技术领域Technical field
本发明涉及一种伺服控制方法,属于航空航天领域。The invention relates to a servo control method and belongs to the field of aerospace.
背景技术Background technique
利用空间机械臂捕获及清理失效的非合作目标对维护空间轨道安全,释放轨道资源具有极其重要的意义。喷管是目标卫星的典型通用特征,研究空间机械臂抓捕非合作喷管的捕获技术有重大价值,但不同于地面环境,空间微重力环境的特殊性对机械臂的伺服控制技术提出了挑战。The use of space robotic arms to capture and clean up failed non-cooperative targets is extremely important for maintaining space orbit safety and releasing orbital resources. The nozzle is a typical universal feature of the target satellite. It is of great value to study the capture technology of the space robotic arm to capture the non-cooperative nozzle. However, unlike the ground environment, the particularity of the space microgravity environment poses challenges to the servo control technology of the robotic arm. .
不同于地面机械臂安装在固定的基座上,空间机械臂安装在服务飞行器上,服务飞行器的运动严重干扰机械臂的运动精度,经典的PID控制,计算力矩控制无法满足实际应用;滑模控制,神经网络控制,迭代学习控制等策略在一定程度上可缓解非线性扰动,提高机械臂运动精度,但控制律复杂,计算量大,不适用于性能有限的星载计算机。另一方面,抓捕喷管的末端执行器采用碰撞方式完成捕获,机械臂仅依靠位置控制模式可能导致目标受到碰撞逃逸,因此,空间机械臂抓捕非合作喷管的伺服控制技术是关键技术难点。Unlike ground manipulators that are installed on fixed bases, space manipulators are installed on service aircraft. The movement of the service aircraft seriously interferes with the movement accuracy of the manipulator. Classic PID control and calculated torque control cannot meet practical applications; sliding mode control. , neural network control, iterative learning control and other strategies can alleviate nonlinear disturbances to a certain extent and improve the accuracy of manipulator movement, but the control law is complex and the amount of calculation is large, which is not suitable for spaceborne computers with limited performance. On the other hand, the end effector of the capture nozzle uses a collision method to complete the capture. The robot arm only relies on the position control mode, which may cause the target to escape from collision. Therefore, the servo control technology of the space robot arm to capture the non-cooperative nozzle is a key technology. difficulty.
发明内容Contents of the invention
本发明为解决经典伺服控制方法无法有效消除服务飞行器的运动扰动以及单一控制模式无法完成喷管捕获的问题,进而提出一种空间机械臂抓捕非合作喷管的伺服控制方法。In order to solve the problem that the classic servo control method cannot effectively eliminate the motion disturbance of the service aircraft and that a single control mode cannot complete the nozzle capture, the present invention further proposes a servo control method for the space manipulator to capture the non-cooperative nozzle.
本发明为解决上述问题采取的技术方案是:本发明的步骤包括:The technical solution adopted by the present invention to solve the above problems is: the steps of the present invention include:
步骤1、服务飞行器采用喷气控制与非合作目标保持稳定的相对位置,并控制姿态,使得飞行方向与失效的非合作目标的动量矩轴对齐,无残余角速度;Step 1. The service aircraft uses jet control to maintain a stable relative position with the non-cooperative target, and controls the attitude so that the flight direction is aligned with the momentum moment axis of the failed non-cooperative target, and there is no residual angular velocity;
步骤2、进入机械臂视觉伺服非合作喷管的位置控制阶段,机械臂采用位置控制模式跟踪规划的运动轨迹,接近非合作目标的喷管;Step 2. Enter the position control stage of the non-cooperative nozzle of the robotic arm visual servo. The robotic arm uses the position control mode to track the planned motion trajectory and approach the nozzle of the non-cooperative target;
步骤3、进入机械臂直线对接非合作喷管的速度控制阶段,机械臂采用速度控制模式末端直线匀速前进,对接非合作喷管;Step 3. Enter the speed control stage in which the robotic arm docks the non-cooperative nozzle in a straight line. The robotic arm adopts the speed control mode to advance in a straight line and at a constant speed to dock the non-cooperative nozzle;
步骤4、待喷管头部的接触开关触发,服务飞行器停控,机械臂进入待机状态,关节制动器制动,完成非合作喷管捕获。Step 4. When the contact switch on the nozzle head is triggered, the service aircraft stops, the robotic arm enters the standby state, and the joint brake is applied to complete the non-cooperative nozzle capture.
进一步的,步骤2中进入机械臂视觉伺服非合作喷管的位置控制阶段,机械臂采用位置控制模式跟踪规划的运动轨迹,接近非合作目标的喷管的步骤包括:Further, in step 2, the position control stage of the non-cooperative nozzle of the robot arm visual servo is entered. The robot arm uses the position control mode to track the planned motion trajectory. The steps of approaching the nozzle of the non-cooperative target include:
步骤201、安装在机械臂末端的手眼相机测量非合作喷管的相对位置和姿态,机械臂结合当前关节角度,得到机械臂伺服非合作喷管的笛卡尔空间的位姿轨迹,采用机械臂末端期望位姿相对于机械臂基座系的位姿矩阵表示;Step 201. The hand-eye camera installed at the end of the robot arm measures the relative position and attitude of the non-cooperative nozzle. The robot arm combines the current joint angles to obtain the pose trajectory of the Cartesian space of the non-cooperative nozzle of the robot arm servo, using the end of the robot arm. Desired pose relative to the pose matrix of the robot arm base system express;
步骤202、根据机械臂的逆运动学,将转换为期望的关节位置qd;Step 202: According to the inverse kinematics of the robotic arm, Convert to desired joint position qd ;
步骤203、将期望的关节位置qd转换为位置控制模式的参考关节加速度,参考的关节速度和参考关节位置:Step 203. Convert the desired joint position qd into the reference joint acceleration, reference joint speed and reference joint position of the position control mode:
公式(1)、(2)、(3)中,c1、c2和c3为位置规划增益参数,为位置控制模式的参考关节加速度,初始时刻为0,/>为位置控制模式的参考关节速度,初始时刻也为0,qr为位置控制模式的参考关节位置,初始时刻为0时刻的关节实际位置;In formulas (1), (2) and (3), c1 , c2 and c3 are position planning gain parameters, is the reference joint acceleration in position control mode, the initial time is 0,/> is the reference joint speed of the position control mode, and the initial time is also 0, qr is the reference joint position of the position control mode, and the initial time is the actual joint position at time 0;
步骤204、机械臂位置控制模式的控制律为:Step 204. The control law of the robot arm position control mode is:
公式(4)中,M是机械臂的惯性矩阵,C是机械臂的科氏矩阵,D是服务飞行器运动产生的扰动力,它与服务飞行器运动的线加速度角速度ωb,角加速度/>以及机械臂在服务飞行器上的安装位置p有关,ql为机械臂关节的实际位置,/>为机械臂关节的实际速度,kp和kd为位置控制增益参数,u为机械臂关节控制力矩;In formula (4), M is the inertia matrix of the robotic arm, C is the Coriolis matrix of the robotic arm, and D is the disturbance force generated by the movement of the service aircraft, which is related to the linear acceleration of the movement of the service aircraft. Angular velocity ωb , angular acceleration/> It is related to the installation position p of the robotic arm on the service aircraft, ql is the actual position of the robotic arm joint,/> is the actual speed of the manipulator joint, kp and kd are the position control gain parameters, u is the control torque of the manipulator joint;
上述控制律驱动机械臂接近非合作喷管。The above control law drives the manipulator to approach the non-cooperative nozzle.
进一步的,步骤3中进入机械臂直线对接非合作喷管的速度控制阶段,机械臂采用速度控制模式末端直线匀速前进,对接非合作喷管的步骤包括:Furthermore, in step 3, the speed control stage of linear docking of the robot arm with the non-cooperative nozzle is entered. The end of the robot arm adopts the speed control mode to advance in a straight line and at a constant speed. The steps of docking the non-cooperative nozzle include:
步骤301、设定机械臂末端前进方向的线速度为vd,另外两个方向线速度为0,三轴角速度为0;Step 301. Set the linear velocity of the end of the robotic arm in the forward direction to vd , the linear velocity in the other two directions to 0, and the three-axis angular velocity to 0;
步骤302、根据机械臂的微分运动学,将vd转换为期望的关节速度qv;Step 302: Convert vd to the desired joint speed qv according to the differential kinematics of the robotic arm;
步骤303、将期望的关节速度qv转换为速度控制模式的参考关节加速度,参考的关节速度:Step 303: Convert the desired joint speed qv into the reference joint acceleration of the speed control mode. The reference joint speed is:
公式(5)和(6)中,b1,b2为速度规划增益参数,为速度控制模式的参考关节加速度,初始时刻为0,qvr为速度控制模式的参考关节速度,初始值为初始时刻的关节实际速度;In formulas (5) and (6), b1 and b2 are speed planning gain parameters, is the reference joint acceleration of the speed control mode, the initial time is 0, qvr is the reference joint speed of the speed control mode, and the initial value is the actual joint speed at the initial time;
步骤304、机械臂速度控制模式的控制律为:Step 304. The control law of the robot arm speed control mode is:
公式(7)中,Kp和Kd为速度控制增益参数;In formula (7), Kp and Kd are speed control gain parameters;
上述控制律驱动机械臂直线对接非合作喷管。The above control law drives the manipulator to linearly dock the non-cooperative nozzle.
本发明的有益效果是:The beneficial effects of the present invention are:
1、控制律中引入了服务飞行器运动产生的扰动力,提高了空间机械臂的运动精度;1. The disturbance force generated by the movement of the service aircraft is introduced into the control law to improve the movement accuracy of the space manipulator;
2、针对抓捕喷管的末端执行器的捕获特点,在伺服阶段采用位置控制模式,保证跟踪精度,在对接阶段,转为速度控制模式,避免了接触碰撞将喷管弹出,提高了抓捕的可靠性。2. In view of the capture characteristics of the end effector of the capture nozzle, the position control mode is adopted in the servo stage to ensure tracking accuracy. In the docking stage, it is switched to the speed control mode to avoid contact collision and ejecting the nozzle, improving the capture reliability.
附图说明Description of the drawings
图1是捕获过程示意图,图1a是机械臂视觉伺服非合作喷管的位置控制阶段示意图,图1b是机械臂直线对接非合作喷管的速度控制阶段示意图,图1c是机械臂完成捕获非合作喷管的待机制动阶段示意图;Figure 1 is a schematic diagram of the capture process. Figure 1a is a schematic diagram of the position control stage of the non-cooperative nozzle of the robotic arm visual servo. Figure 1b is a schematic diagram of the speed control stage of the robotic arm linearly docking the non-cooperative nozzle. Figure 1c is a schematic diagram of the robotic arm completing the capture of the non-cooperative nozzle. Schematic diagram of the standby braking stage of the nozzle;
图2是位置控制模式参考关节加速度、参考关节速度和参考关节位置示意图,图2a是参考关节加速度示意图,图2b是参考关节速度示意图,图2c是参考关节位置示意图;Figure 2 is a schematic diagram of reference joint acceleration, reference joint speed and reference joint position in position control mode. Figure 2a is a schematic diagram of reference joint acceleration. Figure 2b is a schematic diagram of reference joint speed. Figure 2c is a schematic diagram of reference joint position;
图3是位置控制模式的机械臂关节控制力矩示意图;Figure 3 is a schematic diagram of the control torque of the robot arm joint in position control mode;
图4是速度控制模式的参考关节加速度、参考的关节速度示意图,图4a是参考关节加速度示意图,图4b是参考关节速度示意图;Figure 4 is a schematic diagram of the reference joint acceleration and reference joint speed in the speed control mode. Figure 4a is a schematic diagram of the reference joint acceleration. Figure 4b is a schematic diagram of the reference joint speed;
图5是速度控制模式的机械臂关节控制力矩示意图。Figure 5 is a schematic diagram of the control torque of the manipulator joint in speed control mode.
具体实施方式Detailed ways
具体实施方式一:结合图1说明本实施方式,本实施方式所述一种空间机械臂抓捕非合作喷管的伺服控制方法的步骤包括:Specific Embodiment 1: This embodiment will be described with reference to Figure 1. The steps of a servo control method for a space manipulator to capture a non-cooperative nozzle described in this embodiment include:
步骤1、服务飞行器采用喷气控制与非合作目标保持稳定的相对位置,并控制姿态,使得飞行方向与失效的非合作目标的动量矩轴对齐,无残余角速度;Step 1. The service aircraft uses jet control to maintain a stable relative position with the non-cooperative target, and controls the attitude so that the flight direction is aligned with the momentum moment axis of the failed non-cooperative target, and there is no residual angular velocity;
步骤2、进入机械臂视觉伺服非合作喷管的位置控制阶段,机械臂采用位置控制模式跟踪规划的运动轨迹,接近非合作目标的喷管;Step 2. Enter the position control stage of the non-cooperative nozzle of the robotic arm visual servo. The robotic arm uses the position control mode to track the planned motion trajectory and approach the nozzle of the non-cooperative target;
步骤3、进入机械臂直线对接非合作喷管的速度控制阶段,机械臂采用速度控制模式末端直线匀速前进,对接非合作喷管;Step 3. Enter the speed control stage in which the robotic arm docks the non-cooperative nozzle in a straight line. The robotic arm adopts the speed control mode to advance in a straight line and at a constant speed to dock the non-cooperative nozzle;
步骤4、待喷管头部的接触开关触发,服务飞行器停控,机械臂进入待机状态,关节制动器制动,完成非合作喷管捕获。Step 4. When the contact switch on the nozzle head is triggered, the service aircraft stops, the robotic arm enters the standby state, and the joint brake is applied to complete the non-cooperative nozzle capture.
具体实施方式二:结合图1说明本实施方式,本实施方式所述一种空间机械臂抓捕非合作喷管的伺服控制方法的步骤2中进入机械臂视觉伺服非合作喷管的位置控制阶段,机械臂采用位置控制模式跟踪规划的运动轨迹,接近非合作目标的喷管的步骤包括:Specific Embodiment 2: This embodiment will be described with reference to Figure 1. In step 2 of the servo control method of a space manipulator capturing a non-cooperative nozzle described in this embodiment, the position control stage of the robotic arm visual servo non-cooperative nozzle is entered. , the robotic arm uses position control mode to track the planned motion trajectory, and the steps to approach the nozzle of the non-cooperative target include:
步骤201、安装在机械臂末端的手眼相机测量非合作喷管的相对位置和姿态,机械臂结合当前关节角度,得到机械臂伺服非合作喷管的笛卡尔空间的位姿轨迹,采用机械臂末端期望位姿相对于机械臂基座系的位姿矩阵表示;Step 201. The hand-eye camera installed at the end of the robot arm measures the relative position and attitude of the non-cooperative nozzle. The robot arm combines the current joint angles to obtain the pose trajectory of the Cartesian space of the non-cooperative nozzle of the robot arm servo, using the end of the robot arm. Desired pose relative to the pose matrix of the robot arm base system express;
步骤202、根据机械臂的逆运动学,将转换为期望的关节位置qd;Step 202: According to the inverse kinematics of the robotic arm, Convert to desired joint position qd ;
步骤203、将期望的关节位置qd转换为位置控制模式的参考关节加速度,参考的关节速度和参考关节位置:Step 203. Convert the desired joint position qd into the reference joint acceleration, reference joint speed and reference joint position of the position control mode:
公式(1)、(2)、(3)中,c1、c2和c3为位置规划增益参数,为位置控制模式的参考关节加速度,初始时刻为0,/>为位置控制模式的参考关节速度,初始时刻也为0,qr为位置控制模式的参考关节位置,初始时刻为0时刻的关节实际位置;In formulas (1), (2) and (3), c1 , c2 and c3 are position planning gain parameters, is the reference joint acceleration in position control mode, the initial time is 0,/> is the reference joint speed of the position control mode, and the initial time is also 0, qr is the reference joint position of the position control mode, and the initial time is the actual joint position at time 0;
步骤204、机械臂位置控制模式的控制律为:Step 204. The control law of the robot arm position control mode is:
公式(4)中,M是机械臂的惯性矩阵,C是机械臂的科氏矩阵,D是服务飞行器运动产生的扰动力,它与服务飞行器运动的线加速度角速度ωb,角加速度/>以及机械臂在服务飞行器上的安装位置p有关,ql为机械臂关节的实际位置,/>为机械臂关节的实际速度,kp和kd为位置控制增益参数,u为机械臂关节控制力矩;In formula (4), M is the inertia matrix of the robotic arm, C is the Coriolis matrix of the robotic arm, and D is the disturbance force generated by the movement of the service aircraft, which is related to the linear acceleration of the movement of the service aircraft. Angular velocity ωb , angular acceleration/> It is related to the installation position p of the robotic arm on the service aircraft, ql is the actual position of the robotic arm joint,/> is the actual speed of the manipulator joint, kp and kd are the position control gain parameters, u is the control torque of the manipulator joint;
上述控制律驱动机械臂接近非合作喷管。The above control law drives the manipulator to approach the non-cooperative nozzle.
具体实施方式三:结合图1说明本实施方式,本实施方式所述一种空间机械臂抓捕非合作喷管的伺服控制方法,其特征在于:步骤3中进入机械臂直线对接非合作喷管的速度控制阶段,机械臂采用速度控制模式末端直线匀速前进,对接非合作喷管的步骤包括:Specific Embodiment Three: This embodiment will be described with reference to Figure 1. This embodiment describes a servo control method for a space manipulator to capture a non-cooperative nozzle, which is characterized in that: in step 3, enter the manipulator to linearly dock the non-cooperative nozzle. In the speed control stage, the end of the robotic arm uses the speed control mode to advance in a straight line and at a constant speed. The steps for docking the non-cooperative nozzle include:
步骤301、设定机械臂末端前进方向的线速度为vd,另外两个方向线速度为0,三轴角速度为0;Step 301. Set the linear velocity of the end of the robotic arm in the forward direction to vd , the linear velocity in the other two directions to 0, and the three-axis angular velocity to 0;
步骤302、根据机械臂的微分运动学,将vd转换为期望的关节速度qv;Step 302: Convert vd to the desired joint speed qv according to the differential kinematics of the robotic arm;
步骤303、将期望的关节速度qv转换为速度控制模式的参考关节加速度,参考的关节速度:Step 303: Convert the desired joint speed qv into the reference joint acceleration of the speed control mode. The reference joint speed is:
公式(5)和(6)中,b1,b2为速度规划增益参数,为速度控制模式的参考关节加速度,初始时刻为0,qvr为速度控制模式的参考关节速度,初始值为初始时刻的关节实际速度;In formulas (5) and (6), b1 and b2 are speed planning gain parameters, is the reference joint acceleration of the speed control mode, the initial time is 0, qvr is the reference joint speed of the speed control mode, and the initial value is the actual joint speed at the initial time;
步骤304、机械臂速度控制模式的控制律为:Step 304. The control law of the robot arm speed control mode is:
公式(7)中,Kp和Kd为速度控制增益参数;In formula (7), Kp and Kd are speed control gain parameters;
上述控制律驱动机械臂直线对接非合作喷管。The above control law drives the manipulator to linearly dock the non-cooperative nozzle.
实施例Example
如图1所示,空间机械臂安装在服务飞行器上,服务飞行器与失效的非合作目标保持稳定的悬停,机械臂末端安装有抓捕喷管的末端执行器和手眼相机,手眼相机测量非合作喷管的相对位姿,机械臂根据相机反馈接近非合作喷管,并直线对接喷管,抓捕喷管的末端执行器锁紧喷管完成捕获,具体过程如下:As shown in Figure 1, the space manipulator is installed on the service aircraft. The service aircraft maintains a stable hover with the failed non-cooperative target. The end effector of the capture nozzle and a hand-eye camera are installed at the end of the manipulator. The hand-eye camera measures non-cooperative targets. According to the relative posture of the cooperative nozzle, the robotic arm approaches the non-cooperative nozzle based on the camera feedback, and docks the nozzle in a straight line. The end effector of the capture nozzle locks the nozzle to complete the capture. The specific process is as follows:
步骤一,服务飞行器采用喷气控制与非合作目标保持稳定的相对位置,并控制姿态,使得飞行方向与失效的非合作目标的动量矩轴对齐,无残余角速度;Step 1: The service aircraft uses jet control to maintain a stable relative position with the non-cooperative target, and controls the attitude so that the flight direction is aligned with the momentum moment axis of the failed non-cooperative target, with no residual angular velocity;
步骤二,进入机械臂视觉伺服非合作喷管的位置控制阶段,机械臂采用位置控制模式跟踪规划的运动轨迹,接近非合作目标的喷管;Step 2: Enter the position control stage of the non-cooperative nozzle of the robotic arm visual servo. The robotic arm uses the position control mode to track the planned motion trajectory and approach the nozzle of the non-cooperative target;
步骤二一,安装在机械臂末端的手眼相机测量非合作喷管的相对位置和姿态,机械臂结合当前关节角度,得到机械臂伺服非合作喷管的笛卡尔空间的位姿轨迹,采用机械臂末端期望位姿相对于机械臂基座系的位姿矩阵表示;Step 21: The hand-eye camera installed at the end of the robotic arm measures the relative position and attitude of the non-cooperative nozzle. The robotic arm combines the current joint angles to obtain the pose trajectory of the Cartesian space of the robotic arm servo non-cooperative nozzle. Using the robotic arm The desired pose of the end relative to the pose matrix of the robot arm base system express;
步骤二二,根据机械臂的逆运动学,将转换为期望的关节位置qd;Step 22: According to the inverse kinematics of the robotic arm, Convert to desired joint position qd ;
步骤二三,设定位置规划增益参数为c1=648.0,c2=252.0,c3=18.0,将期望的关节位置qd转换为位置控制模式的参考关节加速度,参考的关节速度和参考关节位置:Step 23: Set the position planning gain parameters as c1 = 648.0, c2 = 252.0, c3 = 18.0, and convert the desired joint position qd into the reference joint acceleration, reference joint speed and reference joint of the position control mode Location:
步骤二四,设定位置控制增益参数为kp=324.0,kd=36.0,机械臂位置控制模式的控制律为:Step 24: Set the position control gain parameters to kp = 324.0, kd = 36.0. The control law of the robot arm position control mode is:
上述控制律驱动机械臂接近非合作喷管。The above control law drives the manipulator to approach the non-cooperative nozzle.
步骤三,进入机械臂直线对接非合作喷管的速度控制阶段,机械臂采用速度控制模式末端直线匀速前进,对接非合作喷管;Step 3: Enter the speed control stage in which the robotic arm docks the non-cooperative nozzle in a straight line. The robotic arm adopts the speed control mode to advance in a straight line and at a constant speed to dock the non-cooperative nozzle;
步骤三一,设定机械臂末端前进方向的线速度为20mm/s,另外两个方向线速度为0,三轴角速度为0;Step 31: Set the linear speed of the end of the robotic arm in the forward direction to 20mm/s, the linear speed in the other two directions to 0, and the three-axis angular speed to 0;
步骤三二,根据机械臂的微分运动学得到期望的关节速度qv;Step 32: Obtain the expected joint speed qv according to the differential kinematics of the manipulator arm;
步骤三三,设定速度规划增益参数为b1=36.0,b2=12.0,将期望的关节速度qv转换为速度控制模式的参考关节加速度,参考的关节速度:Step 33: Set the speed planning gain parameters to b1 = 36.0, b2 = 12.0, and convert the expected joint speed qv into the reference joint acceleration of the speed control mode. The reference joint speed is:
步骤三四,设定速度控制增益参数为Kp=36.0,Ki=324.0,机械臂速度控制模式的控制律为:Step 34: Set the speed control gain parameters to Kp = 36.0, Ki = 324.0. The control law of the robot arm speed control mode is:
上述控制律驱动机械臂直线对接非合作喷管。The above control law drives the manipulator to linearly dock the non-cooperative nozzle.
步骤四,待喷管头部的接触开关触发,服务飞行器停控,机械臂进入待机状态,关节制动器制动,完成非合作喷管捕获。Step 4: When the contact switch on the nozzle head is triggered, the service aircraft stops, the robotic arm enters the standby state, and the joint brake is applied to complete the non-cooperative nozzle capture.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention in any form. Although the present invention has been disclosed above in preferred embodiments, they are not intended to limit the present invention. Anyone familiar with this field will Skilled persons can make some changes or modifications to equivalent embodiments with equivalent changes using the technical content disclosed above without departing from the scope of the technical solution of the present invention. The technical essence of the invention is within the spirit and principles of the invention, and any simple modifications, equivalent substitutions and improvements made to the above embodiments still fall within the protection scope of the technical solution of the invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311190131.6ACN117262257B (en) | 2023-09-15 | 2023-09-15 | Servo control method for capturing non-cooperative spray pipe by using space manipulator |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311190131.6ACN117262257B (en) | 2023-09-15 | 2023-09-15 | Servo control method for capturing non-cooperative spray pipe by using space manipulator |
| Publication Number | Publication Date |
|---|---|
| CN117262257Atrue CN117262257A (en) | 2023-12-22 |
| CN117262257B CN117262257B (en) | 2024-09-13 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311190131.6AActiveCN117262257B (en) | 2023-09-15 | 2023-09-15 | Servo control method for capturing non-cooperative spray pipe by using space manipulator |
| Country | Link |
|---|---|
| CN (1) | CN117262257B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050230557A1 (en)* | 2003-12-30 | 2005-10-20 | Canadian Space Agency | Zero-G emulating testbed for spacecraft control system |
| CN101733746A (en)* | 2009-12-22 | 2010-06-16 | 哈尔滨工业大学 | Autonomously identifying and capturing method of non-cooperative target of space robot |
| CN106892137A (en)* | 2017-02-21 | 2017-06-27 | 哈尔滨工业大学深圳研究生院 | A kind of big tolerance capturing method and system of space non-cooperative Tum bling Target |
| CN107529498A (en)* | 2017-06-23 | 2018-01-02 | 西北工业大学 | A method for capturing non-cooperative targets by space robots |
| CN114952838A (en)* | 2022-05-26 | 2022-08-30 | 哈尔滨工业大学 | A robot arm joint trajectory planning method based on end measurement feedback |
| JP7325681B1 (en)* | 2022-08-19 | 2023-08-14 | 三菱電機株式会社 | SPACE ROBOT CONTROL DEVICE, SPACE ROBOT, SPACE ROBOT CONTROL METHOD AND PROGRAM |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050230557A1 (en)* | 2003-12-30 | 2005-10-20 | Canadian Space Agency | Zero-G emulating testbed for spacecraft control system |
| CN101733746A (en)* | 2009-12-22 | 2010-06-16 | 哈尔滨工业大学 | Autonomously identifying and capturing method of non-cooperative target of space robot |
| CN106892137A (en)* | 2017-02-21 | 2017-06-27 | 哈尔滨工业大学深圳研究生院 | A kind of big tolerance capturing method and system of space non-cooperative Tum bling Target |
| CN107529498A (en)* | 2017-06-23 | 2018-01-02 | 西北工业大学 | A method for capturing non-cooperative targets by space robots |
| CN114952838A (en)* | 2022-05-26 | 2022-08-30 | 哈尔滨工业大学 | A robot arm joint trajectory planning method based on end measurement feedback |
| JP7325681B1 (en)* | 2022-08-19 | 2023-08-14 | 三菱電機株式会社 | SPACE ROBOT CONTROL DEVICE, SPACE ROBOT, SPACE ROBOT CONTROL METHOD AND PROGRAM |
| Publication number | Publication date |
|---|---|
| CN117262257B (en) | 2024-09-13 |
| Publication | Publication Date | Title |
|---|---|---|
| CN113341731B (en) | Space robot trajectory planning method based on sequence convex optimization | |
| CN108381553B (en) | Relative navigation close-range tracking method and system for space non-cooperative target capture | |
| CN109606753A (en) | A kind of control method of Dual-arm space robot collaboration capture target | |
| CN106625671B (en) | An optimal trajectory planning method for space robots to capture rolling targets | |
| Wenfu et al. | Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target | |
| CN106892137A (en) | A kind of big tolerance capturing method and system of space non-cooperative Tum bling Target | |
| CN106166749A (en) | The motion track planing method of multi-arm robot is moved in a kind of space | |
| CN110641738B (en) | Trajectory tracking control method of space five-degree-of-freedom free flying mechanical arm | |
| Hirano et al. | Online path planning and compliance control of space robot for capturing tumbling large object | |
| CN114795033A (en) | Mechanical arm real-time planning and control method and system for indoor three-dimensional cleaning | |
| Zhang et al. | Design of an aerial manipulator system applied to capture missions | |
| Lampariello | Motion planning for the on-orbit grasping of a non-cooperative target satellite with collision avoidance | |
| CN117262257B (en) | Servo control method for capturing non-cooperative spray pipe by using space manipulator | |
| CN116237938B (en) | A coordinated motion planning method for a rotorcraft manipulator based on the use of redundant degrees of freedom | |
| Xia et al. | Synthetic control with target sticking for on-orbit capturing using a dual-arm space robot | |
| CN117262256B (en) | A space robot system and method for capturing a non-cooperative nozzle | |
| CN117245653B (en) | Motion planning method for capturing non-cooperative spray pipe by using space mechanical arm | |
| Miyazaki et al. | Development of High-Pressure Washing Aerial Robot Employing Multirotor Platform with Add-on Planar Translational Driving System | |
| CN113987914B (en) | Space robot tracking control method for cold air propulsion | |
| Yang et al. | An obstacle avoidance and trajectory tracking algorithm for redundant manipulator end | |
| Zhang et al. | Dual manipulator-actuated integrated translational and rotational stabilization of spacecraft in proximity operations | |
| Hu et al. | Dynamic closest point identification and estimation for tumbling target capturing | |
| Meng et al. | On the autonomous target capturing of flexible-base space robotic system | |
| CN119512189B (en) | Robot satellite attitude control method based on mechanical arm dynamics | |
| CN119635652A (en) | A dual-arm space robot adhesion and capture control method |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |