技术领域Technical field
本发明属于防护涂层技术领域,特别是涉及一种用于涡轮导向叶片的热障涂层及其复合工艺。The invention belongs to the technical field of protective coatings, and in particular relates to a thermal barrier coating for turbine guide blades and its composite process.
背景技术Background technique
涡轮导向叶片服役环境恶劣,长期经受高温燃气的冲击和侵蚀。为了提高涡轮导向叶片的服役寿命和可靠性,叶片内部采用气膜冷却结构,外表面涂覆热障涂层。涡轮导向叶片外表面热障涂层由抗氧化性能良好的MCrAlY金属粘结底层和低导热系数的YSZ陶瓷面层组成。MCrAlY金属粘结底层以β-NiAl相为主,YSZ陶瓷面层主要是ZrO2·Y2O3。目前制备热障涂层主流工艺有热喷涂和物理气相沉积两种,两种方法各有其优缺点,热喷涂工艺制备热障涂层的优点是工艺简单、生产效率高、成本低,隔热效果好,缺点是制备的涂层是层状结构,涂层的抗冷热循环能力较差;物理气相沉积工艺制备的热障涂层优点是涂层的组织是柱状晶结构,涂层的抗冷热循环能力好,缺点是生产效率低、成本高、涂层的隔热效果较差。Turbine guide blades serve in harsh environments and are subject to long-term impact and erosion by high-temperature gas. In order to improve the service life and reliability of the turbine guide blades, an air film cooling structure is used inside the blades, and the outer surface is coated with a thermal barrier coating. The thermal barrier coating on the outer surface of turbine guide blades consists of MCrAlY metal bonding bottom layer with good oxidation resistance and YSZ ceramic surface layer with low thermal conductivity. The MCrAlY metal bonding bottom layer is mainly β-NiAl phase, and the YSZ ceramic surface layer is mainly ZrO2 ·Y2 O3 . At present, the mainstream processes for preparing thermal barrier coatings include thermal spraying and physical vapor deposition. Both methods have their own advantages and disadvantages. The advantages of thermal spraying process for preparing thermal barrier coatings are simple process, high production efficiency, low cost, and thermal insulation. The effect is good, but the disadvantage is that the prepared coating has a layered structure, and the coating has poor resistance to cold and heat cycles; the advantage of the thermal barrier coating prepared by the physical vapor deposition process is that the organization of the coating is a columnar crystal structure, and the coating's resistance to heat and cold cycles is poor. It has good hot and cold cycle capabilities, but its disadvantages are low production efficiency, high cost, and poor thermal insulation effect of the coating.
在制备高压涡轮导向叶片热障涂层中,两种制备工艺都已进入批量应用,但在叶片涂层使用过程中,由于各自工艺制备涂层的特点,存在如下问题:In the preparation of thermal barrier coatings for high-pressure turbine guide blades, both preparation processes have been put into batch application. However, during the use of blade coatings, due to the characteristics of the respective coating preparation processes, there are the following problems:
热喷涂制备高压涡轮导向叶片热障涂层的底层一般为超音速火焰喷涂MCrAlY粘结层,面层为等离子喷涂YSZ陶瓷面层,因其工艺特点,涂层能够均匀的覆盖叶片的叶身和缘板,涂层较厚,组织为层状结构,隔热效果好,但涂层表面粗糙度较高,在使用过程中容易附着CMAS(CaO-MgO-Al2O3-SiO2)环境沉积物,堵塞气膜孔,层状结构的组织内应力较高,抗冷热循环能力较差,使用一定周期后,叶身涂层经常出现大面积脱落的现象。The bottom layer of the thermal barrier coating for high-pressure turbine guide blades prepared by thermal spraying is generally supersonic flame sprayed MCrAlY bonding layer, and the surface layer is plasma sprayed YSZ ceramic surface layer. Due to its process characteristics, the coating can evenly cover the blade body and The edge plate has a thick coating, a layered structure, and good heat insulation effect. However, the surface roughness of the coating is high, and it is easy to adhere to CMAS (CaO-MgO-Al2 O3 -SiO2 ) environmental deposition during use. Materials block the air film holes. The internal stress of the layered structure is high and the resistance to cold and heat cycles is poor. After a certain period of use, the leaf body coating often falls off in large areas.
物理气相沉积制备高压涡轮导向叶片热障涂层的底层一般为多弧离子镀MCrAlY粘结层,面层为电子束物理气相沉积(EB-PVD)制备YSZ陶瓷面层。多弧离子镀工艺制备的MCrAlY粘结层,其抗氧化性及抗热腐蚀性能均优于热喷涂工艺制备的粘结层。然而此工艺具有直线效应,由于高压涡轮导向叶片的结构特点,在制备涂层过程中叶片的缘板涂层很薄,只有叶身涂层厚度的1/10~1/8左右,叶身的涂层厚度适中,表面粗糙度较低,由于组织为柱状晶结构,涂层应变容限较好,抗冷热循环能力好,但使用一定周期后,由于缘板部位的涂层较薄,对缘板部分的保护能力不足,缘板部位经常出现开裂现象。The bottom layer of the thermal barrier coating of high-pressure turbine guide blades prepared by physical vapor deposition is generally a multi-arc ion plating MCrAlY bonding layer, and the surface layer is a YSZ ceramic surface layer prepared by electron beam physical vapor deposition (EB-PVD). The MCrAlY bonding layer prepared by the multi-arc ion plating process has better oxidation resistance and hot corrosion resistance than the bonding layer prepared by the thermal spraying process. However, this process has a linear effect. Due to the structural characteristics of the high-pressure turbine guide blades, the edge plate coating of the blade is very thin during the coating preparation process, only about 1/10 to 1/8 of the blade body coating thickness. The coating thickness is moderate and the surface roughness is low. Due to the columnar crystal structure, the coating has good strain tolerance and good resistance to cold and heat cycles. However, after a certain period of use, due to the thin coating on the edge plate, the coating will The protective ability of the edge plate part is insufficient, and cracks often occur in the edge plate part.
发明内容Contents of the invention
本发明的目的在于提供一种用于涡轮导向叶片的热障涂层及其复合工艺。采用本发明的技术,即先将叶身使用工装保护起来,在缘板上热喷涂制备MCrAlY/YSZ热障涂层,再使用工装将缘板部位保护起来,在叶身上物理气相沉积制备MCrAlY/YSZ热障涂层,使用热喷涂的方法制备厚且隔热效果好的热障涂层,能够有效的保护缘板,防止开裂;使用物理气相沉积给叶身涂覆热障涂层,能有效减少热障涂层的脱落,防止堵孔和表面CMAS环境沉积物的附着,采用此复合工艺制备高压涡轮导向叶片热障涂层,可以显著提升叶片的服役寿命。The object of the present invention is to provide a thermal barrier coating for turbine guide blades and its composite process. Using the technology of the present invention, the blade body is first protected by tooling, and MCrAlY/YSZ thermal barrier coating is prepared by thermal spraying on the edge plate. Then the tooling is used to protect the edge plate part, and MCrAlY/YSZ is prepared by physical vapor deposition on the blade body. YSZ thermal barrier coating uses thermal spraying method to prepare a thick and good thermal barrier coating, which can effectively protect the edge plate and prevent cracking; use physical vapor deposition to coat the blade body with thermal barrier coating, which can effectively Reduce the shedding of the thermal barrier coating, prevent plugging and the adhesion of CMAS environmental deposits on the surface, and use this composite process to prepare the thermal barrier coating of high-pressure turbine guide blades, which can significantly extend the service life of the blades.
本发明的要点在于涡轮导向叶片复合工艺制备热障涂层及方法;复合工艺由热喷涂和物理气相沉积组成。首先将叶身使用工装保护起来,对缘板进行干吹砂前处理后采用超音速火焰喷涂涂覆MCrAlY底层,采用等离子喷涂制备YSZ陶瓷面层;再将缘板保护起来,对叶身进行湿吹砂前处理后采用多弧离子镀涂覆MCrAlY底层,采用电子束物理气相沉积YSZ陶瓷面层。The gist of the present invention lies in the preparation of thermal barrier coatings and methods for turbine guide blades through a composite process; the composite process consists of thermal spraying and physical vapor deposition. First, the blade body is protected with tooling, and the edge plate is pre-treated with dry sand blowing, and then supersonic flame spraying is used to coat the MCrAlY bottom layer, and plasma spraying is used to prepare the YSZ ceramic surface layer; then the edge plate is protected, and the blade body is wetted After sand blowing pre-treatment, multi-arc ion plating is used to coat the MCrAlY bottom layer, and electron beam physical vapor deposition is used to deposit the YSZ ceramic surface layer.
综上,涡轮导向叶片缘板防护涂层由超音速火焰喷涂MCrAlY底层和等离子喷涂YSZ面层组成,叶身防护涂层由多弧离子镀MCrAlY底层和电子束物理气相沉积YSZ面层组成。In summary, the turbine guide blade edge plate protective coating consists of supersonic flame spraying MCrAlY bottom layer and plasma spraying YSZ surface layer. The blade protective coating consists of multi-arc ion plating MCrAlY bottom layer and electron beam physical vapor deposition YSZ surface layer.
为实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种用于涡轮导向叶片的热障涂层,由MCrAlY底层和YSZ陶瓷面层组成,其中MCrAlY底层成分以质量百分比计为18%~23%Cr,9%~13.5%Al,0.6%~1.2%Y,其余为Ni;YSZ陶瓷面层的成分以质量百分比计为掺杂6%~9%Y2O3的Zr2O3。A thermal barrier coating for turbine guide blades, consisting of an MCrAlY bottom layer and a YSZ ceramic surface layer, in which the composition of the MCrAlY bottom layer is 18% to 23% Cr, 9% to 13.5% Al, and 0.6% to 1.2 in mass percentage. % Y, the rest is Ni; the composition of the YSZ ceramic surface layer is Zr2 O3 doped with 6% to 9% Y2 O3 in terms of mass percentage.
所述涡轮导向叶片的缘板处热障涂层,采用超音速火焰方式喷涂MCrAlY底层、等离子喷涂方式喷涂YSZ陶瓷面层;其中,缘板热障涂层中MCrAlY底层厚100μm~150μm,YSZ陶瓷面层厚度为200μm~300μm。The thermal barrier coating at the edge plate of the turbine guide blade uses supersonic flame spraying to spray the MCrAlY bottom layer and plasma spraying to spray the YSZ ceramic surface layer; among them, the thickness of the MCrAlY bottom layer in the edge plate thermal barrier coating is 100 μm to 150 μm, and the YSZ ceramic The thickness of the surface layer is 200μm~300μm.
所述涡轮导向叶片的叶身处热障涂层,采用多弧离子镀涂覆MCrAlY底层、电子束物理气相沉积YSZ陶瓷面层;其中叶身热障涂层中MCrAlY底层厚度为40μm~70μm,YSZ陶瓷面层厚度为100μm~200μm。The thermal barrier coating on the blade body of the turbine guide blade uses multi-arc ion plating to coat the MCrAlY bottom layer and the electron beam physical vapor deposition YSZ ceramic surface layer; the thickness of the MCrAlY bottom layer in the blade body thermal barrier coating is 40 μm to 70 μm. The thickness of YSZ ceramic surface layer is 100μm~200μm.
所述缘板处热障涂层的涂层组织为层状结构,孔隙率为6%~10%;1100℃涂层的热导率为1.212W/(m·K)~1.294W/(m·K);The coating structure of the thermal barrier coating at the edge plate is a layered structure with a porosity of 6% to 10%; the thermal conductivity of the coating at 1100°C is 1.212W/(m·K)~1.294W/(m ·K);
所述叶身处热障涂层的涂层组织为柱状晶结构,1100℃抗冷热循环性能比同厚度的层状结构提升50%以上。The coating structure of the thermal barrier coating on the blade body is a columnar crystal structure, and the resistance to cold and heat cycles at 1100°C is improved by more than 50% compared with the layered structure of the same thickness.
所述用于涡轮导向叶片的热障涂层的复合工艺,其特征在于,包括以下步骤:The composite process for thermal barrier coating of turbine guide blades is characterized by including the following steps:
步骤1.对涡轮导向叶片的叶身进行工装保护;Step 1. Protect the blade body of the turbine guide blade with tooling;
步骤2.对涡轮导向叶片缘板面进行干吹砂处理;Step 2. Perform dry blowing sand treatment on the edge plate surface of the turbine guide blade;
步骤3.采用超音速火焰喷涂工艺制备缘板MCrAlY底层;Step 3. Use supersonic flame spraying process to prepare the MCrAlY bottom layer of the edge plate;
步骤4.采用等离子喷涂工艺制备缘板YSZ陶瓷面层;Step 4. Use plasma spraying process to prepare YSZ ceramic surface layer of edge plate;
步骤5.对涡轮导向叶片的缘板进行工装保护;Step 5. Carry out tooling protection on the edge plate of the turbine guide blade;
步骤6.对涡轮导向叶片叶身进行湿吹砂处理,活化零件表面;Step 6. Perform wet sand blowing treatment on the turbine guide blade blades to activate the surface of the parts;
步骤7.采用多弧离子镀工艺制备叶身MCrAlY底层;Step 7. Use a multi-arc ion plating process to prepare the MCrAlY bottom layer of the blade body;
步骤8.采用电子束物理气相沉积叶身YSZ陶瓷面层。Step 8. Use electron beam physical vapor deposition to deposit YSZ ceramic surface layer on the blade body.
所述步骤1和步骤5中的工装保护均采取自动化喷涂工装。The tooling protection in steps 1 and 5 are all automated spraying tooling.
所述步骤2中,干吹砂处理过程中,吹砂的磨料为白刚玉砂磨料,磨料粒度为36目~80目,风压为0.20MPa~0.40MPa,吹砂距离:80mm~150mm,吹砂角度:60°~75°。In step 2, during the dry sand blowing process, the abrasive used for sand blowing is white corundum sand abrasive, the abrasive particle size is 36 mesh to 80 mesh, the wind pressure is 0.20 MPa to 0.40 MPa, and the sand blowing distance is 80 mm to 150 mm. Sand angle: 60°~75°.
所述步骤3中,超音速火焰喷涂的工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率120g/min~130g/min,喷涂距离350mm~370mm,喷涂角度75°~90°;In step 3, the process parameters of supersonic flame spraying are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 120g/min~130g/min, The spraying distance is 350mm~370mm, and the spraying angle is 75°~90°;
所述步骤4中,等离子喷涂的工艺参数为:主气为Ar,流量40±5NLPM;次气为H2,流量为15±2NLPM;电流550±10A,送粉速率80±10g/min,喷涂距离90mm~110mm,喷涂角度75°~90°;In step 4, the process parameters of plasma spraying are: the main gas is Ar, the flow rate is 40±5NLPM; the secondary gas isH2 , the flow rate is 15±2NLPM; the current is 550±10A, the powder feeding rate is 80±10g/min, spraying Distance 90mm~110mm, spraying angle 75°~90°;
所述步骤6中,湿吹砂过程中的工艺参数为:磨料为白刚玉砂,其粒度为180目~230目;白刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为180mm~250mm;In step 6, the process parameters during the wet sand blowing process are: the abrasive is white corundum sand, and its particle size is 180 mesh to 230 mesh; the white corundum sand content is 20±10%, the wind pressure is 0.15±0.2MPa, and the sand blowing distance is 180mm~250mm;
所述湿吹砂完成后,需要对叶片叶身依次进行去离子水超声清洗、丙酮溶液浸洗、烘干。After the wet sand blowing is completed, the blades need to be ultrasonically cleaned with deionized water, soaked in acetone solution, and dried.
所述步骤7中,多弧离子镀工艺主要包括离子清理工艺和沉积工艺;其中离子清理工艺参数为:偏压电压U=500V~700V,电弧电流I=70A±2A,占空比D=25%~45%;沉积工艺参数为:偏压电压U=200V~275V,电弧电流I=70A±2A,占空比D=10%~30%;In step 7, the multi-arc ion plating process mainly includes an ion cleaning process and a deposition process; the ion cleaning process parameters are: bias voltage U=500V~700V, arc current I=70A±2A, and duty cycle D=25 %~45%; the deposition process parameters are: bias voltage U=200V~275V, arc current I=70A±2A, duty cycle D=10%~30%;
所述步骤8中,电子束物理气相沉积包括离子清理工艺和沉积工艺;其中离子清理工艺参数为:氩气压强P=0.04MPa~0.06MPa,氩气流量L=36ml/min~38ml/min,清理时间t=10±2min;沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为900℃~950℃,通氧量为200±10ml/min。In step 8, electron beam physical vapor deposition includes an ion cleaning process and a deposition process; the ion cleaning process parameters are: argon gas pressure P = 0.04MPa ~ 0.06MPa, argon gas flow L = 36ml/min ~ 38ml/min, Cleaning time t=10±2min; deposition process parameters are: main vacuum chamber pressure is not greater than 1.0×10-3 torr, electron gun voltage is 17kV~20kV, target heating current is 1.2A~1.5A, workpiece rotation speed is 15r/min , the substrate temperature is 900℃~950℃, and the oxygen flow is 200±10ml/min.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明对叶片缘板部分采用超音速火焰喷涂MCrAlY底层,等离子喷涂YSZ陶瓷面层的方法制备热障涂层,降低了服役过程中缘板开裂的可能。采用本发明提供的方法制备的缘板热障涂层组织为层状结构,孔隙率为6%~10%;隔热效果好,1100℃涂层的热导率为1.212~1.294W/(m·K)。1. The present invention uses supersonic flame spraying of MCrAlY bottom layer and plasma spraying of YSZ ceramic surface layer on the blade edge plate to prepare the thermal barrier coating, which reduces the possibility of edge plate cracking during service. The edge plate thermal barrier coating prepared by the method provided by the invention has a layered structure with a porosity of 6% to 10%; the thermal insulation effect is good, and the thermal conductivity of the coating at 1100°C is 1.212~1.294W/(m ·K).
2.本发明对叶片叶身部分采用多弧离子镀涂覆MCrAlY底层,电子束物理气相沉积YSZ陶瓷面层的方法制备叶身的热障涂层,解决了服役过程中叶身涂层容易脱落的问题。采用本发明提供的方法制备的叶身热障涂层组织为柱状晶结构、应变容限好,1100℃抗冷热循环性能比同厚度的层状结构提升50%以上。2. The present invention uses multi-arc ion plating to coat the MCrAlY bottom layer on the blade body part, and the method of electron beam physical vapor deposition of YSZ ceramic surface layer to prepare the thermal barrier coating of the blade body, which solves the problem that the blade body coating is easy to fall off during service. question. The blade thermal barrier coating prepared by the method provided by the invention has a columnar crystal structure and good strain tolerance, and its 1100°C hot and cold cycle resistance is improved by more than 50% compared with the layered structure of the same thickness.
3.采用本发明提供的复合工艺,根据叶身和缘板的结构特点,设计使用不同的涂层制备工艺,制备的导向叶片热障涂层兼顾隔热效果和服役寿命长的特点,可有效地解决叶片缘板产生裂纹和叶身涂层脱落不能兼顾的问题,显著提高叶片涂层的服役寿命。3. Using the composite process provided by the present invention, different coating preparation processes are designed and used according to the structural characteristics of the blade body and edge plate. The prepared guide blade thermal barrier coating has both thermal insulation effect and long service life, and can be effectively It effectively solves the problem of cracks in the blade edge plate and the peeling off of the blade body coating, and significantly improves the service life of the blade coating.
4.本发明采用的涂覆工装,在喷涂缘板时对叶身进行防护,在与缘板交界处的叶片适当留出位置,可以实现缘板完全喷涂,同时在叶身沉积涂层时能够实现涂层的连续过渡。4. The coating tooling used in the present invention protects the blade body when spraying the edge plate, and appropriately leaves a position for the blade at the junction with the edge plate, so that the edge plate can be completely sprayed, and at the same time, when the coating is deposited on the blade body, Achieve continuous transition of coatings.
附图说明Description of the drawings
图1为高压涡轮导向叶片叶身和缘板示意图。Figure 1 is a schematic diagram of the high-pressure turbine guide blade blade and edge plate.
图2为涡轮导向叶片物理气相沉积热障涂层服役后缘板裂纹。Figure 2 shows the cracks in the trailing edge plate of the turbine guide blade’s physical vapor deposition thermal barrier coating after service.
图3为涡轮导向叶片热喷涂热障涂层服役后涂层脱落。Figure 3 shows the thermal spray thermal barrier coating on the turbine guide blades falling off after service.
图4为导叶缘板超音速火焰喷涂MCrAlY底层和等离子喷涂YSZ面层显微组织。Figure 4 shows the microstructure of the supersonic flame sprayed MCrAlY bottom layer and plasma sprayed YSZ surface layer of the guide vane edge plate.
图5为导叶叶身多弧离子镀MCrAlY底层和电子束物理气相沉积YSZ面层显微组织。Figure 5 shows the microstructure of the multi-arc ion plating MCrAlY bottom layer and electron beam physical vapor deposition YSZ surface layer of the guide vane blade.
图6为热喷涂制备热障涂层典型金相组织。Figure 6 shows the typical metallographic structure of thermal barrier coating prepared by thermal spraying.
图7为物理气相沉积制备的热障涂层典型金相组织。Figure 7 shows the typical metallographic structure of thermal barrier coating prepared by physical vapor deposition.
具体实施方式Detailed ways
下面结合附图和具体实例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific examples.
高压涡轮导向叶片一般分为叶身和缘板,其结构如图1所示。当涡轮导向叶片采用多弧离子镀MCrAlY底层和电子束物理气相沉积YSZ面层制备热障涂层,服役一定时间后缘板出现开裂情况,如图2所示。从图可以看出,缘板涂层较薄,服役一定时间后存在局部脱落的现象,导致叶片的缘板出现明显裂纹。当涡轮导向叶片采用超音速火焰喷涂MCrAlY底层和等离子喷涂YSZ面层制备热障涂层,服役一定时间后叶身涂层脱落的情况,如图3所示。从图中可以看出,涂层较粗糙,表面覆盖了黄褐色的环境沉积物,在叶身靠近排气边处出现面层脱落的现象。为了解决目前涡轮导向叶片热喷涂制备热障涂层服役后叶身涂层容易出现脱落出现的问题,物理气相沉积制备热障涂层服役后叶片缘板出现开裂问题,采用热喷涂和物理气相沉积复合工艺制备涡轮导向叶片热障涂层。对涡轮导向叶片的叶身进行工装保护,对叶片缘板面进行干吹砂处理,采用超音速火焰喷涂工艺制备MCrAlY底层,采用等离子喷涂工艺制备YSZ面层;对涡轮导向叶片的缘板进行工装保护,对涡轮导向叶片叶身进行湿吹砂处理,采用多弧离子镀工艺制备MCrAlY底层,采用电子束物理气相沉积YSZ陶瓷面层。High-pressure turbine guide blades are generally divided into blades and edge plates, and their structures are shown in Figure 1. When the turbine guide blade uses multi-arc ion plating MCrAlY bottom layer and electron beam physical vapor deposition YSZ surface layer to prepare the thermal barrier coating, the trailing edge plate will crack after a certain period of service, as shown in Figure 2. It can be seen from the figure that the edge plate coating is thin and will partially fall off after a certain period of service, resulting in obvious cracks on the edge plate of the blade. When the turbine guide blade uses supersonic flame spraying MCrAlY bottom layer and plasma spraying YSZ surface layer to prepare the thermal barrier coating, the blade body coating will fall off after a certain period of service, as shown in Figure 3. It can be seen from the picture that the coating is rough, the surface is covered with yellow-brown environmental sediments, and the surface layer peels off near the exhaust edge of the blade. In order to solve the current problem that the blade body coating is prone to peeling off after the thermal barrier coating prepared by thermal spraying is put into service, and the blade edge plate cracks after the thermal barrier coating prepared by physical vapor deposition is put into service, thermal spraying and physical vapor deposition are used Composite process to prepare thermal barrier coating for turbine guide blades. The blades of the turbine guide blades are tooled to protect the blade edge plates. The blade edge plates are subjected to dry blowing sand treatment. The supersonic flame spraying process is used to prepare the MCrAlY bottom layer and the plasma spraying process is used to prepare the YSZ surface layer. The edge plates of the turbine guide blades are tooled. For protection, the turbine guide blade blades are subjected to wet sand blowing treatment, a multi-arc ion plating process is used to prepare the MCrAlY bottom layer, and the electron beam physical vapor deposition YSZ ceramic surface layer is used.
具体工艺为:The specific process is:
实例1Example 1
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:40目,风压:0.20MPa,吹砂距离:80mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blades of the turbine guide blades, and the surface of the blade edge plate is treated with dry blowing sand. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 40 mesh, wind pressure: 0.20MPa , Sand blowing distance: 80mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为200目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为200mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: white corundum sand particle size is 200 mesh, corundum sand content is 20±10%, wind pressure is 0.15±0.2MPa, and sand blowing distance is 200mm.
采用真空电弧镀涂覆50±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=500V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 50±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=500V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行200μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为900℃,通氧量为200±10ml/min。Electron beam physical vapor deposition technology was used to prepare the 200 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 900°C, and the The oxygen content is 200±10ml/min.
最终涡轮导向叶片上附着热障涂层。本方法制备的涡轮导向叶片缘板部位和叶身部位热障涂层的金相组织分别如图4和图5所示,从图中可以看出,叶片缘板部位的热障涂层的组织均匀致密,叶身部位的热障涂层的组织呈现典型的柱状晶结构。Finally, a thermal barrier coating is applied to the turbine guide blades. The metallographic structures of the thermal barrier coatings on the edge plate and blade body of turbine guide blades prepared by this method are shown in Figures 4 and 5 respectively. From the figures, it can be seen that the structure of the thermal barrier coating on the blade edge plate It is uniform and dense, and the structure of the thermal barrier coating on the blade body shows a typical columnar crystal structure.
实例2Example 2
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:40目,风压:0.20MPa,吹砂距离:100mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blades of the turbine guide blades, and the surface of the blade edge plate is treated with dry blowing sand. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 40 mesh, wind pressure: 0.20MPa , Sand blowing distance: 100mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为200目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为200mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: white corundum sand particle size is 200 mesh, corundum sand content is 20±10%, wind pressure is 0.15±0.2MPa, and sand blowing distance is 200mm.
采用真空电弧镀涂覆50±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=600V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 50±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=600V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行100μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为950℃,通氧量为200±10ml/min。The electron beam physical vapor deposition technology was used to prepare the 100 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 950°C, and the The oxygen content is 200±10ml/min.
最终涡轮导向叶片缘板热障涂层组织为层状结构,叶身热障涂层组织为柱状晶结构。Finally, the structure of the thermal barrier coating of the turbine guide blade edge plate is a layered structure, and the structure of the blade body thermal barrier coating is a columnar crystal structure.
实例3Example 3
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:40目,风压:0.20MPa,吹砂距离:150mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blades of the turbine guide blades, and the surface of the blade edge plate is treated with dry blowing sand. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 40 mesh, wind pressure: 0.20MPa , Sand blowing distance: 150mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为230目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为200mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: white corundum sand particle size is 230 mesh, corundum sand content is 20±10%, wind pressure is 0.15±0.2MPa, and sand blowing distance is 200mm.
采用真空电弧镀涂覆50±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=700V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 50±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=700V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行150μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为900℃,通氧量为200±10ml/min。The electron beam physical vapor deposition technology was used to prepare the 150 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 900°C, and the general The oxygen content is 200±10ml/min.
最终涡轮导向叶片缘板热障涂层组织为层状结构,叶身热障涂层组织为柱状晶结构。Finally, the structure of the thermal barrier coating of the turbine guide blade edge plate is a layered structure, and the structure of the blade body thermal barrier coating is a columnar crystal structure.
实例4Example 4
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:80目,风压:0.40MPa,吹砂距离:80mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blade body of the turbine guide blade, and the surface of the blade edge plate is subjected to dry blowing sand treatment. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 80 mesh, wind pressure: 0.40MPa , Sand blowing distance: 80mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为230目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为200mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: white corundum sand particle size is 230 mesh, corundum sand content is 20±10%, wind pressure is 0.15±0.2MPa, and sand blowing distance is 200mm.
采用真空电弧镀涂覆60±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=500V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 60±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=500V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行150μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为950℃,通氧量为200±10ml/min。The electron beam physical vapor deposition technology was used to prepare the 150 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 950°C, and the The oxygen content is 200±10ml/min.
最终涡轮导向叶片缘板热障涂层组织为层状结构,叶身热障涂层组织为柱状晶结构。Finally, the structure of the thermal barrier coating of the turbine guide blade edge plate is a layered structure, and the structure of the blade body thermal barrier coating is a columnar crystal structure.
实例5Example 5
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:80目,风压:0.40MPa,吹砂距离:100mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blade body of the turbine guide blade, and the surface of the blade edge plate is subjected to dry blowing sand treatment. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 80 mesh, wind pressure: 0.40MPa , Sand blowing distance: 100mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为230目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为250mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: the white corundum sand particle size is 230 mesh, the corundum sand content is 20±10%, the wind pressure is 0.15±0.2MPa, and the sand blowing distance is 250mm.
采用真空电弧镀涂覆60±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=600V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 60±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=600V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行100μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为900℃,通氧量为200±10ml/min。The electron beam physical vapor deposition technology was used to prepare the 100 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 900°C, and the general The oxygen content is 200±10ml/min.
最终涡轮导向叶片缘板热障涂层组织为层状结构,叶身热障涂层组织为柱状晶结构。Finally, the structure of the thermal barrier coating of the turbine guide blade edge plate is a layered structure, and the structure of the blade body thermal barrier coating is a columnar crystal structure.
实例6Example 6
采用喷涂工装对涡轮导向叶片的叶身进行保护,对叶片缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:80目,风压:0.40MPa,吹砂距离:150mm,吹砂角度:60°~75°。Spraying tooling is used to protect the blade body of the turbine guide blade, and the surface of the blade edge plate is subjected to dry blowing sand treatment. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 80 mesh, wind pressure: 0.40MPa , Sand blowing distance: 150mm, Sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°.
采用物理气相沉积工装对涡轮导向叶片的缘板进行保护,对叶片叶身进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为230目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为250mm。Physical vapor deposition tooling is used to protect the edge plates of the turbine guide blades, and the blade blades are wet sand blown, ultrasonic cleaned, soaked in acetone solution, and dried. The wet sand blowing process parameters are: the white corundum sand particle size is 230 mesh, the corundum sand content is 20±10%, the wind pressure is 0.15±0.2MPa, and the sand blowing distance is 250mm.
采用真空电弧镀涂覆60±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=700V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 60±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=700V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行200μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为950℃,通氧量为200±10ml/min。The electron beam physical vapor deposition technology was used to prepare the 200 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 950°C, and the The oxygen content is 200±10ml/min.
最终涡轮导向叶片缘板热障涂层组织为层状结构,叶身热障涂层组织为柱状晶结构。Finally, the structure of the thermal barrier coating of the turbine guide blade edge plate is a layered structure, and the structure of the blade body thermal barrier coating is a columnar crystal structure.
对比例1Comparative example 1
本方案采用物理气相沉积方法制备涡轮导向叶片热障涂层,首先对叶片叶身和缘板进行湿吹砂处理,并进行超声波清洗、丙酮溶液浸洗、烘干。湿吹砂工艺参数为:白刚玉砂粒度为230目,刚玉砂含量20±10%,风压0.15±0.2MPa,吹砂距离为250mm。This plan uses physical vapor deposition method to prepare the thermal barrier coating of turbine guide blades. First, the blade body and edge plate are wet sand blown, followed by ultrasonic cleaning, acetone solution immersion, and drying. The wet sand blowing process parameters are: the white corundum sand particle size is 230 mesh, the corundum sand content is 20±10%, the wind pressure is 0.15±0.2MPa, and the sand blowing distance is 250mm.
采用真空电弧镀涂覆60±5μm MCrAlY底层。离子清理工艺参数为:偏压电压U=700V,电弧电流I=70A±2A,占空比D=40%。沉积工艺参数为:偏压电压U=250V,电弧电流I=70A±2A,占空比D=20%。Vacuum arc plating is used to coat the 60±5μm MCrAlY bottom layer. The ion cleaning process parameters are: bias voltage U=700V, arc current I=70A±2A, duty cycle D=40%. The deposition process parameters are: bias voltage U=250V, arc current I=70A±2A, and duty cycle D=20%.
采用电子束物理气相沉积技术进行200μm YSZ陶瓷面层的制备。离子清理工艺参数为:氩气压强P=0.05MPa,氩气流量L=37ml/min,清理时间t=10min±2。沉积工艺参数为:主真空室压强不大于1.0×10-3torr,电子枪电压为17kV~20kV,靶材加热电流为1.2A~1.5A,工件转速为15r/min,基体温度为950℃,通氧量为200±10ml/min。最终制备出厚度为260μm的柱状结构热障涂层。The electron beam physical vapor deposition technology was used to prepare the 200 μm YSZ ceramic surface layer. The ion cleaning process parameters are: argon pressure P=0.05MPa, argon flow L=37ml/min, cleaning time t=10min±2. The deposition process parameters are: the main vacuum chamber pressure is not greater than 1.0×10-3 torr, the electron gun voltage is 17kV ~ 20kV, the target heating current is 1.2A ~ 1.5A, the workpiece rotation speed is 15r/min, the substrate temperature is 950°C, and the The oxygen content is 200±10ml/min. Finally, a columnar structure thermal barrier coating with a thickness of 260 μm was prepared.
对比例2Comparative example 2
本方案采用热喷涂方法制备涡轮导向叶片热障涂层,首先对叶片叶身和缘板表面进行干吹砂处理,干吹砂工艺参数为:磨料种类:白刚玉砂磨料,磨料粒度:80目,风压:0.40MPa,吹砂距离:150mm,吹砂角度:60°~75°。This plan uses thermal spraying method to prepare the thermal barrier coating of turbine guide blades. First, the blade body and edge plate surface are subjected to dry blowing sand treatment. The dry blowing sand process parameters are: abrasive type: white corundum sand abrasive, abrasive particle size: 80 mesh , wind pressure: 0.40MPa, sand blowing distance: 150mm, sand blowing angle: 60°~75°.
在叶片缘板采用超音速火焰喷涂125±25μm MCrAlY底层。喷涂工艺参数为:氧气压力150±10PSI,氧气流量1200±50SCFH,燃料压力120±10PSI,燃料流量7.0±2SCFH,送粉速率110g/min,喷涂距离360mm,喷涂角度75°~90°。The blade edge plate is coated with a 125±25μm MCrAlY bottom layer using supersonic flame spraying. The spraying process parameters are: oxygen pressure 150±10PSI, oxygen flow 1200±50SCFH, fuel pressure 120±10PSI, fuel flow 7.0±2SCFH, powder feeding rate 110g/min, spraying distance 360mm, spraying angle 75°~90°.
在叶片缘板采用等离子喷涂250±50μm YSZ面层。喷涂工艺参数为:主气Ar流量40±5NLPM,次气H2流量15±2NLPM,电流550±10A,送粉速率80±10g/min,喷涂距离100mm,喷涂角度75°~90°。最终制备出厚度为400μm的层状结构热障涂层The blade edge plate is sprayed with a 250±50μm YSZ surface layer by plasma spraying. The spraying process parameters are: main gas Ar flow rate 40±5NLPM, secondary gasH2 flow rate 15±2NLPM, current 550±10A, powder feeding rate 80±10g/min, spraying distance 100mm, spraying angle 75°~90°. Finally, a layered structure thermal barrier coating with a thickness of 400 μm was prepared.
对对比例1和对比例2所得涂层镶嵌磨抛后采用金相显微镜分析涂层孔隙率,依据相关测试标准,测试分析不同微观结构热障涂层结合强度、在1100℃下涂层抗热循环寿命,热循环寿命测试中,涂层剥落面积超过10%定义为涂层失效。The coatings obtained in Comparative Example 1 and Comparative Example 2 were inlaid, grinded and polished, and the porosity of the coating was analyzed using a metallographic microscope. According to relevant testing standards, the bonding strength of thermal barrier coatings with different microstructures and the thermal resistance of the coating at 1100°C were tested and analyzed. Cycle life. In the thermal cycle life test, if the coating peeling area exceeds 10%, it is defined as coating failure.
涂层热导率通过涂层密度、比热容和热扩散系数获得。The thermal conductivity of the coating is obtained from the coating density, specific heat capacity and thermal diffusion coefficient.
λ=α·Cp·ρ (1)λ=α·Cp·ρ (1)
式中,λ为热导率,单位为W/(m·K);α为热扩散率,单位为mm2/s;Cp为定压比热容,单位为J/g·K;ρ为密度,单位为g/cm3。In the formula, λ is the thermal conductivity, the unit is W/(m·K); α is the thermal diffusivity, the unit is mm2 /s; Cp is the constant pressure specific heat capacity, the unit is J/g·K; ρ is the density, The unit is g/cm3 .
测试结果如下所述:The test results are as follows:
其中热喷涂制备热障涂层典型金相组织如图6所示,物理气相沉积制备的热障涂层典型金相组织如图7。The typical metallographic structure of the thermal barrier coating prepared by thermal spraying is shown in Figure 6, and the typical metallographic structure of the thermal barrier coating prepared by physical vapor deposition is shown in Figure 7.
利用金相法分析陶瓷层孔隙率,测试标准依据HB 20195-2014《热喷涂涂层金相检验》执行,依据标准要求,孔隙率为涂层中孔或裂隙占测量区域的比例。经测量等离子喷涂制备YSZ涂层的孔隙率为8.2%,电子束物理气相沉积制备YSZ的孔隙率为18.3%。从图中可以观察到热喷涂制备的YSZ陶瓷面层呈现层状结构,电子束物理气相沉积制备的YSZ陶瓷面层呈现柱状晶结构。The porosity of the ceramic layer is analyzed using the metallographic method. The test standard is implemented in accordance with HB 20195-2014 "Metallographic Examination of Thermal Spray Coatings". According to the standard requirements, the porosity is the proportion of pores or cracks in the coating to the measurement area. The porosity of the YSZ coating prepared by plasma spraying was measured to be 8.2%, and the porosity of YSZ prepared by electron beam physical vapor deposition was 18.3%. It can be observed from the figure that the YSZ ceramic surface layer prepared by thermal spraying exhibits a layered structure, and the YSZ ceramic surface layer prepared by electron beam physical vapor deposition exhibits a columnar crystal structure.
采用拉拔法进行涂层样品的拉伸结合强度测试,测试标准依据AETF68A《涂层拉伸结合强度试验方法》,结果如下表所示,从表中可以发现物理气相沉积制备的热障涂层的拉伸结合强度明显优于热喷涂制备的热障涂层。The tensile bonding strength test of the coating sample was performed using the drawing method. The test standard is based on AETF68A "Coating Tensile Bonding Strength Test Method". The results are shown in the table below. From the table, we can find the thermal barrier coating prepared by physical vapor deposition. The tensile bonding strength is significantly better than that of thermal barrier coatings prepared by thermal spraying.
表1.热障涂层结合强度测试结果Table 1. Thermal barrier coating bonding strength test results
按照AETF58A-涂层抗热循环试验方法,在1100℃保温55min,5min空冷条件下,直至涂层剥落面积超过20%,判定涂层失效,对热喷涂和物理气相沉积的方法制备的热障涂层寿命进行对比。结果表明热喷涂涂层的寿命是617h,物理气相沉积涂层的寿命为1025h。According to the AETF58A-Coating Thermal Cycle Test Method, under the conditions of 1100°C for 55 minutes and 5 minutes of air cooling, until the peeling area of the coating exceeds 20%, the coating failure is determined. Thermal barrier coatings prepared by thermal spraying and physical vapor deposition methods layer life for comparison. The results show that the life of the thermal spray coating is 617h and the life of the physical vapor deposition coating is 1025h.
按照MAS1255B-热障涂层热导率测试方法,对两种工艺制备的热障涂层进行热导率测量,结果如下:According to the MAS1255B-thermal conductivity testing method of thermal barrier coatings, the thermal conductivity of the thermal barrier coatings prepared by the two processes was measured. The results are as follows:
表2.不同制备工艺热障涂层热导率(W/(m·K))Table 2. Thermal conductivity of thermal barrier coatings with different preparation processes (W/(m·K))
从表中可以发现热喷涂制备的热障涂层热导率要明显低于物理气相沉积制备的热障涂层,也就是说热喷涂制备的热障涂层隔热效果更好。It can be found from the table that the thermal conductivity of the thermal barrier coating prepared by thermal spraying is significantly lower than that of the thermal barrier coating prepared by physical vapor deposition, which means that the thermal barrier coating prepared by thermal spraying has better thermal insulation effect.
综上所述,在涂层结合强度、抗冷热循环方面,物理气相沉积制备的热障涂层优于热喷涂制备的热障涂层,而在涂层的孔隙率和隔热效果方面,热喷涂制备的热障涂层优于物理气相沉积,因此我们把需要隔热效果好的导向叶片缘板设计成热喷涂热障涂层,把需要结合强度高的叶身设计成物理气相沉积热障涂层,综合了两种工艺的优点,达到了叶片长寿命使用的目的。To sum up, in terms of coating bonding strength and resistance to hot and cold cycles, the thermal barrier coating prepared by physical vapor deposition is better than the thermal barrier coating prepared by thermal spraying. In terms of porosity and thermal insulation effect of the coating, Thermal barrier coatings prepared by thermal spraying are better than physical vapor deposition. Therefore, we design the guide blade edge plates that require good thermal insulation effect as thermal spray thermal barrier coatings, and design the blades that require high bonding strength as physical vapor deposition thermal barrier coatings. The barrier coating combines the advantages of the two processes to achieve the purpose of long service life of the blade.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311521451.5ACN117364010A (en) | 2023-11-15 | 2023-11-15 | Thermal barrier coating for turbine guide vane and composite process thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311521451.5ACN117364010A (en) | 2023-11-15 | 2023-11-15 | Thermal barrier coating for turbine guide vane and composite process thereof |
| Publication Number | Publication Date |
|---|---|
| CN117364010Atrue CN117364010A (en) | 2024-01-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311521451.5APendingCN117364010A (en) | 2023-11-15 | 2023-11-15 | Thermal barrier coating for turbine guide vane and composite process thereof |
| Country | Link |
|---|---|
| CN (1) | CN117364010A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119710523A (en)* | 2024-11-11 | 2025-03-28 | 中国船舶集团有限公司第七〇三研究所 | A self-repairing thermal barrier coating for gas turbine turbine working blades and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6398503B1 (en)* | 1998-04-27 | 2002-06-04 | Kabushiki Kaisha Toshiba | High temperature component, gas turbine high temperature component and manufacturing method thereof |
| CN107354417A (en)* | 2016-12-20 | 2017-11-17 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | A kind of method that automatic thermal spraying of manipulator prepares guide vane (IGV) assembly coating |
| CN107653432A (en)* | 2017-09-28 | 2018-02-02 | 中国航发动力股份有限公司 | A kind of high energy plasma spraying prepares the process of thermal barrier coating |
| CN110735117A (en)* | 2019-11-29 | 2020-01-31 | 中国航发沈阳黎明航空发动机有限责任公司 | duplex guide vane thermal barrier coating preparation method |
| CN114150256A (en)* | 2021-12-14 | 2022-03-08 | 中国航发南方工业有限公司 | High-temperature heat corrosion resistant coating for small-size turbine working blade of aircraft engine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6398503B1 (en)* | 1998-04-27 | 2002-06-04 | Kabushiki Kaisha Toshiba | High temperature component, gas turbine high temperature component and manufacturing method thereof |
| CN107354417A (en)* | 2016-12-20 | 2017-11-17 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | A kind of method that automatic thermal spraying of manipulator prepares guide vane (IGV) assembly coating |
| CN107653432A (en)* | 2017-09-28 | 2018-02-02 | 中国航发动力股份有限公司 | A kind of high energy plasma spraying prepares the process of thermal barrier coating |
| CN110735117A (en)* | 2019-11-29 | 2020-01-31 | 中国航发沈阳黎明航空发动机有限责任公司 | duplex guide vane thermal barrier coating preparation method |
| CN114150256A (en)* | 2021-12-14 | 2022-03-08 | 中国航发南方工业有限公司 | High-temperature heat corrosion resistant coating for small-size turbine working blade of aircraft engine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119710523A (en)* | 2024-11-11 | 2025-03-28 | 中国船舶集团有限公司第七〇三研究所 | A self-repairing thermal barrier coating for gas turbine turbine working blades and preparation method thereof |
| Publication | Publication Date | Title |
|---|---|---|
| CN1031147C (en) | Steel articles having protective duplex coatings and method of production | |
| CN111424242A (en) | A kind of anti-CMAS double-layer structure protective coating, thermal barrier coating multilayer structure and preparation method thereof | |
| CN103160773A (en) | Method for prolonging service life of engine thermal barrier coating by controlling components of thermal growth oxide layer | |
| CN108118190B (en) | A kind of environment resistant deposit corrosion thermal barrier coating and preparation method thereof | |
| CN106756819A (en) | A kind of MCrAlY high-temperature protection coatings preparation method | |
| CN110144541B (en) | A kind of high temperature titanium alloy thermal barrier coating material and preparation method thereof | |
| CN106148874A (en) | Thermal barrier coating that a kind of anti-CMAS smelt deposits corrodes and preparation method thereof | |
| CN105463453A (en) | Thermal barrier coating with stable interface and manufacturing method of thermal barrier coating | |
| CN110846618A (en) | A high-entropy alloy composite coating for surface protection of aluminum die-casting molds | |
| CN109457210A (en) | A kind of high temperature resistant low emissivity coatings and preparation method thereof | |
| CN111962028A (en) | EB-PVD/APS composite structure double-ceramic-layer thermal barrier coating and preparation method thereof | |
| CN105401116A (en) | A kind of preparation method of titanium alloy TiAl3-Al composite coating | |
| CN113699485B (en) | High-entropy oxide diffusion barrier film and preparation process and application thereof | |
| CN117364010A (en) | Thermal barrier coating for turbine guide vane and composite process thereof | |
| CN103114267B (en) | Preparation method of steel substrate surface aluminum oxide coat | |
| CN108998794B (en) | A kind of Re-Si co-modified aluminide coating and preparation method thereof | |
| CN112553625B (en) | A kind of active element Hf modified β-NiAl coating and its preparation technology | |
| CN113789496A (en) | Preparation method of self-healing gradient thermal barrier coating | |
| CN117802452A (en) | A Ti/TiN/(TiN+TiAlN)/TiAlN nanocomposite coating and preparation method thereof | |
| CN104760349A (en) | Titanium aluminum alloy surface high temperature oxidation and hot corrosion resistant Al-Cr coating and preparation method thereof | |
| CN111485197A (en) | A kind of γ-TiAl-based alloy surface anti-corrosion erosion coating at high temperature and preparation method thereof | |
| CN116479380A (en) | A kind of thermal barrier coating and preparation method thereof | |
| CN111485205A (en) | A kind of NiMAlY/Al2O3 composite coating and its preparation method and application | |
| CN105463382B (en) | A kind of coating and preparation method thereof improving TiAl alloy oxidation drag | |
| CN105401147B (en) | A kind of high temperature anti-corrosion coating of salic diffusion barrier and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |