Movatterモバイル変換


[0]ホーム

URL:


CN116993459A - An e-commerce order management method based on cloud data analysis - Google Patents

An e-commerce order management method based on cloud data analysis
Download PDF

Info

Publication number
CN116993459A
CN116993459ACN202311128187.9ACN202311128187ACN116993459ACN 116993459 ACN116993459 ACN 116993459ACN 202311128187 ACN202311128187 ACN 202311128187ACN 116993459 ACN116993459 ACN 116993459A
Authority
CN
China
Prior art keywords
order
status
data
order management
state machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311128187.9A
Other languages
Chinese (zh)
Other versions
CN116993459B (en
Inventor
肖积文
邵成龙
陶帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Daoyeshan Supply Chain Management Co ltd
Original Assignee
Shenzhen Datong Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Datong Information Technology Co ltdfiledCriticalShenzhen Datong Information Technology Co ltd
Priority to CN202311128187.9ApriorityCriticalpatent/CN116993459B/en
Publication of CN116993459ApublicationCriticalpatent/CN116993459A/en
Application grantedgrantedCritical
Publication of CN116993459BpublicationCriticalpatent/CN116993459B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种基于云数据分析的电商订单管理方法,包括以下步骤:步骤S1、利用云平台获取订单数据,通过SaaS模式将订单数据从接单状态到发货状态进行转换,并将SaaS模式设置为正向订单管理状态、逆向订单管理状态以及订单流转状态;步骤S2、通过所述正向订单管理状态从云平台获取接单数据,通过接单数据时序管理发货操作;步骤S3、根据正向订单管理状态、逆向订单管理状态有效性引入状态机模块,通过状态机模块串联整个电商订单状态调度订单流转信息,所述订单流转信息根据订单流转状态通过JFinal框架接入云平台优化配送物流,保证了订单流转的可配置化以及高性能,减少了重复工作,并提高订单的流转效率,实现了订单流转链路的可配置化。

The invention discloses an e-commerce order management method based on cloud data analysis, which includes the following steps: Step S1: Use the cloud platform to obtain order data, convert the order data from the order receiving state to the shipping state through the SaaS model, and The SaaS mode is set to forward order management status, reverse order management status and order circulation status; Step S2, obtain order data from the cloud platform through the forward order management status, and manage the delivery operation through the order data timing; Step S3 , Introduce the state machine module according to the validity of the forward order management status and the reverse order management status, and connect the entire e-commerce order status through the state machine module to schedule order flow information. The order flow information is accessed to the cloud platform through the JFinal framework according to the order flow status. Optimizing distribution logistics ensures configurability and high performance of order circulation, reduces duplication of work, improves order circulation efficiency, and realizes configurability of order circulation links.

Description

Translated fromChinese
一种基于云数据分析的电商订单管理方法An e-commerce order management method based on cloud data analysis

技术领域Technical field

本发明涉及电商订单处理技术领域,具体涉及一种基于云数据分析的电商订单管理方法。The present invention relates to the technical field of e-commerce order processing, and specifically relates to an e-commerce order management method based on cloud data analysis.

背景技术Background technique

由于电商订单量的快速增长以及订单流转链路更加丰富,导致电商公司原有的订单管理系统无法适应这样的场景而逐渐失去价值,其存在的主要问题在于:Due to the rapid growth of e-commerce orders and the diversification of order circulation links, the original order management system of e-commerce companies cannot adapt to such scenarios and gradually loses value. The main problems are:

第一,现有订单流转链路通过硬编码的方式,唯一根植在系统中导致几乎不可变,无法适应现阶段不同订单需要不同流转链路的业务场景;First, the existing order circulation link is hard-coded and is only rooted in the system, making it almost immutable and unable to adapt to the current business scenario where different orders require different circulation links;

第二,由于订单数量的爆炸式增长,导致原有的订单管理系统无法支撑如此庞大的处理能力,频繁导致系统卡顿、延迟等现象,可用性下降;Second, due to the explosive growth in the number of orders, the original order management system was unable to support such a huge processing capacity, frequently causing system freezes, delays, etc., and reduced availability;

第三,原有系统的订单逆向过程功能单一,定制化场景过多且使用困难,导致可扩展性和可维护性较差;Third, the order reverse process of the original system has a single function, too many customized scenarios and is difficult to use, resulting in poor scalability and maintainability;

因此,急需一个通用的逆向订单管理模块来保证退换货的业务功能。Therefore, there is an urgent need for a universal reverse order management module to ensure the business function of returns and exchanges.

发明内容Contents of the invention

本发明的目的在于提供一种基于云数据分析的电商订单管理方法及系统,以解决现有技术中订单数量爆炸式增长导致的订单管理系统卡顿、延迟,业务场景单一,且实用性降低等的技术问题。The purpose of the present invention is to provide an e-commerce order management method and system based on cloud data analysis to solve the order management system lags, delays, single business scenarios, and reduced practicality caused by the explosive growth of the number of orders in the prior art. technical issues etc.

为解决上述技术问题,本发明具体提供下述技术方案:In order to solve the above technical problems, the present invention specifically provides the following technical solutions:

一种基于云数据分析的电商订单管理方法,包括以下步骤:An e-commerce order management method based on cloud data analysis, including the following steps:

步骤S1、利用云平台获取订单数据,通过SaaS模式将订单数据从接单状态到发货状态进行转换,并将SaaS模式设置为正向订单管理状态、逆向订单管理状态以及订单流转状态;Step S1: Use the cloud platform to obtain order data, convert the order data from order receiving status to shipping status through SaaS mode, and set the SaaS mode to forward order management status, reverse order management status and order circulation status;

步骤S2、通过所述正向订单管理状态从云平台获取接单数据,通过接单数据时序管理发货操作,所述接单数据异常时逆向订单管理状态生效,对订单数据进行退换货操作;Step S2: Obtain the order data from the cloud platform through the forward order management status, and manage the delivery operation through the order data timing. When the order data is abnormal, the reverse order management status takes effect, and the order data is returned and exchanged;

步骤S3、根据正向订单管理状态、逆向订单管理状态有效性引入状态机模块,通过状态机模块串联整个电商订单状态调度订单流转信息,所述订单流转信息根据订单流转状态通过JFinal框架接入云平台优化配送物流。Step S3: Introduce the state machine module according to the validity of the forward order management status and the reverse order management status, and connect the entire e-commerce order status through the state machine module to schedule order flow information. The order flow information is accessed through the JFinal framework according to the order flow status. Cloud platform optimizes distribution logistics.

作为本发明的一种优选方案,所述步骤S1中,所述SaaS模式数据端主要由云平台数据库以及Opensearch搜索引擎共同组成,所述云平台数据库将订单数据存储在Mysql数据库中,通过所述Opensearch搜索引擎构建二维数组作为快速搜索订单数据的数据索引结构。As a preferred solution of the present invention, in step S1, the SaaS mode data terminal is mainly composed of a cloud platform database and an Opensearch search engine. The cloud platform database stores order data in the Mysql database. Through the The Opensearch search engine constructs a two-dimensional array as a data index structure for quickly searching order data.

作为本发明的一种优选方案,利用所述数据索引结构通过鹰眼服务器监控订单系统调用链路,所述鹰眼服务器通过收集和分析不同订单系统中的日志埋点获取同一次订单业务请求在所有系统中的调用链关系,通过所述调用链关系关联所述正向订单管理状态和逆向订单管理状态;As a preferred solution of the present invention, the data index structure is used to monitor the order system call link through the Eagle Eye server. The Eagle Eye server collects and analyzes the log buried points in different order systems to obtain the same order business request. The call chain relationship in all systems associates the forward order management status and the reverse order management status through the call chain relationship;

所述逆向订单管理状态通过订单管理系统BMS将逆向架构配置为facade层、service层、core层以及dao层,所述facade层采用外观模型定义高层接口连接多订单平台,通过所述service层具体连接多订单平台,依赖所述core层处理订单业务,并将订单业务通过所述dao层封装面向对象的数据库接口,通过所述数据库接口连接云平台执行订单操作。The reverse order management state configures the reverse architecture into facade layer, service layer, core layer and dao layer through the order management system BMS. The facade layer uses the appearance model to define high-level interfaces to connect to multiple order platforms, and the service layer specifically connects The multi-order platform relies on the core layer to process the order business, encapsulates the order business through the dao layer and encapsulates the object-oriented database interface, and connects to the cloud platform through the database interface to perform order operations.

作为本发明的一种优选方案,利用所述core层创建所述订单管理系统BMS的逆向订单,利用SaveRefundOrder脚本创建退货信息,并经过AuditRefundOrder脚本审核处理退货信息调用订单管理系统BMS链路创建退货订单,所述core层通过xml配置的方式串联起一个个状态节点形成完整的订单有限状态机,所述订单有限状态机通过封装订单状态节点修改订单数据及状态。As a preferred solution of the present invention, the core layer is used to create a reverse order of the order management system BMS, the SaveRefundOrder script is used to create return information, and the return information is reviewed and processed by the AuditRefundOrder script to call the order management system BMS link to create a return order. , the core layer connects status nodes in series through xml configuration to form a complete order finite state machine. The order finite state machine modifies the order data and status by encapsulating the order status node.

作为本发明的一种优选方案,所述订单有限状态机利用MetaQ消息中间件驱动修改订单状态,通过调用流程引擎控制正向订单管理状态和逆向订单管理状态的有效性,并将订单的必需业务信息以消息的方式发送到MetaQ服务端,由MetaQ服务器将接收到的订单状态信息返回给流程引擎,通过所述流程引擎执行订单业务操作的调度。As a preferred solution of the present invention, the order finite state machine uses the MetaQ message middleware driver to modify the order status, controls the validity of the forward order management status and the reverse order management status by calling the process engine, and adds the necessary business of the order. The information is sent to the MetaQ server in the form of a message, and the MetaQ server returns the received order status information to the process engine, and the process engine performs scheduling of order business operations.

作为本发明的一种优选方案,所述订单有限状态机采用StateMachineNode定义订单状态节点,获取状态机节点所有属性,通过所述订单管理系统BMS传入的订单参数获取订单数据并执行相应订单的业务逻辑。As a preferred solution of the present invention, the order finite state machine uses StateMachineNode to define the order status node, obtains all attributes of the state machine node, obtains the order data through the order parameters passed in by the order management system BMS, and executes the business of the corresponding order. logic.

作为本发明的一种优选方案,所述订单状态节点采用分层模块负责具体订单流转信息,所述订单流转信息通过JFinal框架将service层和dao层数据交互,获取订单数据的转换、适配及数据封装。As a preferred solution of the present invention, the order status node uses a hierarchical module to be responsible for specific order circulation information. The order circulation information interacts with the service layer and dao layer data through the JFinal framework to obtain the conversion, adaptation and transformation of the order data. Data encapsulation.

作为本发明的一种优选方案,所述订单流转信息根据订单管理系统BMS传入的参数获取最新的订单信息,根据订单信息从所述订单有限状态机中获取订单对应的有限状态机,根据得到的有限状态机模型获取对应的状态节点,执行状态行为。As a preferred solution of the present invention, the order circulation information obtains the latest order information according to the parameters passed in by the order management system BMS, and obtains the finite state machine corresponding to the order from the order finite state machine according to the order information. According to The finite state machine model obtains the corresponding state node and executes the state behavior.

本发明与现有技术相比较具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明利用SaaS模式实现正向订单管理状态、逆向订单管理状态以及订单流转状态之间的转化,保证了订单流转的可配置化以及高性能,使得用户能够对订单进行一定程度的管理工作,使得订单管理更简单并减少重复操作,根据订单流转状态保障订单从接单到发货过程中的状态转换,同时通过JFinal框架保证在大促时订单能够被系统缓慢消化而不至于瞬间压垮整个系统,保证了稳定性,提高了系统性能,整个订单订单管理方法提高了用户的工作效率,减少了重复工作,并提高订单的流转效率,实现了订单流转链路的可配置化。The present invention uses the SaaS model to realize the conversion between the forward order management status, the reverse order management status and the order circulation status, ensuring the configurability and high performance of the order circulation, enabling users to manage orders to a certain extent, so that Order management is simpler and reduces repeated operations. It ensures the status transition of orders from order receipt to delivery based on the order circulation status. At the same time, the JFinal framework ensures that orders can be slowly digested by the system during major promotions and will not instantly overwhelm the entire system. , ensuring stability and improving system performance. The entire order management method improves user work efficiency, reduces repetitive work, improves order circulation efficiency, and realizes the configurability of order circulation links.

附图说明Description of the drawings

为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。In order to more clearly explain the embodiments of the present invention or the technical solutions in the prior art, the drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only exemplary. For those of ordinary skill in the art, other implementation drawings can be obtained based on the extension of the provided drawings without exerting creative efforts.

图1为本发明实施例提供的基于云数据分析的电商订单管理方法流程图。Figure 1 is a flow chart of an e-commerce order management method based on cloud data analysis provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

如图1所示,本发明提供了一种基于云数据分析的电商订单管理方法,包括以下步骤:As shown in Figure 1, the present invention provides an e-commerce order management method based on cloud data analysis, which includes the following steps:

步骤S1、利用云平台获取订单数据,通过SaaS模式将订单数据从接单状态到发货状态进行转换,并将SaaS模式设置为正向订单管理状态、逆向订单管理状态以及订单流转状态;Step S1: Use the cloud platform to obtain order data, convert the order data from order receiving status to shipping status through SaaS mode, and set the SaaS mode to forward order management status, reverse order management status and order circulation status;

步骤S2、通过所述正向订单管理状态从云平台获取接单数据,通过接单数据时序管理发货操作,所述接单数据异常时逆向订单管理状态生效,对订单数据进行退换货操作;Step S2: Obtain the order data from the cloud platform through the forward order management status, and manage the delivery operation through the order data timing. When the order data is abnormal, the reverse order management status takes effect, and the order data is returned and exchanged;

步骤S3、根据正向订单管理状态、逆向订单管理状态有效性引入状态机模块,通过状态机模块串联整个电商订单状态调度订单流转信息,所述订单流转信息根据订单流转状态通过JFinal框架接入云平台优化配送物流。Step S3: Introduce the state machine module according to the validity of the forward order management status and the reverse order management status, and connect the entire e-commerce order status through the state machine module to schedule order flow information. The order flow information is accessed through the JFinal framework according to the order flow status. Cloud platform optimizes distribution logistics.

本实施例中,通过SaaS模式实现正向订单管理状态、逆向订单管理状态以及订单流转状态之间的转化,保证了订单流转的可配置化以及高性能,使得用户能够对订单进行一定程度的管理工作,使得订单管理更简单并减少重复操作,根据订单流转状态保障订单从接单到发货过程中的状态转换,同时通过JFinal框架保证在大促时订单能够被系统缓慢消化而不至于瞬间压垮整个系统,保证稳定性,提高系统性能,引入状态机模型时刻监测电商订单状态,当订单通过多平台接入系统流入订单管理系统后,会自动进入订单流转过程,商家可以通过设置规则系统干预订单自动流转过程,如对有配送时效的订单,商家可以设置默认审核通过使得订单进入审核节点时自动审核通过进入发货流程,无需人工审核而保证时效。In this embodiment, the SaaS model is used to realize the conversion between forward order management status, reverse order management status and order circulation status, ensuring the configurability and high performance of order circulation, allowing users to manage orders to a certain extent. work, making order management simpler and reducing repeated operations. It ensures the status transition of orders from order receipt to delivery according to the order circulation status. At the same time, the JFinal framework ensures that orders can be slowly digested by the system during major promotions without being overwhelmed instantly. To collapse the entire system, ensure stability and improve system performance, a state machine model is introduced to monitor the status of e-commerce orders at all times. When orders flow into the order management system through the multi-platform access system, they will automatically enter the order circulation process. Merchants can set up the rule system Intervene in the automatic circulation process of orders. For example, for orders with delivery timeliness, merchants can set the default review and pass so that when the order enters the review node, it will automatically pass the review and enter the delivery process, without manual review and ensuring timeliness.

所述步骤S1中,所述SaaS模式数据端主要由云平台数据库以及Opensearch搜索引擎共同组成,所述云平台数据库将订单数据存储在Mysql数据库中,通过所述Opensearch搜索引擎构建二维数组作为快速搜索订单数据的数据索引结构。In the step S1, the SaaS mode data end is mainly composed of a cloud platform database and an Opensearch search engine. The cloud platform database stores the order data in the Mysql database, and constructs a two-dimensional array as a quick search engine through the Opensearch search engine. Data index structure for searching order data.

本实施例中,利用Opensearch搜索引擎和云平台数据库共同组成订单数据层,便于订单数据的获取,同时,利用Opensearch搜索引擎根据订单的详细数据构建一份可供快速搜索的数据索引结构,用以提高订单的多维度搜索的速度。In this embodiment, the Opensearch search engine and the cloud platform database are used to form an order data layer to facilitate the acquisition of order data. At the same time, the Opensearch search engine is used to build a data index structure for quick search based on the detailed data of the order. Improve the speed of multi-dimensional search of orders.

利用所述数据索引结构通过鹰眼服务器监控订单系统调用链路,所述鹰眼服务器通过收集和分析不同订单系统中的日志埋点获取同一次订单业务请求在所有系统中的调用链关系,通过所述调用链关系关联所述正向订单管理状态和逆向订单管理状态;The data index structure is used to monitor the order system call links through the Eagle Eye server. The Eagle Eye server obtains the call chain relationships of the same order business request in all systems by collecting and analyzing log buried points in different order systems. The call chain relationship is associated with the forward order management status and the reverse order management status;

本实施例中,引入鹰眼服务器监控订单系统获取同一次业务请求在所有系统间的调用链关系,对整理订单应用请求的入口、服务调用源头和服务间的依赖关系有着很大帮助,同时,通过这些调用链路的深度分析,对分析系统调用瓶颈、短时间内定位异常等都有很大帮助。In this embodiment, the Eagle Eye server is introduced to monitor the order system to obtain the call chain relationship between all systems for the same business request, which is very helpful in sorting out the entry point of the order application request, the service call source and the dependency relationship between services. At the same time, Through in-depth analysis of these call links, it is very helpful to analyze system call bottlenecks and locate abnormalities in a short time.

所述逆向订单管理状态通过订单管理系统BMS将逆向架构配置为facade层、service层、core层以及dao层,所述facade层采用外观模型定义高层接口连接多订单平台,通过所述service层具体连接多订单平台,依赖所述core层处理订单业务,并将订单业务通过所述dao层封装面向对象的数据库接口,通过所述数据库接口连接云平台执行订单操作。The reverse order management state configures the reverse architecture into facade layer, service layer, core layer and dao layer through the order management system BMS. The facade layer uses the appearance model to define high-level interfaces to connect to multiple order platforms, and the service layer specifically connects The multi-order platform relies on the core layer to process the order business, encapsulates the order business through the dao layer and encapsulates the object-oriented database interface, and connects to the cloud platform through the database interface to perform order operations.

本实施例中,所述service层主要为订单状态服务层,负责实现订单每个状态下具体的业务操作,完成流转过程中的一系列业务动作。In this embodiment, the service layer is mainly an order status service layer, which is responsible for implementing specific business operations in each status of the order and completing a series of business actions during the circulation process.

利用所述core层创建所述订单管理系统BMS的逆向订单,利用SaveRefundOrder脚本创建退货信息,并经过AuditRefundOrder脚本审核处理退货信息调用订单管理系统BMS链路创建退货订单,所述core层通过xml配置的方式串联起一个个状态节点形成完整的订单有限状态机,所述订单有限状态机通过封装订单状态节点修改订单数据及状态。Use the core layer to create a reverse order for the order management system BMS, use the SaveRefundOrder script to create return information, and review and process the return information through the AuditRefundOrder script to call the order management system BMS link to create a return order. The core layer is configured through xml. The state nodes are connected in series to form a complete order finite state machine. The order finite state machine modifies the order data and status by encapsulating the order state nodes.

所述订单有限状态机利用MetaQ消息中间件驱动修改订单状态,通过调用流程引擎控制正向订单管理状态和逆向订单管理状态的有效性,并将订单的必需业务信息以消息的方式发送到MetaQ服务端,由MetaQ服务器将接收到的订单状态信息返回给流程引擎,通过所述流程引擎执行订单业务操作的调度。The order finite state machine uses the MetaQ message middleware driver to modify the order status, controls the validity of the forward order management status and the reverse order management status by calling the process engine, and sends the necessary business information of the order to the MetaQ service in the form of a message. At the end, the MetaQ server returns the received order status information to the process engine, and the process engine performs scheduling of order business operations.

本实施例中,流程引擎根据订单状态对订单进行相应的处理,执行完毕后根据订单处理的结果驱动订单转换为下一状态或者重复执行当前状态,从而完成订单的调度流转过程。In this embodiment, the process engine processes the order accordingly according to the order status. After the execution is completed, the order is driven to the next state according to the order processing result or the current state is repeatedly executed, thereby completing the order scheduling and circulation process.

本实施例中流程引擎控制订单状态节点的变化,它将订单的必需业务信息以消息的方式发送到MetaQ服务端,再由MetaQ服务器将接收到的订单状态信息返回给流程引擎,由流程引擎进行业务操作的调度,执行成功后订单将进入新的状态,而这一状态信息将再次通过流程引擎进行异步驱动,如此循环,完成了订单从接单到发货的整个生命周期过程。In this embodiment, the process engine controls the change of the order status node. It sends the necessary business information of the order to the MetaQ server in the form of a message. The MetaQ server then returns the received order status information to the process engine, which performs the processing. After the business operation is scheduled and executed successfully, the order will enter a new state, and this state information will be asynchronously driven through the process engine again. This cycle completes the entire life cycle of the order from order receipt to delivery.

本实施例中,引入用MetaQ消息中间件作为状态转换驱动的核心,连接订单流转子系统,使得订单状态转换链路清晰且可配置,不同的订单系统之间可以通过消息中间件提供的可靠的异步通讯能力,来降低系统间的耦合度,从而使整个系统具有高可扩展性以及高可用性。In this embodiment, MetaQ message middleware is introduced as the core of the status conversion driver to connect the order circulation subsystem, making the order status conversion link clear and configurable. Different order systems can use reliable communication provided by the message middleware. Asynchronous communication capabilities to reduce the coupling between systems, making the entire system highly scalable and available.

本实施例中,引入用MetaQ消息中间件,使得支撑订单管理系统的多台服务器利用率更高,直接提高了整个系统的性能。In this embodiment, MetaQ message middleware is introduced to make the utilization rate of multiple servers supporting the order management system higher, which directly improves the performance of the entire system.

所述订单有限状态机采用StateMachineNode定义订单状态节点,获取状态机节点所有属性,通过所述订单管理系统BMS传入的订单参数获取订单数据并执行相应订单的业务逻辑。The order finite state machine uses StateMachineNode to define the order status node, obtains all attributes of the state machine node, obtains order data through the order parameters passed in by the order management system BMS, and executes the business logic of the corresponding order.

本实施例中,所述订单有限状态机基于有限状态机设计,结合Spring的特性,可以轻松通过xml的编写完成订单有限状态机的组合,可扩展性强并可配置。In this embodiment, the order finite state machine is designed based on a finite state machine. Combined with the characteristics of Spring, the combination of the order finite state machine can be easily completed by writing xml. It is highly scalable and configurable.

本实施例中,利用订单有限状态机定义订单状态节点,连接所述逆向订单管理状态,获取其他平台发来的退款退货消息以及用户主动发起的退换货操作,当订单有限状态机监听到退换货的消息或者商家在系统中手动发起退换货操作时,系统会根据原订单生成相应的退货单,审核退货单后,将通知仓库发起退货操作生成相应的退货入库单来帮助完成退货操作。In this embodiment, the order finite state machine is used to define the order status node, connect the reverse order management status, and obtain the refund and return messages sent by other platforms and the return and exchange operations initiated by the user. When the order finite state machine monitors the return and exchange When there is news about the goods or the merchant manually initiates a return or exchange operation in the system, the system will generate a corresponding return order based on the original order. After reviewing the return order, the warehouse will be notified to initiate the return operation and generate a corresponding return warehousing order to help complete the return operation.

所述订单状态节点采用分层模块负责具体订单流转信息,所述订单流转信息通过JFinal框架将service层和dao层数据交互,获取订单数据的转换、适配及数据封装。The order status node uses a hierarchical module to be responsible for specific order circulation information. The order circulation information interacts with the service layer and dao layer data through the JFinal framework to obtain the conversion, adaptation and data encapsulation of order data.

本实施例中,所述订单流转信息是订单管理系统的核心系统之一,它负责管理订单在系统中的生命周期,当订单进入订单管理系统后,便由订单流转模块接手驱动其状态的变化并且最终进入发货流程,订单流转模块在设计上依赖消息中间件以及调度中心完成具体的订单调度过程。In this embodiment, the order circulation information is one of the core systems of the order management system. It is responsible for managing the life cycle of the order in the system. When the order enters the order management system, the order circulation module takes over and drives the change of its status. And finally entering the delivery process, the order circulation module is designed to rely on message middleware and the dispatch center to complete the specific order dispatch process.

所述订单流转信息根据订单管理系统BMS传入的参数获取最新的订单信息,根据订单信息从所述订单有限状态机中获取订单对应的有限状态机,根据得到的有限状态机模型获取对应的状态节点,执行状态行为。The order circulation information obtains the latest order information according to the parameters passed in by the order management system BMS, obtains the finite state machine corresponding to the order from the order finite state machine according to the order information, and obtains the corresponding state according to the obtained finite state machine model. Node, performs stateful behavior.

本实施例中,采用订单有限状态机驱动订单生命周期,将整个生命周期异步化,并且在不同节点之间做到解耦以便于在不同场景下不同订单能有特定的流转链路而不会导致对系统的大量修改。In this embodiment, an order finite state machine is used to drive the order life cycle, the entire life cycle is asynchronous, and decoupling is achieved between different nodes so that different orders can have specific circulation links in different scenarios without Resulting in extensive modifications to the system.

本发明利用SaaS模式实现正向订单管理状态、逆向订单管理状态以及订单流转状态之间的转化,保证了订单流转的可配置化以及高性能,使得用户能够对订单进行一定程度的管理工作,使得订单管理更简单并减少重复操作,根据订单流转状态保障订单从接单到发货过程中的状态转换,同时通过JFinal框架保证在大促时订单能够被系统缓慢消化而不至于瞬间压垮整个系统,保证了稳定性,提高了系统性能,整个订单订单管理方法提高了用户的工作效率,减少了重复工作,并提高订单的流转效率,实现了订单流转链路的可配置化。The present invention uses the SaaS model to realize the conversion between the forward order management status, the reverse order management status and the order circulation status, ensuring the configurability and high performance of the order circulation, enabling users to manage orders to a certain extent, so that Order management is simpler and reduces repeated operations. It ensures the status transition of orders from order receipt to delivery based on the order circulation status. At the same time, the JFinal framework ensures that orders can be slowly digested by the system during major promotions and will not instantly overwhelm the entire system. , ensuring stability and improving system performance. The entire order management method improves user work efficiency, reduces repetitive work, improves order circulation efficiency, and realizes the configurability of order circulation links.

以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。The above embodiments are only exemplary embodiments of the present application and are not used to limit the present application. The protection scope of the present application is defined by the claims. Those skilled in the art can make various modifications or equivalent substitutions to this application within the essence and protection scope of this application, and such modifications or equivalent substitutions should also be deemed to fall within the protection scope of this application.

Claims (8)

Translated fromChinese
1.一种基于云数据分析的电商订单管理方法,其特征在于,包括以下步骤:1. An e-commerce order management method based on cloud data analysis, which is characterized by including the following steps:步骤S1、利用云平台获取订单数据,通过SaaS模式将订单数据从接单状态到发货状态进行转换,并将SaaS模式设置为正向订单管理状态、逆向订单管理状态以及订单流转状态;Step S1: Use the cloud platform to obtain order data, convert the order data from order receiving status to shipping status through SaaS mode, and set the SaaS mode to forward order management status, reverse order management status and order circulation status;步骤S2、通过所述正向订单管理状态从云平台获取接单数据,通过接单数据时序管理发货操作,所述接单数据异常时逆向订单管理状态生效,对订单数据进行退换货操作;Step S2: Obtain the order data from the cloud platform through the forward order management status, and manage the delivery operation through the order data timing. When the order data is abnormal, the reverse order management status takes effect, and the order data is returned and exchanged;步骤S3、根据正向订单管理状态、逆向订单管理状态有效性引入状态机模块,通过状态机模块串联整个电商订单状态调度订单流转信息,所述订单流转信息根据订单流转状态通过JFinal框架接入云平台优化配送物流。Step S3: Introduce the state machine module according to the validity of the forward order management status and the reverse order management status, and connect the entire e-commerce order status through the state machine module to schedule order flow information. The order flow information is accessed through the JFinal framework according to the order flow status. Cloud platform optimizes distribution logistics.2.根据权利要求1所述的一种基于云数据分析的电商订单管理方法,其特征在于,所述步骤S1中,所述SaaS模式数据端主要由云平台数据库以及Opensearch搜索引擎共同组成,所述云平台数据库将订单数据存储在Mysql数据库中,通过所述Opensearch搜索引擎构建二维数组作为快速搜索订单数据的数据索引结构。2. An e-commerce order management method based on cloud data analysis according to claim 1, characterized in that in step S1, the SaaS mode data end is mainly composed of a cloud platform database and an Opensearch search engine. The cloud platform database stores order data in the Mysql database, and uses the Opensearch search engine to construct a two-dimensional array as a data index structure for quickly searching order data.3.根据权利要求2所述的一种基于云数据分析的电商订单管理方法,其特征在于,利用所述数据索引结构通过鹰眼服务器监控订单系统调用链路,所述鹰眼服务器通过收集和分析不同订单系统中的日志埋点获取同一次订单业务请求在所有系统中的调用链关系,通过所述调用链关系关联所述正向订单管理状态和逆向订单管理状态;3. An e-commerce order management method based on cloud data analysis according to claim 2, characterized in that the data index structure is used to monitor the order system call link through the Eagle Eye server, and the Eagle Eye server collects And analyze the log buried points in different order systems to obtain the call chain relationship of the same order business request in all systems, and associate the forward order management status and reverse order management status through the call chain relationship;所述逆向订单管理状态通过订单管理系统BMS将逆向架构配置为facade层、service层、core层以及dao层,所述facade层采用外观模型定义高层接口连接多订单平台,通过所述service层具体连接多订单平台,依赖所述core层处理订单业务,并将订单业务通过所述dao层封装面向对象的数据库接口,通过所述数据库接口连接云平台执行订单操作。The reverse order management state configures the reverse architecture into facade layer, service layer, core layer and dao layer through the order management system BMS. The facade layer uses the appearance model to define high-level interfaces to connect to multiple order platforms, and the service layer specifically connects The multi-order platform relies on the core layer to process the order business, encapsulates the order business through the dao layer and encapsulates the object-oriented database interface, and connects to the cloud platform through the database interface to perform order operations.4.根据权利要求3所述的一种基于云数据分析的电商订单管理方法,其特征在于,利用所述core层创建所述订单管理系统BMS的逆向订单,利用SaveRefundOrder脚本创建退货信息,并经过AuditRefundOrder脚本审核处理退货信息调用订单管理系统BMS链路创建退货订单,所述core层通过xml配置的方式串联起一个个状态节点形成完整的订单有限状态机,所述订单有限状态机通过封装订单状态节点修改订单数据及状态。4. An e-commerce order management method based on cloud data analysis according to claim 3, characterized in that the core layer is used to create a reverse order of the order management system BMS, the SaveRefundOrder script is used to create return information, and After the AuditRefundOrder script audits and processes the return information, it calls the order management system BMS link to create a return order. The core layer connects state nodes in series through xml configuration to form a complete order finite state machine. The order finite state machine encapsulates the order. The status node modifies order data and status.5.根据权利要求4所述的一种基于云数据分析的电商订单管理方法,其特征在于,所述订单有限状态机利用MetaQ消息中间件驱动修改订单状态,通过调用流程引擎控制正向订单管理状态和逆向订单管理状态的有效性,并将订单的必需业务信息以消息的方式发送到MetaQ服务端,由MetaQ服务器将接收到的订单状态信息返回给流程引擎,通过所述流程引擎执行订单业务操作的调度。5. An e-commerce order management method based on cloud data analysis according to claim 4, characterized in that the order finite state machine uses MetaQ message middleware to drive the modification of the order status, and controls the forward order by calling the process engine. Management status and reverse order management status validity, and sends the necessary business information of the order to the MetaQ server in the form of a message. The MetaQ server returns the received order status information to the process engine, and the order is executed through the process engine. Scheduling of business operations.6.根据权利要求4所述的一种基于云数据分析的电商订单管理方法,其特征在于,所述订单有限状态机采用StateMachineNode定义订单状态节点,获取状态机节点所有属性,通过所述订单管理系统BMS传入的订单参数获取订单数据并执行相应订单的业务逻辑。6. An e-commerce order management method based on cloud data analysis according to claim 4, characterized in that the order finite state machine uses StateMachineNode to define the order status node, obtain all attributes of the state machine node, and pass the order The order parameters passed in by the management system BMS obtain the order data and execute the business logic of the corresponding order.7.根据权利要求6所述的一种基于云数据分析的电商订单管理方法,其特征在于,所述订单状态节点采用分层模块负责具体订单流转信息,所述订单流转信息通过JFinal框架将service层和dao层数据交互,获取订单数据的转换、适配及数据封装。7. An e-commerce order management method based on cloud data analysis according to claim 6, characterized in that the order status node adopts a hierarchical module to be responsible for specific order circulation information, and the order circulation information is processed through the JFinal framework. The service layer and the dao layer interact with each other to obtain the conversion, adaptation and data encapsulation of order data.8.根据权利要求7所述的一种基于云数据分析的电商订单管理方法,其特征在于,所述订单流转信息根据订单管理系统BMS传入的参数获取最新的订单信息,根据订单信息从所述订单有限状态机中获取订单对应的有限状态机,根据得到的有限状态机模型获取对应的状态节点,执行状态行为。8. An e-commerce order management method based on cloud data analysis according to claim 7, characterized in that the order circulation information obtains the latest order information according to the parameters passed in by the order management system BMS, and obtains the latest order information from the order information based on the order information. The finite state machine corresponding to the order is obtained from the order finite state machine, the corresponding state node is obtained according to the obtained finite state machine model, and the state behavior is executed.
CN202311128187.9A2023-08-302023-08-30E-commerce ordering management method based on cloud data analysisActiveCN116993459B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202311128187.9ACN116993459B (en)2023-08-302023-08-30E-commerce ordering management method based on cloud data analysis

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202311128187.9ACN116993459B (en)2023-08-302023-08-30E-commerce ordering management method based on cloud data analysis

Publications (2)

Publication NumberPublication Date
CN116993459Atrue CN116993459A (en)2023-11-03
CN116993459B CN116993459B (en)2024-09-10

Family

ID=88530266

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202311128187.9AActiveCN116993459B (en)2023-08-302023-08-30E-commerce ordering management method based on cloud data analysis

Country Status (1)

CountryLink
CN (1)CN116993459B (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107123020A (en)*2017-03-312017-09-01上海银澎信息科技有限公司Method and apparatus for the order processing of supply chain
US20180211202A1 (en)*2017-01-262018-07-26Eugenio S. YNION, JR.Method, system, apparatus, and program for real-time and online freight management
CN108891838A (en)*2018-05-212018-11-27北京极智嘉科技有限公司Order processing method, apparatus, electronic equipment and computer readable storage medium
CN110210879A (en)*2019-06-132019-09-06湖南科技学院Merchandise sales management system based on cloud computing
JP2019191891A (en)*2018-04-242019-10-31Kddi株式会社Order management device, order management method, and program
CN111161017A (en)*2019-12-102020-05-15北京航天云路有限公司 A cloud marketing system and method based on mobile terminal and blockchain
CN111507676A (en)*2019-01-312020-08-07北京京东尚科信息技术有限公司Method, device, storage medium and system for establishing and implementing business order flow
US20200302391A1 (en)*2018-05-212020-09-24Beijing Geekplus Technology Co., Ltd.Order processing method and device, server, and storage medium
US20200387945A1 (en)*2019-06-062020-12-10Shopify Inc.Methods and systems for electronic commerce order management
US20210118029A1 (en)*2019-10-202021-04-22Srirajasekhar KoritalaGeolocation specified integrated shopper, store and personal shopper delivery shopping ecosystem
US11010706B1 (en)*2015-05-132021-05-18Auctane, LLCSystems and methods for managing and/or facilitating return shipment of items
US20210166243A1 (en)*2019-11-292021-06-03Shopify Inc.Methods and systems for generating a customized return policy
WO2021155769A1 (en)*2020-02-042021-08-12旭骐科技股份有限公司Order management and delivery method and system, and non-transient computer readable medium
CN113570433A (en)*2021-07-282021-10-29上海帘邦信息科技有限公司 Integrated management system applied to non-standard products industry
CN113919782A (en)*2021-10-202022-01-11广州品唯软件有限公司 A method and system for monitoring the timeliness of an order full link
US11341575B1 (en)*2019-02-112022-05-24Morgan Stanley Services Group Inc.Meta data driven state transition engine for order management system
CN114971774A (en)*2022-05-092022-08-30上海非码网络科技有限公司Subscription method, system and storage medium for multi-store merchants of SaaS platform
US20230123322A1 (en)*2021-04-162023-04-20Strong Force Vcn Portfolio 2019, LlcPredictive Model Data Stream Prioritization
CN116033006A (en)*2022-09-282023-04-28海尔优家智能科技(北京)有限公司 Data processing method, system, storage medium and electronic device
KR102558508B1 (en)*2022-02-032023-07-21주식회사 윌로그Logistics integrated management service system, apparatus and method for providing electronic shipment certificate

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11010706B1 (en)*2015-05-132021-05-18Auctane, LLCSystems and methods for managing and/or facilitating return shipment of items
US20180211202A1 (en)*2017-01-262018-07-26Eugenio S. YNION, JR.Method, system, apparatus, and program for real-time and online freight management
CN107123020A (en)*2017-03-312017-09-01上海银澎信息科技有限公司Method and apparatus for the order processing of supply chain
JP2019191891A (en)*2018-04-242019-10-31Kddi株式会社Order management device, order management method, and program
US20200302391A1 (en)*2018-05-212020-09-24Beijing Geekplus Technology Co., Ltd.Order processing method and device, server, and storage medium
CN108891838A (en)*2018-05-212018-11-27北京极智嘉科技有限公司Order processing method, apparatus, electronic equipment and computer readable storage medium
CN111507676A (en)*2019-01-312020-08-07北京京东尚科信息技术有限公司Method, device, storage medium and system for establishing and implementing business order flow
US11341575B1 (en)*2019-02-112022-05-24Morgan Stanley Services Group Inc.Meta data driven state transition engine for order management system
US20200387945A1 (en)*2019-06-062020-12-10Shopify Inc.Methods and systems for electronic commerce order management
CN110210879A (en)*2019-06-132019-09-06湖南科技学院Merchandise sales management system based on cloud computing
US20210118029A1 (en)*2019-10-202021-04-22Srirajasekhar KoritalaGeolocation specified integrated shopper, store and personal shopper delivery shopping ecosystem
US20210166243A1 (en)*2019-11-292021-06-03Shopify Inc.Methods and systems for generating a customized return policy
CN111161017A (en)*2019-12-102020-05-15北京航天云路有限公司 A cloud marketing system and method based on mobile terminal and blockchain
WO2021155769A1 (en)*2020-02-042021-08-12旭骐科技股份有限公司Order management and delivery method and system, and non-transient computer readable medium
US20230123322A1 (en)*2021-04-162023-04-20Strong Force Vcn Portfolio 2019, LlcPredictive Model Data Stream Prioritization
CN113570433A (en)*2021-07-282021-10-29上海帘邦信息科技有限公司 Integrated management system applied to non-standard products industry
CN113919782A (en)*2021-10-202022-01-11广州品唯软件有限公司 A method and system for monitoring the timeliness of an order full link
KR102558508B1 (en)*2022-02-032023-07-21주식회사 윌로그Logistics integrated management service system, apparatus and method for providing electronic shipment certificate
CN114971774A (en)*2022-05-092022-08-30上海非码网络科技有限公司Subscription method, system and storage medium for multi-store merchants of SaaS platform
CN116033006A (en)*2022-09-282023-04-28海尔优家智能科技(北京)有限公司 Data processing method, system, storage medium and electronic device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
牛亚坤;沈奇威;: "服务型O2O订单处理方案设计", 电信工程技术与标准化, no. 01, 15 January 2017 (2017-01-15)*
邱志慧;李骏成;: "电商物流时效监控、预警的实现及其意义", 电子商务, no. 01, 15 January 2017 (2017-01-15)*

Also Published As

Publication numberPublication date
CN116993459B (en)2024-09-10

Similar Documents

PublicationPublication DateTitle
CN107729139B (en)Method and device for concurrently acquiring resources
CN111429241A (en)Accounting processing method and device
CN115733885B (en) Business processing method, device, electronic device and storage medium
CN101873334A (en) A state-driven executable business process execution method
CN113992769B (en)Industrial Internet information exchange method
CN112631754A (en)Data processing method, data processing device, storage medium and electronic device
CN112379884A (en)Spark and parallel memory computing-based process engine implementation method and system
US11169847B1 (en)Method and device for processing distributed data solving problem of manual intervention by data analysts
CN117057079A (en)Power distribution network topology control method, system, equipment and storage medium
CN112633850A (en)Method for realizing service flow automation by managing, calling and monitoring RPA robot
CN117407445B (en) Data storage method, system and storage medium for Internet of Vehicles data platform
CN113821361A (en)Internet of things platform message processing method and system based on streaming processing
CN116991562B (en)Data processing method and device, electronic equipment and storage medium
CN114173355A (en)Dynamic execution method and system for network instruction with separated design operation state
CN116993459A (en) An e-commerce order management method based on cloud data analysis
CN118377615A (en) Process indicator calculation method based on flow computing and related equipment
CN118075042A (en) Settlement business data processing method, system, device, storage medium and product
CN117950850A (en)Data transmission method, device, electronic equipment and computer readable medium
CN113760836B (en)Wide table calculation method and device
CN115729924A (en)Method for transmitting warehouse-counting mass data based on plug-in heterogeneous data source
CN113377371B (en)Multi-scene configuration method, system, equipment and medium
CN111143280B (en)Data scheduling method, system, device and storage medium
CN113269460B (en)Collaborative system and collaborative architecture for multiple management systems
CN115391154A (en) A log segmentation persistence system and method for enterprise service bus
CN118069657A (en) A method for constructing a government data resource library

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
TA01Transfer of patent application right

Effective date of registration:20240816

Address after:Room 1101, Building A, Financial Town, International Port Area, Xi'an City, Shaanxi Province, 710026

Applicant after:Xi'an Daoyeshan Supply Chain Management Co.,Ltd.

Country or region after:China

Address before:518000 Rongde Times Square A2305, Huaqiao Xincun Community, Henggang Street, Longgang District, Shenzhen City, Guangdong Province

Applicant before:Shenzhen Datong Information Technology Co.,Ltd.

Country or region before:China

TA01Transfer of patent application right
GR01Patent grant
GR01Patent grant
PE01Entry into force of the registration of the contract for pledge of patent right

Denomination of invention:A method for e-commerce order management based on cloud data analysis

Granted publication date:20240910

Pledgee:Xi'an investment and financing Company limited by guarantee

Pledgor:Xi'an Daoyeshan Supply Chain Management Co.,Ltd.

Registration number:Y2025980024538

PE01Entry into force of the registration of the contract for pledge of patent right

[8]ページ先頭

©2009-2025 Movatter.jp