线偏振器区段,横向接合的这些线偏振器区段具有正交取向的偏振透射轴。具有相同偏振方向的多个线偏振器区段可以被布置成棋盘图案。该空间可变偏振器可以包括线偏振器和在该线偏振器下游的空间可变波片,该空间可变波片包括被布置成棋盘图案的横向接合的具有不同光轴方向的波片区段。具有相同光轴方向的波片区段可以被布置成棋盘图案。The spatially variable polarizer may comprise a plurality of laterally joined linear polarizer segments having orthogonally oriented polarization transmission axes. Multiple linear polarizer segments with the same polarization direction can be arranged in a checkerboard pattern. The spatially variable polarizer may include a linear polarizer and a spatially variable waveplate downstream of the linear polarizer, the spatially variable waveplate including laterally joined waveplate segments having different optical axis directions arranged in a checkerboard pattern. . Wave plate segments with the same optical axis direction can be arranged in a checkerboard pattern.
根据本公开的第三方面,提供了一种显示设备,该显示设备包括:显示面板,该显示面板包括二维像素阵列;以及波导照明器,该波导照明器被配置成对显示面板照明,并且该波导照明器包括:波导分束器,该波导分束器被配置成接收光束并将该光束分成多个子光束;波导阵列,该波导阵列耦接到波导分束器,并且被配置成在该波导阵列中传播子光束,该波导阵列的波导彼此平行;以及耦出器的行的阵列,该阵列的每一行耦出器沿着波导阵列的一波导的长度耦接到该波导,以形成与显示面板的二维像素阵列对应的耦出的子光束部分的二维阵列。该阵列可以是可以形成在液晶层中的透射式光阀的阵列。According to a third aspect of the present disclosure, there is provided a display device including: a display panel including a two-dimensional pixel array; and a waveguide illuminator configured to illuminate the display panel, and The waveguide illuminator includes: a waveguide beam splitter configured to receive a light beam and split the light beam into a plurality of sub-beams; a waveguide array coupled to the waveguide beam splitter and configured to Propagating beamlets in an array of waveguides, the waveguides of the waveguide array being parallel to each other; and an array of rows of couplers, each row of couplers of the array being coupled to one of the waveguides along a length of the waveguide array to form a A two-dimensional array of coupled sub-beam portions corresponding to the two-dimensional pixel array of the display panel. The array may be an array of transmissive light valves that may be formed in the liquid crystal layer.
该显示设备还可以包括控制器,该控制器可操作地耦接到显示面板,并且被配置成使该显示面板以时间顺序方式显示多个子图像,这些子图像加在一起构成要向用户显示的图像。所述多个子图像的不同子图像的像素可以彼此交错。例如,可以以互补的棋盘图案设置所述多个子图像的不同子图像的像素。所述多个子图像可以包括具有交错像素的第一子图像和第二子图像,使得第一子图像的每一个像素具有第二子图像的至少两个相邻像素。第一子图像的每一个像素可以具有第二子图像的至少三个相邻像素。The display device may further include a controller operatively coupled to the display panel and configured to cause the display panel to display a plurality of sub-images in a time-sequential manner that together constitute a display to be displayed to the user. image. Pixels of different sub-images of the plurality of sub-images may be interleaved with each other. For example, the pixels of different sub-images of the plurality of sub-images may be arranged in a complementary checkerboard pattern. The plurality of sub-images may include a first sub-image and a second sub-image having interleaved pixels such that each pixel of the first sub-image has at least two adjacent pixels of the second sub-image. Each pixel of the first sub-image may have at least three neighboring pixels of the second sub-image.
附图说明Description of drawings
结合附图可以更容易地理解本公开,附图中:The present disclosure may be more easily understood in conjunction with the accompanying drawings, in which:
图1是本公开的波导照明器的示意平面图;Figure 1 is a schematic plan view of the waveguide illuminator of the present disclosure;
图2是使用图1的波导照明器的显示设备的示意图;Figure 2 is a schematic diagram of a display device using the waveguide illuminator of Figure 1;
图3是图2的显示设备的放大视图,其示出了眼睛的视网膜上的、相邻像素之间的光学干涉;Figure 3 is an enlarged view of the display device of Figure 2 illustrating optical interference between adjacent pixels on the retina of the eye;
图4A是使用两个光源和交错波导的波导照明器的示意平面图;Figure 4A is a schematic plan view of a waveguide illuminator using two light sources and staggered waveguides;
图4B是使用光源、分束器和交错波导的波导照明器的示意平面图;Figure 4B is a schematic plan view of a waveguide illuminator using a light source, beam splitter and interleaved waveguides;
图5是图2的显示设备的示例的放大前视图,其示出了光栅耦出器和显示面板像素的相对构造;FIG. 5 is an enlarged front view of the example of the display device of FIG. 2 illustrating the relative configuration of a grating coupler and display panel pixels;
图6是用于本公开的波导照明器的空间可变偏振器的平面图,该空间可变偏振器包括正交取向的多个线偏振器区段的棋盘图案;6 is a plan view of a spatially variable polarizer for use in a waveguide illuminator of the present disclosure, the spatially variable polarizer including a checkerboard pattern of orthogonally oriented multiple linear polarizer segments;
图7A和图7B分别是用于本公开的波导照明器的空间可变偏振器的平面图和侧视图,该空间可变偏振器包括线偏振器,在该线偏振器之后是波片的棋盘图案;7A and 7B are plan and side views, respectively, of a spatially variable polarizer for use in a waveguide illuminator of the present disclosure, the spatially variable polarizer comprising a linear polarizer followed by a checkerboard pattern of wave plates. ;
图8是示出了交错子图像用于减小干涉的原理的三维图;Figure 8 is a three-dimensional diagram illustrating the principle of interleaved sub-images for reducing interference;
图9是本公开的形状要素为一副眼镜的增强现实(AR)显示器的视图;以及Figure 9 is a view of an augmented reality (AR) display with a form factor of the present disclosure being a pair of glasses; and
图10是本公开的头戴式显示器(head-mounted display,HMD)的三维视图。Figure 10 is a three-dimensional view of a head-mounted display (HMD) of the present disclosure.
具体实施方式Detailed ways
虽然结合各种实施例和示例描述了本教导,但是不旨在将本教导局限于这样的示例。相反,正如本领域技术人员将理解的,本教导涵盖各种可替选方案和等同物。本文中引用本公开的原理、方面和实施例以及其具体示例的所有陈述旨在涵盖其结构等同物和功能等同物。此外,旨在使这种等同物既包括目前已知的等同物,也包括未来开发的等同物,即所开发的执行相同功能的任何元件,而不管结构如何。Although the present teachings are described in connection with various embodiments and examples, there is no intention to limit the present teachings to such examples. On the contrary, as those skilled in the art will appreciate, the present teachings cover various alternatives and equivalents. All statements herein reciting principles, aspects, and embodiments of the present disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Furthermore, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
如本文所使用的,除非明确说明,否则术语“第一”和“第二”等并非旨在暗示顺序次序,而是旨在将一个元件与另一个元件区分开。类似地,除非明确说明,否则方法步骤的顺序次序并非暗示它们执行的顺序次序。在图1、图7和图8中,相似的数字表示相似的元件。同样,在图3A、图3B至图6A、图6B中,相似的数字表示相似的元件。As used herein, the terms "first", "second" and the like are not intended to imply a sequential order but are intended to distinguish one element from another element unless expressly stated otherwise. Similarly, the sequential order of method steps does not imply the sequential order of their execution unless expressly stated. In Figures 1, 7 and 8, similar numbers indicate similar elements. Likewise, in FIGS. 3A and 3B through 6A and 6B, similar numbers represent similar elements.
在包括耦接到照明器的像素阵列的视觉显示器中,光利用效率取决于各像素所占据的几何面积与显示面板的总面积的比率。对于通常用于近眼显示器和/或头戴式显示器的微型显示器,该比率可能低于50%。高效背光利用率可能进一步被显示面板上的滤色器阻碍,该滤色器平均透射不超过30%的入射光。此外,对于基于偏振的显示面板(诸如,液晶(liquid crystal,LC)显示面板),可能存在50%的偏振损失。所有这些因素都大大降低了显示器的光利用率和整体电光转化效率(wall plug efficiency),这是不期望的。In visual displays that include an array of pixels coupled to an illuminator, light utilization efficiency depends on the ratio of the geometric area occupied by each pixel to the total area of the display panel. For microdisplays typically used in near-eye displays and/or head-mounted displays, this ratio may be lower than 50%. Efficient backlight utilization may be further hampered by color filters on the display panel, which transmit no more than 30% of incident light on average. Furthermore, for polarization-based display panels such as liquid crystal (LC) display panels, there may be a 50% polarization loss. All these factors greatly reduce the display's light utilization and overall wall plug efficiency, which is undesirable.
根据本公开,可以通过提供包括与显示面板的像素对准的耦出器阵列的波导照明器来提高背光显示器的光利用率和电光转化效率。在照明器发射原色(例如,红色、绿色和蓝色)光的显示器中,照明光的颜色可以与滤色器匹配,或者可以完全省略滤色器。对于基于偏振的显示器,发射光的偏振可以与预定义的输入偏振态相匹配。将显示面板的像素的空间分布、透射波长和/或透射偏振特性匹配能够显著地改善显示光的有用部分(该有用部分在其到达观看者眼睛的途中不会被显示面板吸收或反射),并且因此显著地提高显示器的电光转化效率。According to the present disclosure, the light utilization efficiency and electro-optical conversion efficiency of a backlight display can be improved by providing a waveguide illuminator including a coupler array aligned with pixels of a display panel. In displays where the illuminator emits light in primary colors (eg, red, green, and blue), the color of the illumination light can be matched to the color filter, or the color filter can be omitted entirely. For polarization-based displays, the polarization of the emitted light can be matched to a predefined input polarization state. Matching the spatial distribution, transmission wavelength, and/or transmission polarization characteristics of the display panel's pixels can significantly improve the useful portion of the display light that is not absorbed or reflected by the display panel on its way to the viewer's eyes, and Therefore, the electro-optical conversion efficiency of the display is significantly improved.
与激光照明相结合的单模或少模波导(例如,多达12个传播模式的脊形波导)允许有效地控制光的颜色和方向性等特性。当光以单一空间模式传播时,输出可以是衍射受限的和高度方向性的。单模传播还允许在波导上的特定点将光耦出,并结合聚焦像素,聚焦像素可以将光聚焦到显示面板的像素中同时避免在像素间区域中的散射。激光照明的窄光谱使大色域显示成为可能。此外,单模波导可以保持偏振,这使得在不需要偏振器的情况下由背光单元产生高度偏振的输出。Single-mode or few-mode waveguides (e.g., ridge waveguides with up to 12 propagation modes) combined with laser illumination allow efficient control of properties such as color and directionality of light. When light propagates in a single spatial mode, the output can be diffraction limited and highly directional. Single-mode propagation also allows light to be coupled out at specific points on the waveguide, combined with focusing pixels that focus light into the pixels of the display panel while avoiding scattering in the inter-pixel areas. The narrow spectrum of laser illumination makes large color gamut displays possible. Additionally, single-mode waveguides can maintain polarization, which allows for the generation of highly polarized output from the backlight unit without the need for a polarizer.
由于传播光的相干性质,基于单模波导的照明器可能容易由于耦出的相干光的不同子光束之间的光学干涉而导致散斑图案的形成。根据本公开,可以通过确保照明光的相邻耦出子光束不在用户眼睛的视网膜上彼此干涉来降低散斑形成的影响。因此,例如可以通过破坏相邻子光束之间的相干性、通过确保它们的偏振相互正交、和/或通过确保在任何给定时间两个相邻子光束中仅有一个子光束到达用户的眼睛来实现。Due to the coherent nature of propagating light, single-mode waveguide-based illuminators may be susceptible to the formation of speckle patterns due to optical interference between different sub-beams of coupled out coherent light. According to the present disclosure, the effects of speckle formation can be reduced by ensuring that adjacent outcoupled sub-beams of illumination light do not interfere with each other on the retina of the user's eye. Thus, for example, by destroying the coherence between adjacent sub-beams, by ensuring that their polarizations are orthogonal to each other, and/or by ensuring that only one of two adjacent sub-beams reaches the user at any given time. Eyes to achieve.
现参照图1,波导照明器100包括支撑输入波导106的衬底101,该输入波导106用于引导由光源110(诸如,激光光源)提供的输入光束108。本文中,术语“波导”表示在两个维度上限制光传播的光引导结构,如光导束(light wire),并以单个横模或多个横模(例如多达12个传播模式)来引导光。波导可以是直的、弯曲的等等。线性波导的一个示例是脊形波导。可以在光子集成电路(photonic integrated circuit,PIC)中实现波导照明器100。Referring now to Figure 1, a waveguide illuminator 100 includes a substrate 101 supporting an input waveguide 106 for directing an input beam 108 provided by a light source 110, such as a laser light source. As used herein, the term "waveguide" refers to a light guiding structure, such as a light wire, that confines the propagation of light in two dimensions and guides it in a single transverse mode or in multiple transverse modes (e.g., up to 12 propagation modes) Light. Waveguides can be straight, curved, etc. An example of a linear waveguide is a ridge waveguide. Waveguide illuminator 100 may be implemented in a photonic integrated circuit (PIC).
波导分束器112耦接到输入波导106。波导分束器112的功能是将输入光束108分成多个子光束114。波导116阵列耦接到波导分束器112,以用于在这些波导116中引导子光束114。如图所示,多个波导116彼此平行。每一个波导116被配置成将来自波导分束器112的多个子光束114中的一个子光束114引导到该波导116的端部129。Waveguide beam splitter 112 is coupled to input waveguide 106 . The function of the waveguide beam splitter 112 is to split the input beam 108 into a plurality of sub-beams 114. An array of waveguides 116 is coupled to a waveguide beam splitter 112 for directing beamlets 114 in these waveguides 116 . As shown, the plurality of waveguides 116 are parallel to each other. Each waveguide 116 is configured to direct one of the plurality of sub-beams 114 from the waveguide beam splitter 112 to an end 129 of the waveguide 116 .
耦出器120的行119的阵列由波导照明器100的衬底101支撑。这些耦出器120中的每一行119沿着多个波导116中的一个波导116的长度耦接到该波导116,以用于耦出多个子光束114中在该波导116中传播的一个子光束114的部分122。由这些耦出器120的所有行119耦出的部分122形成从波导阵列耦出的子光束部分122的二维阵列,这些子光束部分122以与衬底101成角度(包括锐角或直角)的方式离开。可以选择子光束部分122的二维阵列的X间距和Y间距,以匹配由波导照明器100照明的显示面板的X间距和Y间距。The array of rows 119 of couplers 120 is supported by the substrate 101 of the waveguide illuminator 100 . Each row 119 of the couplers 120 is coupled to one of the plurality of waveguides 116 along the length of the waveguide 116 for coupling out one of the plurality of sub-beams 114 propagating in the waveguide 116 Part 122 of 114. The portions 122 coupled out of all rows 119 of these couplers 120 form a two-dimensional array of sub-beam portions 122 coupled out of the waveguide array at an angle (including an acute or right angle) to the substrate 101 way to leave. The X-spacing and Y-spacing of the two-dimensional array of sub-beam portions 122 may be selected to match the X-spacing and Y-spacing of the display panel illuminated by the waveguide illuminator 100.
参考图2并进一步参考图1,显示设备200包括图1的波导照明器100或本文中所公开的任何其它波导照明器。波导照明器100耦接到显示面板202(图2)。光源201(例如,在颜色通道的波长处的半导体光源)可以光学地耦合到照明器100,以用于向照明器100提供光束108。显示面板202包括显示像素220的二维阵列,例如透射式光阀阵列,该显示像素220的二维阵列被布置和配置成从照明器100接收耦出的子光束部分122的阵列。为了确保有效地使用子光束部分122,显示像素220的位置和间距可以在X方向和Y方向上与耦出器120的阵列的位置和间距匹配。显示像素220的间距可以大致等于耦出器120的阵列的间距。Referring to FIG. 2 and further to FIG. 1 , display device 200 includes waveguide illuminator 100 of FIG. 1 or any other waveguide illuminator disclosed herein. Waveguide illuminator 100 is coupled to display panel 202 (Fig. 2). A light source 201 (eg, a semiconductor light source at the wavelength of the color channel) may be optically coupled to the illuminator 100 for providing the light beam 108 to the illuminator 100 . Display panel 202 includes a two-dimensional array of display pixels 220 , such as a transmissive light valve array, arranged and configured to receive an array of outcoupled sub-beam portions 122 from illuminator 100 . To ensure efficient use of sub-beam portion 122, the position and spacing of display pixels 220 may match the position and spacing of the array of couplers 120 in the X and Y directions. The pitch of display pixels 220 may be approximately equal to the pitch of the array of couplers 120 .
显示设备200还可以包括控制器250,该控制器250可操作地耦接到光源201和显示面板202,以用于在提供用于设定显示像素220的各个光透射值或其它属性(诸如,偏振转换属性)的控制信号的同时激发光源201。在一些示例中,显示面板202可以包括液晶层204,其中显示像素220被配置成单独且可控制地转换或调谐各个子光束部分122的偏振态,例如旋转线偏振态。在这样的示例中,光源201可以是发射线偏振光的偏振光源。可以设置线偏振器228,以将由显示像素220给予的子光束部分122的偏振分布转换为表示要显示的图像的光功率密度分布或亮度分布。将偏振分布转换为光功率密度分布或亮度分布的偏振器通常被称为分析器。液晶像素与分析器结合形成具有可控光学透射率的光阀像素的阵列。Display device 200 may further include a controller 250 operably coupled to light source 201 and display panel 202 for providing a setting for setting respective light transmission values or other properties of display pixels 220, such as, The light source 201 is excited simultaneously with the control signal (polarization conversion property). In some examples, display panel 202 may include a liquid crystal layer 204 in which display pixels 220 are configured to individually and controllably convert or tune the polarization state of each sub-beam portion 122, such as to rotate a linear polarization state. In such an example, light source 201 may be a polarized light source that emits linearly polarized light. The linear polarizer 228 may be provided to convert the polarization distribution of the sub-beam portion 122 given by the display pixel 220 into an optical power density distribution or a brightness distribution representative of an image to be displayed. A polarizer that converts a polarization distribution into an optical power density distribution or brightness distribution is often called an analyzer. The liquid crystal pixels are combined with the analyzer to form an array of light valve pixels with controllable optical transmittance.
形成在线偏振器228下游的图像位于线性域中,其中正被显示的图像的像素坐标对应于显示像素220的XY坐标。目视透镜230可以用于将线性域中的图像转换为适眼区(eyebox)226处的角域中的图像,以供眼睛280直接观察。本文中,术语“角域中的图像”指的是正被显示的图像的像素坐标对应于子光束部分122的射线角度的图像。在具有可调偏振旋转器的示例中,光源201可以发射偏振光,并且波导照明器100可以保持该偏振态。在一些示例中,可以使波导照明器100对外部光214是可穿透的。The image formed downstream of line polarizer 228 is in the linear domain, where the pixel coordinates of the image being displayed correspond to the XY coordinates of display pixels 220. The viewing lens 230 may be used to convert an image in the linear domain into an image in the angular domain at an eyebox 226 for direct observation by the eye 280 . As used herein, the term "image in the angular domain" refers to an image in which the pixel coordinates of the image being displayed correspond to the ray angle of the sub-beam portion 122 . In an example with an adjustable polarization rotator, light source 201 can emit polarized light, and waveguide illuminator 100 can maintain that polarization state. In some examples, waveguide illuminator 100 can be made transparent to external light 214 .
与使用相干光源照明显示面板(例如,光源201照明显示面板202)相关联的一个潜在问题是散斑图案的形成。由于光源201的相干性质,眼睛280可能观察到散斑。One potential problem associated with using a coherent light source to illuminate a display panel (eg, light source 201 illuminates display panel 202) is the formation of a speckle pattern. Due to the coherent nature of light source 201, eye 280 may observe speckle.
图3示出了这种散斑图案的起源。图3是图2的显示器200的放大,其中相邻的子光束部分122的光路320A、320B传播通过相邻的显示像素220A、220B,由目视透镜230重定向,并由眼睛280的晶状体/角膜380聚焦到眼睛280的视网膜302上。由于包括目视透镜230和眼睛晶状体/角膜380在内的整个成像序列的不完美性质,相邻的显示像素220A和220B的图像328A和328B可能在视网膜302上有所重叠。光学干涉图案300可能出现在相邻的显示像素220A和220B的图像328A与328B之间的重叠区域中。光学干涉图案300也将出现在其它相邻像素图像之间,为清楚起见未示出。干涉图案形成300的最终结果是整个可见光图像为高度散斑化的,从而产生观察到的图像的分散、不自然的外观。Figure 3 shows the origin of this speckle pattern. 3 is an enlargement of the display 200 of FIG. 2 in which the optical paths 320A, 320B of adjacent sub-beam portions 122 propagate through adjacent display pixels 220A, 220B, are redirected by the viewing lens 230, and are directed by the lens/lens of the eye 280. The cornea 380 focuses onto the retina 302 of the eye 280 . Due to the imperfect nature of the entire imaging sequence, including the viewing lens 230 and the eye lens/cornea 380, the images 328A and 328B of adjacent display pixels 220A and 220B may overlap on the retina 302. Optical interference pattern 300 may occur in the overlap area between images 328A and 328B of adjacent display pixels 220A and 220B. Optical interference patterns 300 will also appear between other adjacent pixel images, not shown for clarity. The net result of interference patterning 300 is that the entire visible light image is highly speckled, producing a diffuse, unnatural appearance of the observed image.
减轻光学干涉图案300的一种方法是提供具有多个相位不相关光源的波导照明器。这些光源的发射波长可以略有不同,使得由这些光源发射的光束在重叠时不显示可见的干涉图案。参考图4A的非限制性的说明性示例,波导照明器400A类似于图1的波导照明器100,包括类似的元件,可以被实现为PIC,并且可以在图2的显示设备200中使用。与波导照明器100类似,图4A的波导照明器400A包括衬底401,该衬底401支撑第一输入波导406,该第一输入波导406用于引导由第一光源410(例如,诸如激光二极管的半导体光源)提供的第一输入光束408。第一波导分束器412耦接到第一输入波导406。第一波导分束器412的功能是将第一输入光束408分成第一多个子光束414。波导416的第一阵列耦接到第一波导分束器412,以用于在第一阵列的波导416中传播子光束414。如图所示,多个波导416彼此平行。每一个波导416被配置成引导多个子光束414中的一个子光束414。耦出器420的第一阵列由衬底401支撑,该耦出器420的第一阵列被布置在对应于各个波导416的行中。这些耦出器420的每一行沿着第一波导阵列的一个波导416的长度耦接到该波导416,以用于耦出在各波导416中传播的多个子光束414中的一个子光束414的部分422。这些部分422形成耦出的子光束部分的第一二维阵列。One method of mitigating optical interference patterns 300 is to provide a waveguide illuminator with multiple phase-uncorrelated light sources. The emission wavelengths of these light sources can differ slightly so that the beams emitted by these light sources do not show visible interference patterns when overlapping. Referring to the non-limiting illustrative example of FIG. 4A , a waveguide illuminator 400A is similar to the waveguide illuminator 100 of FIG. 1 , includes similar components, may be implemented as a PIC, and may be used in the display device 200 of FIG. 2 . Similar to waveguide illuminator 100, waveguide illuminator 400A of Figure 4A includes a substrate 401 that supports a first input waveguide 406 for guiding light from a first light source 410 (eg, such as a laser diode The first input beam 408 is provided by a semiconductor light source. First waveguide beam splitter 412 is coupled to first input waveguide 406 . The function of the first waveguide beam splitter 412 is to split the first input beam 408 into a first plurality of sub-beams 414. The first array of waveguides 416 is coupled to a first waveguide beam splitter 412 for propagating beamlets 414 in the first array of waveguides 416 . As shown, multiple waveguides 416 are parallel to each other. Each waveguide 416 is configured to guide one of a plurality of sub-beams 414 . A first array of couplers 420 is supported by the substrate 401 and is arranged in a row corresponding to each waveguide 416 . Each row of couplers 420 is coupled to a waveguide 416 of the first waveguide array along the length of the waveguide 416 for coupling out one of the plurality of sub-beams 414 propagating in each waveguide 416 . Part 422. These portions 422 form a first two-dimensional array of outcoupled sub-beam portions.
波导照明器400A还包括第二输入波导407,该第二输入波导407用于在衬底401的相反侧引导由第二光源411(例如,诸如激光二极管的半导体光源)提供的第二输入光束409。第二波导分束器413耦接到第二输入波导407,以用于将第二输入光束409分成第二多个子光束415。波导417的第二阵列耦接到第二波导分束器413,以用于在波导417中传播子光束415。该第二波导阵列的波导417彼此平行并且位于该第一波导阵列的波导416之间,即,第一波导阵列的波导416和第一波导阵列的波导416交错。第一波导分束器412和第二波导分束器413设置在第一波导阵列和第二波导阵列的相反的两端处,即,图4A中阵列的左边和右边。Waveguide illuminator 400A also includes a second input waveguide 407 for directing a second input beam 409 provided by a second light source 411 (eg, a semiconductor light source such as a laser diode) on an opposite side of the substrate 401 . A second waveguide beam splitter 413 is coupled to the second input waveguide 407 for splitting the second input beam 409 into a second plurality of sub-beams 415 . The second array of waveguides 417 is coupled to a second waveguide beam splitter 413 for propagating beamlets 415 in the waveguides 417 . The waveguides 417 of the second waveguide array are parallel to each other and located between the waveguides 416 of the first waveguide array, that is, the waveguides 416 of the first waveguide array and the waveguides 416 of the first waveguide array are interleaved. The first waveguide beam splitter 412 and the second waveguide beam splitter 413 are disposed at opposite ends of the first waveguide array and the second waveguide array, that is, the left and right sides of the array in FIG. 4A.
第二波导阵列的每一个波导417被配置成引导一个子光束415。布置成行的耦出器421的第二阵列由衬底401支撑。每一行耦出器421沿着第二波导阵列的各波导417中的一个波导417的长度耦接到该波导417,以用于耦出部分423,形成耦出的子光束部分的第二二维阵列。第一输入光束408和第二输入光束409可以沿着成对的平行波导416、417从波导照明器400A的两个相反侧发射到相应的交错的波导阵列中。Each waveguide 417 of the second waveguide array is configured to guide one sub-beam 415. A second array of couplers 421 arranged in rows is supported by the substrate 401 . Each row of couplers 421 is coupled to one of the waveguides 417 of the second waveguide array along the length of the waveguide 417 for the outcoupling portion 423 to form a second two-dimensional portion of the outcoupled sub-beam portion. array. The first input beam 408 and the second input beam 409 may be emitted from opposite sides of the waveguide illuminator 400A along pairs of parallel waveguides 416, 417 into respective staggered waveguide arrays.
耦出光束部分422和423的两个阵列是交错的,如图所示,这是第一波导阵列的波导416、第二波导阵列的波导417交错以及对应的耦出器420和421交错的结果。从第一输入光束408和第二输入光束409分出的子光束414和415沿相反的方向传播,即,它们反向传播。第一光源410和第二光源411可以被配置成发射不同的波长(例如,相同颜色通道的波长)的光;例如,第一光源410和第二光源411可以包括不同发射波长的激光二极管,从而不可能形成稳定的光学干涉图案。图4中所示的交错构造允许减少或完全消除相邻的耦出光束部分422和423之间的不期望的光学干涉效应,从而减少或消除散斑图案形成的有害影响。The two arrays of outcoupling beam portions 422 and 423 are interleaved, as shown, as a result of the interleaving of the waveguides 416 of the first waveguide array, the waveguides 417 of the second waveguide array, and the corresponding interleaving of the couplers 420 and 421 . The sub-beams 414 and 415 branched off from the first input beam 408 and the second input beam 409 propagate in opposite directions, ie they propagate in opposite directions. The first light source 410 and the second light source 411 may be configured to emit light at different wavelengths (eg, wavelengths of the same color channel); for example, the first light source 410 and the second light source 411 may include laser diodes emitting different wavelengths, thereby It is impossible to form a stable optical interference pattern. The staggered configuration shown in Figure 4 allows for the reduction or complete elimination of undesirable optical interference effects between adjacent outcoupled beam portions 422 and 423, thereby reducing or eliminating the deleterious effects of speckle pattern formation.
在一些示例中,图4A的波导照明器400A可以包括控制器450,该控制器450耦接到第一光源410和第二光源411。控制器450可以被配置成以时间顺序方式交替地操作第一半导体光源410和第二半导体光源411,以抑制相邻的耦出光束部分422和423之间的干涉。当以时间顺序方式操作第一光源410和第二光源411时,即使当第一光源410和第二光源411的发射光谱完全重叠或部分重叠时也不会发生干涉。In some examples, waveguide illuminator 400A of Figure 4A may include a controller 450 coupled to first light source 410 and second light source 411. The controller 450 may be configured to alternately operate the first semiconductor light source 410 and the second semiconductor light source 411 in a time-sequential manner to suppress interference between adjacent outcoupled beam portions 422 and 423 . When the first light source 410 and the second light source 411 are operated in a time-sequential manner, interference does not occur even when the emission spectra of the first light source 410 and the second light source 411 completely overlap or partially overlap.
在一些示例中,第一输入光束408和第二输入光束409可以由耦接到光束分束器的同一激光源发射,其中在第一输入光束408和第二输入光束409之间具有足够的路径长度以破坏相位相干性并且抑制输出区域内的任何地方的干涉。参考图4B的非限制性的说明性示例,波导照明器400B类似于图4A的波导照明器400A,包括类似的元件,可以在PIC中实现,并且可以在图2的显示设备200中使用。图4B的波导照明器400B具有单个光源(具体是第一光源410)以及耦接到第一光源410的光源分束器477(例如,50/50分束器),该光源分束器477用于将由第一光源410提供的光分成第一输入光束408和第二输入光束409,并将第一输入光束408和第二输入光束409分别耦合到第一波导分束器412和第二波导分束器413。从第一光源410到第一波导分束器412与从第一光源410到第二波导分束器413的光路长度差大于第一光源410的相干长度。在图4B中,该路径长度差大约等于从光源分束器477延伸到第二波导分束器413的辅助波导478的长度。In some examples, the first input beam 408 and the second input beam 409 can be emitted by the same laser source coupled to a beam splitter with a sufficient path between the first input beam 408 and the second input beam 409 length to destroy phase coherence and suppress interference anywhere within the output region. Referring to the non-limiting illustrative example of FIG. 4B , waveguide illuminator 400B is similar to waveguide illuminator 400A of FIG. 4A , includes similar components, may be implemented in a PIC, and may be used in display device 200 of FIG. 2 . The waveguide illuminator 400B of Figure 4B has a single light source, specifically a first light source 410, and a light source beam splitter 477 (eg, a 50/50 beam splitter) coupled to the first light source 410, the light source beam splitter 477 being The light provided by the first light source 410 is divided into a first input beam 408 and a second input beam 409, and the first input beam 408 and the second input beam 409 are coupled to the first waveguide beam splitter 412 and the second waveguide splitter respectively. bundler 413. The difference in optical path length from the first light source 410 to the first waveguide beam splitter 412 and from the first light source 410 to the second waveguide beam splitter 413 is greater than the coherence length of the first light source 410 . In FIG. 4B , this path length difference is approximately equal to the length of the auxiliary waveguide 478 extending from the light source beam splitter 477 to the second waveguide beam splitter 413 .
在近眼显示器中,光学干涉和相关联的不希望的散斑图案的形成是由与用波导照明器照明的显示面板的相邻像素相对应的相邻子光束部分在用户眼睛的视网膜上重叠引起的。如上文参照图3所解释的,这种子光束斑点重叠是由于光学系统中的缺陷导致相邻像素在视网膜上的图像变宽引起的。因此,增加来自照明器的相邻子光束部分的光点之间的距离可以使得减少不想要的干涉以及抑制散斑图案。这样的距离增加可以通过仔细选择照明光的空间图案来实现。参考图5,图2的显示设备200的示例500可以使用图4A的波导照明器400A或图4B的波导照明器400B。在图5中,显示面板202的像素220形成用粗虚线示出的像素的矩形阵列。相邻行耦出器的耦出器420和421在波导416、417的方向上(即图5中的水平方向)相对于彼此偏移,以形成耦出器420、421的菱形阵列,矩形的像素阵列的每一个像素220仍由耦出器的菱形阵列的耦出器420、421中的一者照明。这样的构造使得耦出器420、421能够彼此间隔得更远,从而降低了由相邻耦出器420、421耦出的子光束部分之间的光学干涉的强度,并且因此抑制了散斑图案的形成。In near-eye displays, optical interference and the associated formation of undesirable speckle patterns are caused by the overlap of adjacent sub-beam portions corresponding to adjacent pixels of the display panel illuminated with a waveguide illuminator on the retina of the user's eye. of. As explained above with reference to Figure 3, this sub-beam spot overlap is caused by defects in the optical system causing the image of adjacent pixels to broaden on the retina. Therefore, increasing the distance between light spots from adjacent sub-beam portions of the illuminator can result in reducing unwanted interference and suppressing speckle patterns. Such distance increases can be achieved by careful selection of the spatial pattern of illumination light. Referring to FIG. 5 , the example 500 of the display device 200 of FIG. 2 may use the waveguide illuminator 400A of FIG. 4A or the waveguide illuminator 400B of FIG. 4B . In Figure 5, the pixels 220 of the display panel 202 form a rectangular array of pixels shown with thick dashed lines. The couplers 420 and 421 of adjacent rows of couplers are offset relative to each other in the direction of the waveguides 416, 417 (i.e., the horizontal direction in Figure 5) to form a diamond-shaped array of couplers 420, 421, a rectangular Each pixel 220 of the pixel array is still illuminated by one of the couplers 420, 421 of the diamond-shaped array of couplers. Such a configuration enables the couplers 420, 421 to be spaced further apart from each other, thereby reducing the intensity of optical interference between sub-beam portions coupled out by adjacent couplers 420, 421, and thus suppressing the speckle pattern Formation.
还可以通过确保相邻的耦出子光束部分具有正交的偏振态来抑制或减少相邻的耦出子光束部分之间的光学干涉。为此,可以将空间可变偏振器放置在显示面板(例如,图2的显示设备200的显示面板202)的下游。例如,参考图6并进一步参考图2,可以放置空间可变偏振器600(图6)来代替线偏振器/分析器228(图2)。在图6中所示的示例中,空间可变偏振器600包括横向接合的多个线偏振器区段601、602,这些线偏振器区段601、602具有正交取向的偏振透射轴。因此,空间可变偏振器600被配置成传播第一偏振态的耦出子光束部分并且阻挡正交的第二偏振态的相邻耦出子光束部分。所透过的相邻的各子光束部分122将是正交偏振的,因此它们之间的光学干涉将被抑制。Optical interference between adjacent outcoupling sub-beam portions can also be suppressed or reduced by ensuring that the adjacent outcoupling sub-beam portions have orthogonal polarization states. To this end, a spatially variable polarizer may be placed downstream of the display panel (eg, display panel 202 of display device 200 of Figure 2). For example, referring to FIG. 6 and further to FIG. 2, spatially variable polarizer 600 (FIG. 6) may be placed in place of linear polarizer/analyzer 228 (FIG. 2). In the example shown in Figure 6, a spatially variable polarizer 600 includes a plurality of laterally joined linear polarizer segments 601, 602 having orthogonally oriented polarization transmission axes. Accordingly, spatially variable polarizer 600 is configured to propagate outcoupled beamlet portions of a first polarization state and block adjacent outcoupled beamlet portions of an orthogonal second polarization state. Each adjacent transmitted sub-beam portion 122 will be orthogonally polarized, so optical interference between them will be suppressed.
根据每一个给定像素220的对应偏振器取向,可以校准显示面板202以充当不同的波片。以不同线偏振穿过像素220的光将不会受到光学干涉。传输偏振取向的棋盘图案增加了相同偏振态的像素220之间及子光束部分122之间的距离,从而降低了它们在用户眼睛的视网膜处重叠的可能性,如上文参考图3所解释的那样。Depending on the corresponding polarizer orientation of each given pixel 220, the display panel 202 can be calibrated to act as a different wave plate. Light passing through pixel 220 with different linear polarizations will not suffer optical interference. The checkerboard pattern of transmission polarization orientations increases the distance between pixels 220 and between beamlet portions 122 of the same polarization state, thereby reducing the likelihood that they overlap at the retina of the user's eye, as explained above with reference to FIG. 3 .
现参考图7A和图7B并进一步参考图2,可以放置空间可变偏振器700来代替线偏振器/分析器228。在所示的示例中,空间可变偏振器700包括均匀线偏振器710和在均匀线偏振器710下游的空间可变波片720。空间可变波片720包括横向接合的、不同光轴方向的波片区段721、722。对于半波波片,方向可以相差45度。如图所示,相同光轴方向的波片区段721、722可以布置成互补棋盘图案。Referring now to Figures 7A and 7B and with further reference to Figure 2, a spatially variable polarizer 700 may be placed in place of the linear polarizer/analyzer 228. In the example shown, spatially variable polarizer 700 includes a uniform linear polarizer 710 and a spatially variable wave plate 720 downstream of uniform linear polarizer 710 . The spatially variable wave plate 720 includes transversely joined wave plate sections 721, 722 with different optical axis directions. For half-wave plates, the directions can differ by 45 degrees. As shown in the figure, wave plate sections 721, 722 with the same optical axis direction may be arranged in a complementary checkerboard pattern.
在本公开的一些示例中,可以通过控制显示器的各个像素以仅为非相邻像素提供非零光功率密度来减轻显示设备中由相干照明引起的光学干涉/散斑效应,其中所有像素最终以时间顺序的方式被激发。为此,图2的显示设备200的控制器250可以被配置成使显示面板202以时间顺序方式显示多个子图像,这些子图像加在一起构成要向用户显示的图像。In some examples of the present disclosure, optical interference/speckle effects caused by coherent illumination in display devices can be mitigated by controlling individual pixels of the display to provide non-zero optical power density to only non-adjacent pixels, where all pixels end up with A chronological manner is stimulated. To this end, the controller 250 of the display device 200 of FIG. 2 may be configured to cause the display panel 202 to display a plurality of sub-images in a time-sequential manner, which together constitute the image to be displayed to the user.
转到图8中的非限制性的说明性示例,要显示给用户的图像800包括由放置在各个像素中的数字表示的亮度值的二维阵列。第一子图像801和第二子图像802加起来构成图像800。换言之,第一子图像801和第二子图像802的对应像素值加起来为图像800的像素值。例如,图像800的像素820具有值17。该值由第一子图像801的具有零值的像素821和第二子图像802的具有值17的像素822之和来表示。类似地,图像800的像素830具有值64。该值由第一子图像801的具有值64的像素831和第二子图像802的具有零值的像素832之和来表示。Turning to the non-limiting illustrative example of Figure 8, an image 800 to be displayed to a user includes a two-dimensional array of brightness values represented by numbers placed in individual pixels. The first sub-image 801 and the second sub-image 802 together form image 800. In other words, the corresponding pixel values of the first sub-image 801 and the second sub-image 802 add up to the pixel value of the image 800 . For example, pixel 820 of image 800 has a value of 17. This value is represented by the sum of pixels 821 of the first sub-image 801 with a value of zero and pixels 822 of the second sub-image 802 with a value of 17. Similarly, pixel 830 of image 800 has a value of 64. This value is represented by the sum of pixels 831 of the first sub-image 801 with a value of 64 and pixels 832 of the second sub-image 802 with a value of zero.
子图像801和802可以由控制器250以时间顺序的方式显示,即一个接一个地快速地显示,使得用户的眼睛将它们合并到单个图像中。多个子图像中的不同子图像的像素可以交错,例如,如图8所示,不同子图像的具有非零亮度值的像素可以以互补的棋盘图案来设置。非零像素值的交错确保了来自相邻像素的光不会在用户的眼睛视网膜上干涉。最终的结果将是抑制可见散斑/干涉图案。Sub-images 801 and 802 may be displayed by the controller 250 in a time-sequential manner, that is, displayed quickly one after the other so that the user's eyes merge them into a single image. Pixels of different sub-images in multiple sub-images can be interleaved. For example, as shown in Figure 8, pixels with non-zero brightness values of different sub-images can be arranged in a complementary checkerboard pattern. The interleaving of non-zero pixel values ensures that light from adjacent pixels does not interfere on the retina of the user's eye. The end result will be suppression of visible speckle/interference patterns.
可以提供多于两个的子图像,其原理与像素亮度值相加为期望图像的原理相同。根据子图像的总数以及第一子图像的像素的边界或帧内位置,该像素可以具有第二图像的至少一个相邻像素、第二子图像的至少两个相邻像素、或至少三个或四个相邻像素。为明确起见,应注意的是,在此将相邻像素定义为共享至少一个边界。More than two sub-images can be provided on the same principle as the pixel brightness values are added to the desired image. Depending on the total number of sub-images and the boundary or intra-frame position of a pixel of the first sub-image, the pixel may have at least one neighboring pixel of the second image, at least two neighboring pixels of the second sub-image, or at least three or four adjacent pixels. For clarity, it should be noted that adjacent pixels are defined here as sharing at least one boundary.
还应注意的是,本文中所公开的光学干涉/散斑减轻构造和方法不是相互排斥的,并且可以以互补的方式使用。例如,图4A和图4B中所示的交错波导中的子光束的反向传播可以通过如下方式来补充:按时间顺序激发对应光源;借助于图7A和图7B中给出的分析器来提供输出交错偏振;和/或以时间顺序的方式提供子图像。时间顺序光源激发可以通过图8中所示的时间顺序子图像显示或通过本文中所公开的其它方法来补充。时间顺序子图像显示可以通过棋盘输出偏振等来补充。It should also be noted that the optical interference/speckle reduction configurations and methods disclosed herein are not mutually exclusive and may be used in a complementary manner. For example, the counter-propagation of the sub-beams in the staggered waveguides shown in Figures 4A and 4B can be supplemented by chronologically exciting the corresponding light sources; provided with the help of analyzers as given in Figures 7A and 7B Output staggered polarizations; and/or provide sub-images in a time-sequential manner. Time-sequential light source excitation may be supplemented by the time-sequence sub-image display shown in Figure 8 or by other methods disclosed herein. Temporal sub-image display can be supplemented by checkerboard output polarization etc.
转到图9,虚拟现实(VR)近眼显示器900包括框架901,对于每只眼睛:该框架901支撑光源902;波导照明器906,该波导照明器906操作地耦接到光源902,该波导照明器906包括本文公开的这些波导照明器中的任何波导照明器;显示面板918,该显示面板918包括显示像素阵列,其中波导照明器906中的耦出光栅的位置与显示面板918的偏振调谐像素的位置相协调;目视透镜932,该目视透镜932用于将由显示面板918生成的线性域中的图像转换为适眼区926处的角域中的图像以供直接观察。多个适眼区照明器962(示出为黑点)可以放置在波导照明器906的面向适眼区926的一侧。可以为每一个适眼区926提供眼睛追踪摄像头942。Turning to Figure 9, a virtual reality (VR) near-eye display 900 includes a frame 901 that supports, for each eye: a light source 902; a waveguide illuminator 906 operatively coupled to the light source 902 that illuminates The illuminator 906 includes any of those waveguide illuminators disclosed herein; the display panel 918 includes an array of display pixels, wherein the position of the coupling grating in the waveguide illuminator 906 is consistent with the polarization-tuned pixels of the display panel 918 The position is coordinated; the viewing lens 932 is used to convert the image in the linear domain generated by the display panel 918 into an image in the angular domain at the eye-friendly area 926 for direct observation. A plurality of eye zone illuminators 962 (shown as black dots) may be placed on the side of the waveguide illuminator 906 facing the eye zone 926 . An eye tracking camera 942 may be provided for each eye zone 926.
眼睛追踪摄像头942的目的是确定用户的两只眼睛的位置和/或取向。适眼区照明器962照亮对应的适眼区962处的眼睛,从而允许眼睛追踪摄像头942获得眼睛的图像以及提供参考反射(即,闪烁)。闪烁可以用作所捕获的眼睛图像中的参考点,从而通过确定眼睛瞳孔图像相对于闪烁图像的位置来有助于眼睛注视方向的确定。为了避免适眼区照明器962的光分散用户的注意力,可以使适眼区照明器962发射对用户不可见的光。例如,可以使用红外光来照亮适眼区926。The purpose of the eye tracking camera 942 is to determine the position and/or orientation of the user's two eyes. Eye zone illuminators 962 illuminate the eye at the corresponding eye zone 962, allowing the eye tracking camera 942 to obtain an image of the eye and provide reference reflections (ie, flicker). The flicker can be used as a reference point in the captured image of the eye, thereby aiding in the determination of the eye's gaze direction by determining the position of the eye's pupil image relative to the flicker image. In order to avoid the light of the eye zone illuminator 962 from distracting the user's attention, the eye zone illuminator 962 can be made to emit light that is invisible to the user. For example, infrared light may be used to illuminate eye zone 926.
转到图10,HMD 1000为AR/VR可穿戴显示系统的示例,该AR/VR可穿戴显示系统包围用户的面部,以用于更大程度地沉浸在AR/VR环境中。HMD 1000可以生成完全虚拟的3D影像。HMD 1000可以包括前部本体1002和带1004,该带1004可以固定在用户头部的周围。前部本体1002被配置用于以可靠且舒适的方式放置在用户的眼前。显示系统1080可以设置在前部本体1002中,用于向用户呈现AR/VR影像。显示系统1080可以包括本文中所公开的显示设备和照明器中的任何显示设备和照明器。前部本体1002的侧部1006可以是不透光的或透光的。Turning to Figure 10, HMD 1000 is an example of an AR/VR wearable display system that surrounds a user's face for greater immersion in an AR/VR environment. HMD 1000 can generate fully virtual 3D images. HMD 1000 may include a front body 1002 and a strap 1004 that may be secured around a user's head. The front body 1002 is configured for reliable and comfortable placement in front of the user's eyes. The display system 1080 may be disposed in the front body 1002 for presenting AR/VR images to the user. Display system 1080 may include any of the display devices and illuminators disclosed herein. The sides 1006 of the front body 1002 may be opaque or light transmissive.
在一些示例中,前部本体1002包括定位器1008以及用于追踪HMD 1000的加速度的惯性测量单元(inertial measurement unit,IMU)1010和用于追踪HMD 1000的位置的位置传感器1012。IMU 1010是这样的电子设备:该电子设备基于接收自一个或多个位置传感器1012的测量信号来产生指示HMD 1000的位置的数据,所述一个或多个位置传感器响应于HMD 1000的运动而产生一个或多个测量信号。位置传感器1012的示例包括:一个或多个加速度计、一个或多个陀螺仪、一个或多个磁力计、检测运动的其它合适类型的传感器、用于IMU 1010的误差校正的一类传感器、或它们的某种组合。位置传感器1012可以位于IMU1010的外部、IMU 1010的内部、或它们的某种组合。In some examples, front body 1002 includes a localizer 1008 as well as an inertial measurement unit (IMU) 1010 for tracking the acceleration of HMD 1000 and a position sensor 1012 for tracking the position of HMD 1000 . IMU 1010 is an electronic device that generates data indicative of the position of HMD 1000 based on measurement signals received from one or more position sensors 1012 generated in response to movement of HMD 1000 One or more measurement signals. Examples of position sensors 1012 include: one or more accelerometers, one or more gyroscopes, one or more magnetometers, other suitable types of sensors that detect motion, a type of sensor used for error correction of the IMU 1010, or Some combination of them. Position sensor 1012 may be located external to IMU 1010, internal to IMU 1010, or some combination thereof.
定位器1008由虚拟现实系统的外部成像设备追踪,使得虚拟现实系统可以追踪整个HMD 1000的位置和取向。可以将由IMU 1010和位置传感器1012生成的信息与通过追踪定位器1008获得的位置和取向进行比较,以提高HMD 1000的位置和取向的追踪精度。当用户在3D空间中移动和转动时,准确的位置和取向对于向该用户呈现合适的虚拟场景非常重要。The locator 1008 is tracked by an external imaging device of the virtual reality system so that the virtual reality system can track the position and orientation of the entire HMD 1000 . Information generated by IMU 1010 and position sensor 1012 may be compared to the position and orientation obtained by tracking locator 1008 to improve tracking accuracy of the position and orientation of HMD 1000 . As a user moves and turns in 3D space, accurate position and orientation are important to present the appropriate virtual scene to that user.
HMD 1000还可以包括深度摄像头组件(depth camera assembly,DCA)1011,该深度摄像头组件1011捕获描述围绕部分或整个HMD 1000的局部区域的深度信息的数据。可以将深度信息与来自IMU 1010的信息进行比较,以更准确地确定HMD 1000在3D空间中的位置和取向。HMD 1000 may also include a depth camera assembly (DCA) 1011 that captures data describing depth information of a local area surrounding part or all of HMD 1000. Depth information can be compared with information from the IMU 1010 to more accurately determine the position and orientation of the HMD 1000 in 3D space.
HMD 1000还可以包括用于实时确定用户眼睛的取向和位置的眼睛追踪系统1014。所获得的眼睛的位置和取向还允许HMD 1000确定用户的注视方向,并相应地调整由显示系统1080生成的图像。可以使用所确定的注视方向和辐辏角度来调整显示系统680以减少辐辏调节冲突。方向和辐辏也可以用于如本文中所公开的显示器的出射光瞳转向。此外,所确定的辐辏角度和注视角度可以用于与用户交互、突出显示对象、将对象带到前景、创建附加对象或指针等。还可以提供音频系统,该音频系统包括例如内置于前部本体1002中的一组小型扬声器。HMD 1000 may also include an eye tracking system 1014 for determining the orientation and position of the user's eyes in real time. The obtained position and orientation of the eyes also allows the HMD 1000 to determine the direction of the user's gaze and adjust the image generated by the display system 1080 accordingly. The determined gaze direction and vergence angle may be used to adjust the display system 680 to reduce vergence accommodation conflicts. Direction and vergence may also be used for exit pupil steering of displays as disclosed herein. Furthermore, the determined vergence and gaze angles can be used to interact with the user, highlight objects, bring objects to the foreground, create additional objects or pointers, etc. An audio system may also be provided, including a set of small speakers built into the front body 1002, for example.
本公开的实施例可以包括人工现实系统,或者结合人工现实系统来实施。人工现实系统在向用户进行呈现之前以某种方式调整通过感官获得的关于外部世界的感官信息(诸如,视觉信息、音频、触觉(体感)信息、加速度、平衡等)。作为非限制性示例,人工现实可以包括虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、混合现实(mixed reality,MR)、混杂现实(hybrid reality)、或其某种组合和/或派生物。人工现实内容可以包括完全生成的内容、或与采集到的(例如,真实世界的)内容相结合的生成的内容。人工现实内容可以包括视频、音频、躯体或触觉反馈、或它们的某种组合。这些内容中的任何内容可以在单个通道或多个通道中(诸如,在向观看者产生三维效果的立体视频中)呈现。此外,在一些实施例中,人工现实还可以与应用程序、产品、附件、服务或其某种组合相关联,这些应用程序、产品、附件、服务或其某种组合用于例如在人工现实中创建内容和/或以其它方式用于人工现实(例如,在人工现实中执行活动)。提供人工现实内容的人工现实系统可以在各种平台上实现,这些平台包括可穿戴显示器(诸如,连接至主计算机系统的HMD)、独立式HMD、具有眼镜的形状要素的近眼显示器、移动设备或计算系统、或者能够向一位或多位观看者提供人工现实内容的任何其它硬件平台。Embodiments of the present disclosure may include or be implemented in conjunction with artificial reality systems. Artificial reality systems adjust sensory information about the external world obtained through the senses (such as visual information, audio, tactile (somatosensory) information, acceleration, balance, etc.) in some manner before presentation to the user. As non-limiting examples, artificial reality may include virtual reality (VR), augmented reality (AR), mixed reality (MR), hybrid reality, or some combination thereof. /or derivatives. Artificial reality content may include fully generated content, or generated content combined with captured (eg, real-world) content. Artificial reality content can include video, audio, somatic or tactile feedback, or some combination thereof. Any of these contents may be presented in a single channel or in multiple channels (such as in stereoscopic video, which creates a three-dimensional effect to the viewer). Furthermore, in some embodiments, artificial reality may also be associated with applications, products, accessories, services, or some combination thereof that are used, for example, in artificial reality Create content and/or otherwise use artificial realities (e.g., perform activities in artificial realities). Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including wearable displays (such as HMDs connected to a host computer system), stand-alone HMDs, near-eye displays with the form factor of glasses, mobile devices, or computing system, or any other hardware platform capable of delivering artificial reality content to one or more viewers.
本公开的范围不受本文中所描述的特定示例的限制。实际上,除了本文中所描述的这些实施例和修改之外,根据上述描述和附图,对本领域普通技术人员来说其它各种实施例和修改将是显而易见的。因此,这样的其它实施例和修改旨在落入本公开的范围内。此外,尽管本文中已出于特定目的在特定环境中的特定实施方式的上下文中描述了本公开,但是本领域普通技术人员将认识到,本公开的实用性不限于此,并且本公开可以出于任何数量的目的在任何数量的环境中有利地实施。因此,所附权利要求应当鉴于如本文所述的本公开的全部范围来解释。The scope of the present disclosure is not limited by the specific examples described herein. Indeed, various other embodiments and modifications in addition to those described herein will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Accordingly, such other embodiments and modifications are intended to be within the scope of this disclosure. Furthermore, although the disclosure has been described herein in the context of particular implementations in particular environments for particular purposes, those of ordinary skill in the art will recognize that the utility of the disclosure is not so limited and that the disclosure may be Advantageously implemented in any number of environments for any number of purposes. Accordingly, the appended claims should be construed in view of the full scope of the disclosure as described herein.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US63/222,224 | 2021-07-15 | ||
| US17/556,895US11555962B1 (en) | 2021-07-15 | 2021-12-20 | Waveguide illuminator with optical interference mitigation | 
| US17/556,895 | 2021-12-20 | ||
| PCT/US2022/036058WO2023287605A1 (en) | 2021-07-15 | 2022-07-04 | Waveguide illuminator with optical interference mitigation | 
| Publication Number | Publication Date | 
|---|---|
| CN117642676Atrue CN117642676A (en) | 2024-03-01 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN202280050066.4APendingCN117642676A (en) | 2021-07-15 | 2022-07-04 | Waveguide illuminator to mitigate optical interference | 
| Country | Link | 
|---|---|
| CN (1) | CN117642676A (en) | 
| Publication | Publication Date | Title | 
|---|---|---|
| US11555962B1 (en) | Waveguide illuminator with optical interference mitigation | |
| US11280997B1 (en) | Low-obliquity pupil relay for tiltable reflectors | |
| US12124029B2 (en) | Beam scanner with PIC input and display based thereon | |
| CN120469065A (en) | Multi-channel scanner for near-eye display | |
| TW202305427A (en) | Waveguide illuminator having slab waveguide portion | |
| WO2022120253A1 (en) | Display device with transparent illuminator | |
| TW202319809A (en) | Display device with waveguide-based talbot illuminator | |
| TW202307493A (en) | Waveguide array illuminator with light scattering mitigation | |
| US20230045957A1 (en) | Multi-source light-guiding illuminator | |
| CN116762024A (en) | Display device with transparent illuminator | |
| CN117642676A (en) | Waveguide illuminator to mitigate optical interference | |
| WO2023287915A1 (en) | Waveguide illuminator having waveguide array | |
| US11619774B2 (en) | Talbot pattern illuminator and display based thereon | |
| US20220179211A1 (en) | Display device with transparent illuminator | |
| TW202331348A (en) | Lightguide with radial pupil replication and visual display based thereon | |
| TW202305430A (en) | Waveguide illuminator with optical interference mitigation | |
| CN117642575A (en) | Display device with waveguide-based taber illuminator | |
| CN117581060A (en) | Waveguide array illuminator with light scattering mitigation | |
| CN117642576A (en) | Waveguide illuminator with slab waveguide section | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |