Movatterモバイル変換


[0]ホーム

URL:


CN117233983A - Lens module and wearable equipment - Google Patents

Lens module and wearable equipment
Download PDF

Info

Publication number
CN117233983A
CN117233983ACN202210642360.6ACN202210642360ACN117233983ACN 117233983 ACN117233983 ACN 117233983ACN 202210642360 ACN202210642360 ACN 202210642360ACN 117233983 ACN117233983 ACN 117233983A
Authority
CN
China
Prior art keywords
lens
light
elastic layer
adjusting
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210642360.6A
Other languages
Chinese (zh)
Inventor
叶万俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp LtdfiledCriticalGuangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN202210642360.6ApriorityCriticalpatent/CN117233983A/en
Publication of CN117233983ApublicationCriticalpatent/CN117233983A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

The application provides a lens module and wearable equipment. The lens module comprises a first lens component, wherein the first lens component is provided with a first surface, the curvature of the first surface is adjustable, so that the astigmatism degree of the first lens component is adjustable; and a second lens assembly disposed on a side of the first lens assembly facing away from the first surface, the second lens assembly having a second surface facing away from the first lens assembly, the second surface having an adjustable curvature such that the degree of myopia or hyperopia of the second lens assembly is adjustable. The lens module provided by the embodiment of the application has adjustable myopia or hyperopia degrees and adjustable astigmatism degrees, and can be suitable for refraction correction of users with myopia, hyperopia and astigmatism of different degrees.

Description

Translated fromChinese
镜片模组及可穿戴设备Lens modules and wearable devices

技术领域Technical field

本申请涉及电子领域,具体涉及一种镜片模组及可穿戴设备。This application relates to the field of electronics, and specifically to a lens module and a wearable device.

背景技术Background technique

随着全球屈光不正人数的比例大大提高,近视矫正、远视矫正、散光矫正的需求大大增大。当前的近视眼镜、远视眼镜、散光镜片或增强现实设备等可穿戴设备的镜片的度数通常是固定的,而用户的眼睛度数通常随着时间发生变化,这使得用户每隔一段时间就需要更换镜片,给用户造成的极大的不便,此外,不同的人近视、远视或散光度数不同,这使得一副镜片只能适用于一个用户。As the proportion of people with refractive errors in the world has greatly increased, the demand for myopia correction, hyperopia correction, and astigmatism correction has greatly increased. The power of the lenses of current myopia glasses, hyperopia glasses, astigmatism lenses or wearable devices such as augmented reality devices is usually fixed, while the user's eye power usually changes over time, which requires users to replace the lenses every once in a while. , causing great inconvenience to users. In addition, different people have different degrees of myopia, hyperopia or astigmatism, which makes a pair of lenses only suitable for one user.

发明内容Contents of the invention

针对上述问题,本申请实施例提供一种镜片模组,其近视或远视度数可调节且散光度数也调节,可以适用于不同度数的近视、远视及散光用户的屈光矫正。In response to the above problems, embodiments of the present application provide a lens module with adjustable myopia or hyperopia power and adjustable astigmatism power, which can be suitable for refractive correction of users with different degrees of myopia, hyperopia and astigmatism.

本申请第一方面实施例提供了一种镜片模组,其包括:The first embodiment of the present application provides a lens module, which includes:

第一透镜组件,所述第一透镜组件具有第一表面,所述第一表面的曲率可调节,以使所述第一透镜组件的散光度数可调节;以及A first lens assembly having a first surface, the curvature of the first surface being adjustable so that the astigmatism power of the first lens assembly is adjustable; and

第二透镜组件,所述第二透镜组件设置于所述第一透镜组件背离所述第一表面的一侧,所述第二透镜组件具有背离所述第一透镜组件的第二表面,所述第二表面曲率可调节,以使所述第二透镜组件的近视或远视度数可调节。a second lens component, the second lens component is disposed on a side of the first lens component facing away from the first surface; the second lens component has a second surface facing away from the first lens component; The curvature of the second surface is adjustable so that the degree of myopia or hyperopia of the second lens assembly is adjustable.

本申请第二方面实施例提供了一种可穿戴设备,其包括:The second embodiment of the present application provides a wearable device, which includes:

本申请实施例所述的镜片模组;以及The lens module described in the embodiment of the present application; and

承载件,所述承载件用于承载所述镜片模组。A bearing member, the bearing member is used to carry the lens module.

本申请实施例的镜片模组包括层叠设置于的第一透镜组件及第二透镜组件,第一透镜组件用于矫正散光,且第一表面的曲率可调节,第二透镜组件用于矫正近视或远视,且第二表面的曲率可调节,从而通过第一透镜组件及第二透镜组件的配合,可以用于矫正近视、远视、单纯近视散光、单纯远视散光、复性近视散光及复性远视散光,同时近视度数、远视度数及散光度数均可连续调节,从而使得一副镜片可以适用于不同的用户,应用于可穿戴设备例如AR眼镜时,无需针对不同的用户定制不同的屈光矫正镜片,适用的用户范围更广,可以更好地提高用户体验。The lens module of the embodiment of the present application includes a first lens component and a second lens component that are stacked on each other. The first lens component is used to correct astigmatism and the curvature of the first surface is adjustable. The second lens component is used to correct myopia or myopia. Hyperopia, and the curvature of the second surface is adjustable, so that through the cooperation of the first lens component and the second lens component, it can be used to correct myopia, hyperopia, simple myopic astigmatism, simple hyperopic astigmatism, compound myopic astigmatism and compound hyperopic astigmatism. At the same time, the degree of myopia, farsightedness and astigmatism can be continuously adjusted, so that a pair of lenses can be suitable for different users. When used in wearable devices such as AR glasses, there is no need to customize different refractive correction lenses for different users. It is applicable to a wider range of users and can better improve user experience.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.

图1是本申请一实施例的镜片模组结构示意图。Figure 1 is a schematic structural diagram of a lens module according to an embodiment of the present application.

图2是本申请一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。FIG. 2 is a schematic cross-sectional structural view of a lens module along the P-P direction in FIG. 1 according to an embodiment of the present application.

图3是本申请一实施例的镜片模组用于矫正近视时使用状态图。Figure 3 is a diagram of the use state of the lens module used to correct myopia according to an embodiment of the present application.

图4是本申请一实施例的镜片模组用于矫正远视时使用状态图。Figure 4 is a diagram of the use state of the lens module according to an embodiment of the present application when it is used to correct hyperopia.

图5是本申请一实施例的镜片模组用于矫正单纯近视散光时使用状态图。Figure 5 is a diagram of the use state of the lens module according to an embodiment of the present application when it is used to correct simple myopic astigmatism.

图6是本申请一实施例的镜片模组用于矫正单纯远视散光时使用状态图。Figure 6 is a diagram of the use state of the lens module according to an embodiment of the present application when it is used to correct simple hyperopic astigmatism.

图7是本申请一实施例的镜片模组用于矫正复性近视散光时使用状态图。Figure 7 is a diagram of the use state of the lens module according to an embodiment of the present application when it is used to correct compound myopic astigmatism.

图8是本申请一实施例的镜片模组用于矫正复性远视散光时使用状态图。Figure 8 is a diagram of the use state of the lens module according to an embodiment of the present application when it is used to correct compound hyperopic astigmatism.

图9是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 9 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to another embodiment of the present application.

图10是本申请一实施例的调节机构的结构示意图。Figure 10 is a schematic structural diagram of an adjustment mechanism according to an embodiment of the present application.

图11是本申请一实施例的第一透镜组件用于矫正远视散光时,沿图10中M-M方向的剖切侧视示意图。FIG. 11 is a schematic cross-sectional side view along the M-M direction in FIG. 10 when the first lens assembly is used to correct hyperopic astigmatism according to an embodiment of the present application.

图12是本申请一实施例的第一透镜组件用于矫正近视散光时,沿图10中M-M方向的剖切侧视示意图。FIG. 12 is a schematic cross-sectional side view along the M-M direction in FIG. 10 when the first lens assembly is used to correct myopic astigmatism according to an embodiment of the present application.

图13是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 13 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to another embodiment of the present application.

图14是本申请又一实施例的镜片模组用于矫正近视时,沿图10中M-M方向的剖切侧视图。Figure 14 is a cross-sectional side view along the direction M-M in Figure 10 when the lens module according to another embodiment of the present application is used to correct myopia.

图15是本申请又一实施例的镜片模组用于矫正远视时,沿图10中M-M方向的剖切侧视图。FIG. 15 is a cross-sectional side view along the M-M direction in FIG. 10 when the lens module according to another embodiment of the present application is used to correct hyperopia.

图16是本申请一实施例的第二透镜组件的结构示意图。FIG. 16 is a schematic structural diagram of a second lens assembly according to an embodiment of the present application.

图17是本申请又一实施例的第二透镜组件的结构示意图。Figure 17 is a schematic structural diagram of a second lens assembly according to yet another embodiment of the present application.

图18中(a)为复性近视散光在视网膜上成像的示意图,(b)及(c)分别为复性近视散光矫正过程示意图。In Figure 18, (a) is a schematic diagram of the imaging of compound myopic astigmatism on the retina, and (b) and (c) are schematic diagrams of the correction process of compound myopic astigmatism respectively.

图19是又一实施例的镜片模组用于矫正复性近视散光时,沿图10中M-M方向的剖切侧视图。Figure 19 is a cross-sectional side view along the M-M direction in Figure 10 when the lens module is used to correct compound myopic astigmatism according to another embodiment.

图20中(a)为复性近视散光在视网膜上成像的示意图,(b)及(c)分别为复性近视散光矫正的又一过程示意图。In Figure 20, (a) is a schematic diagram of the imaging of compound myopic astigmatism on the retina, and (b) and (c) are schematic diagrams of another process of correcting compound myopic astigmatism respectively.

图21是又一实施例的镜片模组用于矫正复性近视散光时,沿图10中M-M方向的剖切侧视图。Figure 21 is a cross-sectional side view along the M-M direction in Figure 10 when the lens module is used to correct compound myopic astigmatism according to another embodiment.

图22中(a)为复性远视散光在视网膜上成像的示意图,(b)及(c)分别为复性远视散光矫正过程示意图。In Figure 22, (a) is a schematic diagram of the imaging of compound hyperopic astigmatism on the retina, and (b) and (c) are schematic diagrams of the correction process of compound hyperopic astigmatism respectively.

图23是又一实施例的镜片模组用于矫正复性远视散光,沿图10中M-M方向的剖切侧视图。Figure 23 is a cross-sectional side view along the M-M direction in Figure 10 of a lens module used to correct compound hyperopic astigmatism according to another embodiment.

图24中(a)为复性远视散光在视网膜上成像的示意图,(b)及(c)分别为复性远视散光矫正的又一过程示意图。In Figure 24, (a) is a schematic diagram of the imaging of compound hyperopic astigmatism on the retina, and (b) and (c) are schematic diagrams of another process of correcting compound hyperopic astigmatism.

图25是又一实施例的镜片模组用于矫正复性远视散光,沿图10中M-M方向的剖切侧视图。Figure 25 is a cross-sectional side view along the M-M direction in Figure 10 of a lens module used to correct compound hyperopic astigmatism according to another embodiment.

图26是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 26 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to another embodiment of the present application.

图27是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 27 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to another embodiment of the present application.

图28是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 28 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to another embodiment of the present application.

图29是本申请又一实施例的镜片模组沿图1中P-P方向的剖视结构示意图。Figure 29 is a schematic cross-sectional structural diagram of a lens module along the P-P direction in Figure 1 according to yet another embodiment of the present application.

图30是本申请一实施例的光波导片的结构示意图。Figure 30 is a schematic structural diagram of an optical waveguide plate according to an embodiment of the present application.

图31是本申请一实施例的可穿戴设备的结构示意图。Figure 31 is a schematic structural diagram of a wearable device according to an embodiment of the present application.

图32是本申请一实施例的可穿戴设备沿图31中Q-Q方向的剖视的结构示意图。Figure 32 is a schematic structural diagram of a cross-section along the Q-Q direction in Figure 31 of a wearable device according to an embodiment of the present application.

图33是本申请又一实施例的可穿戴设备沿图31中Q-Q方向的剖视的结构示意图。Figure 33 is a schematic structural diagram of a cross-section along the Q-Q direction in Figure 31 of a wearable device according to another embodiment of the present application.

图34是本申请又一实施例的承载件沿图31中Q-Q方向的剖视的结构示意图。Figure 34 is a schematic structural diagram of a cross-section along the Q-Q direction in Figure 31 of a bearing member according to another embodiment of the present application.

图35是本申请又一实施例的可穿戴设备沿图31中Q-Q方向的剖视的结构示意图。Figure 35 is a schematic structural diagram of a cross-section along the Q-Q direction in Figure 31 of a wearable device according to another embodiment of the present application.

图36是本申请又一实施例的可穿戴设备的结构示意图。Figure 36 is a schematic structural diagram of a wearable device according to another embodiment of the present application.

图37是本申请又一实施例的可穿戴设备的电路框图。Figure 37 is a circuit block diagram of a wearable device according to another embodiment of the present application.

附图标记说明:Explanation of reference symbols:

100-镜片模组,10-第一透镜组件,11-第一表面,101-第一收容腔,12-第一透光层、14-第一弹性层,16-第一流体,18-调节机构,181-调节件,1811-调节子件,1811a-第一调节子件,1811b-第二调节子件,1811c-第三调节子件,1811d-第四调节子件,183-第一致动器,185-第一阀门,30-第二透镜组件,301-第二收容腔,31-第二表面,32-支撑层,33-第二透光层,34-第二弹性层,36-第三流体,38-驱动机构,381-第二致动器,383-弹性容器,385-第二阀门,50-光波导组件,51-第一保护片,53-光波导片,531-光传导部,533-光耦入部,535-光耦出部,55-第二保护片,200-可穿戴设备,210-承载件,201-容置空间,211-支撑部,213-第一承载部,215-第二承载部,230-佩戴件,231-第一佩戴件,233-第二佩戴件,250-投影光机,251-显示器,253-镜头,270-处理器,290-存储器。100-lens module, 10-first lens component, 11-first surface, 101-first receiving cavity, 12-first light-transmitting layer, 14-first elastic layer, 16-first fluid, 18-adjustment Mechanism, 181-adjusting component, 1811-adjusting component, 1811a-first adjusting component, 1811b-second adjusting component, 1811c-third adjusting component, 1811d-fourth adjusting component, 183-the first consistent Actuator, 185-first valve, 30-second lens assembly, 301-second receiving cavity, 31-second surface, 32-support layer, 33-second light-transmitting layer, 34-second elastic layer, 36 -Third fluid, 38-driving mechanism, 381-second actuator, 383-elastic container, 385-second valve, 50-optical waveguide assembly, 51-first protective sheet, 53-optical waveguide sheet, 531- Light conduction part, 533-optical coupling part, 535-optical coupling part, 55-second protective sheet, 200-wearable device, 210-carrying member, 201-accommodating space, 211-supporting part, 213-first Bearing part, 215-second bearing part, 230-wearing part, 231-first wearing part, 233-second wearing part, 250-projection light machine, 251-display, 253-lens, 270-processor, 290- memory.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to enable those in the technical field to better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only These are part of the embodiments of this application, but not all of them. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.

本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。The terms "first", "second", etc. in the description and claims of this application and the above-mentioned drawings are used to distinguish different objects, rather than describing a specific sequence. Furthermore, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.

下面将结合附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings.

需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。It should be noted that, for convenience of description, in the embodiments of the present application, the same reference numerals represent the same components, and for the sake of simplicity, detailed descriptions of the same components in different embodiments are omitted.

随着近视、远视、散光等屈光不正人数的增加,屈光矫正的需要越来越大。现有的近视镜片、远视镜片、散光镜片的度数通常是固定的,无法进行调节,这大大限制了近视镜片、远视镜片、散光镜片的使用。With the increase in the number of people with refractive errors such as myopia, hyperopia, astigmatism, etc., the need for refractive correction is increasing. The power of existing myopia lenses, hyperopia lenses, and astigmatism lenses is usually fixed and cannot be adjusted, which greatly limits the use of myopia lenses, hyperopia lenses, and astigmatism lenses.

请参见图1和图2,本申请实施例提供了一种镜片模组100,其包括层叠设置的第一透镜组件10以及第二透镜组件30。所述第一透镜组件10具有第一表面11,所述第一表面11的曲率可调节,以使所述第一透镜组件10的散光度数可调节;所述第二透镜组件30设置于所述第一透镜组件10背离所述第一表面10的一侧,所述第二透镜组件30具有背离所述第一透镜组件10的第二表面31,所述第二表面31曲率可调节,以使所述第二透镜组件30的近视或远视度数可调节。Referring to FIGS. 1 and 2 , an embodiment of the present application provides a lens module 100 , which includes a first lens component 10 and a second lens component 30 arranged in a stack. The first lens component 10 has a first surface 11, the curvature of the first surface 11 is adjustable, so that the astigmatism power of the first lens component 10 is adjustable; the second lens component 30 is disposed on the The side of the first lens component 10 facing away from the first surface 10, the second lens component 30 having a second surface 31 facing away from the first lens component 10, the curvature of the second surface 31 is adjustable, so that The degree of myopia or hyperopia of the second lens assembly 30 is adjustable.

可以理解地,所述第一透镜组件10为圆柱镜,其用于矫正散光,第一表面11为圆柱面,通过调节圆柱面的曲率及面型可以调节散光的度数。第二透镜组件30为球镜,用于矫正近视或远视,第二表面31为球面,通过调节第一表面11的曲率及面型可以调节近视的度数或远视的度数。It can be understood that the first lens component 10 is a cylindrical mirror, which is used to correct astigmatism. The first surface 11 is a cylindrical surface, and the degree of astigmatism can be adjusted by adjusting the curvature and surface shape of the cylindrical surface. The second lens component 30 is a spherical lens for correcting myopia or hyperopia. The second surface 31 is a spherical surface. The degree of myopia or hyperopia can be adjusted by adjusting the curvature and surface shape of the first surface 11 .

本申请实施例的镜片模组100可以应用于近视眼镜、远视眼镜、散光眼镜、增强现实眼镜(AR眼镜)、增强现实头盔、增强现实面罩、虚拟现实眼镜等可穿戴设备。The lens module 100 of the embodiment of the present application can be applied to wearable devices such as myopia glasses, hyperopia glasses, astigmatism glasses, augmented reality glasses (AR glasses), augmented reality helmets, augmented reality masks, virtual reality glasses, etc.

散光是眼睛的一种屈光不正常表现,与角膜的弧度有关。平行光线进入眼内后,由于眼球在不同子午线上屈光力不等,不能聚集于一点(焦点),也就不能形成清晰的物像,这种情况称为散光。散光眼借助调节作用或移动目标到眼之间的距离,都不能形成清晰的像,只有配戴合适的圆柱镜,才能在视网膜上形成清晰的像。按表现形式,可将散光分为规则散光和不规则散光。通常只有规则散光能够通过镜片矫正,而不规则散光则只能通过手术矫正。其中,规则散光又分为单纯近视/远视散光和复性近视/远视散光。其中,单纯近视/远视散光可以直接通过圆柱镜进行屈光矫正,根据矫正单纯近视散光和单纯远视散光的需求不同,分别对应负柱面透镜和正柱面透镜。而复性近视/远视散光则需要通过圆柱镜和凹/凸透镜配合才能进行矫正。单纯近视散光是指一条主经络落在视网膜上,另一条经络无限聚焦在视网膜前方,单纯远视散光是指一条主经络落在视网膜上,另一条经络无限聚焦在视网膜后方。复性近视散光是指两条相互垂直的经络聚焦在视网膜前方,但聚焦位置不同。复性远视散光是指两条相互垂直的经络聚焦在视网膜后方,但聚焦位置不同。Astigmatism is a refractive error of the eye that is related to the curvature of the cornea. After parallel light rays enter the eye, due to the unequal refractive power of the eyeball at different meridians, they cannot focus on one point (focus) and cannot form a clear object image. This situation is called astigmatism. Astigmatism cannot form a clear image by adjusting the distance between the target and the eye. Only by wearing a suitable cylindrical lens can a clear image be formed on the retina. According to the form of expression, astigmatism can be divided into regular astigmatism and irregular astigmatism. Usually only regular astigmatism can be corrected with lenses, while irregular astigmatism can only be corrected with surgery. Among them, regular astigmatism is divided into simple myopia/hyperopia astigmatism and compound myopia/hyperopia astigmatism. Among them, simple myopia/hyperopia astigmatism can be directly corrected through cylindrical lenses. According to the different needs for correcting simple myopia astigmatism and simple hyperopic astigmatism, negative cylindrical lenses and positive cylindrical lenses respectively correspond. Compound myopia/hyperopia astigmatism needs to be corrected through the combination of cylindrical lenses and concave/convex lenses. Simple myopic astigmatism means that one main meridian falls on the retina, and the other meridian focuses infinitely in front of the retina. Simple hyperopic astigmatism means that one main meridian falls on the retina, and the other meridian focuses infinitely behind the retina. Compound myopic astigmatism means that two mutually perpendicular meridians focus in front of the retina, but at different focusing positions. Compound hyperopic astigmatism means that two mutually perpendicular meridians focus behind the retina, but at different focusing positions.

本申请的镜片模组100应用时,如图3及图4所示,当用户仅为近视或远视,则只需要调节第二透镜组件30的第二表面31的曲率,以使第二透镜组件30的近视度数或远视度数为用户的目标度数。如图5及图6所示,当用户仅为单纯近视散光或单纯远视散光时,则只需要调节第一透镜组件10的第一表面11的曲率,以使第一透镜组件10的近视散光度数或远视散光度数为用户的目标度数。如图7及图8所示,当用户为复性近视散光或复性远视散光时,则同时调节第一透镜组件10的第一表面11的曲率以及第二透镜组件30的第二表面31的曲率,通过第一透镜组件10与第二透镜组件30的配合,以对用户的复性近视或复性远视进行矫正。When the lens module 100 of the present application is used, as shown in FIGS. 3 and 4 , when the user is only nearsighted or farsighted, he only needs to adjust the curvature of the second surface 31 of the second lens component 30 so that the second lens component A myopia degree or hyperopia degree of 30 is the user's target degree. As shown in FIGS. 5 and 6 , when the user only has simple myopic astigmatism or simple hyperopic astigmatism, he only needs to adjust the curvature of the first surface 11 of the first lens component 10 to adjust the myopic astigmatism degree of the first lens component 10 Or the degree of hyperopic astigmatism is the user's target degree. As shown in FIGS. 7 and 8 , when the user has compound myopic astigmatism or compound hyperopic astigmatism, the curvature of the first surface 11 of the first lens component 10 and the curvature of the second surface 31 of the second lens component 30 are simultaneously adjusted. The curvature is used to correct the user's compound myopia or compound hyperopia through the cooperation of the first lens component 10 and the second lens component 30 .

本申请实施例的镜片模组100包括层叠设置于的第一透镜组件10及第二透镜组件30,第一透镜组件10用于矫正散光,且第一表面11的曲率可调节,第二透镜组件30用于矫正近视或远视,且第二表面31的曲率可调节,从而通过第一透镜组件10及第二透镜组件30的配合,可以用于矫正近视、远视、单纯近视散光、单纯远视散光、复性近视散光及复性远视散光,同时近视度数、远视度数及散光度数均可连续调节,从而使得一副镜片可以适用于不同的用户,应用于可穿戴设备例如AR眼镜时,无需针对不同的用户定制不同的屈光矫正镜片,适用的用户范围更广,可以更好地提高用户体验。此外,第一透镜组件10及第二透镜组件30即成为一个镜片,相较于分体式设计,可以更加轻薄化,用户佩戴时,具有更好的舒适感。The lens module 100 in the embodiment of the present application includes a first lens component 10 and a second lens component 30 that are stacked on each other. The first lens component 10 is used to correct astigmatism, and the curvature of the first surface 11 is adjustable. 30 is used to correct myopia or hyperopia, and the curvature of the second surface 31 is adjustable, so that through the cooperation of the first lens component 10 and the second lens component 30, it can be used to correct myopia, hyperopia, simple myopic astigmatism, simple hyperopic astigmatism, Compound myopic astigmatism and compound hyperopic astigmatism. At the same time, the myopia degree, hyperopia degree and astigmatism degree can be continuously adjusted, so that a pair of lenses can be suitable for different users. When used in wearable devices such as AR glasses, there is no need to target different users. Users can customize different refractive correction lenses, which are applicable to a wider range of users and can better improve user experience. In addition, the first lens component 10 and the second lens component 30 become one lens, which can be lighter and thinner than a split design, and provide a better sense of comfort when worn by the user.

可选地,如图5及图6所示,所述第一表面11可以为凹圆柱面或凸圆柱面。当第一表面11为凹圆柱面时,第一透镜组件10用于矫正近视散光;当第一表面11为凸圆柱面时,第一透镜组件10用于矫正远视散光。当用户仅为单纯近视散光或单纯远视散光时,只需要调节第一表面11为对应曲率的凹圆柱面或凸圆柱面即可。通过第一表面11面型和曲率的调节,可以使得同一副镜片模组100可以适用于不同散光度数的近视散光用户和远视散光度数。本申请术语“凹圆柱面”指向内凹陷的圆柱面,即圆柱形凹面。术语“凸圆柱面”指向外凸出的圆柱面,即圆柱形凸面。Optionally, as shown in FIGS. 5 and 6 , the first surface 11 may be a concave cylindrical surface or a convex cylindrical surface. When the first surface 11 is a concave cylindrical surface, the first lens component 10 is used to correct myopic astigmatism; when the first surface 11 is a convex cylindrical surface, the first lens component 10 is used to correct hyperopic astigmatism. When the user only has simple myopic astigmatism or simple hyperopic astigmatism, he only needs to adjust the first surface 11 to a concave cylindrical surface or a convex cylindrical surface with corresponding curvature. By adjusting the surface shape and curvature of the first surface 11, the same secondary lens module 100 can be suitable for users with myopic astigmatism and hyperopic astigmatism with different degrees of astigmatism. The term "concave cylindrical surface" in this application refers to a cylindrical surface that is concave inward, that is, a cylindrical concave surface. The term "convex cylindrical surface" refers to a cylindrical surface that projects outward, that is, a cylindrical convex surface.

可选地,如图3及图4所示,所述第二表面31为凹球面或凸球面。当第二表面31为凹球面时,第二透镜组件30用于矫正近视;当第二表面31为凸球面时,第二透镜组件30用于矫正远视。当用户仅为近视或远视(即无散光)时,只需要调节第二表面31为对应曲率的凹球面或凸球面即可。通过第二表面31面型和曲率的调节,可以使得同一副镜片模组100可以适用于不同近视度数的近视用户和不同远视度数的远视用户。本申请术语“凹球面”指向内凹陷的球面,即球形凹面。术语“凸球面”指向外凸出的球面,即球形凸面。Optionally, as shown in FIGS. 3 and 4 , the second surface 31 is a concave spherical surface or a convex spherical surface. When the second surface 31 is a concave spherical surface, the second lens component 30 is used to correct myopia; when the second surface 31 is a convex spherical surface, the second lens component 30 is used to correct hyperopia. When the user is only nearsighted or farsighted (that is, without astigmatism), he only needs to adjust the second surface 31 to a concave spherical surface or a convex spherical surface with corresponding curvature. By adjusting the surface shape and curvature of the second surface 31, the same lens module 100 can be suitable for myopic users with different degrees of myopia and hyperopic users with different degrees of hyperopia. The term "concave spherical surface" in this application refers to a spherical surface that is concave inward, that is, a spherical concave surface. The term "convex sphere" refers to a spherical surface that bulges outward, that is, a spherical convex surface.

在一些实施例中,所述第一透镜组件10为圆柱镜,所述第一透镜组件10具有轴位,所述第一表面11的圆柱面,所述第一透镜组件10的轴位的方向可调节。不同的散光用户,其散光的方向不同(即轴位方向不同),因此,哪怕是散光度数相同的镜片,当用户散光轴位不同时,也不能适用。本申请的第一透镜组件10的散光轴位可以根据需要任意进行调节,从而适用于不同轴位方向,不同散光度数的用户,适用范围更广。术语“轴位”代表散光的方向,散光眼镜需要准确及稳定的置于要矫正的轴位上,才能确保视力清晰,因此散光镜提供的“轴位”越多越全面,矫正散光的效果自然就会越好。In some embodiments, the first lens component 10 is a cylindrical mirror, the first lens component 10 has an axial position, a cylindrical surface of the first surface 11 , and a direction of the axial position of the first lens component 10 adjustable. Different users with astigmatism have different directions of astigmatism (that is, different axial directions). Therefore, even lenses with the same astigmatism degree cannot be used when users have different astigmatism axes. The astigmatism axis of the first lens assembly 10 of the present application can be adjusted arbitrarily as needed, so that it is suitable for users with different axial directions and different astigmatism degrees, and has a wider application range. The term "axis" represents the direction of astigmatism. Astigmatism glasses need to be accurately and stably placed on the axis to be corrected to ensure clear vision. Therefore, the more "axis positions" provided by astigmatism glasses, the more comprehensive the effect of correcting astigmatism will be natural. will be better.

可选地,所述第一表面11沿垂直于所述轴位的方向可调节的曲率半径R1的范围为:R1≥0.065m。进一步地,所述第一表面11沿垂直于所述轴位的方向可调节的曲率半径R1的范围为:0.065m≤R1≤1.84m。具体地,所述第一表面11沿垂直于所述轴位的方向可调节的曲率半径R1可以为但不限于为0.065m、0.08m、0.1m、0.3m、0.5m、0.8m、1.0m、1.2m、1.4m、1.6、1.84m、2.0m、3.0m、5m、8m等。曲率半径越小,曲率越大,第一透镜组件10可以调节的近视散光或远视散光度数越高。Optionally, the range of the adjustable curvature radius R1 of the first surface 11 along the direction perpendicular to the axis is: R1≥0.065m. Furthermore, the range of the adjustable curvature radius R1 of the first surface 11 along the direction perpendicular to the axis is: 0.065m≤R1≤1.84m. Specifically, the adjustable curvature radius R1 of the first surface 11 in the direction perpendicular to the axis may be, but is not limited to, 0.065m, 0.08m, 0.1m, 0.3m, 0.5m, 0.8m, 1.0m. , 1.2m, 1.4m, 1.6, 1.84m, 2.0m, 3.0m, 5m, 8m, etc. The smaller the radius of curvature and the larger the curvature, the higher the degree of myopia astigmatism or hyperopia astigmatism that the first lens assembly 10 can adjust.

可选地,所述第一透镜组件10可调节的近视散光度数De1的范围为:0°≤De1≤700°。具体地,De1可以为但不限于为0°、25°、50°、75°、100°、125°、150°、175°、200°、225°、250°、275°、300°、325°、350°、375°、400°、425°、450°、475°、500°、525°、550°、575°、600°、625°、650°、675°、700°等。第一透镜组件10可调节的近视散光度数越高,第一表面11曲率越大。Optionally, the range of the adjustable myopic astigmatism degree De1 of the first lens assembly 10 is: 0°≤De1≤700°. Specifically, De1 can be, but is not limited to, 0°, 25°, 50°, 75°, 100°, 125°, 150°, 175°, 200°, 225°, 250°, 275°, 300°, 325 °, 350°, 375°, 400°, 425°, 450°, 475°, 500°, 525°, 550°, 575°, 600°, 625°, 650°, 675°, 700°, etc. The higher the adjustable myopic astigmatism of the first lens assembly 10, the greater the curvature of the first surface 11.

可选地,所述第一透镜组件10可调节的远视散光度数De2的范围为:0°≤De2≤700°。具体地,De2可以为但不限于为0°、25°、50°、75°、100°、125°、150°、175°、200°、225°、250°、275°、300°、325°、350°、375°、400°、425°、450°、475°、500°、525°、550°、575°、600°、625°、650°、675°、700°等。第一透镜组件10可调节的远视散光度数越高,第一表面11曲率越大。Optionally, the range of the adjustable hyperopic astigmatism power De2 of the first lens assembly 10 is: 0°≤De2≤700°. Specifically, De2 can be, but is not limited to, 0°, 25°, 50°, 75°, 100°, 125°, 150°, 175°, 200°, 225°, 250°, 275°, 300°, 325 °, 350°, 375°, 400°, 425°, 450°, 475°, 500°, 525°, 550°, 575°, 600°, 625°, 650°, 675°, 700°, etc. The higher the adjustable degree of hyperopic astigmatism of the first lens assembly 10, the greater the curvature of the first surface 11.

在一些实施例中,所述第二表面31可调节的曲率半径R2的范围为R2≥0.065m。进一步地,所述第二表面31沿垂直于所述轴位的方向可调节的曲率半径R2的范围为:0.065m≤R2≤1.84m。具体地,所述第二表面31沿垂直于所述轴位的方向可调节的曲率半径R2可以为但不限于为0.065m、0.08m、0.1m、0.3m、0.5m、0.8m、1.0m、1.2m、1.4m、1.6、1.84m、2.0m、3.0m、5m、8m等。曲率半径越小,曲率越大,第二透镜组件30可以调节的近视或远视度数越高。In some embodiments, the range of the adjustable curvature radius R2 of the second surface 31 is R2≥0.065m. Furthermore, the range of the adjustable curvature radius R2 of the second surface 31 along the direction perpendicular to the axis is: 0.065m≤R2≤1.84m. Specifically, the adjustable radius of curvature R2 of the second surface 31 in the direction perpendicular to the axis may be, but is not limited to, 0.065m, 0.08m, 0.1m, 0.3m, 0.5m, 0.8m, 1.0m. , 1.2m, 1.4m, 1.6, 1.84m, 2.0m, 3.0m, 5m, 8m, etc. The smaller the radius of curvature and the larger the curvature, the higher the degree of myopia or hyperopia that the second lens assembly 30 can adjust.

可选地,所述第二透镜组件30可调节的近视度数De3的范围为:0°≤De3≤700°。具体地,De3可以为但不限于为0°、25°、50°、75°、100°、125°、150°、175°、200°、225°、250°、275°、300°、325°、350°、375°、400°、425°、450°、475°、500°、525°、550°、575°、600°、625°、650°、675°、700°等。第二透镜组件30可调节的近视度数越高,第二表面31曲率越大。Optionally, the range of the adjustable myopia degree De3 of the second lens assembly 30 is: 0°≤De3≤700°. Specifically, De3 can be, but is not limited to, 0°, 25°, 50°, 75°, 100°, 125°, 150°, 175°, 200°, 225°, 250°, 275°, 300°, 325 °, 350°, 375°, 400°, 425°, 450°, 475°, 500°, 525°, 550°, 575°, 600°, 625°, 650°, 675°, 700°, etc. The higher the degree of myopia that the second lens assembly 30 can adjust, the greater the curvature of the second surface 31 is.

可选地,所述第二透镜组件30可调节的远视度数De4的范围为:0°≤De4≤700°。具体地,De4可以为但不限于为0°、25°、50°、75°、100°、125°、150°、175°、200°、225°、250°、275°、300°、325°、350°、375°、400°、425°、450°、475°、500°、525°、550°、575°、600°、625°、650°、675°、700°等。第二透镜组件30可调节的远视度数越高,第二表面31曲率越大。Optionally, the range of the adjustable distance vision degree De4 of the second lens assembly 30 is: 0°≤De4≤700°. Specifically, De4 can be, but is not limited to, 0°, 25°, 50°, 75°, 100°, 125°, 150°, 175°, 200°, 225°, 250°, 275°, 300°, 325 °, 350°, 375°, 400°, 425°, 450°, 475°, 500°, 525°, 550°, 575°, 600°, 625°, 650°, 675°, 700°, etc. The higher the adjustable distance vision power of the second lens assembly 30, the greater the curvature of the second surface 31.

可选地,所述第二透镜组件30的可调节焦距f可以为f≥1/7m,或者f≤-1/7m。进一步地,所述第二透镜组件30的可调节焦距f的范围为1/7m≤f≤4m,或者-4m≤f≤-1/7m。具体地,所述第二透镜组件30的可调节焦距f可以为但不限于为-10m、-9m、-8m、-7m、-6m、-5m、-4m、-3m、-2m、-1m、-1/7m、1/7m、1m、2m、3m、4m、5m、6m、7m、8m、9m、10m等。所述第二透镜组件30的可调节焦距f的绝对值越小,则得到的第二透镜组件30的可调节近视度数或远视度数越高,第二表面31曲率越大。Optionally, the adjustable focal length f of the second lens assembly 30 may be f≥1/7m, or f≤-1/7m. Further, the range of the adjustable focal length f of the second lens assembly 30 is 1/7m≤f≤4m, or -4m≤f≤-1/7m. Specifically, the adjustable focal length f of the second lens assembly 30 may be, but is not limited to, -10m, -9m, -8m, -7m, -6m, -5m, -4m, -3m, -2m, -1m. , -1/7m, 1/7m, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, etc. The smaller the absolute value of the adjustable focal length f of the second lens component 30 is, the higher the resulting adjustable myopia or hyperopia degree of the second lens component 30 is, and the greater the curvature of the second surface 31 is.

请参见图9及图10,在一些实施例中,所述第一透镜组件10包括:第一透光层12、第一弹性层14、第一流体16以及调节机构18。第一弹性层14设置于所述第一透光层12的一侧,且与所述第一透光层12围合成第一收容腔101,所述第一弹性层14背离所述第一透光层12的表面为所述第一表面11。所述第一流体16密封于所述第一收容腔101内;所述调节机构18用于挤压所述第一弹性层14,以使所述第一弹性层14发生变形,并使所述第一表面11呈圆柱面,且所述圆柱面的曲率可调节,以使所述第一透镜组件10的散光度数可调节。Referring to FIGS. 9 and 10 , in some embodiments, the first lens component 10 includes: a first light-transmitting layer 12 , a first elastic layer 14 , a first fluid 16 and an adjustment mechanism 18 . The first elastic layer 14 is disposed on one side of the first light-transmitting layer 12 and forms a first receiving cavity 101 with the first light-transmitting layer 12 . The first elastic layer 14 faces away from the first transparent layer 12 . The surface of the optical layer 12 is the first surface 11 . The first fluid 16 is sealed in the first receiving cavity 101; the adjustment mechanism 18 is used to squeeze the first elastic layer 14 to deform the first elastic layer 14 and make the first elastic layer 14 deform. The first surface 11 is a cylindrical surface, and the curvature of the cylindrical surface is adjustable, so that the astigmatism power of the first lens assembly 10 is adjustable.

在一些实施例中,所述调节机构18包括所述调节件181,调节件181设置于所述第一弹性层14背离所述第一透光层12的表面,所述调节件181包括多个调节子件1811,所述多个调节子件1811依次排列以使所述调节件181为环形结构,沿所述第一透光层12、所述第一弹性层14及所述调节件181层叠方向上,所述多个调节子件1811的高度可调节。当所述多个调节子件1811的高度按预设规律变化时,所述多个调节子件1811分别挤压所述第一弹性层14,以使所述第一弹性层14发生变形,并使所述第一表面11呈圆柱面,且所述圆柱面的曲率可调节,以使所述第一透镜组件10的散光度数可调节。可以理解地,第一透镜组件10为液体透镜。In some embodiments, the adjustment mechanism 18 includes the adjustment member 181 . The adjustment member 181 is disposed on a surface of the first elastic layer 14 facing away from the first light-transmitting layer 12 . The adjustment member 181 includes a plurality of Adjustment component 1811, the plurality of adjustment component 1811 are arranged in sequence so that the adjustment component 181 has an annular structure, stacked along the first light-transmitting layer 12, the first elastic layer 14 and the adjustment component 181 direction, the heights of the plurality of adjustment sub-members 1811 are adjustable. When the heights of the plurality of adjustment components 1811 change according to preset rules, the plurality of adjustment components 1811 respectively squeeze the first elastic layer 14 to deform the first elastic layer 14 and The first surface 11 is made into a cylindrical surface, and the curvature of the cylindrical surface is adjustable, so that the astigmatism power of the first lens assembly 10 is adjustable. It can be understood that the first lens assembly 10 is a liquid lens.

可选地,第一弹性层14的外周缘与第一透光层12相连接,围合成密闭的第一收容腔101,第一收容腔101内充满第一流体16。Optionally, the outer periphery of the first elastic layer 14 is connected to the first light-transmitting layer 12 to form a sealed first receiving cavity 101 , and the first receiving cavity 101 is filled with the first fluid 16 .

可选地,初始状态时,第一收容腔101内充满第一流体16,第一弹性层14处于松弛状态(即未被拉伸也未被压缩状态),当所述多个调节子件1811的高度按预设规律变化时,不同高度的调节子件1811对第一弹性层14的挤压程度不同,从而使得第一弹性层14的不同位置对第一流体16产生不同程度的挤压,在调节件181与第一流体16的共同作用下,使第一弹性层14发生不同程度的变形,第一表面11形成与调节件181形状匹配的面型和曲率,从而改变散光度数的调节。此外,通过调节多个调节子件711的高度变化趋势,以调节弹性层30发生形变的方向,从而调节散光镜片100轴位的方向。本实施例的第一透镜组件10散光度数的方法简便,结构简单,通过调节多个调节子件1811的高度,不仅可以实现任意散光度数的矫正,此外,还可以调节轴位的方向,以实现任意轴位的散光的矫正。Optionally, in the initial state, the first receiving cavity 101 is filled with the first fluid 16 and the first elastic layer 14 is in a relaxed state (that is, not stretched or compressed). When the plurality of adjustment components 1811 When the height changes according to a preset rule, the adjusting components 1811 of different heights squeeze the first elastic layer 14 to different degrees, so that different positions of the first elastic layer 14 squeeze the first fluid 16 to different degrees. Under the joint action of the adjusting member 181 and the first fluid 16, the first elastic layer 14 is deformed to varying degrees, and the first surface 11 forms a surface shape and curvature matching the shape of the adjusting member 181, thereby changing the adjustment of the astigmatism degree. In addition, the direction in which the elastic layer 30 deforms is adjusted by adjusting the height change trend of the plurality of adjustment components 711, thereby adjusting the axial direction of the astigmatism lens 100. The method of adjusting the astigmatism of the first lens assembly 10 of this embodiment is simple and simple in structure. By adjusting the heights of the multiple adjustment components 1811, not only can any astigmatism be corrected, but also the direction of the axis can be adjusted to achieve Correction of astigmatism in any axial position.

在一些实施例中,所述第一透光层12的折射率n1、所述第一弹性层14的折射率n2及所述第一流体16的折射率n3满足以下关系式:In some embodiments, the refractive index n1 of the first light-transmitting layer 12 , the refractive index n2 of the first elastic layer 14 and the refractive index n3 of the first fluid 16 satisfy the following relationship:

0.95≤n1/n2≤1.05;0.95≤n1/n2≤1.05;

0.95≤n1/n3≤1.05;0.95≤n1/n3≤1.05;

0.95≤n2/n3≤1.05。0.95≤n2/n3≤1.05.

具体地,n1/n2可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。n1/n3可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。n2/n3可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。Specifically, n1/n2 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc. n1/n3 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc. n2/n3 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc.

所述第一透光层12的折射率n1、所述第一弹性层14的折射率n2及所述第一流体16的折射率n3越接近,当光线经过所述第一透光层12、所述第一弹性层14及所述第一流体16两两的界面时,越不易发生折射,因此,所述第一透光层12的折射率n1、所述第一弹性层14的折射率n2及所述第一流体16的折射率n3越接近越好。The closer the refractive index n1 of the first light-transmitting layer 12 , the refractive index n2 of the first elastic layer 14 and the refractive index n3 of the first fluid 16 are, the closer the light passes through the first light-transmitting layer 12 and the refractive index n3 of the first fluid 16 . The interface between the first elastic layer 14 and the first fluid 16 is less likely to cause refraction. Therefore, the refractive index n1 of the first light-transmitting layer 12 and the refractive index of the first elastic layer 14 The closer n2 and the refractive index n3 of the first fluid 16 are, the better.

在一具体实施例中,所述第一透光层12的折射率n1、所述第一弹性层14的折射率n2与所述第一流体16的折射率n3相等。In a specific embodiment, the refractive index n1 of the first light-transmitting layer 12 , the refractive index n2 of the first elastic layer 14 and the refractive index n3 of the first fluid 16 are equal.

在一些实施例中,所述第一透光层12的弹性模量E1的范围为:E1≥50Gpa。具体地,所述第一透光层12的弹性模量E1可以为但不限于为50Gpa、53Gpa、55Gpa、60Gpa、70Gpa、80Gpa、90Gpa、100Gpa等。第一透光层12的弹性模量E1不宜太低,当第一透光层12的弹性模量太低时,在进行第一透镜组件10散光度数调节及第二透镜组件30远视或近视度数调节时,难以保证第一透光层12始终保持平整,不发生变形。第一透光层12的弹性模量E1越大越好,第一透光层12的弹性模量越大,则第一透光层12可以做得越薄,越有利于镜片模组100的轻薄化;但是,随着第一透光层12弹性模量的增加,对第一透光层12材料的要求越来越高,会提高第一透光层12的成本。In some embodiments, the elastic modulus E1 of the first light-transmitting layer 12 ranges from: E1 ≥ 50 Gpa. Specifically, the elastic modulus E1 of the first light-transmitting layer 12 may be, but is not limited to, 50Gpa, 53Gpa, 55Gpa, 60Gpa, 70Gpa, 80Gpa, 90Gpa, 100Gpa, etc. The elastic modulus E1 of the first light-transmitting layer 12 should not be too low. When the elastic modulus of the first light-transmitting layer 12 is too low, the astigmatism power of the first lens assembly 10 and the farsightedness or myopia power of the second lens assembly 30 are adjusted. During adjustment, it is difficult to ensure that the first light-transmitting layer 12 always remains flat and does not deform. The larger the elastic modulus E1 of the first light-transmitting layer 12 , the better. The greater the elastic modulus of the first light-transmitting layer 12 , the thinner the first light-transmitting layer 12 can be made, which is more conducive to the lightness and thinness of the lens module 100 ; however, as the elastic modulus of the first light-transmitting layer 12 increases, the requirements for the material of the first light-transmitting layer 12 become higher and higher, which will increase the cost of the first light-transmitting layer 12 .

可选地,第一透光层12的透光率大于或等于85%。进一步地,第一透光层12的透光率大于或等于90%。进一步地,第一透光层12的透光率大于或等于95%。具体地,第一透光层12的透光率可以为但不限于为85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%等。第一透光层12的透光率越高,镜片模组100具有更好的视觉效果。Optionally, the light transmittance of the first light-transmitting layer 12 is greater than or equal to 85%. Further, the light transmittance of the first light-transmitting layer 12 is greater than or equal to 90%. Further, the light transmittance of the first light-transmitting layer 12 is greater than or equal to 95%. Specifically, the light transmittance of the first light-transmitting layer 12 may be, but is not limited to, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98 %, 99%, etc. The higher the light transmittance of the first light-transmitting layer 12, the better the visual effect of the lens module 100.

可选地,第一透光层12的材质可以为但不限于为聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、玻璃、蓝宝石等中的至少一种。这些材料通常是透光的,可以使得镜片模组100整体颜色均一性更好,具有更好的外观,且容易获得弹性模量大于50Gpa的第一透光层12。Optionally, the material of the first light-transmitting layer 12 may be, but is not limited to, at least one of polymethylmethacrylate (PMMA), polycarbonate (PC), glass, sapphire, and the like. These materials are usually light-transmissive, which can make the overall color uniformity of the lens module 100 better, have a better appearance, and make it easy to obtain the first light-transmitting layer 12 with an elastic modulus greater than 50 Gpa.

可选地,第一透光层12的厚度的范围为1mm至4mm。具体地,第一透光层12的厚度可以为但不限于为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm。第一透光层12的厚度太薄,在第一透镜组件10及第二透镜组件30度数调节的过程中,容易发生变形或损坏,第一透光层12的厚度太厚,增加了镜片模组100的重量和厚度,不利于镜片模组100的轻薄化。Optionally, the thickness of the first light-transmitting layer 12 ranges from 1 mm to 4 mm. Specifically, the thickness of the first light-transmitting layer 12 may be, but is not limited to, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, or 4 mm. The thickness of the first light-transmitting layer 12 is too thin, and it is easy to be deformed or damaged during the power adjustment process of the first lens assembly 10 and the second lens assembly 30. The thickness of the first light-transmitting layer 12 is too thick, which increases the lens mold. The weight and thickness of the lens module 100 are not conducive to making the lens module 100 thin and light.

在一些实施例中,所述第一弹性层14的弹性模量E2的范围为:10Mpa≤E2≤100Mpa;具体地,第一弹性层14的弹性模量E2可以为但不限于为10Mpa、20Mpa、30Mpa、40Mpa、50Mpa、60Mpa、70Mpa、80Mpa、90Mpa、100Mpa等。第一弹性层14的弹性模量不宜太大也不宜太小,第一弹性层14的弹性模量过大时,增加了第一透镜组件10散光度数调节的难度,第一弹性层14的弹性模量过小时,第一弹性层14受重力等外力影响比较明显,比如运动时由于惯性因素(如调节子件1811高度调节时第一弹性层14运动产生的惯性),使得第一弹性层14变形,难以维持第一弹性层14的第一表面11的形状,影响第一透镜组件10散光度数的调节。In some embodiments, the elastic modulus E2 of the first elastic layer 14 is in the range of: 10Mpa≤E2≤100Mpa; specifically, the elastic modulus E2 of the first elastic layer 14 can be, but is not limited to, 10Mpa or 20Mpa. , 30Mpa, 40Mpa, 50Mpa, 60Mpa, 70Mpa, 80Mpa, 90Mpa, 100Mpa, etc. The elastic modulus of the first elastic layer 14 should not be too large or too small. When the elastic modulus of the first elastic layer 14 is too large, it will increase the difficulty of adjusting the astigmatism of the first lens assembly 10. The elasticity of the first elastic layer 14 When the modulus is too small, the first elastic layer 14 is significantly affected by external forces such as gravity. For example, due to inertial factors during movement (such as the inertia generated by the movement of the first elastic layer 14 when the height of the adjusting component 1811 is adjusted), the first elastic layer 14 Deformation makes it difficult to maintain the shape of the first surface 11 of the first elastic layer 14 and affects the adjustment of the astigmatism power of the first lens component 10 .

可选地,第一弹性层14是透光的,第一弹性层14的透光率大于或等于85%。进一步地,第一弹性层14的透光率大于或等于90%。进一步地,第一弹性层14的透光率大于或等于95%。具体地,第一弹性层14的透光率可以为但不限于为85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%等。第一弹性层14的透光率越高,镜片模组100具有更好的视觉效果。Optionally, the first elastic layer 14 is light-transmissive, and the light transmittance of the first elastic layer 14 is greater than or equal to 85%. Further, the light transmittance of the first elastic layer 14 is greater than or equal to 90%. Further, the light transmittance of the first elastic layer 14 is greater than or equal to 95%. Specifically, the light transmittance of the first elastic layer 14 may be, but is not limited to, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99%, etc. The higher the light transmittance of the first elastic layer 14 is, the better the visual effect of the lens module 100 will be.

可选地,第一弹性层14的材质可以为但不限于为聚二甲基硅氧烷(PDMA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。这些材料通常是透光的,可以使得镜片模组100整体颜色均一性更好,具有更好的外观。Optionally, the material of the first elastic layer 14 may be, but is not limited to, polydimethylsiloxane (PDMA), polymethylmethacrylate (PMMA), polycarbonate (PC), polyterephthalate At least one of ethylene glycol ester (PET) and the like. These materials are usually light-transmissive, which can make the overall color uniformity of the lens module 100 better and have a better appearance.

可选地,沿第一弹性层14与第一透光层12层叠方向上,第一弹性层14的厚度的范围为50μm至300μm。进一步地,第一弹性层14的厚度的范围为100μm至200μm。具体地,第一弹性层14的厚度可以为但不限于为50μm、60μm、70μm、80μm、100μm、120μm、150μm、180μm、200μm、220μm、250μm、280μm、300μm等。第一弹性层14太薄,在进行散光度数调节时,第一弹性层14的中间位置容易凹陷,难以维持理想的圆柱面;第一弹性层14太厚,则通过调节子件1811难以控制第一弹性层14发生变形,增加散光度数调节的难度。Optionally, along the stacking direction of the first elastic layer 14 and the first light-transmitting layer 12, the thickness of the first elastic layer 14 ranges from 50 μm to 300 μm. Further, the thickness of the first elastic layer 14 ranges from 100 μm to 200 μm. Specifically, the thickness of the first elastic layer 14 may be, but is not limited to, 50 μm, 60 μm, 70 μm, 80 μm, 100 μm, 120 μm, 150 μm, 180 μm, 200 μm, 220 μm, 250 μm, 280 μm, 300 μm, etc. The first elastic layer 14 is too thin, and when adjusting the astigmatism power, the middle position of the first elastic layer 14 is easily sunken, making it difficult to maintain an ideal cylindrical surface; the first elastic layer 14 is too thick, and it is difficult to control the first elastic layer 1811 through the adjustment component 1811. An elastic layer 14 deforms, which increases the difficulty of adjusting the astigmatism degree.

可选地,第一透光层12与第一弹性层14可以通过焊接(如将第一透光层12与第一弹性层14贴合后,施加高温高压,使得第一透光层12与第一弹性层14材料融化,然后结合在一起)、热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合在一起。当第一透光层12与第一弹性层14的材质为PMMA或PC时,第一透光层12与第一弹性层14可以通过焊接粘合,当第一透光层12与第一弹性层14的材质为其它材料时,可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合在一起。Alternatively, the first light-transmitting layer 12 and the first elastic layer 14 can be welded (for example, after the first light-transmitting layer 12 and the first elastic layer 14 are bonded, high temperature and high pressure are applied, so that the first light-transmitting layer 12 and the first elastic layer 14 can be welded together). The first elastic layer 14 material is melted and then combined together), hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. are bonded together. When the first light-transmitting layer 12 and the first elastic layer 14 are made of PMMA or PC, the first light-transmitting layer 12 and the first elastic layer 14 can be bonded by welding. When the layer 14 is made of other materials, it can be bonded together through hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc.

可选地,第一流体16的折射率大于1.4,具体地,第一流体16的折射率可以为但不限于为1.4、1.43、1.45、1.48、1.50、1.53、1.45、1.48、1.60、1.62、1.65、1.67、1.7等。第一流体16可以为但不限于为二甲基硅油、聚乙二醇(例如PEG200)等中的至少一种。Optionally, the refractive index of the first fluid 16 is greater than 1.4. Specifically, the refractive index of the first fluid 16 can be, but is not limited to, 1.4, 1.43, 1.45, 1.48, 1.50, 1.53, 1.45, 1.48, 1.60, 1.62, 1.65, 1.67, 1.7, etc. The first fluid 16 may be, but is not limited to, at least one of dimethicone, polyethylene glycol (such as PEG200), and the like.

在一些实施例中,当所述多个调节子件1811的高度按预设规律变化,以使所述调节件181面向所述第一弹性层14的表面为凹圆柱面时,所述多个调节子件1811挤压所述第一弹性层14发生变形,以使所述第一弹性层14的所述第一表面11为凸圆柱面;当所述多个调节子件1811的高度按预设规律变化,以使所述调节件181面向所述第一弹性层14的表面为凸圆柱面时,所述多个调节子件1811挤压所述第一弹性层14发生变形,以使所述第一弹性层14的所述第一表面11为凹圆柱面。In some embodiments, when the heights of the plurality of adjusting members 1811 change according to a preset rule so that the surface of the adjusting member 181 facing the first elastic layer 14 is a concave cylindrical surface, the plurality of adjusting members 1811 are The adjusting member 1811 squeezes the first elastic layer 14 to deform, so that the first surface 11 of the first elastic layer 14 is a convex cylindrical surface; when the heights of the plurality of adjusting members 1811 are predetermined, Assume that the regularity changes so that when the surface of the adjusting member 181 facing the first elastic layer 14 is a convex cylindrical surface, the plurality of adjusting sub-members 1811 squeeze the first elastic layer 14 to deform, so that the first elastic layer 14 is deformed. The first surface 11 of the first elastic layer 14 is a concave cylindrical surface.

调节件181的整体结构为环形结构,即多个调节子件1811依次排列,围合成环形结构,所述调节件181面向所述第一弹性层14的表面为凹圆柱面,可以理解地,环形结构的调节件181面向第一弹性层14的表面形成凹陷的圆柱面。凹陷两端的调节子件1811高度较高,会更多的挤压第一弹性层14朝向靠近第一透光层12的方向移动,而凹陷中间的高度较低,凹陷中间位置的第一弹性层14则朝向背离第一透光层12的方向移动,从而使第一弹性层14的第一表面11呈凸圆柱面。The overall structure of the adjusting member 181 is an annular structure, that is, a plurality of adjusting sub-members 1811 are arranged in sequence to form an annular structure. The surface of the adjusting member 181 facing the first elastic layer 14 is a concave cylindrical surface. It can be understood that the annular shape The surface of the structural adjustment member 181 facing the first elastic layer 14 forms a concave cylindrical surface. The height of the adjustment components 1811 at both ends of the recess is higher, which will squeeze the first elastic layer 14 more toward the direction closer to the first light-transmitting layer 12 , while the height in the middle of the recess is lower, and the first elastic layer in the middle of the recess is 14 moves in a direction away from the first light-transmitting layer 12, so that the first surface 11 of the first elastic layer 14 forms a convex cylindrical surface.

同样地,所述调节件181面向所述第一弹性层14的表面为凸圆柱面,可以理解地,环形结构的调节件181面向第一弹性层14的表面形成朝向第一弹性层14凸起的圆柱面。凸起中间的调节子件1811高度较高,会更多的挤压第一弹性层14朝向靠近第一透光层12的方向移动,而凸起两端的高度较低,凸起两端位置的第一弹性层14则朝向背离第一透光层12的方向移动,从而使第一弹性层14的第一表面11呈凹圆柱面。Similarly, the surface of the adjusting member 181 facing the first elastic layer 14 is a convex cylindrical surface. It can be understood that the surface of the annular adjusting member 181 facing the first elastic layer 14 forms a convex surface toward the first elastic layer 14 cylindrical surface. The height of the adjustment component 1811 in the middle of the protrusion is higher, which will squeeze the first elastic layer 14 more and move toward the direction closer to the first light-transmitting layer 12, while the height of the two ends of the protrusion is lower, and the height of the two ends of the protrusion is lower. The first elastic layer 14 moves in a direction away from the first light-transmitting layer 12, so that the first surface 11 of the first elastic layer 14 forms a concave cylindrical surface.

可以理解地,在第一透镜组件10散光度数的调节过程中,调节件181始终位于第一弹性层14,换言之,调节件181始终贴合第一弹性层14。因此,调节件181面向第一弹性层14的表面与第一表面11的曲率始终相等。It can be understood that during the adjustment process of the astigmatism power of the first lens assembly 10, the adjusting member 181 is always located on the first elastic layer 14. In other words, the adjusting member 181 is always in contact with the first elastic layer 14. Therefore, the curvature of the surface of the adjusting member 181 facing the first elastic layer 14 and the first surface 11 are always equal.

请一并参见图11及图12,在一些实施例中,当第一透镜组件10用于矫正散光时,多个调节子件1811包括相对设置的第一调节子件1811a及第二调节子件1811b、以及相对设置的第三调节子件1811c及第四调节子件1811d,第一调节子件1811a及第二调节子件1811b的连线与第三调节子件1811c及第四调节子件1811d的连线相交;自所述第三调节子件1811c向所述第一调节子件1811a的方向、自所述第三调节子件1811c向所述第二调节子件1811b的方向、自所述第四调节子件1811d向所述第一调节子件1811a的方向、以及自所述第四调节子件1811d向所述第二调节子件1811b的方向,所述多个调节子件1811的高度的变化趋势相同,所述变化趋势为逐渐增大或逐渐减小。换言之,如图11所示,当变化趋势为逐渐增大时,所述第三调节子件1811c向所述第一调节子件1811a的方向、自所述第三调节子件1811c向所述第二调节子件1811b的方向、自所述第四调节子件1811d向所述第一调节子件1811a的方向、以及自所述第四调节子件1811d向所述第二调节子件1811b的方向,所述多个调节子件1811的高度均逐渐增大,此时,调节件181面向第一弹性层14的表面为凹圆柱面,第一弹性层14的第一表面11为凸圆柱面,第一透镜组件10用于调节远视散光。如图12所示,当变化趋势为逐渐减小时,所述第三调节子件1811c向所述第一调节子件1811a的方向、自所述第三调节子件1811c向所述第二调节子件1811b的方向、自所述第四调节子件1811d向所述第一调节子件1811a的方向、以及自所述第四调节子件1811d向所述第二调节子件1811b的方向,所述多个调节子件1811的高度逐渐减小,此时,调节件181面向第一弹性层14的表面为凸圆柱面,第一弹性层14的第一表面11为凹圆柱面,第一透镜组件10用于调节近视散光。通过调节多个调节子件1811的高度,不仅可以实现任意散光度数(近视散光及远视散光)的矫正,此外,还可以调节轴位的方向,以实现任意轴位的散光的矫正。Please refer to Figures 11 and 12 together. In some embodiments, when the first lens assembly 10 is used to correct astigmatism, the plurality of adjustment components 1811 include a first adjustment component 1811a and a second adjustment component that are oppositely arranged. 1811b, and the oppositely arranged third adjusting component 1811c and the fourth adjusting component 1811d, the connection between the first adjusting component 1811a and the second adjusting component 1811b and the third adjusting component 1811c and the fourth adjusting component 1811d The connecting lines intersect; from the direction of the third adjustment component 1811c to the first adjustment component 1811a, from the third adjustment component 1811c to the second adjustment component 1811b, from the direction of the third adjustment component 1811c to the second adjustment component 1811b, The heights of the plurality of adjustment components 1811 are in the direction from the fourth adjustment component 1811d to the first adjustment component 1811a and from the fourth adjustment component 1811d to the second adjustment component 1811b. The changing trend is the same, and the changing trend is gradually increasing or gradually decreasing. In other words, as shown in Figure 11, when the change trend is to gradually increase, the third adjustment component 1811c moves in the direction of the first adjustment component 1811a, from the third adjustment component 1811c to the third adjustment component 1811a. The direction of the second adjusting component 1811b, the direction from the fourth adjusting component 1811d to the first adjusting component 1811a, and the direction from the fourth adjusting component 1811d to the second adjusting component 1811b , the heights of the plurality of adjusting sub-members 1811 gradually increase. At this time, the surface of the adjusting member 181 facing the first elastic layer 14 is a concave cylindrical surface, and the first surface 11 of the first elastic layer 14 is a convex cylindrical surface. The first lens assembly 10 is used to adjust hyperopic astigmatism. As shown in Figure 12, when the change trend is to gradually decrease, the third adjustment component 1811c moves in the direction of the first adjustment component 1811a, from the third adjustment component 1811c to the second adjustment component. The direction of the member 1811b, the direction from the fourth adjustment member 1811d to the first adjustment member 1811a, and the direction from the fourth adjustment member 1811d to the second adjustment member 1811b, the The heights of the plurality of adjusting sub-members 1811 gradually decrease. At this time, the surface of the adjusting member 181 facing the first elastic layer 14 is a convex cylindrical surface, the first surface 11 of the first elastic layer 14 is a concave cylindrical surface, and the first lens assembly 10 is used to adjust myopic astigmatism. By adjusting the heights of the plurality of adjustment components 1811, not only can any degree of astigmatism (myopic astigmatism and hyperopic astigmatism) be corrected, but the direction of the axis can also be adjusted to correct any axial astigmatism.

在一具体实施例中,第一调节子件1811a及第二调节子件1811b的连线与第三调节子件1811c及第四调节子件1811d的连线垂直。In a specific embodiment, the connection line between the first adjustment component 1811a and the second adjustment component 1811b is perpendicular to the connection line between the third adjustment component 1811c and the fourth adjustment component 1811d.

请再次参见图10,在一些实施例中,所述调节机构18还包括第一致动器183。所述第一致动器183用于按预设规律调节每个所述调节子件1811的体积,从而调节所述多个调节子件1811沿所述第一透光层12、所述第一弹性层14及所述调节件181层叠方向上的高度。通过第一致动器183控制调节子件1811的体积大小,从而控制调节子件1811的高度,调节方法简便,易于实现。Referring to FIG. 10 again, in some embodiments, the adjustment mechanism 18 further includes a first actuator 183 . The first actuator 183 is used to adjust the volume of each adjustment component 1811 according to a preset rule, thereby adjusting the plurality of adjustment components 1811 along the first light-transmitting layer 12, the first The height of the elastic layer 14 and the adjustment member 181 in the stacking direction. The first actuator 183 controls the volume of the adjustment component 1811, thereby controlling the height of the adjustment component 1811. The adjustment method is simple and easy to implement.

在一具体实施例中,所述调节子件1811为弹性球囊(例如弹性气囊),所述调节机构18还包括第二流体(图未示)及多个第一阀门185;所述第二流体位于所述调节子件1811内;每个所述第一阀门185连通一个所述调节子件1811,不同的第一阀门185连通不同的调节子件1811,所述第一致动器183连通所述多个第一阀门185;当所述第一致动器183及所述多个第一阀门185均开启时,所述第一致动器183用于调节所述多个调节子件1811内的所述第二流体的量,以调节所述调节子件1811的体积,从而使所述多个调节子件1811的高度按预设规律变化,实现第一透镜组件10散光度数的调节。In a specific embodiment, the adjustment component 1811 is an elastic balloon (such as an elastic air bag), and the adjustment mechanism 18 also includes a second fluid (not shown) and a plurality of first valves 185; the second The fluid is located in the regulating component 1811; each first valve 185 is connected to one regulating component 1811, different first valves 185 are connected to different regulating components 1811, and the first actuator 183 is connected to The plurality of first valves 185; when the first actuator 183 and the plurality of first valves 185 are both opened, the first actuator 183 is used to adjust the plurality of adjusting components 1811 The amount of the second fluid inside is adjusted to adjust the volume of the adjustment component 1811, so that the heights of the plurality of adjustment components 1811 change according to preset rules, thereby adjusting the astigmatism of the first lens assembly 10.

本申请术语“连通”可以为两个部件直接连通,或者,两个组件之间通过管道或管路等进行连通。The term "connection" in this application can mean that two components are directly connected, or the two components are connected through pipes or pipelines.

可以理解地,所述多个调节子件1811依次排列形成环形结构,该环形结构由多个收容第二流体的腔体组成,形成空心环腔体结构。It can be understood that the plurality of adjusting sub-members 1811 are arranged in sequence to form an annular structure. The annular structure is composed of a plurality of cavities for receiving the second fluid, forming a hollow annular cavity structure.

可选地,在第一透镜组件10处于初始状态时,每个弹性气囊处于半膨胀状态,此时,每个弹性气囊的大小相同,因此,第一弹性层14也处于平面状态,第一透镜组件10不具有散光度数。Optionally, when the first lens assembly 10 is in the initial state, each elastic air bag is in a semi-expanded state. At this time, the size of each elastic air bag is the same. Therefore, the first elastic layer 14 is also in a planar state, and the first lens Assembly 10 has no astigmatic power.

当第一致动器183往调节子件1811(即弹性球囊)内注入第二流体时,调节子件1811内的第二流体的量增加,调节子件1811的体积发生膨胀,高度增加,当第一致动器183从调节子件1811内抽取第二流体时,调节子件1811内第二流体的量减小,调节子件1811的体积缩小,高度降低。通过控制调节子件1811内第二流体的量,使调节子件1811发生膨胀或收缩,即可控制调节子件1811的体积,从而控制调节子件1811的高度,方法简便,易于实现。此外,每个调节子件1811设置一个第一阀门185,通过控制第一阀门185的开度,可以独立控制每个调节子件1811的高度。When the first actuator 183 injects the second fluid into the adjusting component 1811 (ie, the elastic balloon), the amount of the second fluid in the adjusting component 1811 increases, the volume of the adjusting component 1811 expands, and the height increases. When the first actuator 183 extracts the second fluid from the adjusting component 1811, the amount of the second fluid in the adjusting component 1811 decreases, and the volume and height of the adjusting component 1811 decreases. By controlling the amount of the second fluid in the adjusting component 1811 to expand or contract the adjusting component 1811, the volume of the adjusting component 1811 can be controlled, thereby controlling the height of the adjusting component 1811. The method is simple and easy to implement. In addition, each adjusting component 1811 is provided with a first valve 185. By controlling the opening of the first valve 185, the height of each adjusting component 1811 can be independently controlled.

请一并参见图10,具体地,当第一透镜组件10用于调节近视散光(例如90°轴位散光)时,8号调节子件1811、9号调节子件1811、24号调节子件1811及25号调节子件1811均充满第二流体(例如充满气体),由于调节子件1811膨胀,压迫第一弹性层14朝向第一透光层12靠近,将1号调节子件1811、16号调节子件1811、17号调节子件1811及32号调节子件1811的第二流体全部释放,调节子件1811收缩,带动第一弹性层14背离第一透光层12的方向移动,中间部分的调节子件1811均匀变化,使得调节件181面向第一弹性层14的表面均匀变化,此时,第一弹性层14的第一表面11则会形成光滑圆柱曲面,可以对单纯近视性散光进行屈光矫正。通过改变每个调节子件1811(如弹性气囊)内的第二流体(如气体)的量,可以对第一弹性层14的第一表面11份形状进行任意调整,实现散光度数的调整甚至能够实现单纯近视性散光的调节状态到单纯远视性散光的调节状态的转变。另外,由于每一个人的散光度数还具有轴位的区别,利用本技术方案也能够实现任意散光轴位的变化。Please refer to Figure 10 as well. Specifically, when the first lens assembly 10 is used to adjust myopic astigmatism (for example, 90° axial astigmatism), the No. 8 adjustment component 1811, the No. 9 adjustment component 1811, and the No. 24 adjustment component Both No. 1811 and No. 25 adjusting member 1811 are filled with the second fluid (for example, filled with gas). As the adjusting member 1811 expands, it presses the first elastic layer 14 toward the first light-transmitting layer 12 , and No. 1 adjusting member 1811 and 16 The second fluid of the adjustment component 1811 of No. 17, the adjustment component 1811 of No. 32, and the second fluid of the adjustment component 1811 of No. 32 are all released. The adjustment component 1811 shrinks, driving the first elastic layer 14 to move away from the first light-transmitting layer 12. The middle Part of the adjusting member 1811 changes evenly, so that the surface of the adjusting member 181 facing the first elastic layer 14 changes evenly. At this time, the first surface 11 of the first elastic layer 14 will form a smooth cylindrical surface, which can treat simple myopic astigmatism. Perform refractive correction. By changing the amount of the second fluid (such as gas) in each adjusting component 1811 (such as an elastic airbag), the shape of the first surface 11 of the first elastic layer 14 can be adjusted arbitrarily, and the degree of astigmatism can even be adjusted. Realize the transition from the adjustment state of simple myopic astigmatism to the adjustment state of simple hyperopic astigmatism. In addition, since each person's astigmatism degree also has axial differences, the use of this technical solution can also achieve any change in the astigmatism axis.

可选地,第二流体可以为气体或液体,当第二流体为气体时,第一致动器183为微型气泵。当第二流体为液体时,第一致动器183可以为微型液泵或微型泵。“微型气泵”是指体积小巧,工作介质为气态,主要用于气体采样、气体循环、真空吸附、真空保压、抽气、打气、增压等多种用途的一种气体输送装置。Alternatively, the second fluid may be a gas or a liquid. When the second fluid is a gas, the first actuator 183 is a micro air pump. When the second fluid is a liquid, the first actuator 183 may be a micro liquid pump or a micro pump. "Micro air pump" refers to a gas delivery device that is small in size and has a gaseous working medium. It is mainly used for gas sampling, gas circulation, vacuum adsorption, vacuum pressure maintaining, pumping, pumping, pressurization and other purposes.

可选地,第一致动器183的数量可以为一个或多个,第一致动器183的数量小于或等于调节子件1811的数量。当第一致动器183的数量为一个时,第一致动器183分别连通每个第一阀门185;当第一致动器183的数量为多个时,每个第一致动器183连通多个调节子件1811,不同的第一致动器183连通不同的调节子件1811,多个第一致动器183配合,调节所述多个调节子件1811的高度。第一致动器183的数量越少,越有利于镜片模组100的轻薄化,但是第一透镜组件10进行散光调节时,调节效率越低,第一致动器183的数量越多,第一透镜组件10进行散光调节时,调节效率较越高,但是不利于镜片模组100的轻薄化。Optionally, the number of the first actuators 183 may be one or more, and the number of the first actuators 183 is less than or equal to the number of the adjusting components 1811 . When the number of the first actuator 183 is one, the first actuator 183 communicates with each first valve 185 respectively; when the number of the first actuator 183 is multiple, each first actuator 183 A plurality of adjusting sub-assemblies 1811 are connected, and different first actuators 183 are connected to different adjusting sub-assemblies 1811. The plurality of first actuators 183 cooperate to adjust the heights of the plurality of adjusting sub-assemblies 1811. The smaller the number of the first actuators 183 , the more conducive to the thinness and lightness of the lens module 100 . However, when the first lens assembly 10 adjusts astigmatism, the adjustment efficiency is lower. The larger the number of the first actuators 183 , the better. When a lens assembly 10 adjusts astigmatism, the adjustment efficiency is relatively high, but it is not conducive to the thinning and lightness of the lens module 100 .

例如,第一致动器183的数量为两个,调节子件1811的数量为32个时,其中一个第一致动器183与其中16个调节子件1811均连通,另外一个第一致动器183与剩余的16个调节子件1811均连通。又例如,第一致动器183的数量为四个,调节子件1811的数量为32个时,每个第一致动器183分别连通8个调节子件1811,不同的第一致动器183连通不同的调节子件1811。For example, when the number of first actuators 183 is two and the number of adjusting components 1811 is 32, one of the first actuators 183 is connected to all 16 of the adjusting components 1811, and the other first actuator 183 is connected to all 16 of the adjusting components 1811. The device 183 is connected with the remaining 16 adjusting components 1811. For another example, when the number of first actuators 183 is four and the number of adjusting components 1811 is 32, each first actuator 183 is connected to eight adjusting components 1811 respectively, and different first actuators 183 connects different adjustment components 1811.

可选地,第一阀门185可以但不限于为微型电控阀门、微型电磁阀门等。Optionally, the first valve 185 may be, but is not limited to, a micro electronically controlled valve, a micro solenoid valve, etc.

可选地,多个调节子件1811紧密排布于第一弹性层14背离第一透光层12的表面,且围合成环形结构。Optionally, a plurality of adjusting components 1811 are closely arranged on the surface of the first elastic layer 14 facing away from the first light-transmitting layer 12 and are enclosed into an annular structure.

可选地,多个调节子件1811与第一弹性层14的外周缘具有一定的间隔距离,以使第一透镜组件10组装至可穿戴设备的承载件时,第一弹性层14自调节子件1811至外周缘的部分可以紧密贴合承载件的内壁。可选地,调节子件1811与第一弹性层14的外周缘的间隔距离的范围为1mm至5mm;具体地,可以为但不限于为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm等。Optionally, the plurality of adjustment sub-assemblies 1811 have a certain distance from the outer periphery of the first elastic layer 14, so that when the first lens assembly 10 is assembled to the carrier of the wearable device, the first elastic layer 14 adjusts itself from the adjustment sub-assemblies 1811. The portion of the member 1811 to the outer periphery can closely fit the inner wall of the bearing member. Optionally, the distance between the adjustment component 1811 and the outer peripheral edge of the first elastic layer 14 ranges from 1 mm to 5 mm; specifically, it may be but is not limited to 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, or 3.5 mm. , 4mm, 4.5mm, 5mm, etc.

可选地,每个调节子件1811可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合于第一弹性层14。Alternatively, each adjustment component 1811 may be bonded to the first elastic layer 14 through hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), or the like.

可选地,调节子件1811的数量大于或等于24个。进一步地,调节子件1811的数量的范围为24个至128个;具体地,可以为但不限于为24个、28个、32个、36个、40个、44个、48个、56个、64个、72个、80个、88个、96个、104个、112个、120个、128个等。调节子件1811的数量越多,第一透镜组件10散光度数的调节精度越高,但是,数量越多,工艺越复杂。Optionally, the number of adjusting components 1811 is greater than or equal to 24. Further, the number of adjustment components 1811 ranges from 24 to 128; specifically, it can be but is not limited to 24, 28, 32, 36, 40, 44, 48, 56 , 64, 72, 80, 88, 96, 104, 112, 120, 128, etc. The greater the number of adjusting subassemblies 1811, the higher the accuracy of adjusting the astigmatism of the first lens assembly 10. However, the greater the number, the more complex the process will be.

多个调节子件1811的尺寸可以相同,也可以不同,本申请不作具体限定。当多个调节子件1811的尺寸相同时,在相关侧视图如图11中的宽度为中间的调节子件1811宽度大,两端的调节子件1811的宽度逐渐减小。在图11的侧视图中,为了方便示意,示意图中每个调节子件1811的宽度相同,不应该理解为对本申请调节子件1811的限定。The sizes of the multiple adjusting components 1811 may be the same or different, and are not specifically limited in this application. When the dimensions of multiple adjusting sub-members 1811 are the same, in the relevant side view as shown in FIG. 11 , the width of the adjusting sub-member 1811 in the middle is larger, and the width of the adjusting sub-members 1811 at both ends gradually decreases. In the side view of FIG. 11 , for convenience of illustration, the width of each adjusting component 1811 in the schematic diagram is the same, which should not be understood as a limitation on the adjusting component 1811 of the present application.

可选地,调节子件1811的材质可以为但不限于为可以包括但不限于包括聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。Optionally, the material of the adjustment component 1811 may be, but is not limited to, polydimethylsiloxane (PDMS), polycarbonate (PC), polymethylmethacrylate (PMMA), ), at least one of polyethylene terephthalate (PET), etc.

可选地,调节子件1811的材质可以包括但不限于包括聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。Optionally, the material of the adjustment component 1811 may include, but is not limited to, polydimethylsiloxane (PDMS), polycarbonate (PC), polymethylmethacrylate (PMMA), polyterephthalene. At least one of ethylene glycol formate (PET) and the like.

可选地,弹性球囊的壁厚的范围为0.01mm至0.3mm,具体地,可以为但不限于为0.01mm、0.05mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm等。弹性球囊壁厚太薄,影响第一透镜组件10的寿命,且不利于第一透镜组件10散光度数的稳定性,弹性球囊的壁厚太厚,增加了第一透镜组件10的厚度及重量,不利于镜片模组100的轻薄化。Optionally, the wall thickness of the elastic balloon ranges from 0.01mm to 0.3mm. Specifically, it can be but is not limited to 0.01mm, 0.05mm, 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, etc. The wall thickness of the elastic balloon is too thin, which affects the life of the first lens component 10 and is not conducive to the stability of the astigmatism of the first lens component 10. The wall thickness of the elastic balloon is too thick, which increases the thickness and The weight is not conducive to making the lens module 100 thin and light.

本申请实施例中,当涉及到数值范围a至b时,如未特别指明,均表示包括端点数值a,且包括端点数值b。例如弹性球囊的壁厚的范围为0.01mm至0.3mm,表示弹性球囊的壁厚可以为0.01mm至0.3mm之间的任意数值,包括端点0.01mm及端点0.3mm。In the embodiments of this application, when it comes to the numerical range a to b, unless otherwise specified, it means including the endpoint value a and including the endpoint value b. For example, the wall thickness of the elastic balloon ranges from 0.01mm to 0.3mm, which means that the wall thickness of the elastic balloon can be any value between 0.01mm and 0.3mm, including the endpoint 0.01mm and the endpoint 0.3mm.

在一些实施例中,沿所述第一透光层12、所述第一弹性层14及所述调节件181层叠方向上,每个所述调节子件1811可调节的高度h的范围为:0.2mm≤h≤3mm。具体地,每个所述调节子件1811可调节的高度h可以为但不限于为0.2mm、0.4mm、0.6mm、0.8mm、1.0mm、1.2mm、1.4mm、1.6mm、1.8mm、2.0mm、2.2mm、2.4mm、2.6mm、2.8mm、3.0mm。调节子件1811可以调节的高度越小,则第一透镜组件10可以矫正的散光度数越小,调节子件1811可以调节的高度越高,第一透镜组件10可以调节的散光度数越高,但是当调节子件1811可以调节的高度超过一定数值时,会增加第一透镜组件10的厚度,不利于镜片模组100的小型化。In some embodiments, along the stacking direction of the first light-transmitting layer 12 , the first elastic layer 14 and the adjustment member 181 , the range of the adjustable height h of each adjustment member 1811 is: 0.2mm≤h≤3mm. Specifically, the adjustable height h of each adjustment component 1811 may be, but is not limited to, 0.2mm, 0.4mm, 0.6mm, 0.8mm, 1.0mm, 1.2mm, 1.4mm, 1.6mm, 1.8mm, 2.0 mm, 2.2mm, 2.4mm, 2.6mm, 2.8mm, 3.0mm. The smaller the height that the adjustment component 1811 can adjust, the smaller the astigmatism that the first lens assembly 10 can correct. The higher the height that the adjustment component 1811 can adjust, the higher the degree of astigmatism that the first lens assembly 10 can adjust. However, When the adjustable height of the adjustment component 1811 exceeds a certain value, the thickness of the first lens assembly 10 will be increased, which is not conducive to miniaturization of the lens module 100 .

请再次参见图9及图13,在一些实施例中,所述第二透镜组件30包括:所述第二透光层33、支撑层32、第二弹性层34、第三流体36以及驱动机构38。所述支撑层32设置于所述第二透光层33远离第一弹性层14的一侧,所述第二弹性层34设置于所述支撑层32背离所述第二透光层33的一侧,所述第二透光层33、所述支撑层32与所述第二弹性层34围合成第二收容腔301,所述第二弹性层34背离所述第二透光层33的表面为所述第二表面31;所述第三流体36至少部分设置于所述第二收容腔301内;所述驱动机构38用于调节所述第二收容腔301内所述第三流体36的量,以调节所述第二弹性层34的曲率,从而调节所述第二透镜组件30的焦距,以调节所述第二透镜组件30的近视度数或远视度数。Please refer to Figures 9 and 13 again. In some embodiments, the second lens assembly 30 includes: the second light-transmitting layer 33, the support layer 32, the second elastic layer 34, the third fluid 36 and a driving mechanism. 38. The support layer 32 is disposed on a side of the second light-transmitting layer 33 away from the first elastic layer 14 , and the second elastic layer 34 is disposed on a side of the support layer 32 away from the second light-transmitting layer 33 . On the other side, the second light-transmitting layer 33 , the supporting layer 32 and the second elastic layer 34 form a second receiving cavity 301 , and the second elastic layer 34 faces away from the surface of the second light-transmitting layer 33 is the second surface 31; the third fluid 36 is at least partially disposed in the second receiving cavity 301; the driving mechanism 38 is used to adjust the flow rate of the third fluid 36 in the second receiving cavity 301. The amount is used to adjust the curvature of the second elastic layer 34, thereby adjusting the focal length of the second lens assembly 30, to adjust the myopia or hyperopia of the second lens assembly 30.

可选地,在第二透镜组件30处于初始状态时,第二弹性层34处于平面状态,第二透镜组件30不具有近视度数或远视度数。Optionally, when the second lens component 30 is in the initial state, the second elastic layer 34 is in a planar state, and the second lens component 30 does not have myopia or hyperopia.

可选地,第一透光层12与第二透光层33可以为两层,在通过透光粘合剂贴合设置(如图13所示)。第二透光层12与第二透光层33还可以为同一层(如图9所示)。即可以理解地,第一透镜组件10与第二透镜组件30共用透光层。换言之,透光层即作为第一透镜组件10的一部分,又作为第二透镜组件30一部分。还可以理解为,第一透镜组件10与第二透镜组件30为一体化结构。当第一透镜组件10与第二透镜组件30独立形成再叠加时,两个透镜组件的透光层是独立的,这样不仅增加了镜片模组100的重量和厚度,且在进行第一透镜组件10与第二透镜组件30组装时,需要严格控制第一透镜组件10的第二透光层33与第二透镜组件30的第二透光层33平行,否则,第一透镜组件10与第二透镜组件30之间会产生额外的反射光线进入人眼,造成不适,并且矫正的效果也会出现偏差。因此要想第一透镜组件10与第二透镜组件30完全平行,安装精度、镜框精度都要求更高,成本和制作难度都成倍增加。第一透镜组件10与第二透镜组件30共用透光层,不仅可以使得镜片模组100更加轻薄化,而且可以降低组装难度,更好的避免第一透镜组件10与第二透镜组件30之间会产生额外的反射光线进入人眼,造成不适,提高屈光矫正的效果。此外,还可以使第一透镜组件10及第二透镜组件30形成一体结构。Optionally, the first light-transmitting layer 12 and the second light-transmitting layer 33 may be two layers, which are bonded together through a light-transmitting adhesive (as shown in FIG. 13 ). The second light-transmitting layer 12 and the second light-transmitting layer 33 may also be the same layer (as shown in FIG. 9 ). That is, it can be understood that the first lens component 10 and the second lens component 30 share a light-transmitting layer. In other words, the light-transmitting layer serves as both a part of the first lens component 10 and a part of the second lens component 30 . It can also be understood that the first lens component 10 and the second lens component 30 have an integrated structure. When the first lens assembly 10 and the second lens assembly 30 are independently formed and then superimposed, the light-transmitting layers of the two lens assemblies are independent, which not only increases the weight and thickness of the lens module 100, but also increases the weight and thickness of the first lens assembly. When assembling the 10 with the second lens assembly 30, it is necessary to strictly control that the second light-transmitting layer 33 of the first lens assembly 10 is parallel to the second light-transmitting layer 33 of the second lens assembly 30; otherwise, the first lens assembly 10 and the second Additional reflected light will be generated between the lens components 30 and enter the human eye, causing discomfort, and the correction effect will also be biased. Therefore, if the first lens assembly 10 and the second lens assembly 30 are to be completely parallel, higher installation accuracy and frame accuracy are required, and the cost and manufacturing difficulty are doubled. The first lens component 10 and the second lens component 30 share a light-transmitting layer, which not only makes the lens module 100 lighter and thinner, but also reduces the difficulty of assembly and better avoids the gap between the first lens component 10 and the second lens component 30 It will produce additional reflected light entering the human eye, causing discomfort and improving the effect of refractive correction. In addition, the first lens component 10 and the second lens component 30 can also be formed into an integrated structure.

可选地,初始状态时,第二弹性层34处于松弛状态(换言之,未发生弹性形变的状态。又换言之,未被拉伸也未被压缩,不具有弹性回复力的状态,此时,第二弹性层34处于平面状态),且第三流体36充满整个第二收容腔301。如图14所示,当所述第二透镜组件30作为近视镜片使用时,则通过驱动机构38抽取第二收容腔301内的部分第三流体36,以使得第二弹性层34向内凹陷(朝向靠近第二透光层33的方向凹陷),形成凹透镜,抽出的第三流体36的量越多,第二弹性层34的凹陷程度越大,第二弹性层34的曲率半径越小,曲率越大,近视度数越大,当达到目标度数时,关闭驱动机构38,即可维持第二透镜组件30的当前度数。当需要回复初始状态或者减小近视度数时,通过驱动机构38往第二收容腔301内注入第三流体36,以使第二收容腔301内的第三流体36的量增加,第二弹性层34凹陷程度减小,第二弹性层34的曲率半径增大,曲率变小,近视度数减小,当达到目标度数后,关闭驱动机构38即可维持当前度数。Optionally, in the initial state, the second elastic layer 34 is in a relaxed state (in other words, a state in which elastic deformation does not occur. In other words, it is not stretched or compressed, and has no elastic restoring force. At this time, the second elastic layer 34 is in a relaxed state. The second elastic layer 34 is in a planar state), and the third fluid 36 fills the entire second receiving cavity 301 . As shown in Figure 14, when the second lens assembly 30 is used as a myopia lens, part of the third fluid 36 in the second receiving cavity 301 is extracted through the driving mechanism 38, so that the second elastic layer 34 is recessed inward ( toward the direction closer to the second light-transmitting layer 33) to form a concave lens. The greater the amount of the third fluid 36 extracted, the greater the degree of depression of the second elastic layer 34, and the smaller the curvature radius of the second elastic layer 34. The larger the value, the greater the degree of myopia. When the target degree is reached, the driving mechanism 38 is turned off to maintain the current degree of the second lens assembly 30 . When it is necessary to return to the initial state or reduce the degree of myopia, the third fluid 36 is injected into the second receiving chamber 301 through the driving mechanism 38, so that the amount of the third fluid 36 in the second receiving chamber 301 is increased, and the second elastic layer 34 decreases, the curvature radius of the second elastic layer 34 increases, the curvature becomes smaller, and the myopia degree decreases. When the target degree is reached, the driving mechanism 38 is turned off to maintain the current degree.

相反地,如图15所示,当所述第二透镜组件30作为远视镜片使用时,则通过驱动机构38往第二收容腔301内的注入第三流体36,以使得第二弹性层34向外凸出(朝向背离第二透光层33的方向凸出),形成凸透镜,注入的第三流体36的量越多,第二弹性层34的凸出程度越大,第二弹性层34的曲率半径越小,远视度数越大,当达到目标度数时,关闭驱动机构38,即可维持第二透镜组件30的当前度数。当需要回复初始状态或者减小远视度数时,通过驱动机构38抽取第二收容腔301内的部分第三流体36,以使第二收容腔301内的第三流体36的量减少,第二弹性层34凸出程度减小,第二弹性层34的曲率半径增大,远视度数减小,当达到目标度数后,关闭驱动机构38即可维持当前度数。On the contrary, as shown in FIG. 15 , when the second lens assembly 30 is used as a hyperopia lens, the third fluid 36 is injected into the second receiving cavity 301 through the driving mechanism 38 , so that the second elastic layer 34 is injected into the second receiving cavity 301 . It protrudes outward (protrudes in the direction away from the second light-transmitting layer 33 ) to form a convex lens. The more the amount of the third fluid 36 injected, the greater the degree of protrusion of the second elastic layer 34 . The smaller the radius of curvature, the greater the degree of hyperopia. When the target degree is reached, the driving mechanism 38 is turned off to maintain the current degree of the second lens assembly 30 . When it is necessary to return to the initial state or reduce the degree of hyperopia, part of the third fluid 36 in the second receiving chamber 301 is extracted through the driving mechanism 38, so that the amount of the third fluid 36 in the second receiving chamber 301 is reduced, and the second elasticity The protrusion of the layer 34 decreases, the radius of curvature of the second elastic layer 34 increases, and the degree of hyperopia decreases. When the target degree is reached, the driving mechanism 38 is turned off to maintain the current degree.

可选地,支撑层32为支撑框架。可选地,支撑层32具有贯穿孔,第二透光层33与第二弹性层34分别设置于支撑层32的相背两侧,且分别封闭所述贯穿孔的相对两个开口,以将所述贯穿孔密封,形成第二收容腔301。Optionally, the support layer 32 is a support frame. Optionally, the support layer 32 has a through hole, and the second light-transmitting layer 33 and the second elastic layer 34 are respectively disposed on opposite sides of the support layer 32 and respectively close the two opposite openings of the through hole to separate the The through hole is sealed to form a second receiving cavity 301 .

可选地,支撑层32的材质可以包括但不限于包括聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。Optionally, the material of the support layer 32 may include, but is not limited to, at least one of polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), etc. .

可选地,支撑层32的厚度的范围为1mm至5mm。即沿第二透光层33、支撑层32及第二弹性层34层叠方向上,支撑层32的厚度为1mm至5mm。具体地,支撑层32的厚度可以为但不限于为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm等。Optionally, the thickness of the support layer 32 ranges from 1 mm to 5 mm. That is, along the stacking direction of the second light-transmitting layer 33 , the supporting layer 32 and the second elastic layer 34 , the thickness of the supporting layer 32 is 1 mm to 5 mm. Specifically, the thickness of the support layer 32 may be, but is not limited to, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, etc.

关于第二透光层33的详细描述,请参见第一透光层12的描述,在此不再赘述。For detailed description of the second light-transmitting layer 33, please refer to the description of the first light-transmitting layer 12, which will not be described again here.

在一些实施例中,所述第二弹性层34的弹性模量E3的范围为:10Mpa≤E3≤100Mpa;具体地,第二弹性层34的弹性模量E3可以为但不限于为10Mpa、20Mpa、30Mpa、40Mpa、50Mpa、60Mpa、70Mpa、80Mpa、90Mpa、100Mpa等。第二弹性层34的弹性模量不宜太大也不宜太小,第二弹性层34的弹性模量过大时,增加了第二透镜组件30近视度数或远视度数调节(即焦距调节)的难度,第二弹性层34的弹性模量过小时,第二弹性层34受重力等外力影响比较明显,比如运动时由于惯性因素,使得第二弹性层34变形,难以维持第二弹性层34的第二表面31的形状,影响第二透镜组件30近视度数或远视度数的调节。In some embodiments, the elastic modulus E3 of the second elastic layer 34 is in the range of: 10Mpa≤E3≤100Mpa; specifically, the elastic modulus E3 of the second elastic layer 34 can be, but is not limited to, 10Mpa or 20Mpa. , 30Mpa, 40Mpa, 50Mpa, 60Mpa, 70Mpa, 80Mpa, 90Mpa, 100Mpa, etc. The elastic modulus of the second elastic layer 34 should not be too large or too small. When the elastic modulus of the second elastic layer 34 is too large, it will increase the difficulty of adjusting the myopia or hyperopia of the second lens assembly 30 (ie, the focal length adjustment). If the elastic modulus of the second elastic layer 34 is too small, the second elastic layer 34 will be significantly affected by external forces such as gravity. For example, due to inertial factors during movement, the second elastic layer 34 will deform, making it difficult to maintain the second elastic layer 34. The shape of the second surface 31 affects the adjustment of the myopia or hyperopia of the second lens assembly 30 .

可选地,第二弹性层34是透光的,第二弹性层34的透光率大于或等于85%。进一步地,第二弹性层34的透光率大于或等于90%。进一步地,第二弹性层34的透光率大于或等于95%。具体地,第二弹性层34的透光率可以为但不限于为85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%等。第二弹性层34的透光率越高,镜片模组100具有更好的视觉效果。Optionally, the second elastic layer 34 is light-transmissive, and the light transmittance of the second elastic layer 34 is greater than or equal to 85%. Further, the light transmittance of the second elastic layer 34 is greater than or equal to 90%. Further, the light transmittance of the second elastic layer 34 is greater than or equal to 95%. Specifically, the light transmittance of the second elastic layer 34 may be, but is not limited to, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99%, etc. The higher the light transmittance of the second elastic layer 34 is, the better the visual effect of the lens module 100 is.

可选地,第二弹性层34的材质可以为但不限于为聚二甲基硅氧烷(PDMA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。这些材料通常是透光的,可以使得镜片模组100整体颜色均一性更好,具有更好的外观。第二弹性层34的材质与第一弹性层14的材质可以相同,也可以不同,本申请不作具体限定。当第二弹性层34的材质与第一弹性层14的材质相同,镜片模组100具有更好的视觉效果。Optionally, the material of the second elastic layer 34 may be, but is not limited to, polydimethylsiloxane (PDMA), polymethylmethacrylate (PMMA), polycarbonate (PC), polyterephthalate At least one of ethylene glycol ester (PET) and the like. These materials are usually light-transmissive, which can make the overall color uniformity of the lens module 100 better and have a better appearance. The material of the second elastic layer 34 and the first elastic layer 14 may be the same or different, and are not specifically limited in this application. When the material of the second elastic layer 34 is the same as the material of the first elastic layer 14, the lens module 100 has better visual effects.

可选地,沿第二弹性层34与第二透光层33层叠方向上,第二弹性层34的厚度的范围为50μm至300μm。进一步地,第二弹性层34的厚度的范围为100μm至200μm。具体地,第二弹性层34的厚度可以为但不限于为50μm、60μm、70μm、80μm、100μm、120μm、150μm、180μm、200μm、220μm、250μm、280μm、300μm等。第二弹性层34太薄,在驱动机构38抽取第二收容腔301内的第三流体36时,容易全面下凹,很难得到理想的曲率;第二弹性层34太厚,则难以变形,驱动机构38提供的动力不足以让第二弹性层34发生变形。Optionally, along the stacking direction of the second elastic layer 34 and the second light-transmitting layer 33, the thickness of the second elastic layer 34 ranges from 50 μm to 300 μm. Further, the thickness of the second elastic layer 34 ranges from 100 μm to 200 μm. Specifically, the thickness of the second elastic layer 34 may be, but is not limited to, 50 μm, 60 μm, 70 μm, 80 μm, 100 μm, 120 μm, 150 μm, 180 μm, 200 μm, 220 μm, 250 μm, 280 μm, 300 μm, etc. The second elastic layer 34 is too thin, and when the driving mechanism 38 extracts the third fluid 36 in the second receiving cavity 301, it is easy to be fully concave, making it difficult to obtain the ideal curvature; the second elastic layer 34 is too thick, and it is difficult to deform. The power provided by the driving mechanism 38 is insufficient to cause the second elastic layer 34 to deform.

在一些实施例中,所述第二透光层33的折射率n1’、所述第二弹性层34的折射率n4及所述第三流体36的折射率n5满足以下关系式:In some embodiments, the refractive index n1' of the second light-transmitting layer 33, the refractive index n4 of the second elastic layer 34, and the refractive index n5 of the third fluid 36 satisfy the following relationship:

0.95≤n1’/n4≤1.05;0.95≤n1’/n4≤1.05;

0.95≤n1’/n5≤1.05;0.95≤n1’/n5≤1.05;

0.95≤n4/n5≤1.05。0.95≤n4/n5≤1.05.

具体地,n1/n4可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。n1/n5可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。n4/n5可以为但不限于为0.95、0.96、0.97、0.98、0.99、1.01、1.02、1.03、1.04、1.05等。Specifically, n1/n4 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc. n1/n5 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc. n4/n5 can be, but is not limited to, 0.95, 0.96, 0.97, 0.98, 0.99, 1.01, 1.02, 1.03, 1.04, 1.05, etc.

所述第二透光层33的折射率n1、所述第二弹性层34的折射率n4及所述第三流体36的折射率n5越接近,当光线经过所述第二透光层33、所述第二弹性层34及所述第三流体36两两的界面时,越不易发生折射,因此,所述第二透光层33的折射率n1、所述第二弹性层34的折射率n4及所述第三流体36的折射率n5越接近越好。The closer the refractive index n1 of the second light-transmitting layer 33 , the refractive index n4 of the second elastic layer 34 and the refractive index n5 of the third fluid 36 are, the closer the light passes through the second light-transmitting layer 33 and the refractive index n5 of the third fluid 36 . The interface between the second elastic layer 34 and the third fluid 36 is less likely to cause refraction. Therefore, the refractive index n1 of the second light-transmitting layer 33 and the refractive index of the second elastic layer 34 The closer n4 and the refractive index n5 of the third fluid 36 are, the better.

在一具体实施例中,所述第二透光层33的折射率n1、所述第二弹性层34的折射率n4及所述第三流体36的折射率n5相等。In a specific embodiment, the refractive index n1 of the second light-transmitting layer 33 , the refractive index n4 of the second elastic layer 34 and the refractive index n5 of the third fluid 36 are equal.

可选地,第三流体36的折射率大于1.4,具体地,第一流体16的折射率可以为但不限于为1.4、1.43、1.45、1.48、1.50、1.53、1.45、1.48、1.60、1.62、1.65、1.67、1.7等。第三流体36可以为但不限于为二甲基硅油、聚乙二醇(例如PEG200)等中的至少一种。Optionally, the refractive index of the third fluid 36 is greater than 1.4. Specifically, the refractive index of the first fluid 16 can be, but is not limited to, 1.4, 1.43, 1.45, 1.48, 1.50, 1.53, 1.45, 1.48, 1.60, 1.62, 1.65, 1.67, 1.7, etc. The third fluid 36 may be, but is not limited to, at least one of dimethicone, polyethylene glycol (such as PEG200), and the like.

请参见图16及图17,在一些实施例中,所述驱动机构38包括第二致动器381、弹性容器383及第二阀门385,所述第二致动器381分别连通所述第二收容腔301及所述弹性容器383,所述阀门设置于所述弹性容器383与所述第二收容腔301之间,用于导通或闭合所述第二收容腔301与所述弹性容器383之间的通道或管路;所述第三流体36还部分设置于所述弹性容器383。第二致动器381用于将弹性容器383内的流体泵入第二收容腔301,还用于将所述第二收容腔301内的流体泵出,以泵入所述弹性容器383。弹性容器383用于收容所述第二收容腔301内泵出的流体,还可以起到将弹性容器383内的流体送回第二收容腔301的作用。Please refer to Figures 16 and 17. In some embodiments, the driving mechanism 38 includes a second actuator 381, an elastic container 383 and a second valve 385. The second actuator 381 is connected to the second valve 385 respectively. Accommodating cavity 301 and the elastic container 383, the valve is disposed between the elastic container 383 and the second accommodating cavity 301, and is used to conduct or close the second accommodating cavity 301 and the elastic container 383. The third fluid 36 is also partially provided in the elastic container 383 . The second actuator 381 is used to pump the fluid in the elastic container 383 into the second receiving chamber 301 , and is also used to pump the fluid out of the second receiving chamber 301 to pump into the elastic container 383 . The elastic container 383 is used to receive the fluid pumped out of the second receiving chamber 301 , and can also serve to return the fluid in the elastic container 383 to the second receiving chamber 301 .

当所述第二致动器381及所述第二阀门385开启且所述第二致动器381驱动所述第二收容腔301内的部分所述第三流体36流向所述弹性容器383时,所述第二收容腔301内第三流体36的量减小,以调节所述第二弹性层34的曲率半径,从而实现所述第二透镜组件30的焦距的调节;当所述第二阀门385开启且所述弹性容器383内的所述第三流体36流向所述第二收容腔301,所述第二收容腔301内第三流体36的量增加,以调节所述第二弹性层34的曲率半径,从而实现所述第二透镜组件30的焦距的调节。通过致动器、弹性容器383及第二阀门385的配合,改变第二收容腔301内流体的量,从而实现第二弹性层34曲率半径的变化,从而使得第二透镜组件30既可应用于近视镜片,又可以应用于远视镜片,还具有较宽的焦距变化范围(即近视度数变化范围及远视度数变化范围),结构简便,操作简单。When the second actuator 381 and the second valve 385 are opened and the second actuator 381 drives part of the third fluid 36 in the second receiving chamber 301 to flow to the elastic container 383 , the amount of the third fluid 36 in the second receiving cavity 301 decreases to adjust the curvature radius of the second elastic layer 34, thereby adjusting the focal length of the second lens assembly 30; when the second The valve 385 opens and the third fluid 36 in the elastic container 383 flows to the second receiving chamber 301. The amount of the third fluid 36 in the second receiving chamber 301 increases to adjust the second elastic layer. The radius of curvature is 34, thereby adjusting the focal length of the second lens assembly 30. Through the cooperation of the actuator, the elastic container 383 and the second valve 385, the amount of fluid in the second receiving cavity 301 is changed, thereby achieving a change in the curvature radius of the second elastic layer 34, so that the second lens assembly 30 can be used in both The myopia lens can also be used as a hyperopia lens. It also has a wide focal length change range (ie, the change range of myopia degree and the change range of farsightedness degree). It has a simple structure and simple operation.

可选地,所述第二阀门385设置于所述弹性容器383与所述第二收容腔301之间,可以理解地,第二阀门385可以设置于第二收容腔301与第二致动器381之间的流通路径上(如图16所示);也可以设置于第二致动器381与弹性容器383之间的流通路径上(如图17所示)。Optionally, the second valve 385 is disposed between the elastic container 383 and the second receiving cavity 301. It is understood that the second valve 385 can be disposed between the second receiving cavity 301 and the second actuator. 381 on the circulation path (as shown in Figure 16); it can also be provided on the circulation path between the second actuator 381 and the elastic container 383 (as shown in Figure 17).

可选地,当所述弹性容器383处于膨胀状态时,所述第二阀门385开启,以导通所述第二收容腔301与所述弹性容器383,所述弹性容器383内的第三流体36在所述弹性容器383的弹性回复力作用下流向所述第二收容腔301,所述第二收容腔301内第三流体36的量增加,以调节所述第二弹性层34的曲率半径,从而实现所述第二透镜组件30的焦距的调节。Optionally, when the elastic container 383 is in an expanded state, the second valve 385 is opened to connect the second receiving chamber 301 and the elastic container 383, and the third fluid in the elastic container 383 36 flows to the second receiving cavity 301 under the elastic restoring force of the elastic container 383. The amount of the third fluid 36 in the second receiving cavity 301 increases to adjust the curvature radius of the second elastic layer 34. , thereby achieving adjustment of the focal length of the second lens assembly 30 .

当所述弹性容器383处于松弛状态时,所述第二致动器381及所述第二阀门385均开启,所述第二致动器381驱动所述弹性容器383内的第三流体36流向所述第二收容腔301,所述第二收容腔301内第三流体36的量增加,以调节所述第二弹性层34的曲率半径,从而实现所述第二透镜组件30的焦距的调节。使弹性容器383处于膨胀状态,当需要增加第二收容腔301内第三流体36的量时,只需打开第二阀门385,即可在弹性容器383的弹性回复力作用下驱动弹性容器383内的第三流体36流向第二收容腔301,无需提供额外的动力,即省电又便捷。When the elastic container 383 is in a relaxed state, the second actuator 381 and the second valve 385 are both opened, and the second actuator 381 drives the third fluid 36 in the elastic container 383 to flow to In the second receiving cavity 301, the amount of the third fluid 36 in the second receiving cavity 301 is increased to adjust the curvature radius of the second elastic layer 34, thereby adjusting the focal length of the second lens assembly 30. . The elastic container 383 is in an expanded state. When it is necessary to increase the amount of the third fluid 36 in the second receiving cavity 301, just open the second valve 385 to drive the elastic container 383 under the elastic restoring force of the elastic container 383. The third fluid 36 flows to the second receiving chamber 301 without providing additional power, which saves power and is convenient.

请再次参见图14及图16,当第二透镜组件30作为凹透镜(即近视镜片)使用时,第二阀门385及二致动器381均开启,第二致动器381驱动第二收容腔301内的第三流体36驱动流向弹性容器383,并储存起来,此时,第二收容腔301内的第三流体36减少,第二弹性层34向靠近第二透光层33的方向凹陷,形成凹透镜,第二收容腔301内的第三流体36的量越少,第二弹性层34凹陷的程度越大,曲率半径越小,近视度数越大,当达到目标度数时,第二致动器381及第二阀门385均关闭,即可维持第二透镜组件30的当前度数。当需要回复初始状态或者减小度数时,只需要单独打开第二阀门385,此时弹性容器383内的第三流体36会在弹性容器383的弹性力的作用下反向注入第二收容腔301内,近视度数下降,达到目标度数后,就可以关闭第二阀门385。此外,还可以第二阀门385及第二致动器381均开启,第二致动器381驱动弹性容器383内的液体反向注入第二收容腔301内,近视度数下降,达到目标度数后,第二致动器381及第二阀门385均关闭。Please refer to Figure 14 and Figure 16 again. When the second lens assembly 30 is used as a concave lens (ie, myopia lens), the second valve 385 and the second actuator 381 are both opened, and the second actuator 381 drives the second receiving cavity 301 The third fluid 36 in the second receiving cavity 301 is driven to flow to the elastic container 383 and stored. At this time, the third fluid 36 in the second receiving cavity 301 decreases, and the second elastic layer 34 recesses toward the second light-transmitting layer 33, forming a Concave lens, the smaller the amount of the third fluid 36 in the second receiving cavity 301, the greater the degree of depression of the second elastic layer 34, the smaller the radius of curvature, and the greater the myopia degree. When the target degree is reached, the second actuator 381 and the second valve 385 are closed, the current power of the second lens assembly 30 can be maintained. When it is necessary to return to the initial state or reduce the degree, only the second valve 385 needs to be opened separately. At this time, the third fluid 36 in the elastic container 383 will be reversely injected into the second receiving cavity 301 under the action of the elastic force of the elastic container 383 Within, the myopia degree decreases, and after reaching the target degree, the second valve 385 can be closed. In addition, the second valve 385 and the second actuator 381 can both be opened, and the second actuator 381 drives the liquid in the elastic container 383 to be injected backward into the second receiving cavity 301, so that the myopia degree is reduced, and after reaching the target degree, The second actuator 381 and the second valve 385 are both closed.

请参见图15及图16,同样地,当第二透镜组件30作为凸透镜(即远视镜片)使用时,第二阀门385及第二致动器381均开启,第二致动器381驱动弹性容器383内的第三流体36流向第二收容腔301,第二收容腔301内的第三流体36增多,第二弹性层34向背离第二透光层33的方向凸起,第二弹性层34凸起的程度越大,曲率半径越小,远视度数越大,当达到目标度数时,第二致动器381及第二阀门385均关闭,即可维持第二透镜组件30的当前度数。当需要回复初始状态或者减小度数时,只需要单独打开第二阀门385,此时第二收容腔301内的第三流体36在第二弹性层34的弹性力的作用下反向注入弹性容器383内,远视度数下降,达到目标度数后,就可以关闭第二阀门385。此外,还可以第二阀门385及第二致动器381均开启,第二致动器381驱动第二收容腔301内的液体反向注入弹性容器383内,远视度数下降,达到目标度数后,第二致动器381及第二阀门385均关闭。Please refer to Figures 15 and 16. Similarly, when the second lens assembly 30 is used as a convex lens (ie, a hyperopia lens), the second valve 385 and the second actuator 381 are both opened, and the second actuator 381 drives the elastic container. The third fluid 36 in 383 flows to the second receiving cavity 301, the third fluid 36 in the second receiving cavity 301 increases, the second elastic layer 34 bulges in the direction away from the second light-transmitting layer 33, the second elastic layer 34 The greater the degree of protrusion, the smaller the radius of curvature, and the greater the degree of hyperopia. When the target degree is reached, both the second actuator 381 and the second valve 385 are closed to maintain the current degree of the second lens assembly 30 . When it is necessary to return to the initial state or reduce the degree, only the second valve 385 needs to be opened separately. At this time, the third fluid 36 in the second receiving chamber 301 is reversely injected into the elastic container under the action of the elastic force of the second elastic layer 34 Within 383, the hyperopia degree decreases, and after reaching the target degree, the second valve 385 can be closed. In addition, the second valve 385 and the second actuator 381 can both be opened, and the second actuator 381 drives the liquid in the second receiving chamber 301 to be injected back into the elastic container 383, so that the hyperopia degree is reduced, and after reaching the target degree, The second actuator 381 and the second valve 385 are both closed.

可选地,第二致动器381可以为但不限于为微型压电液泵(简称微泵、微型液泵)。所述微型液泵为利用压电原理实现驱动第三流体36运动的压电泵。由于微泵能够提供的液体压力较大,因此可以使得第二透镜组件30的第二弹性层34完全紧绷,可以更好的抵消重力的影响,并且还能够将第二透镜组件30的可视区域做得非常大。Optionally, the second actuator 381 may be, but is not limited to, a micro piezoelectric liquid pump (micro pump, micro liquid pump for short). The micro liquid pump is a piezoelectric pump that uses the piezoelectric principle to drive the movement of the third fluid 36 . Since the micropump can provide a large liquid pressure, the second elastic layer 34 of the second lens assembly 30 can be completely tightened, which can better offset the influence of gravity, and can also reduce the visibility of the second lens assembly 30 . The area is made very large.

当然,在其他实施方式中,所述第二致动器381也可以为利用毛细原理驱动第三流体36、或者利用液态金属连续电润湿效应驱动第三流体36的驱动器件。当然,所述第二致动器381也可以为驱动第三流体36运动的激光器或可驱动第三流体36流动的超声波器件等。所述第二致动器381的数目可以为一个或多个。“多个”指大于等于两个。Of course, in other embodiments, the second actuator 381 may also be a driving device that uses the capillary principle to drive the third fluid 36, or uses the continuous electrowetting effect of liquid metal to drive the third fluid 36. Of course, the second actuator 381 may also be a laser that drives the third fluid 36 to move or an ultrasonic device that drives the third fluid 36 to flow. The number of the second actuators 381 may be one or more. "Multiple" means more than or equal to two.

可选地,弹性容器383可以为弹性球。可选地,弹性容器383的材质可以包括但不限于包括聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)等中的至少一种。Alternatively, the elastic container 383 may be an elastic ball. Optionally, the material of the elastic container 383 may include, but is not limited to, polydimethylsiloxane (PDMS), polycarbonate (PC), polymethylmethacrylate (PMMA), polyterephthalate At least one of ethylene glycol ester (PET) and the like.

可选地,第二阀门385为微型电控阀门、微型电磁阀门等。Optionally, the second valve 385 is a micro electronically controlled valve, a micro solenoid valve, etc.

可选地,所述第二致动器381与第二阀门385可以为分体结构,所述第二阀门385还可以集成于第二致动器381内。Alternatively, the second actuator 381 and the second valve 385 may have separate structures, and the second valve 385 may also be integrated into the second actuator 381 .

在一些实施例中,当所述第一表面11为凹圆柱面或凸圆柱面且所述第二表面31为凹球面时,所述第一透镜组件10与所述第二透镜组件30配合,用于矫正复性近视散光。通过第一表面11面型和曲率以及第二表面31面型和曲率的调节,从而使得镜片模组100适用于不同近视及散光度数的复性近视散光用户。In some embodiments, when the first surface 11 is a concave cylindrical surface or a convex cylindrical surface and the second surface 31 is a concave spherical surface, the first lens component 10 cooperates with the second lens component 30, Used to correct myopic astigmatism. By adjusting the surface shape and curvature of the first surface 11 and the surface shape and curvature of the second surface 31 , the lens module 100 is suitable for users with complex myopia and astigmatism of different degrees of myopia and astigmatism.

请参见图18中(a)至(c)及图19,如图18中(a)所示,在本实施例中,复性近视散光的90°轴位光的焦点A与180°轴位光的焦点B均落在视网膜前,且焦点不重合。采用本申请的镜片模组100进行矫正时,可以使第二透镜组件30的第二表面31为凹球面,通过调节第二表面31的曲率同时将90°轴位光的焦点A及180°轴位光的焦点B同时往眼镜内侧调节(即靠近视网膜的方向),使得90°轴位光的焦点A落在视网膜O-O上,而180°轴位光的焦点B则落在视网膜之后,如图18中(b)。此时,则变成了单纯远视性散光,只需使第一透镜组件10的第一表面11为凸圆柱面(即第一透镜组件10为凸面圆柱镜),通过调节第一表面11的曲率即可实现矫正,如图18中(c)。Please refer to (a) to (c) in Figure 18 and Figure 19. As shown in (a) in Figure 18, in this embodiment, the focal point A of the 90° axial position of the compound myopic astigmatism and the 180° axial position The focus points B of the light all fall in front of the retina, and the focus points do not overlap. When the lens module 100 of the present application is used for correction, the second surface 31 of the second lens component 30 can be made into a concave spherical surface, and the focus A of the 90° axial light and the 180° axis can be simultaneously adjusted by adjusting the curvature of the second surface 31. The focus B of the axial light is also adjusted to the inside of the glasses (that is, closer to the retina), so that the focus A of the 90° axial light falls on the retina O-O, while the focus B of the 180° axial light falls behind the retina, as shown in the figure 18(b). At this time, it becomes simple hyperopic astigmatism. It is only necessary to make the first surface 11 of the first lens component 10 a convex cylindrical surface (that is, the first lens component 10 is a convex cylindrical mirror). By adjusting the curvature of the first surface 11 Correction can be achieved, as shown in (c) in Figure 18.

可选地,当初始状态第二透镜组件10不具有光焦度时,第二致动器381及所述第二阀门385开启,第二致动器381驱动所述第二收容腔301内的部分第三流体36流向所述弹性容器383,以使第二收容腔301内第三流体36的量减小,所述第二弹性层34朝向靠近第二透光层33的方向凹陷,第二表面31的曲率增加,当第二表面31的曲率调节至90°轴位光的焦点A落在视网膜O-O上,而180°轴位光的焦点B则落在视网膜之后时,第二致动器381及所述第二阀门385关闭,即可维持第二透镜组件30当前的度数。此时,还需要通过调节第一透镜组件10使180°轴位光的焦点B也位于视网膜O-O上。具体地,第一致动器183及第一阀门185均开启,以使多个调节子件1811的高度自180°沿垂直于轴位方向上,自中间位置向的两端逐渐增加,从而使调节件181面向第一弹性层14的表面为凹圆柱面,在多个调节子件1811的挤压作用下,第一弹性层14发生变形,第一表面11为凸圆柱面,当第一表面11沿垂直于180°轴位方向的曲率增加至180°轴位光的焦点B则落在视网膜上,第一致动器183及第一阀门185均关闭,即可维持第一透镜组件10的当前度数。本实施例调节之后的用于复性近视散光的镜片模组100如图19所示。Optionally, when the second lens assembly 10 does not have optical power in the initial state, the second actuator 381 and the second valve 385 are opened, and the second actuator 381 drives the second lens assembly in the second receiving cavity 301 Part of the third fluid 36 flows to the elastic container 383 to reduce the amount of the third fluid 36 in the second receiving cavity 301. The second elastic layer 34 is recessed toward the direction close to the second light-transmitting layer 33. The curvature of the surface 31 increases. When the curvature of the second surface 31 is adjusted so that the focus A of the 90° axial light falls on the retina O-O, and the focus B of the 180° axial light falls behind the retina, the second actuator 381 and the second valve 385 are closed, the current power of the second lens assembly 30 can be maintained. At this time, it is also necessary to adjust the first lens assembly 10 so that the focus B of the 180° axial light is also located on the retina O-O. Specifically, the first actuator 183 and the first valve 185 are both opened, so that the heights of the plurality of adjustment components 1811 gradually increase from 180° in the direction perpendicular to the axis, from the middle position to both ends, so that The surface of the adjusting member 181 facing the first elastic layer 14 is a concave cylindrical surface. Under the extrusion of the plurality of adjusting sub-members 1811, the first elastic layer 14 is deformed, and the first surface 11 is a convex cylindrical surface. When the first surface 11 When the curvature along the direction perpendicular to the 180° axial direction increases to the 180° axial position, the focus B of the light falls on the retina, and the first actuator 183 and the first valve 185 are both closed, thereby maintaining the first lens assembly 10 Current degree. The lens module 100 for compound myopic astigmatism after adjustment in this embodiment is shown in FIG. 19 .

请参见图20中(a)至(c)及图21,当镜片模组100用于矫正复性近视散光时,可以使第二透镜组件30的第二表面31为凹球面,通过调节第二表面31的曲率同时将90°轴位光及180°轴位光的焦点同时往眼镜内侧调节(即靠近视网膜的方向),使得180°轴位光的焦点落在视网膜上,而90°轴位光的焦点则落在视网膜之前,如图20中(b)。此时,则变成了单纯近视性散光,只需使第一透镜组件10的第一表面11为凹圆柱面(即第一透镜组件10为凹面圆柱镜),通过调节第一表面11的曲率即可实现矫正,如图20中(c)。Please refer to (a) to (c) in Figure 20 and Figure 21. When the lens module 100 is used to correct compound myopic astigmatism, the second surface 31 of the second lens component 30 can be made into a concave spherical surface. By adjusting the second The curvature of the surface 31 simultaneously adjusts the focus of the 90° axial light and the 180° axial light to the inside of the glasses (that is, closer to the retina), so that the focus of the 180° axial light falls on the retina, and the focus of the 90° axial light falls on the retina. The focus of light falls in front of the retina, as shown in Figure 20 (b). At this time, it becomes simple myopic astigmatism. It is only necessary to make the first surface 11 of the first lens component 10 a concave cylindrical surface (that is, the first lens component 10 is a concave cylindrical mirror). By adjusting the curvature of the first surface 11 Correction can be achieved, as shown in (c) in Figure 20.

可选地,当初始状态第二透镜组件10不具有光焦度时,第二致动器381及所述第二阀门385开启,第二致动器381驱动所述第二收容腔301内的部分第三流体36流向所述弹性容器383,以使第二收容腔301内第三流体36的量减小,所述第二弹性层34朝向靠近第二透光层33的方向凹陷,第二表面31的曲率增加,当第二表面31的曲率调节至180°轴位光的焦点A落在视网膜O-O上,而90°轴位光的焦点B则落在视网膜之前时,第二致动器381及所述第二阀门385关闭,即可维持第二透镜组件30当前的度数。此时,还需要通过调节第一透镜组件10使90°轴位光的焦点A也位于视网膜O-O上。具体地,第一致动器183及第一阀门185均开启,以使多个调节子件1811的高度沿垂直于90°轴位方向上,自中间位置向逐渐减小,从而使调节件181面向第一弹性层14的表面为凸圆柱面,在多个调节子件1811的挤压作用下,第一弹性层14发生变形,第一表面11为凹圆柱面,当第一表面11沿垂直于90°轴位方向的曲率增加至90°轴位光的焦点A则落在视网膜上,第一致动器183及第一阀门185均关闭,即可维持第一透镜组件10的当前度数。本实施例调节之后的用于复性近视散光的镜片模组100如图21所示。Optionally, when the second lens assembly 10 does not have optical power in the initial state, the second actuator 381 and the second valve 385 are opened, and the second actuator 381 drives the second lens assembly in the second receiving cavity 301 Part of the third fluid 36 flows to the elastic container 383 to reduce the amount of the third fluid 36 in the second receiving cavity 301. The second elastic layer 34 is recessed toward the direction close to the second light-transmitting layer 33. The curvature of the surface 31 increases. When the curvature of the second surface 31 is adjusted so that the focus A of the 180° axial light falls on the retina O-O, and the focus B of the 90° axial light falls in front of the retina, the second actuator 381 and the second valve 385 are closed, the current power of the second lens assembly 30 can be maintained. At this time, it is also necessary to adjust the first lens assembly 10 so that the focus A of the 90° axial light is also located on the retina O-O. Specifically, the first actuator 183 and the first valve 185 are both opened, so that the heights of the plurality of adjustment components 1811 gradually decrease from the middle position in the direction perpendicular to the 90° axis, so that the heights of the adjustment components 181 The surface facing the first elastic layer 14 is a convex cylindrical surface. Under the extrusion of the plurality of adjusting components 1811, the first elastic layer 14 is deformed. The first surface 11 is a concave cylindrical surface. When the first surface 11 moves along the vertical When the curvature in the 90° axial direction increases to the 90° axial direction, the focus A of the light falls on the retina, and both the first actuator 183 and the first valve 185 are closed, thereby maintaining the current power of the first lens assembly 10 . The lens module 100 for compound myopic astigmatism after adjustment in this embodiment is shown in Figure 21.

相较于图20及图21的方案,图18及图19的方案对于第二透镜组件30近视屈光矫正的能力要求更高,第二透镜组件30的第二表面31的曲率更大,第二透镜组件30的厚度更大,因此,采用图20及图21的方案进行调节,可以使得镜片模组100具有更好的厚度,更加轻薄化。Compared with the solutions of Figures 20 and 21, the solutions of Figures 18 and 19 have higher requirements for the myopia refractive correction ability of the second lens component 30. The second surface 31 of the second lens component 30 has a larger curvature. The thickness of the second lens assembly 30 is larger. Therefore, the lens module 100 can be made to have a better thickness and be lighter and thinner by adjusting the solution as shown in FIG. 20 and FIG. 21 .

在一些实施例中,当所述第一表面11为凹圆柱面或凸圆柱面且所述第二表面31为凸球面时,所述第一透镜组件10与所述第二透镜组件30配合,用于矫正复性远视散光。通过第一表面11面型和曲率以及第二表面31面型和曲率的调节,从而使得镜片模组100适用于不同近视及散光度数的复性远视散光用户。In some embodiments, when the first surface 11 is a concave cylindrical surface or a convex cylindrical surface and the second surface 31 is a convex spherical surface, the first lens component 10 cooperates with the second lens component 30, Used to correct compound hyperopic astigmatism. By adjusting the surface shape and curvature of the first surface 11 and the surface shape and curvature of the second surface 31, the lens module 100 is suitable for complex hyperopic astigmatism users with different degrees of myopia and astigmatism.

请参见图22中(a)至(c)及图23,当镜片模组100用于矫正复性远视散光时,可以使第二透镜组件30的第二表面31为凸球面,通过调节第二表面31的曲率同时将90°轴位光及180°轴位光的焦点同时往眼镜内侧调节(即靠近视网膜的方向),使得90°轴位光的焦点落在视网膜上,而180°轴位光的焦点则落在视网膜之前,如图22中(b)。此时,则变成了单纯近视性散光,只需使第一透镜组件10的第一表面11为凹圆柱面(即第一透镜组件10为凹面圆柱镜),通过调节第一表面11的曲率即可实现矫正,如图22中(c)。Please refer to Figure 22 (a) to (c) and Figure 23. When the lens module 100 is used to correct compound hyperopic astigmatism, the second surface 31 of the second lens component 30 can be made into a convex spherical surface. By adjusting the second The curvature of the surface 31 simultaneously adjusts the focus of the 90° axial light and the 180° axial light toward the inside of the glasses (i.e., closer to the retina), so that the focus of the 90° axial light falls on the retina, while the focus of the 180° axial light falls on the retina. The focus of light falls in front of the retina, as shown in Figure 22(b). At this time, it becomes simple myopic astigmatism. It is only necessary to make the first surface 11 of the first lens component 10 a concave cylindrical surface (that is, the first lens component 10 is a concave cylindrical mirror). By adjusting the curvature of the first surface 11 Correction can be achieved, as shown in (c) in Figure 22.

可选地,当初始状态第二透镜组件10不具有光焦度(即光焦度为0)时,第二致动器381及所述第二阀门385开启,驱动所述弹性容器383内的部分第三流体36流向所述第二收容腔301,以使第二收容腔301内第三流体36的量增加,所述第二弹性层34背离第二透光层33的方向凸出,第二表面31的曲率增加,当第二表面31的曲率调节至90°轴位光的焦点A落在视网膜O-O上,而180°轴位光的焦点B则落在视网膜之前时,第二致动器381及所述第二阀门385关闭,即可维持第二透镜组件30当前的度数。此时,还需要通过调节第一透镜组件10使180°轴位光的焦点B也位于视网膜O-O上。具体地,第一致动器183及第一阀门185均开启,以使多个调节子件1811的高度沿垂直于180°轴位的方向上,自中间位置向两端逐渐减小,从而使调节件181面向第一弹性层14的表面为凹圆柱面,在多个调节子件1811的挤压作用下,第一弹性层14发生变形,第一表面11为凸圆柱面,当第一表面11沿垂直于180°轴位方向的曲率增加至180°轴位光的焦点B则落在视网膜上,第一致动器183及第一阀门185均关闭,即可维持第一透镜组件10的当前度数。本实施例调节之后的用于复性近视散光的镜片模组100如图23所示。Optionally, when the second lens assembly 10 does not have optical power (that is, the optical power is 0) in the initial state, the second actuator 381 and the second valve 385 are opened to drive the lens in the elastic container 383 Part of the third fluid 36 flows to the second receiving cavity 301 to increase the amount of the third fluid 36 in the second receiving cavity 301. The second elastic layer 34 protrudes away from the second light-transmitting layer 33. The curvature of the second surface 31 increases. When the curvature of the second surface 31 is adjusted so that the focus A of the 90° axial light falls on the retina O-O, and the focus B of the 180° axial light falls in front of the retina, the second actuation When the valve 381 and the second valve 385 are closed, the current power of the second lens assembly 30 can be maintained. At this time, it is also necessary to adjust the first lens assembly 10 so that the focus B of the 180° axial light is also located on the retina O-O. Specifically, both the first actuator 183 and the first valve 185 are opened, so that the heights of the plurality of adjustment components 1811 gradually decrease from the middle position to both ends in a direction perpendicular to the 180° axis, so that The surface of the adjusting member 181 facing the first elastic layer 14 is a concave cylindrical surface. Under the extrusion of the plurality of adjusting sub-members 1811, the first elastic layer 14 is deformed, and the first surface 11 is a convex cylindrical surface. When the first surface 11 When the curvature along the direction perpendicular to the 180° axial direction increases to the 180° axial position, the focus B of the light falls on the retina, and the first actuator 183 and the first valve 185 are both closed, thereby maintaining the first lens assembly 10 Current degree. The lens module 100 for compound myopic astigmatism after adjustment in this embodiment is shown in Figure 23.

请参见图24中(a)至(c)及图24,在一些实施例中,当镜片模组100用于矫正复性远视散光时,可以使第二透镜组件30的第二表面31为凸球面,通过调节第二表面31的曲率同时将90°轴位光及180°轴位光的焦点同时往眼镜内侧调节(即靠近视网膜的方向),使得180°轴位光的焦点落在视网膜上,而90°轴位光的焦点则落在视网膜之后,如图24中(b)。此时,则变成了单纯远视性散光,只需使第一透镜组件10的第一表面11为凸圆柱面(即第一透镜组件10为凸面圆柱镜),通过调节第一表面11的曲率即可实现矫正,如图24中(c)。Please refer to Figures 24(a) to (c) and Figure 24. In some embodiments, when the lens module 100 is used to correct compound hyperopic astigmatism, the second surface 31 of the second lens component 30 can be made convex. Spherical surface, by adjusting the curvature of the second surface 31, the focus of the 90° axial light and the 180° axial light are simultaneously adjusted to the inside of the glasses (that is, closer to the retina), so that the focus of the 180° axial light falls on the retina. , while the focus of the 90° axial light falls behind the retina, as shown in Figure 24(b). At this time, it becomes simple hyperopic astigmatism. It is only necessary to make the first surface 11 of the first lens component 10 a convex cylindrical surface (that is, the first lens component 10 is a convex cylindrical mirror). By adjusting the curvature of the first surface 11 Correction can be achieved, as shown in (c) in Figure 24.

可选地,当初始状态第二透镜组件10不具有光焦度时,第二致动器381及所述第二阀门385开启,驱动所述弹性容器383内的部分第三流体36流向所述第二收容腔301,以使第二收容腔301内第三流体36的量增加,所述第二弹性层34朝向背离第二透光层33的方向凸出,第二表面31的曲率增加,当第二表面31的曲率调节至180°轴位光的焦点A落在视网膜O-O上,而90°轴位光的焦点B则落在视网膜之前时,第二致动器381及所述第二阀门385关闭,即可维持第二透镜组件30当前的度数。此时,还需要通过调节第一透镜组件10使90°轴位光的焦点A也位于视网膜O-O上。具体地,第一致动器183及第一阀门185均开启,以使多个调节子件1811的高度沿垂直于90°轴位的方向上,自中间位置向两端逐渐增加,从而使调节件181面向第一弹性层14的表面为凹圆柱面,在多个调节子件1811的挤压作用下,第一弹性层14发生变形,第一表面11为图圆柱面,当第一表面11沿垂直于90°轴位方向的曲率增加至90°轴位光的焦点A则落在视网膜上,第一致动器183及第一阀门185均关闭,即可维持第一透镜组件10的当前度数。本实施例调节之后的用于复性近视散光的镜片模组100如图25所示。Optionally, when the second lens assembly 10 does not have optical power in the initial state, the second actuator 381 and the second valve 385 are opened to drive part of the third fluid 36 in the elastic container 383 to flow to the the second receiving cavity 301, so that the amount of the third fluid 36 in the second receiving cavity 301 increases, the second elastic layer 34 protrudes in a direction away from the second light-transmitting layer 33, and the curvature of the second surface 31 increases, When the curvature of the second surface 31 is adjusted so that the focus A of the 180° axial light falls on the retina O-O, and the focus B of the 90° axial light falls in front of the retina, the second actuator 381 and the second When the valve 385 is closed, the current power of the second lens assembly 30 can be maintained. At this time, it is also necessary to adjust the first lens assembly 10 so that the focus A of the 90° axial light is also located on the retina O-O. Specifically, the first actuator 183 and the first valve 185 are both opened, so that the heights of the plurality of adjustment components 1811 gradually increase from the middle position to both ends in a direction perpendicular to the 90° axis, thereby making the adjustment The surface of the member 181 facing the first elastic layer 14 is a concave cylindrical surface. Under the extrusion of the plurality of adjusting sub-members 1811, the first elastic layer 14 is deformed, and the first surface 11 is a cylindrical surface. When the first surface 11 When the curvature along the direction perpendicular to the 90° axis increases to the 90° axis, the focus A of the light falls on the retina, and both the first actuator 183 and the first valve 185 are closed, thereby maintaining the current position of the first lens assembly 10 degree. The lens module 100 for compound myopic astigmatism after adjustment in this embodiment is shown in Figure 25.

相较于图24及图25的方案,图22及图23的方案对于第二透镜组件30远视屈光矫正的能力要求更高,第二透镜组件30的第二表面31的曲率更大,第二透镜组件30的厚度更大,因此,采用图24及图25的方案进行调节,可以使得镜片模组100具有更好的厚度,更加轻薄化。Compared with the solutions of Figures 24 and 25, the solutions of Figures 22 and 23 have higher requirements for the farsighted refractive correction ability of the second lens component 30. The second surface 31 of the second lens component 30 has a larger curvature. The thickness of the second lens assembly 30 is larger. Therefore, the lens module 100 can be made to have a better thickness and be lighter and thinner by adjusting the solution as shown in FIGS. 24 and 25 .

请参见图26,在一些实施例中,所述镜片模组100还包括:光波导组件50,所述光波导组件50叠设于所述第一透镜组件10背离所述第二透镜组件30的一侧。可以理解地,镜片模组100包括依次层叠设置的第二透镜组件30、第一透镜组件10及光波导组件50。Please refer to FIG. 26 . In some embodiments, the lens module 100 further includes: an optical waveguide component 50 , the optical waveguide component 50 is stacked on the first lens component 10 away from the second lens component 30 one side. It can be understood that the lens module 100 includes the second lens component 30, the first lens component 10 and the optical waveguide component 50 which are stacked in sequence.

可选地,每个调节子件1811抵接光波导组件50面向第一透镜组件10的表面,光波导组件50面向第一透镜组件10的表面对调节件181起到支撑的作用,以使得调节件181面向光波导组件50的表面始终为平面状态。Optionally, each adjustment component 1811 abuts the surface of the optical waveguide assembly 50 facing the first lens assembly 10, and the surface of the optical waveguide assembly 50 facing the first lens assembly 10 plays a supporting role for the adjustment member 181, so that the adjustment The surface of the member 181 facing the optical waveguide assembly 50 is always in a planar state.

在本实施例中,光波导组件50可以通过光固化胶(例如UV胶)、光学胶(OCA胶)、热固胶、热熔胶、双面胶、泡棉胶等粘合层粘合于第一透镜组件10背离第二透镜组件30的表面。当粘合层的透光率大于或等于85%时,粘合层可以为整层粘合层或胶框。当粘合层的透光率小于85%时,粘合层为胶框,即与镜片模组100可视区域匹配的中空的框体结构。In this embodiment, the optical waveguide component 50 can be bonded to the optical waveguide component 50 through an adhesive layer such as light-curing glue (such as UV glue), optical glue (OCA glue), thermosetting glue, hot melt glue, double-sided tape, foam glue, etc. The surface of the first lens component 10 facing away from the second lens component 30 . When the light transmittance of the adhesive layer is greater than or equal to 85%, the adhesive layer can be an entire adhesive layer or a plastic frame. When the light transmittance of the adhesive layer is less than 85%, the adhesive layer is a plastic frame, that is, a hollow frame structure that matches the visible area of the lens module 100 .

请参见图27,在另一些实施例中,所述镜片模组100还包括:光波导组件50,所述光波导组件50叠设于所述第二透镜组件30背离所述第一透镜组件10的一侧。可以理解地,镜片模组100包括依次层叠设置的第一透镜组件10、第二透镜组件30及光波导组件50。Please refer to FIG. 27 . In other embodiments, the lens module 100 further includes: an optical waveguide component 50 , the optical waveguide component 50 is stacked on the second lens component 30 away from the first lens component 10 side. It can be understood that the lens module 100 includes a first lens component 10, a second lens component 30 and an optical waveguide component 50 that are stacked in sequence.

将光波导组件50、第一透镜组件10及第二透镜组件30集成在一起,可以使得镜片模组100同时具有增强现实功能、近视矫正功能、远视矫正功能及散光矫正功能等多种功能,此外,应用于可穿戴设备时,相较于分体式的设计,可以大大减小可穿戴设备的镜片的体积,使其更加轻薄化,佩戴更为舒适,且具有更好的外观效果。Integrating the optical waveguide component 50, the first lens component 10 and the second lens component 30 allows the lens module 100 to simultaneously have multiple functions such as augmented reality function, myopia correction function, hyperopia correction function and astigmatism correction function. In addition, , when applied to wearable devices, compared with the split design, the size of the lens of the wearable device can be greatly reduced, making it lighter and thinner, more comfortable to wear, and with better appearance.

在本实施例中,光波导组件50可以通过光固化胶(例如UV胶)、光学胶(OCA胶)、热固胶、热熔胶、双面胶、泡棉胶等粘合层粘合于第二透镜组件30背离第一透镜组件10的表面。当粘合层的透光率大于或等于85%时,粘合层可以为整层粘合层或胶框。当粘合层的透光率小于85%时,粘合层为胶框,即与镜片模组100可视区域匹配的中空的框体结构。In this embodiment, the optical waveguide component 50 can be bonded to the optical waveguide component 50 through an adhesive layer such as light-curing glue (such as UV glue), optical glue (OCA glue), thermosetting glue, hot melt glue, double-sided tape, foam glue, etc. The surface of the second lens component 30 faces away from the first lens component 10 . When the light transmittance of the adhesive layer is greater than or equal to 85%, the adhesive layer can be an entire adhesive layer or a plastic frame. When the light transmittance of the adhesive layer is less than 85%, the adhesive layer is a plastic frame, that is, a hollow frame structure that matches the visible area of the lens module 100 .

请参见图28及图29,在一些实施例中,所述光波导组件50包括依次层叠且间隔设置的第一保护片51、光波导片53及第二保护片55,所述第一保护片51相较于所述第二保护片55背离的所述第一透镜组件10设置;所述第一保护片51及所述第二保护片55用于保护所述光波导片53。Please refer to Figures 28 and 29. In some embodiments, the optical waveguide component 50 includes a first protective sheet 51, an optical waveguide sheet 53 and a second protective sheet 55 that are stacked in sequence and arranged at intervals. The first protective sheet 51 is provided relative to the first lens assembly 10 away from the second protective sheet 55; the first protective sheet 51 and the second protective sheet 55 are used to protect the optical waveguide sheet 53.

请参见图30,可选地,所述光波导片53包括光传导部531、光耦入部533及光耦出部535,所述光耦入部533与所述光耦出部535间隔设置于所述光传导部531面向所述第一保护片51的表面。所述光耦入部533用于接收进入所述光波导片53的光信号,将所述光信号耦合入所述光传导部531;所述光传导部531用于传输所述光信号;所述光耦出部535用于接收所述光传导部531传输的光信号,将所述光信号耦合出所述光波导片53,光耦出部535还可以用于对所述光信号进行一维扩瞳或二维扩瞳。光波导片53的强度较差,跌落或受撞击时易碎,在光波导片53的相对两个表面上分别设置第一保护片51及第二保护片55,可以对光波导片53进行有效保护,提高光波导片53的寿命。Referring to FIG. 30 , optionally, the optical waveguide plate 53 includes a light conduction part 531 , a light coupling part 533 and a light coupling part 535 . The light coupling part 533 and the light coupling part 535 are spaced apart from each other. The light conductive portion 531 faces the surface of the first protective sheet 51 . The optical coupling part 533 is used to receive the optical signal entering the optical waveguide plate 53 and couple the optical signal into the optical conductive part 531; the optical conductive part 531 is used to transmit the optical signal; The optical coupling part 535 is used to receive the optical signal transmitted by the light conductive part 531 and couple the optical signal out of the optical waveguide 53. The optical coupling part 535 can also be used to perform one-dimensional processing on the optical signal. Mydriasis or two-dimensional pupil dilation. The optical waveguide plate 53 has poor strength and is easily broken when dropped or hit. A first protective film 51 and a second protective film 55 are respectively provided on two opposite surfaces of the optical waveguide plate 53 to effectively protect the optical waveguide plate 53 . protection and improve the life of the optical waveguide plate 53.

可选地,光波导片53可以为但不限于为几何光波导(Geometric Waveguide)或衍射光波导(Diffractive Wav eguide)。衍射光波导可以为表面浮雕衍射光波导(SurfaceRelief Grating)或全息体衍射光波导(Volumetric Holographic Grating)。Alternatively, the optical waveguide plate 53 may be, but is not limited to, a geometric optical waveguide (Geometric Waveguide) or a diffractive optical waveguide (Diffractive Waveguide). The diffractive optical waveguide may be a surface relief diffractive optical waveguide (SurfaceRelief Grating) or a holographic volume diffractive optical waveguide (Volumetric Holographic Grating).

可选地,当光波导片53为衍射光波导片53时,光耦入部533为耦入光栅,光耦出部535为耦出光栅。在一些实施例中,当光波导片53为衍射光波导片53时,光波导片53还包括转折光栅,转折光栅、光耦入部533及光耦出部535均设置于光传导部531的同一表面。当光波导片53为几何光波导片53时,光耦入部533为反射面或反射棱镜,光耦出部535为“半透半反”镜面阵列。Optionally, when the optical waveguide plate 53 is a diffraction optical waveguide plate 53, the optical coupling part 533 is a coupling grating, and the optical coupling part 535 is a coupling grating. In some embodiments, when the optical waveguide plate 53 is a diffraction optical waveguide plate 53, the optical waveguide plate 53 further includes a turning grating, and the turning grating, the light coupling part 533 and the light coupling part 535 are all disposed on the same side of the light conductive part 531. surface. When the optical waveguide plate 53 is a geometric optical waveguide plate 53, the light coupling part 533 is a reflective surface or a reflective prism, and the light coupling part 535 is a "transflective" mirror array.

可选地,第一保护片51及第二保护片55均可以通过光固化胶(例如UV胶)、光学胶(OCA胶)、热固胶、热熔胶、双面胶、泡棉胶等具有粘合性的胶框粘合于光波导片53的相背两侧。此外,胶框还可以使第一保护片51及第二保护片55分别与光波导片53间隔设置,形成空气层。需要说明的是,胶框设置于第一保护片51及第二保护片55的外周缘。Optionally, both the first protective sheet 51 and the second protective sheet 55 can be made of light-curing glue (such as UV glue), optical glue (OCA glue), thermosetting glue, hot melt glue, double-sided tape, foam glue, etc. Adhesive plastic frames are bonded to opposite sides of the optical waveguide plate 53 . In addition, the plastic frame can also have the first protective sheet 51 and the second protective sheet 55 spaced apart from the optical waveguide sheet 53 to form an air layer. It should be noted that the plastic frame is disposed on the outer peripheral edges of the first protective sheet 51 and the second protective sheet 55 .

可选地,第一保护片51的材质包括聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、强化玻璃、蓝宝石等中的至少一种。Optionally, the material of the first protective sheet 51 includes at least one of polymethylmethacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), tempered glass, sapphire, etc. A sort of.

可选地,第二保护片55的材质包括聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、强化玻璃、蓝宝石等中的至少一种。Optionally, the material of the second protective sheet 55 includes at least one of polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), tempered glass, sapphire, etc. A sort of.

请参见图31,本申请实施例还提供一种可穿戴设备200,其包括:本申请实施例所述的镜片模组100。Referring to Figure 31, an embodiment of the present application also provides a wearable device 200, which includes: the lens module 100 described in the embodiment of the present application.

本申请实施例的可穿戴设备200可以为但不限于为近视眼镜、远视眼镜、智能眼镜、增强现实眼镜(AR眼镜)、增强现实头盔、增强现实面罩等。The wearable device 200 in the embodiment of the present application may be, but is not limited to, myopia glasses, hyperopia glasses, smart glasses, augmented reality glasses (AR glasses), augmented reality helmets, augmented reality masks, etc.

可选地,镜片模组100的数量可以为一个或两个。例如,当可穿戴设备200为近视眼镜、远视眼镜、智能眼镜、增强现实眼镜(AR眼镜)等中的一种时,镜片组件的数量为两个。当可穿戴设备200为增强现实头盔、增强现实面罩等中的一种时,镜片组件的数量为一个,也可以为两个。Optionally, the number of lens modules 100 may be one or two. For example, when the wearable device 200 is one of myopia glasses, hyperopia glasses, smart glasses, augmented reality glasses (AR glasses), etc., the number of lens components is two. When the wearable device 200 is one of an augmented reality helmet, an augmented reality mask, etc., the number of lens components is one or two.

关于镜片模组100的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。For a detailed description of the lens module 100, please refer to the corresponding description of the above embodiment, and details will not be repeated here.

请参见图32至图34,在一些实施例中,所述可穿戴设备200还包括承载件210,所述承载件210用于承载镜片模组100,所述承载件210具有容置空间201,所述容置空间201用于容置所述镜片模组100。Please refer to Figures 32 to 34. In some embodiments, the wearable device 200 further includes a carrier 210, which is used to carry the lens module 100. The carrier 210 has a receiving space 201, The accommodation space 201 is used to accommodate the lens module 100 .

可选地,承载件210包括支撑部211、第一承载部213及第二承载部215,所述支撑部211具有通槽,所述第一支撑部211及第二支撑部211间隔设置于所述通槽内,且分别与所述支撑部211弯折相连,支撑部211、第一承载部213及第二承载部215围合成所述容置空间201。Optionally, the carrier 210 includes a support part 211, a first support part 213 and a second support part 215. The support part 211 has a through groove, and the first support part 211 and the second support part 211 are spaced apart from each other. The support part 211 , the first bearing part 213 and the second bearing part 215 enclose the accommodation space 201 .

可选地,承载件210可以为但不限于为近视眼镜的镜框、远视眼镜的镜框、智能眼镜的镜框、增强现实眼镜(AR眼镜)的镜框、增强现实面罩的面罩本体、增强现实头盔的头盔本体等支撑结构。Optionally, the carrier 210 may be, but is not limited to, a frame of myopia glasses, a frame of farsighted glasses, a frame of smart glasses, a frame of augmented reality glasses (AR glasses), a mask body of an augmented reality mask, or a helmet of an augmented reality helmet. Body and other supporting structures.

可选地,第二透光层33与承载件210可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。Optionally, the second light-transmitting layer 33 and the carrier 210 may be bonded together using hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), or the like.

可选地,可穿戴设备200包括的镜片模组100的数量可以为1个或2个,当可穿戴设备200的镜片模组100的数量为2个时,承载件210的容置空间201也为两个,两个容置空间201间隔设置。Optionally, the number of lens modules 100 included in the wearable device 200 may be 1 or 2. When the number of lens modules 100 in the wearable device 200 is 2, the accommodation space 201 of the carrier 210 is also There are two accommodation spaces 201 arranged at intervals.

请参见图32,在另一些实施例中,镜片模组100包括依次层叠设置的第二透镜组件30、第一透镜组件10及光波导组件50。镜片模组100组装至承载件210时,第二透光层33的外周与承载件210的支撑部211的内壁通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。每个调节子件1811面向支撑部211的内壁的表面与支撑部211的内壁可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。多个调节子件1811面向光波导组件50的表面抵持光波导组件50的第二保护片55,光波导组件50对调节件181起到支撑作用,以使得在进行散光调节过程中,调节件181面向光波导组件50的表面为平面。可以理解地,多个调节子件1811环绕支撑部211的内壁依次排列,每个调节子件1811均与支撑部211的内壁贴合设置。Referring to FIG. 32 , in other embodiments, the lens module 100 includes a second lens component 30 , a first lens component 10 and an optical waveguide component 50 that are stacked in sequence. When the lens module 100 is assembled to the carrier 210, the outer periphery of the second light-transmitting layer 33 and the inner wall of the support portion 211 of the carrier 210 are adhered to each other through hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. combined settings. The surface of each adjustment component 1811 facing the inner wall of the support part 211 and the inner wall of the support part 211 can be bonded together using hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. The surface of the plurality of adjustment sub-assemblies 1811 facing the optical waveguide assembly 50 resists the second protective sheet 55 of the optical waveguide assembly 50. The optical waveguide assembly 50 supports the adjustment member 181, so that during the astigmatism adjustment process, the adjustment member The surface of 181 facing the optical waveguide assembly 50 is flat. It can be understood that a plurality of adjusting sub-pieces 1811 are arranged in sequence around the inner wall of the supporting part 211, and each adjusting sub-piece 1811 is disposed in close contact with the inner wall of the supporting part 211.

请参见图33,在另一些实施例中,镜片模组100包括依次层叠设置的第一透镜组件10、第二透镜组件30及光波导组件50,第一透镜组件10相较于第二透镜组件30更靠近第一承载部213设置。镜片模组100组装至承载件210时,第二透光层33的外周与承载件210的支撑部211的内壁通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。每个调节子件1811面向支撑部211的内壁的表面与支撑部211的内壁可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。多个调节子件1811面向第一承载部213内壁的表面抵持第一承载部213,第一承载部213对调节件181起到支撑作用,以使得在进行散光调节过程中,调节件181面向第一承载部213的表面为平面。可以理解地,多个调节子件1811环绕支撑部211的内壁依次排列,每个调节子件1811均与支撑部211的内壁贴合设置。Please refer to FIG. 33. In other embodiments, the lens module 100 includes a first lens component 10, a second lens component 30 and an optical waveguide component 50 that are stacked in sequence. The first lens component 10 is smaller than the second lens component. 30 is disposed closer to the first bearing part 213. When the lens module 100 is assembled to the carrier 210, the outer periphery of the second light-transmitting layer 33 and the inner wall of the support portion 211 of the carrier 210 are adhered to each other through hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. combined settings. The surface of each adjustment component 1811 facing the inner wall of the support part 211 and the inner wall of the support part 211 can be bonded together using hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. The surface of the plurality of adjusting sub-members 1811 facing the inner wall of the first bearing part 213 resists the first bearing part 213. The first bearing part 213 supports the adjusting member 181, so that during the astigmatism adjustment process, the adjusting member 181 faces the first bearing part 213. The surface of the first carrying part 213 is flat. It can be understood that a plurality of adjusting sub-pieces 1811 are arranged in sequence around the inner wall of the supporting part 211, and each adjusting sub-piece 1811 is disposed in close contact with the inner wall of the supporting part 211.

请参见图35,在一些实施例中,镜片模组100仅包括第一透镜组件10及第二透镜组件30,第一透镜组件10靠近第一承载部213设置,第二透镜组件30靠近第二承载部215设置。镜片模组100组装至承载件210时,第二透光层33的外周与承载件210的支撑部211的内壁通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。每个调节子件1811面向支撑部211的内壁的表面与支撑部211的内壁可以通过热熔胶、光固化胶水(UV胶)、光学胶(OCA胶)等粘合设置。多个调节子件1811面向第一承载部213内壁的表面抵持第一承载部213,第一承载部213对调节件181起到支撑作用,以使得在进行散光调节过程中,调节件181面向第一承载部213的表面为平面。可以理解地,多个调节子件1811环绕支撑部211的内壁依次排列,每个调节子件1811均与支撑部211的内壁贴合设置。Please refer to Figure 35. In some embodiments, the lens module 100 only includes a first lens component 10 and a second lens component 30. The first lens component 10 is disposed close to the first bearing part 213, and the second lens component 30 is disposed close to the second lens component 213. A carrying portion 215 is provided. When the lens module 100 is assembled to the carrier 210, the outer periphery of the second light-transmitting layer 33 and the inner wall of the support portion 211 of the carrier 210 are adhered to each other through hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. combined settings. The surface of each adjustment component 1811 facing the inner wall of the support part 211 and the inner wall of the support part 211 can be bonded together using hot melt glue, light-curing glue (UV glue), optical glue (OCA glue), etc. The surface of the plurality of adjusting sub-members 1811 facing the inner wall of the first bearing part 213 resists the first bearing part 213. The first bearing part 213 supports the adjusting member 181, so that during the astigmatism adjustment process, the adjusting member 181 faces the first bearing part 213. The surface of the first carrying part 213 is flat. It can be understood that a plurality of adjusting sub-pieces 1811 are arranged in sequence around the inner wall of the supporting part 211, and each adjusting sub-piece 1811 is disposed in close contact with the inner wall of the supporting part 211.

请再次参见图31,在一些实施例中,本申请实施例的可穿戴设备200还包括佩戴件230。佩戴件230与承载件210可转动连接,佩戴件230用于夹持目标对象(如人体头部、或者头部假体等)。Please refer to Figure 31 again. In some embodiments, the wearable device 200 of the embodiment of the present application further includes a wearing piece 230. The wearing part 230 is rotatably connected to the carrying part 210, and the wearing part 230 is used to hold a target object (such as a human head or a head prosthesis, etc.).

可选地,佩戴件230包括第一佩戴件231及第二佩戴件233,第一佩戴件231可转动连接于承载件210的一端,第二佩戴件233可转动连接于承载件210远离第一佩戴件231的另一端。第一佩戴件231与第二佩戴件233配合,用于将可穿戴设备200夹持于目标对象。可选地,第一佩戴件231及第二佩戴件233还用于设置第一致动器183及驱动机构38。Optionally, the wearing part 230 includes a first wearing part 231 and a second wearing part 233. The first wearing part 231 is rotatably connected to one end of the bearing part 210, and the second wearing part 233 is rotatably connected to the bearing part 210 away from the first wearing part 233. The other end of the wearing piece 231. The first wearing part 231 cooperates with the second wearing part 233 to clamp the wearable device 200 on the target object. Optionally, the first wearing part 231 and the second wearing part 233 are also used to set the first actuator 183 and the driving mechanism 38 .

可选地,所述第一佩戴件231与所述第二佩戴件233均可以为但不限于为近视眼镜的镜腿、远视眼镜的镜腿、智能眼镜的镜腿、增强现实眼镜(AR眼镜)的镜腿。Optionally, both the first wearing part 231 and the second wearing part 233 may be, but are not limited to, the temples of myopia glasses, the temples of farsighted glasses, the temples of smart glasses, augmented reality glasses (AR glasses). ) temples.

请参见图36,在一些实施例中,所述可穿戴设备200为增强现实设备,例如增强现实眼镜,所述可穿戴设备200还包括:投影光机250,所述投影光机250包括显示器251及镜头253,所述显示器251用于朝向所述镜头253出射光信号,所述镜头253用于对所述光信号进行调制,并将经调制后的所述光信号射入光波导片53。Please refer to Figure 36. In some embodiments, the wearable device 200 is an augmented reality device, such as augmented reality glasses. The wearable device 200 further includes a projector 250, and the projector 250 includes a display 251. And the lens 253 , the display 251 is used to emit a light signal toward the lens 253 , the lens 253 is used to modulate the light signal, and inject the modulated light signal into the optical waveguide plate 53 .

可选地,显示器251可以为微显示器。显示器251可以包括但不限于包括微型发光二极管(Micro Light Emitting Diode,Micro LED)芯片、微有机发光二极管(MicroOrganic Light-Emitting Diode,Micro OLED)芯片、或微型液晶显示屏(Micro liquidcrystal display,Micro LCD)中的至少一种。在相同的工作功率条件下,Micro OLED的亮度通常小于5000nits,LCD的亮度通常小于15000nits,而Micro LED的亮度可达2000000nits,远高于前两者。因此,相较于Micro OLED显示器及Micro LCD显示器,当显示器251为Micro LED显示器时,其输出的图像具有更高的亮度。相较于Micro LCD显示器,Micro LED显示器是自发光光源,应用于投影光机250具有更好的对比度及更小的显示延迟。Alternatively, display 251 may be a microdisplay. The display 251 may include, but is not limited to, a Micro Light Emitting Diode (Micro LED) chip, a Micro Organic Light-Emitting Diode (Micro OLED) chip, or a Micro liquid crystal display (Micro LCD). ) at least one of the following. Under the same operating power conditions, the brightness of Micro OLED is usually less than 5000nits, the brightness of LCD is usually less than 15000nits, and the brightness of Micro LED can reach 2000000nits, which is much higher than the former two. Therefore, compared with Micro OLED displays and Micro LCD displays, when the display 251 is a Micro LED display, its output image has higher brightness. Compared with Micro LCD displays, Micro LED displays are self-illuminating light sources and have better contrast and smaller display delays when used in the projector 250.

可选地,显示器251出射的光线的颜色可以为但不限于为红光、绿光、蓝光等中的至少一种。在一具体实施例中,显示器251为出射绿光的Micro LED,在另一些实施例中,也可以为其它单色光Micro LED或复色光Micro LED。Optionally, the color of the light emitted by the display 251 may be, but is not limited to, at least one of red light, green light, blue light, etc. In a specific embodiment, the display 251 is a Micro LED that emits green light. In other embodiments, it can also be another monochromatic light Micro LED or a multi-color light Micro LED.

可选地,镜头253为微型投影镜头,该镜头253用于对显示器251出射的光信号(光信号包括图像信息)进行调制,以使得同一个像素点出射的不同视场角的光线,经过镜头253调制后,以平行光的形式出射,以将光信号中的图像信息在无穷远的位置,以便肉眼可以观看到。Optionally, the lens 253 is a micro-projection lens. The lens 253 is used to modulate the light signal (the light signal includes image information) emitted from the display 251, so that the light emitted from the same pixel point with different viewing angles passes through the lens. After 253 modulation, it is emitted in the form of parallel light to place the image information in the optical signal at an infinite distance so that it can be viewed by the naked eye.

请参见图37,本申请实施例的可穿戴设备200还包括处理器270及存储器290。处理器270分别与显示器251电连接,用于控制显示器251出射具有图像信息的光信号等。存储器290与处理器270电连接,用于存储处理器270运行所需的程序代码,控制显示器251所需的程序代码、显示器251出射的图像信息等。Referring to Figure 37, the wearable device 200 according to the embodiment of the present application also includes a processor 270 and a memory 290. The processor 270 is electrically connected to the display 251 respectively, and is used to control the display 251 to emit light signals containing image information, etc. The memory 290 is electrically connected to the processor 270 and is used to store program codes required for the operation of the processor 270, program codes required for controlling the display 251, image information emitted by the display 251, etc.

可选地,处理器270包括一个或者多个通用处理器,其中,通用处理器可以是能够处理电子指令的任何类型的设备,包括中央处理器(Central Processing Unit,CPU)、微处理器、微控制器、主处理器、控制器以及ASIC等等。处理器270用于执行各种类型的数字存储指令,例如存储在存储器290中的软件或者固件程序,它能使计算设备提供较宽的多种服务。Optionally, the processor 270 includes one or more general-purpose processors, where the general-purpose processor can be any type of device capable of processing electronic instructions, including a central processing unit (Central Processing Unit, CPU), a microprocessor, a microprocessor, Controllers, main processors, controllers, ASICs, etc. The processor 270 is used to execute various types of digital storage instructions, such as software or firmware programs stored in the memory 290, which can enable the computing device to provide a wide variety of services.

可选地,存储器290可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器290也可以包括非易失性存储器(Non-VolatileMemory,NVM),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory,FM)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)。存储器290还可以包括上述种类的存储器的组合。Optionally, the memory 290 may include volatile memory (Volatile Memory), such as random access memory (Random Access Memory, RAM); the memory 290 may also include non-volatile memory (Non-Volatile Memory, NVM), such as only Read-Only Memory (ROM), Flash Memory (FM), Hard Disk Drive (HDD) or Solid-State Drive (SSD). Memory 290 may also include a combination of the types of memory described above.

可以理解地,本实施方式中所述的可穿戴设备200仅仅为所述镜片模组100所应用的可穿戴设备200的一种形态,不应当理解为对本申请提供的可穿戴设备200的限定,也不应当理解为对本申请各个实施方式提供的镜片模组100的限定。It can be understood that the wearable device 200 described in this embodiment is only a form of the wearable device 200 to which the lens module 100 is applied, and should not be understood as limiting the wearable device 200 provided in this application. Nor should it be understood as a limitation on the lens module 100 provided in various embodiments of the present application.

在本申请中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。此外,还应该理解的是,本申请各实施例所描述的特征、结构或特性,在相互之间不存在矛盾的情况下,可以任意组合,形成又一未脱离本申请技术方案的精神和范围的实施例。Reference in this application to "an embodiment" or "an implementation" means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application. The appearances of recited phrases in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments. In addition, it should also be understood that the features, structures or characteristics described in the embodiments of the present application can be arbitrarily combined to form another one without departing from the spirit and scope of the technical solution of the present application, provided there is no contradiction between them. Embodiments.

最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application and are not limiting. Although the present application has been described in detail with reference to the above preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present application can be modified. Any modification or equivalent substitution of the solution shall not depart from the spirit and scope of the technical solution of this application.

Claims (20)

8. The lens module of claim 7, wherein when the heights of the plurality of adjustment sub-members are changed according to a preset rule, so that the surface of the adjustment member facing the first elastic layer is a concave cylindrical surface, the plurality of adjustment sub-members press the first elastic layer to deform the first elastic layer, so that the first surface of the first elastic layer is a convex cylindrical surface; when the heights of the plurality of adjusting sub-components change according to a preset rule, so that the surface of the adjusting component facing the first elastic layer is a convex cylindrical surface, the plurality of adjusting sub-components squeeze the first elastic layer to deform, and the first surface of the first elastic layer is a concave cylindrical surface.
11. The lens module of claim 10, wherein the adjustment subassembly is an elastomeric balloon, the adjustment mechanism further comprising a second fluid and a plurality of first valves; the second fluid is located within the conditioning sub; each first valve is communicated with one regulating sub-piece, different first valves are communicated with different regulating sub-pieces, and the first actuator is communicated with the plurality of first valves; when the first actuator and the plurality of first valves are opened, the first actuator is used for adjusting the second fluid in the plurality of adjusting sub-pieces so as to adjust the volume of the adjusting sub-pieces, thereby changing the heights of the plurality of adjusting sub-pieces according to a preset rule and realizing the adjustment of the astigmatism degree of the first lens component.
14. The lens module of claim 13, wherein the drive mechanism comprises a second actuator, an elastic container, and a second valve, the second actuator being in communication with the second receiving cavity and the elastic container, respectively, the valve being disposed between the elastic container and the second receiving cavity; the third fluid is also partially arranged in the elastic container; when the second actuator and the second valve are opened and the second actuator drives part of the third fluid in the second accommodating cavity to flow to the elastic container, the amount of the third fluid in the second accommodating cavity is reduced to adjust the curvature radius of the second elastic layer, so that the focal length of the second lens assembly is adjusted; when the second valve is opened and the third fluid in the elastic container flows to the second accommodating cavity, the amount of the third fluid in the second accommodating cavity is increased to adjust the curvature radius of the second elastic layer, so that the focal length of the second lens assembly is adjusted.
15. The lens module of claim 14, wherein when the elastic container is in an expanded state, the second valve is opened to connect the second accommodating cavity and the elastic container, the third fluid in the elastic container flows to the second accommodating cavity under the action of the elastic restoring force of the elastic container, and the amount of the third fluid in the second accommodating cavity is increased to adjust the radius of curvature of the second elastic layer, so as to realize the adjustment of the focal length of the second lens assembly; when the elastic container is in a relaxed state, the second actuator and the second valve are both opened, the second actuator drives the third fluid in the elastic container to flow to the second accommodating cavity, and the amount of the third fluid in the second accommodating cavity is increased to adjust the curvature radius of the second elastic layer, so that the focal length of the second lens assembly is adjusted.
CN202210642360.6A2022-06-082022-06-08Lens module and wearable equipmentPendingCN117233983A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202210642360.6ACN117233983A (en)2022-06-082022-06-08Lens module and wearable equipment

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210642360.6ACN117233983A (en)2022-06-082022-06-08Lens module and wearable equipment

Publications (1)

Publication NumberPublication Date
CN117233983Atrue CN117233983A (en)2023-12-15

Family

ID=89093499

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210642360.6APendingCN117233983A (en)2022-06-082022-06-08Lens module and wearable equipment

Country Status (1)

CountryLink
CN (1)CN117233983A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO1992003989A1 (en)*1990-09-041992-03-19Wiley Robert GVariable power intraocular lens with astigmatism correction
CN102656484A (en)*2009-10-142012-09-05阿德伦丝必康公司 Aspheric Fluid-Filled Lens Optics
CN103163577A (en)*2011-12-132013-06-19林柔妤Variable-focus elastic lens group
CN109716215A (en)*2016-08-122019-05-03奥普托图尼股份公司Adjustable non-circular fluid lens with immersion lens former
TW202004777A (en)*2018-05-222020-01-16美商康寧公司Liquid lens and fluids for liquid lens
CN110941090A (en)*2018-09-212020-03-31苹果公司Electronic device with adjustable lens
JP2020091304A (en)*2018-12-032020-06-11株式会社 AbcふぉーゆーFluid lens system
CN114578571A (en)*2022-04-222022-06-03Oppo广东移动通信有限公司Zoom lens and wearable device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO1992003989A1 (en)*1990-09-041992-03-19Wiley Robert GVariable power intraocular lens with astigmatism correction
CN102656484A (en)*2009-10-142012-09-05阿德伦丝必康公司 Aspheric Fluid-Filled Lens Optics
CN103163577A (en)*2011-12-132013-06-19林柔妤Variable-focus elastic lens group
CN109716215A (en)*2016-08-122019-05-03奥普托图尼股份公司Adjustable non-circular fluid lens with immersion lens former
TW202004777A (en)*2018-05-222020-01-16美商康寧公司Liquid lens and fluids for liquid lens
CN110941090A (en)*2018-09-212020-03-31苹果公司Electronic device with adjustable lens
JP2020091304A (en)*2018-12-032020-06-11株式会社 AbcふぉーゆーFluid lens system
CN114578571A (en)*2022-04-222022-06-03Oppo广东移动通信有限公司Zoom lens and wearable device

Similar Documents

PublicationPublication DateTitle
US11966042B2 (en)Augmented reality display units and augmented reality headsets comprising the same
JP7241678B2 (en) Tunable non-circular fluid lens using an immersed lens shaper
US9500884B2 (en)Fluid filled adjustable contact lenses
TWI807992B (en)Improvements in or relating to variable focusing power optical devices and an augmented reality headset or helmet incorporating such a device
CN118671970A (en)Dynamic focusing head-mounted display
JP2016514278A (en) Adjustable lens and eyewear articles
JP2013522696A (en) Dynamic lens
TW201945767A (en)Improvements in or relating to variable focusing power optical devices
CN114578571A (en)Zoom lens and wearable device
JP7654830B2 (en) Electronic device with adjustable lens having two adjustable surfaces - Patents.com
CN115291417A (en) Lens Modules, Glasses and Wearables
CN216900999U (en)Zoom lens and wearable device
CN117148573A (en) Augmented reality device
JP2006106488A (en)Variable focus lens and variable focus spectacles with same
CN117233983A (en)Lens module and wearable equipment
CN117233982A (en)Astigmatic lens, integrated lens and wearable device
CN118466019A (en) Head-mounted display
TWI826428B (en)Improvements in or relating to augmented reality display units and augmented reality headsets comprising the same
US20240302657A1 (en)User Interfaces for Adjusting a Tunable Lens
CN117233962A (en)Lens module and augmented reality device
CN118244513A (en)Lens module and glasses
CN117590502A (en)Lens, lens group, diopter adjustment method of lens group and head-mounted display device
AU2015264899A1 (en)Fluid filled adjustable contact lenses
HK40047094B (en)Improvements in or relating to augmented reality display units and augmented reality headsets comprising the same
HK40047094A (en)Improvements in or relating to augmented reality display units and augmented reality headsets comprising the same

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp