技术领域Technical field
本发明涉及砂岩铀矿地浸开采技术领域,具体而言,涉及一种铀产量调控方法、装置、设备及可读存储介质。The invention relates to the technical field of in-situ leaching mining of sandstone uranium ores, and specifically, to a uranium production control method, device, equipment and readable storage medium.
背景技术Background technique
地浸采铀通过群井注入酸性、碱性、CO2+O2等溶浸剂,伴随着溶浸剂在矿层内部与含铀矿物化学反应,在开采井回收浸出液,实现铀矿开采的目的。在实际地浸采铀生产过程中,抽注液量动态调控主要依托于工作人员的主观判断,例如开采井的铀浓度下降,则将注入酸浓度调高,以强化铀矿浸出,但成效具有显著随机性,导致抽注液量调节在空间和时间上均缺乏精准性。Uranium leaching in the ground injects acidic, alkaline, CO2+O2 and other leaching agents through group wells. As the leaching agent chemically reacts with uranium-containing minerals inside the ore layer, the leachate is recovered in the mining well to achieve the purpose of uranium mining. In the actual uranium leaching production process, the dynamic control of the injection liquid volume mainly relies on the subjective judgment of the staff. For example, if the uranium concentration in the mining well decreases, the injected acid concentration will be increased to strengthen the uranium ore leaching, but the effect is Significant randomness leads to a lack of accuracy in both space and time in adjusting the injection volume.
发明内容Contents of the invention
本发明的目的在于提供一种铀产量调控方法、装置、设备及可读存储介质,以改善上述问题。为了实现上述目的,本发明采取的技术方案如下:The purpose of the present invention is to provide a uranium production control method, device, equipment and readable storage medium to improve the above problems. In order to achieve the above objects, the technical solutions adopted by the present invention are as follows:
第一方面,本申请提供了一种铀产量调控方法,包括:In the first aspect, this application provides a uranium production control method, including:
获取预设抽注液量、预设酸浓度和目标铀产量;Obtain the preset injection liquid volume, preset acid concentration and target uranium production;
将所述预设抽注液量和所述预设酸浓度输入预设的产量预测模型中,获得预测铀产量,所述产量预测模型用于基于抽注液量和酸浓度预测对应铀产量;Input the preset injection liquid volume and the preset acid concentration into a preset production prediction model to obtain predicted uranium production, and the production prediction model is used to predict the corresponding uranium production based on the injection liquid volume and acid concentration;
将所述预测铀产量与所述目标铀产量进行比较;comparing said predicted uranium production to said target uranium production;
当所述预测铀产量小于所述目标铀产量时,基于所述目标铀产量计算得到主控井的目标抽注液量和目标酸浓度;When the predicted uranium production is less than the target uranium production, calculate the target injection fluid volume and target acid concentration of the main control well based on the target uranium production;
重复将所述目标抽注液量和目标酸浓度重新输入所述目标铀产量预测模型中,并基于预测铀产量进行比较,直到所述预测铀产量大于所述目标铀产量。The target injection fluid volume and target acid concentration are repeatedly re-entered into the target uranium production prediction model and compared based on the predicted uranium production until the predicted uranium production is greater than the target uranium production.
第二方面,本申请还提供了一种铀产量调控装置,包括:In the second aspect, this application also provides a uranium production control device, including:
获取单元,用于获取预设抽注液量、预设酸浓度和目标铀产量;An acquisition unit used to acquire the preset injection liquid volume, preset acid concentration and target uranium production;
输入单元,用于将所述预设抽注液量和所述预设酸浓度输入预设的产量预测模型中,获得预测铀产量,所述产量预测模型用于基于抽注液量和酸浓度预测对应铀产量;An input unit configured to input the preset injection liquid volume and the preset acid concentration into a preset production prediction model to obtain predicted uranium production, and the production prediction model is used to obtain the predicted uranium production based on the injection liquid volume and acid concentration. Forecast corresponding uranium production;
第一比较单元,用于将所述预测铀产量与所述目标铀产量进行比较;a first comparison unit, configured to compare the predicted uranium production with the target uranium production;
第一计算单元,用于当所述预测铀产量小于所述目标铀产量时,基于所述目标铀产量计算得到主控井的目标抽注液量和目标酸浓度;A first calculation unit configured to calculate the target injection fluid volume and target acid concentration of the main control well based on the target uranium production when the predicted uranium production is less than the target uranium production;
重复单元,重复将所述目标抽注液量和目标酸浓度重新输入所述目标铀产量预测模型中,并基于预测铀产量进行比较,直到所述预测铀产量大于所述目标铀产量。Repeat unit, repeatedly re-enter the target injection liquid volume and target acid concentration into the target uranium production prediction model, and compare based on the predicted uranium production until the predicted uranium production is greater than the target uranium production.
第三方面,本申请还提供了一种铀产量调控设备,包括:In the third aspect, this application also provides a uranium production control equipment, including:
存储器,用于存储计算机程序;Memory, used to store computer programs;
处理器,用于执行所述计算机程序时实现所述铀产量调控方法的步骤。A processor, configured to implement the steps of the uranium production control method when executing the computer program.
第四方面,本申请还提供了一种可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述基于铀产量调控方法的步骤。In a fourth aspect, the present application also provides a readable storage medium. A computer program is stored on the readable storage medium. When the computer program is executed by a processor, the steps of the uranium production control method are implemented.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明通过反演算法计算得到所设定的目标铀产量下所对应的抽注液量和酸浓度,并将计算得到的抽注液量和酸浓度输入产量预测模型进行预测,当预测的铀产量与目标铀产量满足比较关系时,基于该计算结果对应调整主控井的抽注液量以及酸浓度,从而能够精准调整抽注液量以及酸浓度,可以有效避免抽注液量失衡导致的抽液孔疏干或者注入溶浸剂大量外溢。The present invention calculates the injection liquid volume and acid concentration corresponding to the set target uranium production through an inversion algorithm, and inputs the calculated injection liquid volume and acid concentration into the production prediction model for prediction. When the predicted uranium production is When the production and target uranium production meet the comparative relationship, the injection fluid volume and acid concentration of the main control well are adjusted accordingly based on the calculation results, so that the injection fluid volume and acid concentration can be accurately adjusted, which can effectively avoid problems caused by the imbalance of the injection fluid volume. The suction hole is drained or a large amount of leaching agent is injected and overflows.
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of embodiments of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of the drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings required to be used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention and therefore do not It should be regarded as a limitation of the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明实施例中所述的铀产量调控方法流程示意图;Figure 1 is a schematic flow chart of the uranium production control method described in the embodiment of the present invention;
图2为本发明实施例中所述的铀产量调控装置结构示意图;Figure 2 is a schematic structural diagram of the uranium production control device described in the embodiment of the present invention;
图3为本发明实施例中所述的铀产量调控设备结构示意图。Figure 3 is a schematic structural diagram of the uranium production control equipment described in the embodiment of the present invention.
图中标记:100、获取单元;200、输入单元;300、第一比较单元;400、第一计算单元;500、重复单元;410、构建单元;420、第一建立单元;430、第二计算单元;431、第二建立单元;432、第三建立单元;433、替换单元;434、求解单元;600、输出单元;700、第一调整单元;800、增加单元;900、第三计算单元;1000、第二调整单元;1100、第四计算单元;1200、第二比较单元;1300、第一处理单元;1400、第二处理单元;Marked in the figure: 100, acquisition unit; 200, input unit; 300, first comparison unit; 400, first calculation unit; 500, repeat unit; 410, construction unit; 420, first establishment unit; 430, second calculation Unit; 431, second establishment unit; 432, third establishment unit; 433, replacement unit; 434, solution unit; 600, output unit; 700, first adjustment unit; 800, addition unit; 900, third calculation unit; 1000. Second adjustment unit; 1100. Fourth calculation unit; 1200. Second comparison unit; 1300. First processing unit; 1400. Second processing unit;
800、铀产量调控设备;801、处理器;802、存储器;803、多媒体组件;804、I/O接口;805、通信组件。800. Uranium production control equipment; 801. Processor; 802. Memory; 803. Multimedia components; 804. I/O interface; 805. Communication components.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, rather than all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations. Therefore, the following detailed description of the embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。It should be noted that similar reference numerals and letters represent similar items in the following figures, therefore, once an item is defined in one figure, it does not need further definition and explanation in subsequent figures. Meanwhile, in the description of the present invention, the terms "first", "second", etc. are only used to differentiate the description and cannot be understood as indicating or implying relative importance.
实施例1:Example 1:
本实施例提供了一种铀产量调控方法。This embodiment provides a uranium production control method.
参见图1,图中示出了本方法包括步骤S100、步骤S200、步骤S300、步骤S400和步骤S500。Referring to Figure 1, the figure shows that the method includes step S100, step S200, step S300, step S400 and step S500.
步骤S100.获取预设抽注液量、预设酸浓度和目标铀产量;Step S100. Obtain the preset injection liquid volume, preset acid concentration and target uranium production;
具体的,预设抽注液量和预设酸浓度为当前所有注水井的抽注液量与酸浓度,目标铀产量为当前目标砂岩铀矿地所设定的铀产量值,抽注液量包括抽液孔的流量与注液孔的流量。Specifically, the preset injection liquid volume and acid concentration are the current injection liquid volumes and acid concentrations of all water injection wells, the target uranium production is the uranium production value set for the current target sandstone uranium mine, and the injection liquid volume is Including the flow rate of the liquid suction hole and the flow rate of the liquid injection hole.
步骤S200.将预设抽注液量和预设酸浓度输入预设的产量预测模型中,获得预测铀产量,产量预测模型用于基于抽注液量和酸浓度预测对应铀产量;Step S200. Input the preset injection liquid volume and the preset acid concentration into the preset production prediction model to obtain the predicted uranium production. The production prediction model is used to predict the corresponding uranium production based on the injection liquid volume and acid concentration;
具体的,产量预测模型为神经预网络模型,是基于当前目标砂岩铀矿地历史时间段内的开采数据进行训练得到,开采数据包括抽注液量、酸浓度以及对应的铀产量,产量预测模型能够基于抽注液量和酸浓度预测对应的铀产量。Specifically, the production prediction model is a neural pre-network model, which is trained based on the mining data in the historical time period of the current target sandstone uranium mine. The mining data includes injection liquid volume, acid concentration and corresponding uranium production. The production prediction model The corresponding uranium production can be predicted based on the injection liquid volume and acid concentration.
步骤S300.将预测铀产量与目标铀产量进行比较;Step S300. Compare the predicted uranium production with the target uranium production;
步骤S400.当预测铀产量小于目标铀产量时,基于目标铀产量计算得到主控井的目标抽注液量和目标酸浓度;Step S400. When the predicted uranium production is less than the target uranium production, calculate the target injection fluid volume and target acid concentration of the main control well based on the target uranium production;
具体的,当预测铀产量小于设定的目标铀产量时,认为在当前的抽注液量以及酸浓度条件下并不能得到所设定的铀产量,因此需要对于抽注液量和酸浓度进行调整,具体的调整量需要通过计算得到。Specifically, when the predicted uranium production is less than the set target uranium production, it is considered that the set uranium production cannot be obtained under the current injection liquid volume and acid concentration conditions, so it is necessary to adjust the injection liquid volume and acid concentration. Adjustment, the specific adjustment amount needs to be calculated.
具体的,步骤S400具体包括:Specifically, step S400 specifically includes:
步骤S410.基于贝叶斯理论构建第一变量与第二变量的后验概率密度函数,第一变量为铀产量,第二变量为抽注液量和酸浓度;Step S410. Construct a posterior probability density function of the first variable and the second variable based on Bayesian theory. The first variable is uranium production, and the second variable is the injection liquid volume and acid concentration;
具体的,首先建立贝斯参数调整服从函数表达式;Specifically, first establish the Bass parameter adjustment obedience function expression;
p(m|d)∝p(m)*p(d|m)p(m|d)∝p(m)*p(d|m)
其中,d为第一变量;m为第二变量;p(m|d)为第一变量的后验概率;p(m)为第二变量的先验概率;p(d|m)为第一变量第二变量的似然函数;∝为呈正比关系。Among them, d is the first variable; m is the second variable; p(m|d) is the posterior probability of the first variable; p(m) is the prior probability of the second variable; p(d|m) is the third variable. The likelihood function of one variable and the second variable; ∝ is directly proportional.
第一变量与第二变量之间的关系式为:The relationship between the first variable and the second variable is:
d=g(m)+εd=g(m)+ε
其中,d为第一变量;m为第二变量;g()为预测函数;ε为高斯噪音;Among them, d is the first variable; m is the second variable; g() is the prediction function; ε is Gaussian noise;
上述似然函数的计算表达式为:The calculation expression of the above likelihood function is:
其中,d为第一变量;m为第二变量;g()为预测函数为的协方差矩阵;p(d|m)为第一变量第二变量的似然函数;为ε的协方差矩阵的逆矩阵;Among them, d is the first variable; m is the second variable; g() is the covariance matrix of the prediction function; p(d|m) is the likelihood function of the first variable and the second variable; is the inverse matrix of the covariance matrix of ε;
上述第二变量的先验概率表达式为:The prior probability expression of the above second variable is:
其中,p(m)为第二变量的先验概率;m为第二变量;mpr为第二变量在先验概率分布条件下的随机抽样值。为第二变量与其先验分布抽样之间的协方差矩阵的逆矩阵;Among them, p(m) is the prior probability of the second variable; m is the second variable; mpr is the random sampling value of the second variable under the condition of the prior probability distribution. is the inverse matrix of the covariance matrix between the second variable and its prior distribution sampling;
第一变量与第二变量的后验概率密度函数的表达式为:The expression of the posterior probability density function of the first variable and the second variable is:
其中,p(m|d)为第一变量的后验概率;d为第一变量;m为第二变量;mpr为第二变量在先验概率分布条件下的随机抽样值。为第二变量与其先验分布抽样之间的协方差矩阵的逆矩阵;g()为预测函数为的协方差矩阵;/>为ε的协方差矩阵的逆矩阵;Among them, p(m|d) is the posterior probability of the first variable; d is the first variable; m is the second variable; mpr is the random sampling value of the second variable under the condition of prior probability distribution. is the inverse matrix of the covariance matrix between the second variable and its prior distribution sampling; g() is the covariance matrix of the prediction function;/> is the inverse matrix of the covariance matrix of ε;
步骤S420.基于后验概率密度函数建立目标函数,其中,当目标函数取得最大值时所对应后验概率密度函数的函数值最大;Step S420. Establish an objective function based on the posterior probability density function, where when the objective function obtains the maximum value, the function value of the corresponding posterior probability density function is the largest;
具体的,目标函数计算式为:Specifically, the objective function calculation formula is:
其中,O(m)为目标函数;d为第一变量;m为第二变量;mpr为第二变量在先验概率分布条件下的随机抽样值;为第二变量与其先验分布抽样之间的协方差矩阵的逆矩阵;g()为预测函数为的协方差矩阵;/>为ε的协方差矩阵的逆矩阵;Among them, O(m) is the objective function; d is the first variable; m is the second variable; mpr is the random sampling value of the second variable under the condition of prior probability distribution; is the inverse matrix of the covariance matrix between the second variable and its prior distribution sampling; g() is the covariance matrix of the prediction function;/> is the inverse matrix of the covariance matrix of ε;
具体的,上述计算式前半部分代表第二变量与其先验值之间偏差,主要用于正则化,防止反演迭代过程出现解的不稳定性;后半部分为迭代过程中第二变量的计算值与目标值之间偏差。Specifically, the first half of the above calculation formula represents the deviation between the second variable and its prior value, which is mainly used for regularization to prevent the instability of the solution during the inversion iteration process; the second half is the calculation of the second variable during the iterative process. The deviation between the value and the target value.
步骤S430.当第一变量小于目标铀产量时,基于高斯牛顿迭代法计算在后验概率密度函数最大值所对应的第二变量的目标取值。Step S430. When the first variable is less than the target uranium production, calculate the target value of the second variable corresponding to the maximum value of the posterior probability density function based on the Gauss-Newton iteration method.
具体的,步骤S430具体包括:Specifically, step S430 specifically includes:
步骤S431.建立第二变量的迭代关系式,迭代关系式中包含第一梯度矩阵关系式和第二梯度矩阵关系式;Step S431. Establish an iterative relational expression of the second variable. The iterative relational expression includes the first gradient matrix relational expression and the second gradient matrix relational expression;
具体的,基于高斯牛顿迭代法建立第二变量的迭代关系式为:Specifically, the iteration relationship formula for establishing the second variable based on the Gauss-Newton iteration method is:
其中,l代表迭代次数;d为第一变量;m为第二变量;ml+1为第l+1次迭代计算的第二变量值;ml为第l次迭代计算的第二变量值;Gl为梯度矩阵;为梯度矩阵的转置矩阵;/>为ε的协方差矩阵的逆矩阵;/>为第二变量与其先验分布抽样之间的协方差矩阵的逆矩阵;λl为第l次迭代的迭代系数;mpr为第二变量在先验概率分布条件下的随机抽样值;g()为预测函数为的协方差矩阵;Among them, l represents the number of iterations; d is the first variable; m is the second variable; ml+1 is the second variable value calculated in the l+1 iteration; ml is the second variable value calculated in the lth iteration ;Gl is the gradient matrix; is the transpose matrix of the gradient matrix;/> is the inverse matrix of the covariance matrix of ε;/> is the inverse matrix of the covariance matrix between the second variable and its prior distribution sampling; λl is the iteration coefficient of the l-th iteration; mpr is the random sampling value of the second variable under the prior probability distribution condition; g ( ) is the covariance matrix of the prediction function;
步骤S432.建立基于预设的预测函数的协方差矩阵和基于第二参数和预测函数的互协方差矩阵;Step S432. Establish a covariance matrix based on the preset prediction function and a cross-covariance matrix based on the second parameter and the prediction function;
步骤S433.基于协方差矩阵和互协方差矩阵,分别替换第二变量的迭代关系式中的第一梯度矩阵关系式和第二梯度矩阵关系式,得到目标迭代关系式;Step S433. Based on the covariance matrix and the cross-covariance matrix, respectively replace the first gradient matrix relationship and the second gradient matrix relationship in the iteration relationship of the second variable to obtain the target iteration relationship;
具体的,替代后的迭代关系式为:Specifically, the iteration relationship after substitution is:
其中,j代表参数迭代计算组数;l代表迭代次数;dj为第j迭代计算组中的第一变量;为第j迭代计算组中第l+1次迭代计算的第二变量值;/>为第j迭代计算组中第l次迭代计算的第二变量值;λl为第l次迭代的迭代系数;mpr,j为第j迭代计算组中第二变量在先验概率分布条件下的随机抽样值;/>为第l次迭代计算中第二变量与其先验分布抽样之间的协方差矩阵;/>为第l次迭代计算中第二参数和预测函数的互协方差矩阵;CD为预测参数的协方差矩阵;/>为第l次迭代计算中预测参数的协方差矩阵;/>为第l次迭代计算中第二参数和预测函数的互协方差矩阵的转置矩阵;/>为第二变量与其先验分布抽样之间的协方差矩阵的逆矩阵;Among them, j represents the number of parameter iterative calculation groups; l represents the number of iterations; dj is the first variable in the j-th iterative calculation group; The second variable value calculated for the l+1th iteration in the jth iteration calculation group;/> is the second variable value calculated at the l-th iteration in the j-th iterative calculation group; λl is the iteration coefficient of the l-th iteration; mpr,j is the second variable in the j-th iterative calculation group under the condition of the prior probability distribution Randomly sampled values;/> is the covariance matrix between the second variable and its prior distribution sampling in the l-th iteration calculation;/> is the cross-covariance matrix of the second parameter and the prediction function in the l-th iteration calculation; CD is the covariance matrix of the prediction parameter;/> is the covariance matrix of the prediction parameters in the l-th iteration calculation;/> is the transpose matrix of the cross-covariance matrix of the second parameter and the prediction function in the l-th iteration calculation;/> is the inverse matrix of the covariance matrix between the second variable and its prior distribution sampling;
步骤S434.基于高斯牛顿迭代法迭代求解目标迭代关系式,当迭代计算结果满足迭代停止条件时,停止迭代,其中,迭代停止条件为当迭代关系式计算得到的第二变量数值与上次迭代计算得到的第二变量数值的差值满足设定阈值。Step S434. Iteratively solve the target iteration relationship based on the Gauss-Newton iteration method. When the iteration calculation result meets the iteration stop condition, stop the iteration. The iteration stop condition is when the second variable value calculated by the iteration relationship is the same as the last iteration calculation. The obtained difference in the value of the second variable satisfies the set threshold.
具体的,在进行迭代求解的过程中,当前后相邻两次的计算结果之间的差值小于设定阈值时,后面一次的计算结果为最优的计算结果。Specifically, during the iterative solution process, when the difference between the two adjacent calculation results is less than the set threshold, the subsequent calculation result is the optimal calculation result.
步骤S500.重复将目标抽注液量和目标酸浓度重新输入目标铀产量预测模型中,并基于预测铀产量进行比较,直到预测铀产量大于目标铀产量。Step S500. Repeatedly re-enter the target injection liquid volume and target acid concentration into the target uranium production prediction model, and compare based on the predicted uranium production until the predicted uranium production is greater than the target uranium production.
具体的,将通过目标铀产量计算得到的抽注液量以及酸浓度再次带入产量预测模型中进行预测,并将所得到的预测结果与目标铀产量进行比较,直到预测结果大于目标铀产量时,才能停止再次预测计算,认为在当前计算得到的抽注液量和酸浓度条件下,当前矿岩铀矿地能够达到所设定的目标铀产量。Specifically, the injection liquid volume and acid concentration calculated through the target uranium production are brought into the production prediction model again for prediction, and the obtained prediction results are compared with the target uranium production until the prediction result is greater than the target uranium production. , can the prediction calculation be stopped again, and it is believed that under the currently calculated injection liquid volume and acid concentration conditions, the current ore rock uranium mine can achieve the set target uranium production.
步骤S600.基于预设的铀产量的主控因子智能预测模型输出多个主控井编号,预设的铀产量的主控因子智能预测模型用于从目标砂岩铀矿地中的多个注水井中确定出对开采铀产量影响最大的多个主控井;Step S600. Output multiple main control well numbers based on the preset main control factor intelligent prediction model of uranium production. The preset main control factor intelligent prediction model of uranium production is used to extract water from multiple water injection wells in the target sandstone uranium mine. Several main control wells that have the greatest impact on uranium production were identified;
具体的,铀产量的主控因子智能预测模型神经预网络模型,是基于当前目标砂岩铀矿地在历史时间段内的历史数据训练得到,历史数据为每口注水井的抽注流量和酸浓度以及对应的铀产量。Specifically, the main control factor intelligent prediction model of uranium production, the neural pre-network model, is trained based on the historical data of the current target sandstone uranium mine in the historical period. The historical data is the injection flow rate and acid concentration of each water injection well. and the corresponding uranium production.
步骤S700.基于目标铀产量调整多个主控井编号所对应主控井的抽注液量和目标酸浓度。Step S700. Adjust the injection fluid volume and target acid concentration of the main control wells corresponding to the multiple main control well numbers based on the target uranium production.
具体的,确定出主控井后,将对应调整各主控井的抽注流量和酸度值,从而使铀产量达到设定的目标值。Specifically, after the main control wells are determined, the injection flow rate and acidity value of each main control well will be adjusted accordingly, so that uranium production reaches the set target value.
具体的,所设定的目标铀产量可能不为当前砂岩铀矿地的最高单日铀产量,因此需要通过不断调整目标铀产量的数值来得到对应所需的抽注液量和酸浓度,并进行对应调整,通过实际铀产量确定出当前砂岩铀矿地的单日最高铀产量。Specifically, the set target uranium production may not be the highest single-day uranium production in the current sandstone uranium mine. Therefore, it is necessary to continuously adjust the value of the target uranium production to obtain the corresponding required injection liquid volume and acid concentration, and Corresponding adjustments are made, and the maximum single-day uranium production of the current sandstone uranium mine is determined based on the actual uranium production.
步骤S800.基于预设间隔来逐次增加目标铀产量,直到达到预设次数;Step S800. Gradually increase the target uranium production based on the preset interval until the preset number of times is reached;
具体的,预设间隔可以设定为为1,增加次数可以设定为5。Specifically, the preset interval can be set to 1, and the number of increases can be set to 5.
步骤S900.基于增加后的目标铀产量进行计算;Step S900. Calculate based on the increased target uranium production;
步骤S1000.当产量预测模型的预测铀产量值满足比较关系时,基于产量预测模型输入的抽注液量和酸浓度,对应进行调整多个主控井的抽注液量和注入浸出液的酸浓度;Step S1000. When the predicted uranium production value of the production prediction model meets the comparison relationship, based on the injection liquid volume and acid concentration input by the production prediction model, the injection liquid volume and the acid concentration of the injected leachate of the multiple main control wells are adjusted accordingly. ;
步骤S1100.获取调整后的多个主控井在设定时间段内的单日铀产量,并计算预设时间段内单日铀产量平均值;Step S1100. Obtain the adjusted single-day uranium production of multiple main control wells within the set time period, and calculate the average single-day uranium production within the preset time period;
步骤S1200.将单日铀产量平均值与对应增加后的目标铀产量进行比较。Step S1200. Compare the single-day uranium production average with the corresponding increased target uranium production.
步骤S1300.当铀产量的平均值大于对应的增加后的目标铀产量时,将所对应的增加后的目标铀产量作为初始单日铀产量;Step S1300. When the average uranium production is greater than the corresponding increased target uranium production, use the corresponding increased target uranium production as the initial single-day uranium production;
步骤S1400.从多个初始单日铀产量中比较得到最大值,最大值为目标砂岩铀矿地的最高单日铀产量。Step S1400. Obtain the maximum value from multiple initial single-day uranium productions, and the maximum value is the highest single-day uranium production of the target sandstone uranium mine.
具体的,从多个初始单日铀产量中确定出最大值,作为该砂岩铀矿地的最高单日铀产量,后续的抽注液量和酸浓度的设定都可以基于该最大值进行设定。Specifically, the maximum value is determined from multiple initial single-day uranium production. As the highest single-day uranium production of the sandstone uranium mine, the subsequent injection liquid volume and acid concentration can be set based on this maximum value. Certainly.
实施例2:Example 2:
如图2所示,本实施例提供了一种铀产量调控装置,装置包括As shown in Figure 2, this embodiment provides a uranium production control device, which includes
获取单元100,用于获取预设抽注液量、预设酸浓度和目标铀产量;The acquisition unit 100 is used to acquire the preset injection liquid volume, the preset acid concentration and the target uranium production;
输入单元200,用于将预设抽注液量和预设酸浓度输入预设的产量预测模型中,获得预测铀产量,产量预测模型用于基于抽注液量和酸浓度预测对应铀产量;The input unit 200 is used to input the preset injection liquid volume and the preset acid concentration into the preset production prediction model to obtain the predicted uranium production. The production prediction model is used to predict the corresponding uranium production based on the injection liquid volume and acid concentration;
第一比较单元300,用于将预测铀产量与目标铀产量进行比较;The first comparison unit 300 is used to compare the predicted uranium production with the target uranium production;
第一计算单元400,用于当预测铀产量小于目标铀产量时,基于目标铀产量计算得到主控井的目标抽注液量和目标酸浓度;The first calculation unit 400 is used to calculate the target injection fluid volume and target acid concentration of the main control well based on the target uranium production when the predicted uranium production is less than the target uranium production;
重复单元500,重复将目标抽注液量和目标酸浓度重新输入目标铀产量预测模型中,并基于预测铀产量进行比较,直到预测铀产量大于目标铀产量。Repeat unit 500 to repeatedly re-enter the target injection liquid volume and target acid concentration into the target uranium production prediction model, and compare based on the predicted uranium production until the predicted uranium production is greater than the target uranium production.
在一些具体的实施例中,第一计算单元400包括:In some specific embodiments, the first computing unit 400 includes:
构建单元410,用于基于贝叶斯理论构建第一变量与第二变量的后验概率密度函数,第一变量为铀产量,第二变量为抽注液量和酸浓度;The construction unit 410 is used to construct the posterior probability density function of the first variable and the second variable based on Bayesian theory. The first variable is uranium production, and the second variable is the injection liquid volume and acid concentration;
第一建立单元420,用于基于后验概率密度函数建立目标函数,其中,当目标函数取得最大值时所对应后验概率密度函数的函数值最大;The first establishment unit 420 is used to establish an objective function based on the posterior probability density function, wherein when the objective function obtains the maximum value, the function value of the corresponding posterior probability density function is the maximum;
第二计算单元430,用于当第一变量小于目标铀产量时,基于高斯牛顿迭代法计算在后验概率密度函数最大值所对应的第二变量的目标取值。The second calculation unit 430 is used to calculate the target value of the second variable corresponding to the maximum value of the posterior probability density function based on the Gauss-Newton iteration method when the first variable is less than the target uranium production.
在一些具体的实施例中,第二计算单元430包括:In some specific embodiments, the second computing unit 430 includes:
第二建立单元431,用于建立第二变量的迭代关系式,迭代关系式中包含第一梯度矩阵关系式和第二梯度矩阵关系式;The second establishment unit 431 is used to establish an iterative relational expression of the second variable. The iterative relational expression includes a first gradient matrix relational expression and a second gradient matrix relational expression;
第三建立单元432,用于建立基于预设的预测函数的协方差矩阵和基于第二参数和预测函数的互协方差矩阵;The third establishment unit 432 is used to establish a covariance matrix based on the preset prediction function and a cross-covariance matrix based on the second parameter and the prediction function;
替换单元433,用于基于协方差矩阵和互协方差矩阵,分别替换第二变量的迭代关系式中的第一梯度矩阵关系式和第二梯度矩阵关系式,得到目标迭代关系式;The replacement unit 433 is used to respectively replace the first gradient matrix relationship and the second gradient matrix relationship in the iteration relationship of the second variable based on the covariance matrix and the cross-covariance matrix to obtain the target iteration relationship;
求解单元434,用于基于高斯牛顿迭代法迭代求解目标迭代关系式,当迭代计算结果满足迭代停止条件时,停止迭代,其中,迭代停止条件为当迭代关系式计算得到的第二变量数值与上次迭代计算得到的第二变量数值的差值满足设定阈值。The solving unit 434 is used to iteratively solve the target iteration relationship based on the Gauss-Newton iteration method. When the iterative calculation result meets the iteration stop condition, the iteration is stopped. The iteration stop condition is when the second variable value calculated by the iteration relationship is equal to the above. The difference between the values of the second variable calculated in the iterations satisfies the set threshold.
在一些具体的实施例中,装置还包括:In some specific embodiments, the device further includes:
输出单元600,用于基于预设的铀产量的主控因子智能预测模型输出多个主控井编号,预设的铀产量的主控因子智能预测模型用于从目标砂岩铀矿地中的多个注水井中确定出对开采铀产量影响最大的多个主控井;The output unit 600 is used to output multiple main control well numbers based on the preset main control factor intelligent prediction model of uranium production. The preset main control factor intelligent prediction model of uranium production is used to extract multiple wells from the target sandstone uranium mine. Among the water injection wells, multiple main control wells that have the greatest impact on uranium production were identified;
第一调整单元700,用于基于目标铀产量调整多个主控井编号所对应主控井的抽注液量和目标酸浓度。The first adjustment unit 700 is used to adjust the injection fluid volume and target acid concentration of the main control wells corresponding to multiple main control well numbers based on the target uranium production.
在一些具体的实施例中,第一调整单元包括:In some specific embodiments, the first adjustment unit includes:
增加单元800,用于基于预设间隔来逐次增加目标铀产量,直到达到预设次数;The increasing unit 800 is used to gradually increase the target uranium production based on the preset interval until the preset number of times is reached;
第三计算单元900,用于基于增加后的目标铀产量进行计算;The third calculation unit 900 is used for calculation based on the increased target uranium production;
第二调整单元1000,用于当产量预测模型的预测铀产量值满足比较关系时,基于产量预测模型输入的抽注液量和酸浓度,对应进行调整多个主控井的抽注液量和注入浸出液的酸浓度;The second adjustment unit 1000 is used to, when the predicted uranium production value of the production prediction model meets the comparison relationship, correspondingly adjust the injection liquid volume and acid concentration of the multiple main control wells based on the injection liquid volume and acid concentration input by the production prediction model. Acid concentration injected into the leach solution;
第四计算单元1100,用于用于获取调整后的多个主控井在设定时间段内的单日铀产量,并计算预设时间段内单日铀产量平均值;The fourth calculation unit 1100 is used to obtain the adjusted single-day uranium production of multiple main control wells within a set time period, and calculate the average single-day uranium production within the preset time period;
第二比较单元1200,用于将单日铀产量平均值与对应增加后的目标铀产量进行比较。The second comparison unit 1200 is used to compare the single-day uranium production average with the corresponding increased target uranium production.
在一些具体的实施例中,装置还包括:In some specific embodiments, the device further includes:
第一处理单元1300,用于当铀产量的平均值大于对应的增加后的目标铀产量时,将所对应的增加后的目标铀产量作为初始单日铀产量;The first processing unit 1300 is configured to use the corresponding increased target uranium production as the initial single-day uranium production when the average uranium production is greater than the corresponding increased target uranium production;
第二处理单元1400,用于从多个初始单日铀产量中比较得到最大值,最大值为目标砂岩铀矿地的最高单日铀产量。The second processing unit 1400 is used to compare and obtain the maximum value from multiple initial single-day uranium production, where the maximum value is the highest single-day uranium production of the target sandstone uranium mine.
需要说明的是,关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。It should be noted that, regarding the device in the above embodiment, the specific manner in which each module performs operations has been described in detail in the embodiment of the method, and will not be described in detail here.
实施例3:Example 3:
相应于上面的方法实施例,本实施例中还提供了一种铀产量调控设备,下文描述的一种铀产量调控设备与上文描述的一种铀产量调控方法可相互对应参照。Corresponding to the above method embodiment, this embodiment also provides a uranium production control equipment. The uranium production control equipment described below and the uranium production control method described above can be mutually referenced.
图3是根据示例性实施例示出的一种铀产量调控设备800的框图。如图3所示,该铀产量调控设备800可以包括:处理器801,存储器802。该铀产量调控设备800还可以包括多媒体组件803,I/O接口804,以及通信组件805中的一者或多者。FIG. 3 is a block diagram of a uranium production control device 800 according to an exemplary embodiment. As shown in Figure 3, the uranium production control device 800 may include: a processor 801 and a memory 802. The uranium production control device 800 may also include one or more of a multimedia component 803, an I/O interface 804, and a communication component 805.
其中,处理器801用于控制该铀产量调控设备800的整体操作,以完成上述的铀产量调控方法中的全部或部分步骤。存储器802用于存储各种类型的数据以支持在该铀产量调控设备800的操作,这些数据例如可以包括用于在该铀产量调控设备800上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器802可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件803可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器802或通过通信组件805发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口804为处理器801和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件805用于该铀产量调控设备800与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near FieldCommunication,简称NFC),2G、3G或4G,或它们中的一种或几种的组合,因此相应的该通信组件805可以包括:Wi-Fi模块,蓝牙模块,NFC模块。Among them, the processor 801 is used to control the overall operation of the uranium production control device 800 to complete all or part of the steps in the above uranium production control method. The memory 802 is used to store various types of data to support operations on the uranium yield control device 800. These data may include, for example, instructions for any application or method operating on the uranium yield control device 800, as well as application programs. Related data, such as contact data, messages sent and received, pictures, audio, video, etc. The memory 802 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM for short), Programmable Read-Only Memory (PROM for short), read-only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk. Multimedia components 803 may include screen and audio components. The screen may be a touch screen, for example, and the audio component is used to output and/or input audio signals. For example, the audio component may include a microphone for receiving external audio signals. The received audio signal may be further stored in memory 802 or sent via communication component 805 . The audio component also includes at least one speaker for outputting audio signals. The I/O interface 804 provides an interface between the processor 801 and other interface modules. The other interface modules may be keyboards, mice, buttons, etc. These buttons can be virtual buttons or physical buttons. The communication component 805 is used for wired or wireless communication between the uranium production control device 800 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G or 4G, or one or a combination of them, so the corresponding communication component 805 may include: Wi -Fi module, Bluetooth module, NFC module.
在一示例性实施例中,铀产量调控设备800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(DigitalSignal Processor,简称DSP)、数字信号处理设备(Digital Signal ProcessingDevice,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的铀产量调控方法。In an exemplary embodiment, the uranium production control device 800 may be configured by one or more Application Specific Integrated Circuits (ASICs for short), Digital Signal Processors (DSPs for short), digital signal processing devices ( Digital Signal Processing Device (DSPD for short), Programmable Logic Device (PLD for short), Field Programmable Gate Array (FPGA for short), controller, microcontroller, microprocessor or other electronic components Implementation is used to implement the above uranium production control method.
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的铀产量调控方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器802,上述程序指令可由铀产量调控设备800的处理器801执行以完成上述的铀产量调控方法。In another exemplary embodiment, a computer-readable storage medium including program instructions is also provided. When the program instructions are executed by a processor, the steps of the uranium production control method are implemented. For example, the computer-readable storage medium can be the above-mentioned memory 802 including program instructions, and the above-mentioned program instructions can be executed by the processor 801 of the uranium production control device 800 to complete the above-mentioned uranium production control method.
实施例4:Example 4:
相应于上面的方法实施例,本实施例中还提供了一种可读存储介质,下文描述的一种可读存储介质与上文描述的一种铀产量调控方法可相互对应参照。Corresponding to the above method embodiment, this embodiment also provides a readable storage medium. The readable storage medium described below and the uranium production control method described above can be mutually referenced.
一种可读存储介质,可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例的铀产量调控方法的步骤。A readable storage medium. A computer program is stored on the readable storage medium. When the computer program is executed by a processor, the steps of the uranium production control method of the above method embodiment are implemented.
该可读存储介质具体可以为U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可存储程序代码的可读存储介质。The readable storage medium can specifically be a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk that can store program codes. readable storage media.
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention, and all of them should be covered. within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310828691.3ACN117027778B (en) | 2023-07-07 | 2023-07-07 | A uranium production control method, device, equipment and readable storage medium |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310828691.3ACN117027778B (en) | 2023-07-07 | 2023-07-07 | A uranium production control method, device, equipment and readable storage medium |
| Publication Number | Publication Date |
|---|---|
| CN117027778Atrue CN117027778A (en) | 2023-11-10 |
| CN117027778B CN117027778B (en) | 2024-12-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310828691.3AActiveCN117027778B (en) | 2023-07-07 | 2023-07-07 | A uranium production control method, device, equipment and readable storage medium |
| Country | Link |
|---|---|
| CN (1) | CN117027778B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU7404781A (en)* | 1981-08-13 | 1983-02-17 | General Mining Union Corp. Ltd. | Recovering uranium and/or aluminium from refractory silico-aluminous material |
| US20090260824A1 (en)* | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
| CN104533376A (en)* | 2014-12-22 | 2015-04-22 | 核工业北京化工冶金研究院 | Diluted acid in-situ leaching uranium mining technology |
| US20150159471A1 (en)* | 2013-12-05 | 2015-06-11 | Texas Land & Cattle Company LLC | System and method for identifying and producing unconventional minerals from geologic formations |
| WO2019081892A1 (en)* | 2017-10-23 | 2019-05-02 | The University Of Bristol | Metal extraction method and system |
| CN112627795A (en)* | 2020-12-21 | 2021-04-09 | 石家庄铁道大学 | Sandstone uranium ore horizontal well ground immersion exploitation simulation test system and test method |
| CN113503150A (en)* | 2021-08-17 | 2021-10-15 | 李志忠 | Bauxite in-situ leaching mining method |
| CN114575802A (en)* | 2020-12-01 | 2022-06-03 | 中国石油化工股份有限公司 | High water cut oil reservoir oil well yield prediction method based on machine learning |
| US20220290274A1 (en)* | 2021-03-10 | 2022-09-15 | Nanjing University | Method for numerical simulation of reactive transport during co2+o2 in-situ leaching of uranium at sandstone-type uranium deposit |
| CN115163025A (en)* | 2021-12-14 | 2022-10-11 | 核工业北京化工冶金研究院 | In-situ leaching precise mining method for sandstone-type uranium ore |
| CN115688396A (en)* | 2022-10-21 | 2023-02-03 | 中核第四研究设计工程有限公司 | Extraction-injection ratio determining method for in-situ leaching uranium extraction well site extraction-injection mode |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU7404781A (en)* | 1981-08-13 | 1983-02-17 | General Mining Union Corp. Ltd. | Recovering uranium and/or aluminium from refractory silico-aluminous material |
| US20090260824A1 (en)* | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
| US20150159471A1 (en)* | 2013-12-05 | 2015-06-11 | Texas Land & Cattle Company LLC | System and method for identifying and producing unconventional minerals from geologic formations |
| CN104533376A (en)* | 2014-12-22 | 2015-04-22 | 核工业北京化工冶金研究院 | Diluted acid in-situ leaching uranium mining technology |
| WO2019081892A1 (en)* | 2017-10-23 | 2019-05-02 | The University Of Bristol | Metal extraction method and system |
| CN114575802A (en)* | 2020-12-01 | 2022-06-03 | 中国石油化工股份有限公司 | High water cut oil reservoir oil well yield prediction method based on machine learning |
| CN112627795A (en)* | 2020-12-21 | 2021-04-09 | 石家庄铁道大学 | Sandstone uranium ore horizontal well ground immersion exploitation simulation test system and test method |
| US20220290274A1 (en)* | 2021-03-10 | 2022-09-15 | Nanjing University | Method for numerical simulation of reactive transport during co2+o2 in-situ leaching of uranium at sandstone-type uranium deposit |
| CN113503150A (en)* | 2021-08-17 | 2021-10-15 | 李志忠 | Bauxite in-situ leaching mining method |
| CN115163025A (en)* | 2021-12-14 | 2022-10-11 | 核工业北京化工冶金研究院 | In-situ leaching precise mining method for sandstone-type uranium ore |
| CN115688396A (en)* | 2022-10-21 | 2023-02-03 | 中核第四研究设计工程有限公司 | Extraction-injection ratio determining method for in-situ leaching uranium extraction well site extraction-injection mode |
| Title |
|---|
| 杨建明, 谭凯旋, 黄晓乃: "原地破碎浸铀的地质条件分析与评估", 中国核科技报告, no. 03, 30 June 2003 (2003-06-30)* |
| 贾皓等: "基于人工智能算法的地浸采区产量预测", pages 1 - 8, Retrieved from the Internet <URL:https://kns.cnki.net/kcms/detail/11.1969.tl.20230423.1629.001.html>* |
| Publication number | Publication date |
|---|---|
| CN117027778B (en) | 2024-12-10 |
| Publication | Publication Date | Title |
|---|---|---|
| CN111144542B (en) | Oil well productivity prediction methods, devices and equipment | |
| CN114925623B (en) | Oil and gas reservoir yield prediction method and system | |
| WO2019179029A1 (en) | Electronic device, identity verification method and computer-readable storage medium | |
| CN111752903A (en) | A Prediction Method for Available Time of Data Storage Space | |
| CN112949901A (en) | Shale oil reservoir horizontal well quasi-natural energy development method and system | |
| CN117408168A (en) | Fracturing crack expansion rapid prediction method fused with physical condition constraint | |
| CN117787105A (en) | Tunnel surrounding rock grading method, device, equipment and readable storage medium | |
| CN108710734B (en) | Numerical simulation method and device based on grid adaptive encryption and coarsening technology | |
| CN117027778A (en) | Uranium yield regulation and control method, device, equipment and readable storage medium | |
| CN116108590A (en) | Design method, device, equipment and readable storage medium of a gravity retaining wall | |
| CN118134034B (en) | Gas well bubble drainage system optimization method, device, medium and equipment | |
| WO2023283544A1 (en) | Machine learning workflow for predicting hydraulic fracture initiation | |
| CN115234224A (en) | A method, storage medium and electronic device for determining the precipitation amount of liquid sulfur | |
| CN117609921A (en) | Method and device for constructing anomaly detection model, electronic equipment and storage medium | |
| CN114707063A (en) | Commodity recommendation method and device, electronic equipment and storage medium | |
| CN114549164A (en) | Fraud probability analysis method, device, electronic device and storage medium | |
| CN116413187A (en) | A method and system for predicting reservoir permeability based on capillary pressure data | |
| CN118774729B (en) | Method and device for optimizing fracturing parameters of new well of tight sandstone gas reservoir and electronic equipment | |
| CN116644671B (en) | Diagnostic method, device and equipment for uranium concentration main control factor and readable storage medium | |
| CN119250241B (en) | Tight sandstone oil and gas reservoir production prediction method, device, equipment and storage medium | |
| CN119625794B (en) | Controllable palmprint sample generation method based on random differential equation | |
| CN119831079A (en) | Block exploration economic work amount calculation method, device, equipment and storage medium | |
| CN116468927B (en) | Laminated stone reservoir identification method, device, equipment and storage medium | |
| CN118532166B (en) | Method and device for predicting parameters of damage to formations caused by water injected into oil fields | |
| US20240376817A1 (en) | A chemical compaction model for sandstone |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |