技术领域Technical field
本发明属于无线通信天线技术领域,具体为一种基于人工表面等离激元的宽带双极化平面端射天线。The invention belongs to the technical field of wireless communication antennas, and is specifically a broadband dual-polarization planar end-fire antenna based on artificial surface plasmons.
背景技术Background technique
端射天线指的是天线波束最大辐射方向平行于结构轴线(或平面)的天线。平面端射天线因其众多的优势,如高增益、紧凑的尺寸和低空气阻力等,而在军事和商业系统中得到广泛应用,包括雷达、无线通信和射电天文望远镜等。随着5G通信和多输入多输出(MIMO)系统的发展,双极化端射天线因其能够缓解多径衰落、增加数据传输容量和增强目标识别能力而获得广泛关注。此外,人们对宽带天线的需求也在随着技术的发展而不断增加。宽频带可以提供更高的传输速率,提高现有频谱的利用率。然而,尽管目前已存在一系列不同类型的端射天线,但是通过现有的技术,仍然很难设计一个同时具备宽带和双极化特性的平面端射天线。传统的端射天线包括Vivaldi天线、八木-宇田天线、对数周期天线和喇叭天线。尽管它们具有宽带或高增益等特点,但是它们都是单极化的,无法同时支持水平和垂直极化。M.Sonkki的“WidebandDual-Polarized Cross-ShapedVivaldiAntenna”文献中的双极化天线由于使用了垂直放置的Vivaldi天线,使得天线的剖面高度很高,不满足平面化的要求。Y.Pan的“Dual-Polarized PrintedEndfireAntennaBasedonSpoofSurfacePlasmonPolariton”文献中,虽然天线的辐射结构是平面的,但其馈电结构仍是三维的,使得天线难与其它平面电路进行集成。总之,依靠现有的天线结构设计一个低剖面的的宽带双极化平面端射天线是较为困难的。An end-fire antenna refers to an antenna whose maximum radiation direction of the antenna beam is parallel to the axis (or plane) of the structure. Planar end-fire antennas are widely used in military and commercial systems, including radar, wireless communications, and radio astronomy telescopes, due to their many advantages, such as high gain, compact size, and low air resistance. With the development of 5G communications and multiple-input multiple-output (MIMO) systems, dual-polarized end-fire antennas have received widespread attention due to their ability to mitigate multipath fading, increase data transmission capacity, and enhance target recognition capabilities. In addition, people's demand for broadband antennas is also increasing with the development of technology. Broadband can provide higher transmission rates and improve the utilization of existing spectrum. However, although a series of different types of end-fire antennas currently exist, it is still difficult to design a planar end-fire antenna with both broadband and dual-polarization characteristics using existing technology. Traditional end-fire antennas include Vivaldi antennas, Yagi-Uda antennas, log-periodic antennas and horn antennas. Although they have characteristics such as broadband or high gain, they are all unipolarized and cannot support horizontal and vertical polarization at the same time. The dual-polarized antenna in M.Sonkki's "WidebandDual-Polarized Cross-ShapedVivaldiAntenna" document uses a vertically placed Vivaldi antenna, which makes the antenna's cross-section height very high and does not meet the planarization requirements. In Y.Pan's "Dual-Polarized PrintedEndfireAntennaBasedonSpoofSurfacePlasmonPolariton" document, although the radiation structure of the antenna is planar, its feed structure is still three-dimensional, making it difficult to integrate the antenna with other planar circuits. In short, it is difficult to design a low-profile broadband dual-polarization planar end-fire antenna based on the existing antenna structure.
发明内容Contents of the invention
本发明的目的在于提供一种基于人工表面等离激元的宽带双极化平面端射天线。The object of the present invention is to provide a broadband dual-polarization planar end-fire antenna based on artificial surface plasmons.
实现本发明目的的技术方案为:一种基于人工表面等离激元的宽带双极化平面端射天线,包括第一介质板,设置在第一介质板第一面的第一金属层,设置在第一介质板与第一面相对的第二面上的粘合层,第二介质板,设置在第二介质板靠近第一介质板的一面的第二金属层,以及设置在设置在第二介质板远离第一介质板的一面的第三金属层;所述第一金属层的第一模块与第三金属层的第一模块以及贯穿第一金属层第一模块与第三金属层第一模块的金属化过孔构成第一馈电结构,所述第一金属层的第二模块、第二金属层、第三金属层的第二模块以及贯穿第一金属层第二模块、第二金属层、第三金属层第二模块的金属化过孔构成第二馈电结构;所述第一金属层的第三模块与第三金属层的第三模块构成辐射结构;所述第一馈电结构、第二馈电结构与辐射结构通过第二过渡段连接。The technical solution to achieve the object of the present invention is: a broadband dual-polarized planar end-fire antenna based on artificial surface plasmons, including a first dielectric plate, a first metal layer disposed on the first surface of the first dielectric plate, and an adhesive layer on a second surface of the first dielectric plate opposite to the first surface, a second dielectric plate, a second metal layer disposed on a side of the second dielectric plate close to the first dielectric plate, and a second metal layer disposed on the first dielectric plate. The third metal layer on the side of the two dielectric plates away from the first dielectric plate; the first module of the first metal layer and the first module of the third metal layer, and the first module of the first metal layer and the third module of the third metal layer. The metallized via holes of one module constitute the first feed structure, and the second module of the first metal layer, the second metal layer, the second module of the third metal layer and the second module and the second module penetrating the first metal layer The metal layer and the metallized via holes of the second module of the third metal layer constitute a second feed structure; the third module of the first metal layer and the third module of the third metal layer constitute a radiation structure; the first feed The electrical structure, the second feed structure and the radiation structure are connected through the second transition section.
优选地,所述第一金属层的第一模块包括依次连接的第一等宽微带线、宽度线性增加的微带线、第一金属条带;所述第一等宽微带线、宽度线性增加的微带线两侧设有金属地层,且所述金属地层与第一等宽微带线、宽度线性增加的微带线之间设有关于第一等宽微带线、宽度线性增加的微带线对称的等宽缝隙;所述第三金属层的第一模块包括依次连接的第二金属条带、第三金属条带以及第四金属条带;Preferably, the first module of the first metal layer includes a first equal-width microstrip line, a microstrip line with a linearly increasing width, and a first metal strip connected in sequence; the first equal-width microstrip line, a width linearly increasing There are metal layers on both sides of the linearly increasing microstrip line, and between the metal layer and the first equal-width microstrip line, the first equal-width microstrip line, the linearly increasing width of the microstrip line, the first equal-width microstrip line, the linearly increasing width. The microstrip line has symmetrical equal-width gaps; the first module of the third metal layer includes a second metal strip, a third metal strip and a fourth metal strip connected in sequence;
所述第一等宽微带线、第二金属条带,以及贯穿第一等宽微带线、第二金属条带的金属化过孔构成第一接地共面波导;The first equal-width microstrip line, the second metal strip, and the metallized vias penetrating the first equal-width microstrip line, the second metal strip constitute a first grounded coplanar waveguide;
所述宽度线性增加的微带线、第三金属条带,以及贯穿宽度线性增加的微带线、第三金属条带的金属化过孔构成第一过渡段;The microstrip line with linearly increasing width, the third metal strip, and the metallized via hole passing through the microstrip line with linearly increasing width and the third metal strip constitute the first transition section;
所述第一金属条带、第四金属条带,以及贯穿第一金属条带、第四金属条带的金属化孔构成基片集成波导。The first metal strip, the fourth metal strip, and the metalized holes penetrating the first metal strip, the fourth metal strip constitute a substrate integrated waveguide.
优选地,所述第一金属层的第二模块包括设置在第一金属条带一侧且与第一金属条带连接的第五金属条带,所述第三金属层的第二模块包括设置在第四金属条带一侧且与第四金属条带连接的第六金属条带、第七金属条带,所述第二金属层包括依次连接的第二等宽微带线、第三等宽微带线以及微带线,所述第二等宽微带线两侧设置有对称的等宽缝隙,所述第二等宽微带线、第七金属条带以及贯穿所述第二等宽微带线、第七金属条带两排金属化过孔构成第二接地共面波导;所述第五金属条带、第六金属条带以及第三等宽微带线,以及贯穿第五金属条带、第六金属条带以及第三等宽微带线且对称设置的两排金属化过孔构成基片集成同轴线;第一金属条带、第四金属条带以及微带线构成带状线到槽线的转换结构。Preferably, the second module of the first metal layer includes a fifth metal strip disposed on one side of the first metal strip and connected to the first metal strip, and the second module of the third metal layer includes a fifth metal strip disposed on one side of the first metal strip. A sixth metal strip and a seventh metal strip are on one side of the fourth metal strip and connected to the fourth metal strip. The second metal layer includes a second equal-width microstrip line, a third etc. connected in sequence. Wide microstrip line and microstrip line, the second equal-width microstrip line is provided with symmetrical equal-width gaps on both sides, the second equal-width microstrip line, the seventh metal strip and the second equal-width microstrip line running through the second equal-width microstrip line The wide microstrip line and the seventh metal strip have two rows of metallized vias forming a second grounded coplanar waveguide; the fifth metal strip, the sixth metal strip and the third equal-width microstrip line, and the fifth metal strip running through The metal strip, the sixth metal strip and the third equal-width microstrip line and two rows of symmetrically arranged metalized vias constitute the substrate integrated coaxial line; the first metal strip, the fourth metal strip and the microstrip line Constitute a stripline to slot line conversion structure.
优选地,所述微带线包括一段等宽微带线和等宽微带线上端连接的扇形金属片。Preferably, the microstrip line includes a section of equal-width microstrip line and a sector-shaped metal sheet connected to the upper ends of the equal-width microstrip line.
优选地,所述第一金属层的第三模块包括第一人工表面等离激元传输线,所述第三金属层的第三模块包括第二人工表面等离激元传输线。Preferably, the third module of the first metal layer includes a first artificial surface plasmon transmission line, and the third module of the third metal layer includes a second artificial surface plasmon transmission line.
优选地,所述第一人工表面等离激元传输线包括第一传输线、第二传输线和周期性枝节,第一传输线、第二传输线宽度不同,倾斜的周期性枝节等间距设置在第二传输线的两侧。Preferably, the first artificial surface plasmon transmission line includes a first transmission line, a second transmission line and periodic branches. The first transmission line and the second transmission line have different widths, and the inclined periodic branches are arranged at equal intervals on the second transmission line. both sides.
优选地,周期性枝节的长度从靠近第二过渡段的一端往远离第二过渡段的一端逐渐递减,递减的步长为0.1mm。Preferably, the length of the periodic branches gradually decreases from an end close to the second transition section to an end far away from the second transition section, with a step length of 0.1 mm.
优选地,所述第一金属层、第三金属层以及辐射结构上均蚀刻有长条形凹槽,所述长条形凹槽远离辐射结构的一端均连接着等腰三角形凹槽。Preferably, elongated grooves are etched on the first metal layer, the third metal layer and the radiation structure, and one end of the elongated groove away from the radiation structure is connected to an isosceles triangular groove.
优选地,所述第二过渡段是连接基片集成波导和第一人工表面等离激元传输线及第二人工表面等离激元传输线的椭圆弧形渐变结构。Preferably, the second transition section is an elliptical arc-shaped gradient structure connecting the substrate integrated waveguide and the first artificial surface plasmon transmission line and the second artificial surface plasmon transmission line.
本发明与现有技术相比,其显著优点为:Compared with the prior art, the significant advantages of the present invention are:
1、通过使用具有倾斜的周期性枝节的双面对称人工表面等离激元传输线,在平面结构上实现了水平极化和垂直极化的端射辐射。1. By using a double-sided symmetrical artificial surface plasmon transmission line with inclined periodic branches, horizontally polarized and vertically polarized end-fire radiation is achieved on a planar structure.
2、具有较宽的带宽和较低剖面高度。2. It has wider bandwidth and lower profile height.
3、结构简单,易于加工,易与其它平面电路集成。3. Simple structure, easy to process, and easy to integrate with other planar circuits.
下面结合附图和具体实施方案对本发明作进一步的详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of the drawings
图1是本发明基于人工表面等离激元的宽带双极化平面端射天线的分解视图。Figure 1 is an exploded view of the broadband dual-polarization planar end-fire antenna based on artificial surface plasmons of the present invention.
图2是图1中第一金属层(1)左侧馈电部分的尺寸示意图。Figure 2 is a schematic dimensional view of the feed portion on the left side of the first metal layer (1) in Figure 1.
图3是图1中第二金属层(4)的尺寸示意图。Figure 3 is a schematic diagram of the dimensions of the second metal layer (4) in Figure 1.
图4是图1中第三金属层(6)左侧馈电部分的尺寸示意图。Figure 4 is a schematic diagram of the dimensions of the feed portion on the left side of the third metal layer (6) in Figure 1.
图5是图1中第一人工表面等离激元传输线(81)尺寸示意图。Figure 5 is a schematic diagram of the dimensions of the first artificial surface plasmon transmission line (81) in Figure 1.
图6是实施例宽带双极化平面端射天线的S参数曲线。第一馈电结构为端口1,第二馈电结构为端口2。Figure 6 is an S-parameter curve of the broadband dual-polarization planar end-fire antenna of the embodiment. The first feed structure is port 1, and the second feed structure is port 2.
图7是实施例宽带双极化平面端射天线的增益曲线。Figure 7 is the gain curve of the broadband dual-polarized planar end-fire antenna of the embodiment.
图8是当信号从第一馈电结构输入时,实施例宽带双极化平面端射天线在23GHz的E面、H面方向图。Figure 8 is the E-plane and H-plane pattern of the broadband dual-polarization planar end-fire antenna at 23 GHz when the signal is input from the first feed structure.
图9是当信号从第二馈电结构输入时,实施例宽带双极化平面端射天线在23GHz的E面、H面方向图。Figure 9 is the E-plane and H-plane pattern of the broadband dual-polarization planar end-fire antenna at 23 GHz when the signal is input from the second feed structure.
具体实施方式Detailed ways
如图1~5所示,一种基于人工表面等离激元的宽带双极化平面端射天线,包括第一介质板2,设置在第一介质板2第一面的第一金属层1,设置在第一介质板2与第一面相对的第二面上的粘合层3,第二介质板5,设置在第二介质板5靠近第一介质板的一面的第二金属层4,以及设置在设置在第二介质板5远离第一介质板的一面的第三金属层6;所述第一金属层1的第一模块与第三金属层6的第一模块以及贯穿第一金属层1第一模块与第三金属层6第一模块的金属化过孔构成第一馈电结构,所述第一金属层1的第二模块、第二金属层4、第三金属层6的第二模块以及贯穿第一金属层1第二模块、第一金属层1、第三金属层6第二模块的金属化过孔构成第二馈电结构;所述第一金属层1的第三模块与第三金属层6的第三模块构成辐射结构;所述第一馈电结构、第二馈电结构与辐射结构通过第二过渡段40连接。As shown in Figures 1 to 5, a broadband dual-polarized planar end-fire antenna based on artificial surface plasmons includes a first dielectric plate 2 and a first metal layer 1 disposed on the first surface of the first dielectric plate 2 , the adhesive layer 3 provided on the second surface of the first dielectric plate 2 opposite to the first surface, the second dielectric plate 5 , and the second metal layer 4 provided on the side of the second dielectric plate 5 close to the first dielectric plate. , and the third metal layer 6 provided on the side of the second dielectric plate 5 away from the first dielectric plate; the first module of the first metal layer 1 and the first module of the third metal layer 6 and the first module passing through the first The metallized via holes of the first module of the metal layer 1 and the first module of the third metal layer 6 constitute the first feed structure. The second module of the first metal layer 1, the second metal layer 4, and the third metal layer 6 The second module of the first metal layer 1 and the metallized via holes penetrating the second module of the first metal layer 1, the first metal layer 1 and the third metal layer 6 constitute the second feed structure; the second module of the first metal layer 1 The three modules and the third module of the third metal layer 6 form a radiation structure; the first feed structure, the second feed structure and the radiation structure are connected through the second transition section 40 .
当信号从第一馈电结构输入时,信号在依次通过第一接地共面波导10、第一过渡段20、基片集成波导30和第二过渡段40后,成为电场方向垂直于天线所在平面的准TEM波,输出给第一人工表面等离激元传输线81和第二人工表面等离激元传输线82,并在传输线上激励起高阶模式的表面波,然后通过第一人工表面等离激元传输线81和第二人工表面等离激元传输线82产生垂直极化的辐射。When a signal is input from the first feed structure, after passing through the first grounded coplanar waveguide 10, the first transition section 20, the substrate integrated waveguide 30 and the second transition section 40, the signal becomes an electric field in a direction perpendicular to the plane where the antenna is located. The quasi-TEM wave is output to the first artificial surface plasmon transmission line 81 and the second artificial surface plasmon transmission line 82, and high-order mode surface waves are excited on the transmission lines, and then pass through the first artificial surface plasmon transmission line. The exciton transmission line 81 and the second artificial surface plasmon transmission line 82 generate vertically polarized radiation.
当信号从第二馈电结构输入时,信号在依次通过第二接地共面波导50、基片集成同轴线60、带状线到槽线的转换结构70和第二过度段40后,成为电场方向平行于天线所在平面的准TEM波,输出给第一人工表面等离激元传输线81和第二人工表面等离激元传输线82,并在传输线上激励起高阶模式的表面波,然后通过第一人工表面等离激元传输线81和第二人工表面等离激元传输线82产生水平极化的辐射。When a signal is input from the second feed structure, after passing through the second grounded coplanar waveguide 50, the substrate integrated coaxial line 60, the strip line to slot line conversion structure 70 and the second transition section 40, the signal becomes The quasi-TEM wave whose electric field direction is parallel to the plane where the antenna is located is output to the first artificial surface plasmon transmission line 81 and the second artificial surface plasmon transmission line 82, and excites high-order mode surface waves on the transmission lines, and then Horizontally polarized radiation is generated through the first artificial surface plasmon transmission line 81 and the second artificial surface plasmon transmission line 82 .
如图1~4所示,进一步的实施例中,所述第一金属层1的第一模块包括依次连接的第一等宽微带线101、宽度线性增加的微带线201、第一金属条带301;所述第一等宽微带线101、宽度线性增加的微带线201两侧设有金属地层,且所述金属地层与第一等宽微带线101、宽度线性增加的微带线201之间设有关于第一等宽微带线101、宽度线性增加的微带线201对称的等宽缝隙;所述第三金属层的第一模块包括依次连接的第二金属条带102、第三金属条带202以及第四金属条带302;As shown in Figures 1 to 4, in further embodiments, the first module of the first metal layer 1 includes a first equal-width microstrip line 101, a microstrip line 201 with a linearly increasing width, and a first metal strip line 101 connected in sequence. Strip 301; The first equal-width microstrip line 101 and the linearly increasing width of the microstrip line 201 are provided with metal layers on both sides, and the metal layer is in contact with the first equal-width microstrip line 101 and the first equal-width microstrip line 101 and the linearly increasing width of the microstrip line. There are equal-width gaps symmetrical about the first equal-width microstrip line 101 and the microstrip line 201 whose width increases linearly between the strip lines 201; the first module of the third metal layer includes second metal strips connected in sequence. 102. The third metal strip 202 and the fourth metal strip 302;
所述第一等宽微带线101、第二金属条带102,以及贯穿第一等宽微带线101、第二金属条带102的金属过化孔构成第一接地共面波导10;The first equal-width microstrip line 101, the second metal strip 102, and the metal vias penetrating the first equal-width microstrip line 101, the second metal strip 102 constitute the first grounded coplanar waveguide 10;
所述宽度线性增加的微带线201、第三金属条带202,以及贯穿宽度线性增加的微带线201、第三金属条带202的金属过化孔构构成第一过渡段20;The microstrip line 201 and the third metal strip 202 whose width linearly increases, and the metal through hole structure that runs through the microstrip line 201 and the third metal strip 202 whose width linearly increases constitute the first transition section 20;
所述第一金属条带301、第四金属条带302,以及贯穿第一金属条带301、第四金属条带302的金属化孔构成基片集成波导30。The first metal strip 301 , the fourth metal strip 302 , and the metalized holes penetrating the first metal strip 301 and the fourth metal strip 302 constitute the substrate integrated waveguide 30 .
进一步的实施例中,所述第一金属层1的第二模块包括设置在第一金属条带301一侧且与第一金属条带301连接的第五金属条带601,所述第三金属层6的第二模块包括设置在第四金属条带302一侧且与第四金属条带302连接的第六金属条带602、第七金属条带502,所述第二金属层4包括依次连接的第二等宽微带线501、第三等宽微带线603以及微带线701,所述第二等宽微带线501两侧设置有对称的等宽缝隙,所述第二等宽微带线501、第七金属条带502以及贯穿所述第二等宽微带线501、第七金属条带502两排金属化过孔构成第二接地共面波导50;所述第五金属条带601、第六金属条带602以及第三等宽微带线603,以及贯穿第五金属条带601、第六金属条带602以及第三等宽微带线603且对称设置的两排金属过孔构成基片集成同轴线60;第一金属条带301、第四金属条带302以及微带线701构成带状线到槽线的转换结构70;In a further embodiment, the second module of the first metal layer 1 includes a fifth metal strip 601 disposed on one side of the first metal strip 301 and connected to the first metal strip 301, and the third metal strip 601 is connected to the first metal strip 301. The second module of layer 6 includes sixth metal strips 602 and seventh metal strips 502 which are disposed on one side of the fourth metal strip 302 and connected to the fourth metal strip 302. The second metal layer 4 includes in sequence The second equal-width microstrip line 501, the third equal-width microstrip line 603 and the microstrip line 701 are connected, and symmetrical equal-width gaps are provided on both sides of the second equal-width microstrip line 501. The wide microstrip line 501, the seventh metal strip 502, and the two rows of metallized vias penetrating the second equal-width microstrip line 501, the seventh metal strip 502 form the second grounded coplanar waveguide 50; the fifth The metal strip 601, the sixth metal strip 602 and the third equal-width microstrip line 603, as well as the two symmetrically arranged metal strips 601, 602 and the third equal-width microstrip line 603. The row of metal vias constitutes the substrate integrated coaxial line 60; the first metal strip 301, the fourth metal strip 302 and the microstrip line 701 constitute the strip line to slot line conversion structure 70;
所述微带线701包括一段等宽微带线和等宽微带线上端连接的扇形金属片。The microstrip line 701 includes a section of equal-width microstrip line and a sector-shaped metal sheet connected to the upper ends of the equal-width microstrip line.
如图1和图5所示,进一步的实施例中,所述第一金属层1的第三模块包括第一人工表面等离激元传输线81,所述第三金属层6的第三模块包括第二人工表面等离激元传输线82;As shown in FIGS. 1 and 5 , in further embodiments, the third module of the first metal layer 1 includes a first artificial surface plasmon transmission line 81 , and the third module of the third metal layer 6 includes the second artificial surface plasmon transmission line 82;
所述第一人工表面等离激元传输线81包括第一传输线811、第二传输线812和周期性枝节,第一传输线811、第二传输线812宽度不同,倾斜的周期性枝节等间距设置在第二传输线812的两侧;The first artificial surface plasmon transmission line 81 includes a first transmission line 811, a second transmission line 812 and periodic branches. The first transmission line 811 and the second transmission line 812 have different widths, and the inclined periodic branches are arranged at equal intervals on the second transmission line. Both sides of transmission line 812;
周期性枝节的长度从靠近第二过渡段40的一端往远离第二过渡段40的一端逐渐递减,递减的步长为0.1mm;The length of the periodic branches gradually decreases from the end close to the second transition section 40 to the end far away from the second transition section 40, and the step length of the decrease is 0.1 mm;
人工表面等离激元传输线81和82关于粘合层3的中间平面对称;The artificial surface plasmon transmission lines 81 and 82 are symmetrical about the middle plane of the adhesive layer 3;
人工表面等离激元传输线81和82一起构成了双面对称人工表面等离激元传输线,由不同馈电结构输入的信号会在该传输线上激励起不同的高阶模式表面波;由于周期性枝节是倾斜的且其长度逐渐递减,当高阶模式的表面波沿着双面对称人工表面等离激元传输线传播时,会产生沿端射方向的辐射,且极化与激励起的高阶模式有关。Artificial surface plasmon transmission lines 81 and 82 together constitute a double-sided symmetric artificial surface plasmon transmission line. Signals input from different feed structures will excite different high-order mode surface waves on the transmission line; due to periodicity The branches are inclined and their length gradually decreases. When the surface waves of higher-order modes propagate along the double-sided symmetrical artificial surface plasmon transmission line, radiation along the end-fire direction will be generated, and the high-order modes caused by polarization and excitation will related to the mode.
进一步的实施例中,所述第一金属层1、第三金属层6以及辐射结构上均蚀刻有长条形凹槽91,所述长条形凹槽91远离辐射结构的一端均连接着等腰三角形凹槽92。In a further embodiment, elongated grooves 91 are etched on the first metal layer 1 , the third metal layer 6 and the radiating structure, and one end of the elongated groove 91 away from the radiating structure is connected to, etc. Waist triangular groove 92.
进一步的实施例中,所述第二过渡段40是连接基片集成波导30和第一人工表面等离激元传输线81及第二人工表面等离激元传输线82的椭圆弧形渐变结构。In a further embodiment, the second transition section 40 is an elliptical arc-shaped gradient structure connecting the substrate integrated waveguide 30 and the first artificial surface plasmon transmission line 81 and the second artificial surface plasmon transmission line 82 .
优选地,所述第一介质板2和第二介质板5为RogersRT6002,其介电常数为2.94;粘合层3为RogersRO4450F,其介电常数为3.52。Preferably, the first dielectric plate 2 and the second dielectric plate 5 are Rogers RT6002, whose dielectric constant is 2.94; the adhesive layer 3 is Rogers RO4450F, whose dielectric constant is 3.52.
实施例:Example:
一种基于人工表面等离激元的宽带双极化平面端射天线,仿真的垂直极化最高增益为12.3dBi,水平极化最高增益为14.8dBi,垂直极化和水平极化的交叉阻抗带宽为16.5GHz至28.1GHz。A broadband dual-polarized planar end-fire antenna based on artificial surface plasmons. The simulated maximum gain for vertical polarization is 12.3dBi, and the maximum gain for horizontal polarization is 14.8dBi. The cross-impedance bandwidth of vertical polarization and horizontal polarization is 16.5GHz to 28.1GHz.
如图1所示,本发明宽带双极化平面端射天线的分解视图。第一介质板2和第二介质板5的厚度为0.635mm,粘合层3厚度为0.1mm;第一介质板2从左至右可分为三段:第一段长为10mm、宽为W=22.9mm,第二段长为14mm、宽为16.3mm,第三段长为96.8mm、宽为We=14mm;粘合层3除了厚度,其它尺寸和第一介质板2一样;第二介质板5从左至右可分为两段:第一段长为24mm、宽为W=22.9mm,第二段长为96.8mm、宽为We=14mm。As shown in Figure 1, an exploded view of the broadband dual-polarization planar end-fire antenna of the present invention. The thickness of the first dielectric plate 2 and the second dielectric plate 5 is 0.635mm, and the thickness of the adhesive layer 3 is 0.1mm; the first dielectric plate 2 can be divided into three sections from left to right: the first section is 10mm long and 10mm wide. W = 22.9mm, the second section is 14mm long and 16.3mm wide, and the third section is 96.8mm long and wide We = 14mm; except for the thickness, other dimensions of the adhesive layer 3 are the same as the first dielectric plate 2; The second dielectric board 5 can be divided into two sections from left to right: the first section is 24mm long and W=22.9mm wide, and the second section is 96.8mm long and We =14mm wide.
如图2所示,图1中第一金属层1左侧馈电部分的尺寸示意图。图中所有金属化过孔的半径为0.25mm,相邻过孔圆心间距为0.8mm;信号可从左侧50ohm的第一接地共面波导10馈入,第一接地共面波导10中第一等宽微带线101的长为Le1=5.3mm、宽为1.5mm,第一等宽微带线101两侧的缝隙宽为0.14mm,两排过孔圆心的间距为D1=3.2mm,第一接地共面波导10所处区域的金属带总宽度为We=14mm;第一过渡段20中宽度线性增加的微带线201的长度为Lt=7.3mm、宽度从左端的1.5mm逐渐增加到右端的6mm,两侧缝隙的宽度从左端的0.14mm逐渐增加到右端的0.75mm,两排过孔圆心的间距从左端的D1=3.2mm逐渐增加到右端的D0=9mm;基片集成波导30中第一金属条带301长Lsiw=10.2mm、宽W0=10.2mm;宽为s=0.4mm的长条形凹槽91进入基片集成波导30的长度为Ls1=6.7mm;长条形凹槽91左端连有底为1.1mm高为1.4mm的等腰三角形凹槽92;第二过渡段40是一段椭圆弧形的渐变结构,其长半轴长Ea=7mm、短半轴长Eb=2.5mm;基片集成同轴线60的第五金属条带601的长为Lc=4.2mm、宽为Wco=3.7mm。As shown in Figure 2, a schematic diagram of the dimensions of the feed portion on the left side of the first metal layer 1 in Figure 1. The radius of all metallized vias in the figure is 0.25mm, and the center distance between adjacent vias is 0.8mm; the signal can be fed from the 50ohm first grounded coplanar waveguide 10 on the left, and the first grounded coplanar waveguide 10 The length of the equal-width microstrip line 101 is Le1 =5.3mm and the width is 1.5mm. The width of the gap on both sides of the first equal-width microstrip line 101 is 0.14mm. The distance between the centers of the two rows of via holes is D1 =3.2mm. , the total width of the metal strip in the area where the first grounded coplanar waveguide 10 is located is We =14mm; the length of the microstrip line 201 whose width linearly increases in the first transition section 20 is Lt =7.3mm, and the width is 1.5 from the left end mm gradually increases to 6mm on the right end, the width of the gaps on both sides gradually increases from 0.14mm on the left end to 0.75mm on the right end, and the distance between the centers of the two rows of via holes gradually increases from D1 =3.2mm on the left end to D0 =9mm on the right end. ; The first metal strip 301 in the substrate integrated waveguide 30 has a length Lsiw = 10.2mm and a width W0 = 10.2mm; the length of the long strip groove 91 with a width s = 0.4mm entering the substrate integrated waveguide 30 is Ls1 = 6.7mm; the left end of the elongated groove 91 is connected to an isosceles triangular groove 92 with a base of 1.1mm and a height of 1.4mm; the second transition section 40 is an elliptical arc-shaped gradient structure with a long semi-axis length Ea = 7mm, the short half-axis length Eb = 2.5mm; the length of the fifth metal strip 601 of the substrate integrated coaxial line 60 is Lc = 4.2mm, and the width is Wco = 3.7mm.
如图3所示,图1中第二金属层4的尺寸示意图。信号从下侧50ohm的第二接地共面波导50馈入,位于中间的传输线分为上下两段:下侧的传输线长为Le2=6.6mm、宽为1mm,上侧的传输线长为Ls2=9.3mm、宽为0.7mm,且上侧传输线的上端连接一个半径1.2mm的90°扇形金属片;关于传输线中心轴对称的两排过孔的圆心间距为D2=2.5mm;关于传输线中心轴对称的两条金属带的长为Lm=7.6mm、宽为Wm=6.36mm;第二等宽微带线501两侧缝隙的宽度为0.14mm。As shown in FIG. 3 , a schematic diagram of the dimensions of the second metal layer 4 in FIG. 1 . The signal is fed from the second grounded coplanar waveguide 50 of 50ohm on the lower side. The transmission line in the middle is divided into upper and lower sections: the length of the lower transmission line is Le2 =6.6mm and the width is 1mm, and the length of the upper transmission line is Ls2 =9.3mm, width is 0.7mm, and the upper end of the upper transmission line is connected to a 90° sector-shaped metal piece with a radius of 1.2mm; the distance between the centers of the two rows of vias that are symmetrical about the central axis of the transmission line is D2 =2.5mm; about the center of the transmission line The length of the two axially symmetrical metal strips is Lm =7.6mm and the width is Wm =6.36mm; the width of the gaps on both sides of the second equal-width microstrip line 501 is 0.14mm.
如图4所示,图1中第三金属层6左侧馈电部分的尺寸示意图。第三金属层6比第一金属层1多出了第七金属条带502,其长为Le2=6.6mm宽为We=14mm;第三金属层6其余部分尺寸和第一金属层1一致。As shown in FIG. 4 , a schematic diagram of the dimensions of the feed portion on the left side of the third metal layer 6 in FIG. 1 . The third metal layer 6 has an additional seventh metal strip 502 than the first metal layer 1, with a length of Le2 =6.6 mm and a width ofWe =14 mm; the remaining dimensions of the third metal layer 6 are the same as those of the first metal layer 1 consistent.
如图5所示,图1中的人工表面等离激元传输线尺寸示意图。人工表面等离激元传输线由2条传输线和45对倾斜的周期性枝节构成。左侧的传输线长为L0=1mm、宽为w1=1.4mm,而右侧的传输线长为L1=90mm、宽为wr=1mm;传输线两侧连有45对倾斜的周期性枝节,倾斜角度θ=60°;周期性枝节的宽为a=0.6mm;周期性枝节的长度都从靠近馈电结构的一端往远离馈电结构的一端,以0.1mm为步长,从h=5mm逐渐递减;宽为s=0.4mm的长条形凹槽91穿过人工表面等离激元传输线的中心线;图1中的第一人工表面等离激元传输线81和第二人工表面等离激元传输线82关于粘合层3的中间平面对称。As shown in Figure 5, a schematic diagram of the dimensions of the artificial surface plasmon transmission line in Figure 1. The artificial surface plasmon transmission line consists of 2 transmission lines and 45 pairs of inclined periodic branches. The transmission line on the left has a length of L0 =1mm and a width of w1 =1.4mm, while the transmission line on the right has a length of L1 =90mm and a width of wr =1mm; there are 45 pairs of inclined periodic branches connected to both sides of the transmission line. , the inclination angle θ = 60°; the width of the periodic branches is a = 0.6mm; the length of the periodic branches is from the end close to the feed structure to the end far away from the feed structure, with a step of 0.1mm, from h = 5mm gradually decreases; a long groove 91 with a width of s=0.4mm passes through the center line of the artificial surface plasmon transmission line; the first artificial surface plasmon transmission line 81 and the second artificial surface in Figure 1, etc. The ion transmission line 82 is symmetrical about the middle plane of the adhesive layer 3 .
图6是利用CST仿真软件,得到的本发明实施例宽带双极化平面端射天线的S参数。由图可知,此时天线在16.5GHz~28.1GHz范围内,垂直极化和水平极化的S11均小于-10dB,且两个端口之间的隔离度大于40dB。Figure 6 shows the S parameters of the broadband dual-polarization planar end-fire antenna obtained by using CST simulation software according to the embodiment of the present invention. It can be seen from the figure that at this time, the antenna is in the range of 16.5GHz to 28.1GHz, the S11 of vertical polarization and horizontal polarization are both less than -10dB, and the isolation between the two ports is greater than 40dB.
图7是利用CST仿真软件,得到的本发明实施例宽带双极化平面端射天线的增益曲线。由图可知,对于垂直极化,天线的最高增益为12.3dBi;对于水平极化,天线的最高增益为14.8dBi。Figure 7 is the gain curve of the broadband dual-polarization planar end-fire antenna obtained by using CST simulation software according to the embodiment of the present invention. It can be seen from the figure that for vertical polarization, the highest gain of the antenna is 12.3dBi; for horizontal polarization, the highest gain of the antenna is 14.8dBi.
图8和图9是利用CST仿真软件,当分别激励第一馈电结构和第二馈电结构时,得到的本发明实施例宽带双极化平面端射天线在23GHz的2D辐射方向图(左侧为E面方向图,右侧为H面方向图)。Figures 8 and 9 show the 2D radiation pattern of the broadband dual-polarization planar end-fire antenna at 23GHz obtained by using CST simulation software when the first feed structure and the second feed structure are respectively excited (left The side is the E-plane direction diagram, and the right side is the H-plane direction diagram).
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310933559.9ACN117013246A (en) | 2023-07-27 | 2023-07-27 | Broadband dual-polarized planar end-fire antenna based on artificial surface plasmons |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310933559.9ACN117013246A (en) | 2023-07-27 | 2023-07-27 | Broadband dual-polarized planar end-fire antenna based on artificial surface plasmons |
| Publication Number | Publication Date |
|---|---|
| CN117013246Atrue CN117013246A (en) | 2023-11-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310933559.9APendingCN117013246A (en) | 2023-07-27 | 2023-07-27 | Broadband dual-polarized planar end-fire antenna based on artificial surface plasmons |
| Country | Link |
|---|---|
| CN (1) | CN117013246A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118137158A (en)* | 2024-04-09 | 2024-06-04 | 北京昊测科技有限公司 | Broadband skin conformal gap integrated antenna |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118137158A (en)* | 2024-04-09 | 2024-06-04 | 北京昊测科技有限公司 | Broadband skin conformal gap integrated antenna |
| Publication | Publication Date | Title |
|---|---|---|
| CN108717992B (en) | Dual-polarized electromagnetic dipole antenna with millimeter-wave differential feeding | |
| CN111883910B (en) | A dual-polarized low-profile magnetoelectric dipole antenna and wireless communication device | |
| CN108232439B (en) | Linear array antenna and planar array antenna of substrate integrated waveguide slot feed | |
| CN110071368B (en) | Circularly polarized leaky-wave antenna based on substrate-integrated mirrored dielectric waveguide | |
| CN208208987U (en) | A kind of high isolation low-cross polarization Double-polarization micro-strip array antenna | |
| CN109216905B (en) | Double frequency round polarized antenna based on substrate integration wave-guide | |
| CN207082637U (en) | Substrate integrated waveguide slot antenna based on high-order mode feed | |
| CN103474780A (en) | Substrate integrated waveguide cavity slot antenna | |
| CN109216904A (en) | A kind of broadband low section microstrip antenna | |
| CN118448855B (en) | Four-unit compact broadband MIMO antenna based on metamaterial | |
| CN114204285B (en) | A millimeter wave array antenna with high gain and low sidelobe level characteristics | |
| CN111262025A (en) | Integrated Substrate Gap Waveguide Beam Scanning Leaky Wave Antenna | |
| CN101697379A (en) | Coplanar waveguide weighting series-fed antenna | |
| CN115939782A (en) | W-band rotary type circularly polarized magnetoelectric dipole antenna array | |
| CN109802233B (en) | Dual beam dual circularly polarized waveguide slot array antenna based on resonant cavity metasurface | |
| CN112531355B (en) | A ±45° dual-polarized millimeter-wave array antenna | |
| CN115020953A (en) | Millimeter wave back-to-back interlayer transition conversion structure based on microstrip ridge gap waveguide | |
| CN113690584A (en) | Millimeter-wave wide-angle scanning phased array antenna based on substrate-integrated ridge waveguide | |
| CN111600120B (en) | A compact low cross-polarized microstrip antenna | |
| CN114156652B (en) | A low sidelobe broadband low cross-polarization planar dipole antenna array | |
| CN103474785B (en) | Wideband Traveling Wave Slot Array Antenna with Variable Slot Length and Radiating Load | |
| CN117013246A (en) | Broadband dual-polarized planar end-fire antenna based on artificial surface plasmons | |
| CN111244619A (en) | Patch Array Antenna Based on Air-Substrate Integrated Waveguide | |
| CN103531914A (en) | High-order-mode resonant slot antenna on basis of hexagonal substrate integrated waveguide | |
| CN117154400A (en) | Broadband vertical polarization plane end-fire antenna based on artificial surface plasmon |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |