Movatterモバイル変換


[0]ホーム

URL:


CN116917002A - Neural stimulation using time staggered cascade of bipolar electrode combinations - Google Patents

Neural stimulation using time staggered cascade of bipolar electrode combinations
Download PDF

Info

Publication number
CN116917002A
CN116917002ACN202280016782.0ACN202280016782ACN116917002ACN 116917002 ACN116917002 ACN 116917002ACN 202280016782 ACN202280016782 ACN 202280016782ACN 116917002 ACN116917002 ACN 116917002A
Authority
CN
China
Prior art keywords
electrodes
stimulation
electrical stimulation
electrode
imd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280016782.0A
Other languages
Chinese (zh)
Inventor
J·M·克雷默
A·J·克莱伦德
L·M·利特瓦克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/652,245external-prioritypatent/US12403314B2/en
Application filed by Medtronic IncfiledCriticalMedtronic Inc
Priority claimed from PCT/US2022/070823external-prioritypatent/WO2022183201A1/en
Publication of CN116917002ApublicationCriticalpatent/CN116917002A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

An example method of delivering electrical stimulation includes: obtaining one or more stimulation parameters by an Implantable Medical Device (IMD) connected to leads carrying a plurality of electrodes; and delivering, by the IMD and based on the one or more stimulation parameters, the electrical stimulation therapy via the plurality of electrodes, wherein delivering the electrical stimulation therapy includes scanning delivery of the electrical stimulation therapy across different pairs of the plurality of electrodes.

Description

Translated fromChinese
使用双极电极组合的时间交错级联进行神经刺激Neurostimulation using time-staggered cascades of bipolar electrode combinations

本申请要求于2022年2月23日提交的美国专利申请号17/652,245的优先权,所述美国专利申请要求于2021年2月24日提交的美国临时专利申请号63/153,201的权益,每个申请的全部内容通过援引并入本文。This application claims priority from U.S. Patent Application No. 17/652,245 filed on February 23, 2022, which claims the benefit of U.S. Provisional Patent Application No. 63/153,201 filed on February 24, 2021, per The entire contents of each application are incorporated herein by reference.

技术领域Technical field

本公开总体上涉及医疗设备,并且更具体地涉及电刺激。The present disclosure relates generally to medical devices, and more specifically to electrical stimulation.

背景技术Background technique

电刺激设备,有时被称为神经刺激器或神经刺激设备,可以在患者体外或植入患者体内,并且被配置为向各种组织部位递送电刺激治疗以治疗各种症状或病症,比如慢性疼痛、震颤、帕金森病、癫痫或其他神经障碍、大小便失禁、性功能障碍、肥胖、或胃轻瘫。电刺激设备可以经由例如由一根或多根引线承载的电极来递送电刺激治疗,这些电极被定位于与患者的脑部、脊髓、骨盆神经、胫骨神经、周围神经、胃肠道或其他部位相关联的目标位置附近。脊髓附近、骶神经附近、脑内和周围神经附近的刺激通常分别称为脊髓刺激(SCS)、骶神经调节(SNM)、深部脑刺激(DBS)和周围神经刺激(PNS)。Electrical stimulation devices, sometimes called neurostimulators or neurostimulation devices, can be outside a patient's body or implanted inside a patient's body, and are configured to deliver electrical stimulation treatments to various tissue sites to treat various symptoms or conditions, such as chronic pain , tremor, Parkinson's disease, epilepsy or other neurological disorders, incontinence, sexual dysfunction, obesity, or gastroparesis. The electrical stimulation device may deliver electrical stimulation therapy via, for example, electrodes carried by one or more leads positioned in contact with the patient's brain, spinal cord, pelvic nerves, tibial nerves, peripheral nerves, gastrointestinal tract, or other locations near the associated target location. Stimulation near the spinal cord, near sacral nerves, within the brain, and near peripheral nerves is often called spinal cord stimulation (SCS), sacral neuromodulation (SNM), deep brain stimulation (DBS), and peripheral nerve stimulation (PNS), respectively.

医师或临床医生可以选择多个可编程刺激参数的值,以便限定有待通过植入式刺激器为患者递送的电刺激治疗。例如,医师或临床医生可以选择一个或多个电极、所选电极的极性、电压或电流幅度、脉冲宽度、和脉冲频率作为刺激参数。治疗刺激参数集,比如包括电极组合、电极极性、幅度、脉冲宽度和脉冲频率的集合,在限定有待为患者递送的电刺激治疗的意义上而言可以称为治疗程序。A physician or clinician may select values for a plurality of programmable stimulation parameters in order to define the electrical stimulation therapy to be delivered to the patient via the implanted stimulator. For example, a physician or clinician may select one or more electrodes, the polarity of the selected electrodes, voltage or current amplitude, pulse width, and pulse frequency as stimulation parameters. A set of therapeutic stimulation parameters, such as a set including electrode combination, electrode polarity, amplitude, pulse width and pulse frequency, may be referred to as a treatment program in the sense that it defines the electrical stimulation therapy to be delivered to the patient.

发明内容Contents of the invention

总体上,本公开描述了用于使用双极电极组合的时间交错级联来递送神经刺激的技术。当递送神经刺激时,可能期望选择最接近刺激目标的电极。例如,当向患者的脊髓递送神经刺激时,可能期望经由最接近脊髓的神经根的电极来递送电刺激。然而,各种情况可能使得难以确定哪些电极最接近刺激目标。作为一个示例,刺激目标可能相对较小(例如,相对于承载电极的引线)。作为另一个示例,患者的移动可能导致电极与刺激目标之间的相对移动。如果电刺激没有到达刺激目标,治疗可能不会成功。另外,电刺激零星到达刺激目标可能会分散患者的注意力。Generally, the present disclosure describes techniques for delivering neural stimulation using time-staggered cascades of bipolar electrode combinations. When delivering nerve stimulation, it may be desirable to select the electrode closest to the target of stimulation. For example, when delivering nerve stimulation to a patient's spinal cord, it may be desirable to deliver electrical stimulation via electrodes closest to the nerve roots of the spinal cord. However, various circumstances may make it difficult to determine which electrodes are closest to the stimulation target. As one example, the stimulation target may be relatively small (eg, relative to the leads carrying the electrodes). As another example, patient movement may cause relative movement between the electrodes and the stimulation target. If the electrical stimulation does not reach the stimulation target, the treatment may not be successful. In addition, electrical stimulation that reaches the stimulation target sporadically may distract the patient.

根据本公开的一种或多种技术,植入式医疗设备(IMD)可以经由双极电极组合的时间交错级联来递送电刺激。例如,与经由特定的一对电极连续递送电刺激不同,IMD在递送电刺激时可以扫描通过多个电极对。这些电极对可以包括不同的对,其中一对中的至少一个电极处于与至少另一对中的电极不同的位置。作为一个示例,IMD可以在第一时间经由第一对电极递送电刺激,在第二时间经由第二对电极递送电刺激,并且在第三时间经由第三对电极递送刺激。扫描频率(例如,IMD在电极对之间切换的频率)可以被选择使得患者感觉不到扫描(例如,频率大于20Hz、大于30Hz、大于45Hz等)。以这种方式,IMD可以有效地向更大的区域递送刺激,使得刺激击中刺激目标的概率更大。In accordance with one or more techniques of the present disclosure, an implantable medical device (IMD) can deliver electrical stimulation via a time-staggered cascade of bipolar electrode combinations. For example, rather than continuously delivering electrical stimulation via a specific pair of electrodes, an IMD can scan through multiple electrode pairs while delivering electrical stimulation. The pairs of electrodes may include different pairs in which at least one electrode of one pair is in a different position than an electrode of at least one other pair. As one example, an IMD may deliver electrical stimulation via a first pair of electrodes at a first time, deliver electrical stimulation via a second pair of electrodes at a second time, and deliver stimulation via a third pair of electrodes at a third time. The scanning frequency (eg, the frequency at which the IMD switches between electrode pairs) can be selected such that the scan is not felt by the patient (eg, the frequency is greater than 20 Hz, greater than 30 Hz, greater than 45 Hz, etc.). In this way, IMD can effectively deliver stimulation to a larger area, making the stimulation more likely to hit the stimulation target.

作为一个示例,一种递送电刺激的方法包括:通过连接到承载多个电极的引线的植入式医疗设备(IMD)获得一个或多个刺激参数;以及通过IMD并基于一个或多个刺激参数经由多个电极递送电刺激治疗,其中,递送电刺激治疗包括使电刺激治疗的递送扫描通过多个电极中的不同电极对。As an example, a method of delivering electrical stimulation includes: obtaining one or more stimulation parameters through an implantable medical device (IMD) connected to leads carrying a plurality of electrodes; and through the IMD and based on the one or more stimulation parameters The electrical stimulation treatment is delivered via the plurality of electrodes, wherein delivering the electrical stimulation treatment includes scanning delivery of the electrical stimulation treatment through different pairs of electrodes in the plurality of electrodes.

作为另一个示例,一种系统包括:存储器,该存储器存储一个或多个刺激参数;以及植入式医疗设备,该植入式医疗设备包括被配置为获得一个或多个刺激参数的处理电路;以及基于一个或多个刺激参数并经由由引线承载的多个电极递送电刺激治疗,其中,递送电刺激治疗包括使电刺激治疗的递送扫描通过多个电极中的不同电极对。As another example, a system includes: a memory storing one or more stimulation parameters; and an implantable medical device including processing circuitry configured to obtain one or more stimulation parameters; and delivering electrical stimulation treatment based on one or more stimulation parameters and via a plurality of electrodes carried by the leads, wherein delivering the electrical stimulation treatment includes scanning delivery of the electrical stimulation treatment through different pairs of electrodes in the plurality of electrodes.

在附图和下文的说明中阐述了一个或多个示例的细节。通过说明书、附图和权利要求,其他特征、目的和优点将是显而易见的。The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description, drawings, and claims.

附图说明Description of the drawings

图1是根据本公开的一种或多种技术展示了示例系统的概念图,所述系统包括被配置为递送脊髓刺激(SCS)的采用神经刺激设备形式的植入式医疗设备(IMD)、外部编程器以及一个或多个感测设备。1 is a conceptual diagram illustrating an example system including an implantable medical device (IMD) in the form of a neurostimulation device configured to deliver spinal cord stimulation (SCS), in accordance with one or more techniques of the present disclosure. an external programmer and one or more sensing devices.

图2是根据本公开的一种或多种技术展示了采用神经刺激设备形式的IMD的示例的框图。2 is a block diagram illustrating an example of an IMD in the form of a neurostimulation device in accordance with one or more techniques of the present disclosure.

图3是根据本公开的一种或多种技术展示了适合与图2的IMD一起使用的外部编程器的示例的框图。3 is a block diagram illustrating an example of an external programmer suitable for use with the IMD of FIG. 2 in accordance with one or more techniques of the present disclosure.

图4和图5是根据本公开的一种或多种技术展示了扫描通过电极对的示例的概念图。4 and 5 are conceptual diagrams illustrating examples of scanning through pairs of electrodes in accordance with one or more techniques of the present disclosure.

图6和图7是根据本公开的一种或多种技术展示了在引线间扫描通过电极对的示例的概念图。6 and 7 are conceptual diagrams illustrating examples of scanning through pairs of electrodes between leads in accordance with one or more techniques of the present disclosure.

图8是根据本公开的一种或多种技术展示了滴定治疗的示例方法的流程图。Figure 8 is a flow diagram illustrating an example method of titrating therapy in accordance with one or more techniques of the present disclosure.

具体实施方式Detailed ways

图1是根据本公开的一个或多个示例展示了示例系统100的概念图,所述系统包括被配置为递送脊髓刺激(SCS)治疗的植入式医疗设备(IMD)110、处理电路140、外部编程器150以及一个或多个传感器160。处理电路140可以包括被配置为执行IMD 110的各种操作的一个或多个处理器。尽管本公开中描述的示例通常适用于包括外部设备和IMD的各种医疗设备,但出于说明的目的,将描述这种技术对IMD的应用,更具体地,对植入式电刺激器(例如,神经刺激器)的应用。更具体地,出于说明的目的,本公开将涉及植入式SCS系统,但不限于其他类型的神经刺激设备或神经刺激的其他治疗应用,包括外部神经刺激器。例如,所述系统可能不是完全植入的系统,在这种系统中,脉冲发生器在患者体外并且刺激经皮传输。在一个或多个示例中,刺激器可以被配置为递送周围神经刺激或脊神经根刺激。1 is a conceptual diagram illustrating an example system 100 including an implantable medical device (IMD) 110 configured to deliver spinal cord stimulation (SCS) therapy, processing circuitry 140, in accordance with one or more examples of the present disclosure. External programmer 150 and one or more sensors 160. Processing circuitry 140 may include one or more processors configured to perform various operations of IMD 110 . Although the examples described in this disclosure are generally applicable to a variety of medical devices including external devices and IMDs, for purposes of illustration, the application of this technology to IMDs, and more specifically to implantable electrical stimulators ( For example, neurostimulator) applications. More specifically, for illustrative purposes, the present disclosure will relate to implantable SCS systems, but is not limited to other types of neurostimulation devices or other therapeutic applications of neurostimulation, including external neurostimulators. For example, the system may not be a fully implantable system, in which the pulse generator is outside the patient's body and stimulates transcutaneous delivery. In one or more examples, the stimulator may be configured to deliver peripheral nerve stimulation or spinal nerve root stimulation.

如图1所示,系统100包括IMD 110、引线130A和130B、以及与患者105(其通常为人类患者)一起示出的外部编程器150。在图1的示例中,IMD 110是植入式电刺激器,其被配置为分别经由引线130A和/或130B的一个或多个电极132A、132B生成并向患者105递送电刺激治疗,例如用于缓解慢性疼痛或其他症状。在图1的示例中,每个引线130A、130B分别包括八个电极132A、132B,但引线可以各自具有不同数量的电极。引线130A、130B可以统称为“引线130”,并且电极132A、132B可以统称为“电极132”。在其他示例中,IMD 110可以耦合到承载多个电极的单根引线或各自承载多个电极的多于两根引线。As shown in Figure 1, system 100 includes IMD 110, leads 130A and 130B, and external programmer 150, shown with patient 105, which is typically a human patient. In the example of FIG. 1 , IMD 110 is an implantable electrical stimulator configured to generate and deliver electrical stimulation therapy to patient 105 via one or more electrodes 132A, 132B of leads 130A and/or 130B, respectively. To relieve chronic pain or other symptoms. In the example of Figure 1, each lead 130A, 130B includes eight electrodes 132A, 132B, respectively, but the leads may each have a different number of electrodes. Leads 130A, 130B may be collectively referred to as "leads 130" and electrodes 132A, 132B may be collectively referred to as "electrodes 132." In other examples, IMD 110 may be coupled to a single lead carrying multiple electrodes or to more than two leads each carrying multiple electrodes.

IMD 110可以是保持植入患者105体内数周、数月或数年的慢性电刺激器。在其他示例中,IMD 110可以是临时的或试验性的刺激器,用于筛选或评估电刺激对慢性治疗的功效。在一个示例中,IMD 110被植入患者105体内,而在另一示例中,IMD 110是耦合到经皮植入患者体内的一根或多根引线的外部设备。在一些示例中,IMD 110使用一个或多个引线上的电极,而在其他示例中,IMD 110可以使用一个或多个引线上的一个或多个电极以及IMD的外壳上的一个或多个电极。在进一步的示例中,IMD 110可以是无引线的,而是仅使用IMD的外壳上承载的电极。IMD 110 may be a chronic electrical stimulator that remains implanted in patient 105 for weeks, months, or years. In other examples, IMD 110 may be a temporary or experimental stimulator used to screen or evaluate the efficacy of electrical stimulation for chronic treatment. In one example, IMD 110 is implanted in patient 105, while in another example, IMD 110 is an external device coupled to one or more leads that are percutaneously implanted in the patient. In some examples, IMD 110 uses one or more electrodes on one or more leads, while in other examples, IMD 110 can use one or more electrodes on one or more leads and one or more electrodes on the housing of the IMD. . In a further example, the IMD 110 may be leadless, instead using only electrodes carried on the housing of the IMD.

IMD 110可以由足以将IMD 110的部件(例如,图2所示的部件)容纳在患者105体内的任何聚合物、金属或复合材料构成。在该示例中,IMD 110可以用生物相容的外壳(比如钛或不锈钢)或聚合物材料(比如硅树脂、聚氨酯或液晶聚合物)构造,并通过手术植入患者105骨盆、腹部或臀部附近的部位。在其他示例中,IMD 110可以植入患者105体内的其他合适部位,这可能取决于例如患者105体内需要递送电刺激治疗的目标部位。IMD 110的外壳可以被配置成为比如可充电或不可充电电源等部件提供气密密封。另外,在一些示例中,IMD 110的外壳选自有助于接收能量以便为可充电电源充电的材料。IMD 110 may be constructed of any polymer, metal, or composite material sufficient to accommodate components of IMD 110 (eg, the components shown in FIG. 2 ) within patient 105 . In this example, the IMD 110 may be constructed from a biocompatible housing (such as titanium or stainless steel) or a polymer material (such as silicone, polyurethane, or liquid crystal polymer) and surgically implanted into the patient 105 near the pelvis, abdomen, or buttocks parts. In other examples, the IMD 110 may be implanted at other suitable locations within the patient's 105 body, which may depend, for example, on the target location within the patient's 105 body to which electrical stimulation therapy needs to be delivered. The housing of the IMD 110 may be configured to provide a hermetic seal for components such as rechargeable or non-rechargeable power supplies. Additionally, in some examples, the housing of IMD 110 is selected from materials that assist in receiving energy to charge the rechargeable power source.

在图1的示例中,可以作为调节电流或基于调节电压的脉冲递送的电刺激能量经由引线130和电极132从IMD 110递送至患者105的一个或多个目标组织部位。引线130将电极132定位在患者105脊髓的目标组织附近。电极132中的一个或多个可以设置在引线130的远端末端和/或沿着引线的中间点的其他位置。引线130可以植入并耦合到IMD 110。电极132可以将由IMD 110中的电刺激发生器生成的电刺激传送到患者105的组织。尽管引线130可以各自是单根引线,但是引线130可以包括引线延伸部分或可以有助于引线130的植入或定位的其他段。In the example of FIG. 1 , electrical stimulation energy, which may be delivered as regulated current or regulated voltage-based pulses, is delivered from IMD 110 to one or more target tissue sites of patient 105 via leads 130 and electrodes 132 . Leads 130 position electrodes 132 near target tissue in the patient's 105 spinal cord. One or more of the electrodes 132 may be disposed at the distal end of the lead 130 and/or at other locations along an intermediate point of the lead. Leads 130 may be implanted and coupled to IMD 110 . Electrodes 132 may deliver electrical stimulation generated by an electrical stimulation generator in IMD 110 to the tissue of patient 105 . Although the leads 130 may each be a single lead, the leads 130 may include lead extensions or other segments that may facilitate implantation or positioning of the leads 130 .

引线130的电极132可以是桨状引线上的电极垫、围绕引线体的圆形(例如,环形)电极、贴合电极、袖带电极、分段电极(例如,设置在引线上不同圆周位置的电极而不是连续环形电极)、其任何组合(例如,环形电极和分段电极)、或能够形成用于治疗的单极、双极或多极电极组合的任何其他类型的电极。将出于说明的目的描述布置在引线130的远端处的不同轴向位置处的环形电极。为了说明的目的,描述了经由引线130的电极部署,但是电极可以例如以行和/或列(或其他阵列或图案)的形式布置在IMD 110的外壳上,作为表面电极、环形电极或突起。The electrodes 132 of the lead 130 may be electrode pads on a paddle lead, a circular (e.g., annular) electrode surrounding the lead body, a conformal electrode, a cuff electrode, a segmented electrode (e.g., disposed at different circumferential positions on the lead). electrodes other than continuous ring electrodes), any combination thereof (eg, ring electrodes and segmented electrodes), or any other type of electrode capable of forming a combination of monopolar, bipolar or multipolar electrodes for treatment. Ring electrodes disposed at different axial positions at the distal end of lead 130 will be described for purposes of illustration. For illustrative purposes, electrode deployment via leads 130 is described, but the electrodes may be arranged, for example, in rows and/or columns (or other arrays or patterns) on the housing of IMD 110 as surface electrodes, ring electrodes, or protrusions.

定义由IMD 110通过引线130的电极132递送的电刺激脉冲的神经刺激刺激参数可以包括识别已经根据刺激程序选择了哪些电极用于递送刺激脉冲的信息以及所选电极(电极组合)的极性、以及刺激脉冲的电压或电流幅度、脉冲速率(即,频率)和脉冲宽度。神经刺激刺激参数可以进一步包括循环参数,该循环参数指定刺激何时开启和关闭或者开启和关闭多长时间。可以在递送神经刺激脉冲之前对神经刺激刺激参数进行编程,基于用户输入进行手动调整,或者在递送神经刺激脉冲期间例如基于所感测的条件进行自动控制。Defining neurostimulation stimulation parameters for electrical stimulation pulses delivered by IMD 110 through electrodes 132 of lead 130 may include information identifying which electrodes have been selected for delivery of the stimulation pulses according to the stimulation procedure and the polarity of the selected electrodes (electrode combinations), and the voltage or current amplitude, pulse rate (i.e., frequency), and pulse width of the stimulation pulse. Neurostimulation stimulation parameters may further include cycling parameters that specify when stimulation is on and off or for how long. Neurostimulation stimulation parameters may be programmed prior to delivery of the neurostimulation pulses, manually adjusted based on user input, or automatically controlled during delivery of the neurostimulation pulses, such as based on sensed conditions.

尽管图1的示例涉及SCS治疗,例如,治疗疼痛,但在其他示例中,系统100可以被配置为治疗可受益于神经刺激治疗的其他病症。例如,系统100可以用于治疗震颤、帕金森病、癫痫或其他神经障碍、大小便失禁、性功能障碍、肥胖、或胃轻瘫,或精神障碍,比如抑郁症、躁狂症、强迫症或焦虑症。因此,在一些示例中,系统100可以被配置为递送骶神经调节(SNM)、深部脑刺激(DBS)、周围神经刺激(PNS)或其他刺激,比如周围神经场刺激(PNFS)、皮层刺激(CS)、胃肠刺激或能够治疗患者105的病症的任何其他刺激治疗。在一些示例中,系统100可以被配置为其中电刺激包括递送治疗的刺激参数,以解决疼痛性糖尿病性神经病(PDN)、外周血管疾病(PVD)、外周动脉疾病(PAD)、复杂区域疼痛综合征(CRPS)、心绞痛(AP)、腿痛、背痛或骨盆痛中的一种或多种的病症。Although the example of FIG. 1 relates to SCS therapy, for example, to treat pain, in other examples, system 100 may be configured to treat other conditions that may benefit from neurostimulation therapy. For example, system 100 may be used to treat tremor, Parkinson's disease, epilepsy or other neurological disorders, incontinence, sexual dysfunction, obesity, or gastroparesis, or psychiatric disorders such as depression, mania, obsessive-compulsive disorder, or anxiety. Thus, in some examples, system 100 may be configured to deliver sacral neuromodulation (SNM), deep brain stimulation (DBS), peripheral nerve stimulation (PNS), or other stimulation, such as peripheral nerve field stimulation (PNFS), cortical stimulation ( CS), gastrointestinal stimulation, or any other stimulating treatment capable of treating patient 105's condition. In some examples, system 100 may be configured wherein electrical stimulation includes stimulation parameters that deliver treatments to address painful diabetic neuropathy (PDN), peripheral vascular disease (PVD), peripheral arterial disease (PAD), complex regional pain syndrome One or more conditions including CRPS, angina pectoris (AP), leg pain, back pain, or pelvic pain.

在一些示例中,引线130可以包括一个或多个传感器,这些传感器被配置为感测患者105的一个或多个生理刺激参数,比如患者活动、压力、温度、姿势、心率、血流或其他特性。电极132中的至少一些可以用于感测患者105体内的电信号,作为递送刺激的补充或替代。IMD 110被配置为经由一根或两根引线130所承载的电极的所选组合单独地或与IMD110的外壳承载或定义的电极组合来向患者105递送电刺激治疗。用于电刺激治疗的目标组织可以是受电刺激影响的任何组织。在一些示例中,目标组织包括神经、平滑肌或骨骼肌。在图1所示的示例中,目标组织是脊髓120附近的组织,比如在脊髓120的鞘内空间或硬膜外空间内,或者在一些示例中,从脊髓120分支出来的相邻神经。引线130可以在任何合适的区域(比如胸椎、颈椎或腰椎区域)引入脊髓120。In some examples, lead 130 may include one or more sensors configured to sense one or more physiological stimulation parameters of patient 105 , such as patient activity, pressure, temperature, posture, heart rate, blood flow, or other characteristics. . At least some of the electrodes 132 may be used to sense electrical signals within the patient 105 in addition to or instead of delivering stimulation. IMD 110 is configured to deliver electrical stimulation therapy to patient 105 via selected combinations of electrodes carried by one or both leads 130 , alone or in combination with electrodes carried or defined by the housing of IMD 110 . The target tissue for electrical stimulation treatment can be any tissue affected by electrical stimulation. In some examples, the target tissue includes nerves, smooth muscle, or skeletal muscle. In the example shown in FIG. 1 , the target tissue is tissue near the spinal cord 120 , such as within the intrathecal or epidural space of the spinal cord 120 , or in some examples, adjacent nerves branching off the spinal cord 120 . Lead 130 may be introduced into spinal cord 120 at any suitable region, such as the thoracic, cervical, or lumbar region.

对脊髓120的刺激例如可以防止疼痛信号生成和/或通过脊髓120传播并到达患者105的大脑。患者105可以将疼痛信号的中断感知为疼痛的减轻,因此感知为有效的治疗结果。在一些示例中,对脊髓120的刺激可以产生感觉异常,这可以减少患者105对疼痛的感知,并且因此提供有效的治疗结果。在其他示例中,刺激脊髓120可以有效地减轻疼痛,无论是否出现感觉异常。在一些示例中,一些电刺激脉冲可以被引导至神经胶质细胞,而其他电刺激(例如,通过不同的电极组合和/或以不同的刺激参数递送)被引导至神经元。在其他示例中,刺激脊髓120可以有效地促进一个或多个远程组织位置(例如,肢体或附肢)中的血流,从而缓解或减轻疼痛或其他症状,或者防止或延迟组织损伤或退化的发作。Stimulation of the spinal cord 120 may, for example, prevent pain signals from being generated and/or propagating through the spinal cord 120 and reaching the brain of the patient 105 . The patient 105 may perceive the interruption of pain signals as a reduction in pain and therefore as an effective treatment result. In some examples, stimulation of the spinal cord 120 can produce paresthesia, which can reduce the patient's 105 perception of pain and thus provide effective treatment results. In other examples, stimulating the spinal cord 120 can effectively reduce pain regardless of whether paresthesia is present. In some examples, some electrical stimulation pulses can be directed to glial cells, while other electrical stimulation (eg, delivered via different electrode combinations and/or with different stimulation parameters) is directed to neurons. In other examples, stimulating the spinal cord 120 may be effective to promote blood flow in one or more remote tissue locations (e.g., a limb or appendage), thereby alleviating or reducing pain or other symptoms, or preventing or delaying tissue damage or degeneration. attack.

IMD 110根据一个或多个治疗刺激程序生成电刺激治疗并将其经由到患者105的引线130的电极递送至患者105体内的目标刺激部位。治疗刺激程序指定一个或多个刺激参数的值,这些刺激参数定义了IMD 110根据该程序递送的治疗的一方面。例如,控制IMD 110以刺激脉冲形式递送刺激的刺激治疗程序可以定义IMD 110根据该程序递送的刺激脉冲的电压或电流脉冲幅度、脉冲宽度和脉冲速率(即,脉冲频率)的值以及形成用于递送刺激脉冲的电极组合的特定电极和电极极性。因此,刺激治疗程序可以指定递送刺激的(多个)位置以及刺激的幅度、脉冲宽度和脉冲速率。在一些示例中,刺激治疗程序可以指定刺激的循环,例如,根据刺激何时开启和关闭或开启和关闭多长时间。IMD 110 generates and delivers electrical stimulation treatments to target stimulation sites in patient 105 via electrodes of leads 130 to patient 105 in accordance with one or more therapeutic stimulation procedures. A therapeutic stimulation program specifies values for one or more stimulation parameters that define an aspect of therapy delivered by the IMD 110 in accordance with the program. For example, a stimulation treatment program that controls IMD 110 to deliver stimulation in the form of stimulation pulses may define values for voltage or current pulse amplitude, pulse width, and pulse rate (i.e., pulse frequency) for stimulation pulses that IMD 110 delivers according to the program and form the values for The specific electrodes and electrode polarity of the electrode combination that delivers the stimulation pulse. Thus, a stimulation treatment program may specify the location(s) where stimulation is delivered as well as the amplitude, pulse width, and pulse rate of the stimulation. In some examples, a stimulation treatment program may specify cycles of stimulation, for example, in terms of when stimulation is on and off or how long it is on and off.

用户(比如,临床医生或患者105)可以与外部编程器150的用户界面交互以对IMD110进行编程。对IMD 110进行编程通常可以指生成和传送用于控制IMD 110的操作的命令、程序或其他信息。以这种方式,IMD 110可以从外部编程器150接收传送的命令和程序以控制电刺激治疗。例如,外部编程器150可以例如通过无线遥测或有线连接来传输治疗刺激程序、刺激参数调整、治疗刺激程序选择、用户输入或用于控制IMD 110的操作的其他信息。A user (eg, clinician or patient 105 ) may interact with the user interface of external programmer 150 to program IMD 110 . Programming IMD 110 may generally refer to generating and transmitting commands, programs, or other information for controlling the operation of IMD 110 . In this manner, IMD 110 may receive transmitted commands and programs from external programmer 150 to control electrical stimulation therapy. For example, external programmer 150 may transmit therapeutic stimulation programs, stimulation parameter adjustments, therapeutic stimulation program selections, user input, or other information for controlling the operation of IMD 110, such as via wireless telemetry or a wired connection.

在一些情况下,如果外部编程器150主要旨在供医师或临床医生使用,则其可以被表征为医师或临床医生编程器。在其他情况下,如果外部编程器150主要旨在供患者使用,则其可以被表征为患者编程器。患者编程器通常是患者105可访问的,并且在许多情况下,它可以是可以在患者的整个日常生活中陪伴患者105的便携式设备,例如,作为类似于平板计算机或智能手机的手持式计算机。例如,当患者希望终止或改变刺激治疗时,患者编程器可以接收来自患者105的输入。通常,医师或临床医生编程器可以支持临床医生选择和生成程序以供IMD 110使用,并且可以采用例如手持式计算机(例如,平板计算机)、膝上型计算机或台式计算机的形式,而患者编程器可以支持患者在正常使用期间调整和选择这些程序。在其他示例中,外部编程器150可以包括对IMD 110的电源充电的外部充电设备,或者是外部充电设备的一部分。以这种方式,用户可以使用一个设备或多个设备对IMD 110进行编程和充电。In some cases, external programmer 150 may be characterized as a physician or clinician programmer if it is primarily intended for use by a physician or clinician. In other cases, external programmer 150 may be characterized as a patient programmer if it is primarily intended for use by a patient. The patient programmer is typically accessible to the patient 105, and in many cases it can be a portable device that can accompany the patient 105 throughout their daily life, for example, as a handheld computer similar to a tablet or smartphone. For example, the patient programmer may receive input from the patient 105 when the patient wishes to terminate or change stimulation therapy. Typically, a physician or clinician programmer may support the clinician in selecting and generating programs for use with the IMD 110 and may take the form of, for example, a handheld computer (eg, a tablet computer), a laptop computer, or a desktop computer, while the patient programmer Patients can be supported in adjusting and selecting these programs during normal use. In other examples, external programmer 150 may include, or be part of, an external charging device that charges the power supply of IMD 110 . In this way, users can program and charge the IMD 110 using one device or multiple devices.

IMD 110和外部编程器150可以交换信息并且可以使用现有技术中已知的任何技术经由无线通信进行通信。通信技术的示例可以包括例如射频(RF)遥测术和感应耦合,但是也设想了其他技术。在一些示例中,外部编程器150包括可以被放置在患者身体附近靠近IMD 110植入部位的通信头,以改进IMD 110与外部编程器150之间的通信的质量或安全性。外部编程器150与IMD 110之间的通信可以发生在电力传输期间或与电力传输分开。IMD 110 and external programmer 150 may exchange information and may communicate via wireless communications using any technique known in the art. Examples of communication technologies may include, for example, radio frequency (RF) telemetry and inductive coupling, although other technologies are also contemplated. In some examples, external programmer 150 includes a communication head that can be placed near the patient's body near the implantation site of IMD 110 to improve the quality or security of communications between IMD 110 and external programmer 150 . Communication between external programmer 150 and IMD 110 may occur during or separate from power transfer.

响应于来自外部编程器150的命令,IMD 110可以根据多个治疗刺激程序经由引线130上的电极132将电刺激治疗递送至患者105的脊髓120的目标组织部位。在一些示例中,随着患者105的治疗需求随时间演变,IMD 110可以自动修改治疗刺激程序。例如,治疗刺激程序的修改可以导致基于接收的信息对多个刺激脉冲的至少一个参数进行调整。In response to commands from external programmer 150 , IMD 110 may deliver electrical stimulation therapy to target tissue sites of spinal cord 120 of patient 105 via electrodes 132 on lead 130 in accordance with a plurality of therapeutic stimulation programs. In some examples, the IMD 110 can automatically modify the treatment stimulation program as the patient's 105 treatment needs evolve over time. For example, modification of the therapeutic stimulation program may result in adjustment of at least one parameter of the plurality of stimulation pulses based on the received information.

IMD 110和/或外部编程器150可以从一个或多个传感器160接收信息,例如,直接经由无线通信或者经由网络连接间接地从中间服务器接收信息。传感器160可以被定位为感测患者105上的所选位置处的一个或多个生理反应。在一些示例中,传感器160可以被定位在目标解剖区域的组织处、附接到目标解剖区域的组织或其附近,例如,在肢体或附肢处,比如在患者105的腿、脚趾、脚、手臂、手指或手上,例如,以感测与传感器160的放置相邻的皮肤电反应。在一些示例中,传感器160可以例如通过夹式机构、带子、弹性带和/或粘合剂附接到患者105的附肢以感测与附肢相关联的生理反应。在一些示例中,传感器160(或多个传感器160中的一个)可以植入患者105体内,例如,植入患者的肢体或附肢内、患者的脊髓附近、患者的大脑内等。IMD 110 and/or external programmer 150 may receive information from one or more sensors 160, for example, directly via wireless communication or indirectly from an intermediary server via a network connection. Sensor 160 may be positioned to sense one or more physiological responses at selected locations on patient 105 . In some examples, sensor 160 may be positioned at, attached to, or near tissue in the target anatomical area, for example, at a limb or appendage, such as at a leg, toe, foot, An arm, a finger, or a hand, for example, to sense a galvanic skin response adjacent to the placement of sensor 160 . In some examples, sensor 160 may be attached to an appendage of patient 105 to sense physiological responses associated with the appendage, such as via a clip-on mechanism, a strap, an elastic band, and/or adhesive. In some examples, sensor 160 (or one of sensors 160 ) may be implanted within patient 105 , for example, within the patient's limb or appendage, near the patient's spinal cord, within the patient's brain, etc.

在一些示例中,传感器160可以是生理传感器和/或患者姿势或行为传感器。例如,传感器160可以是被配置为检测和/或确定心率和/或心率变异性的心率监测器。传感器160可以被配置为检测和/或确定皮肤电反应,或者检测和/或确定生物电势。传感器160可以是温度计,其被配置为检测和/或确定患者解剖结构的至少一部分的温度。传感器160可以被配置为测量压力,例如,患者血压,或者测量患者解剖结构的至少一部分的阻抗。传感器160可以是血流传感器,其测量血流并提供与同患者的组织相关联的血流相关的信息。例如,传感器160可以提供血流值或指示血流值或血流值变化的其他信息。血流值可以是瞬时血流测量值,或者可以是一段时间内的血流测量值,比如一段时间期间的平均血流值、最大血流值、最小血流值。在一些示例中,传感器160可以是被配置为检测/确定患者解剖结构的至少一部分的声音的麦克风。在一些示例中,传感器160可以至少部分地包括电极132A、132B。例如,传感器160可以被配置为检测和/或确定ECAP、LFP、网络兴奋性等。在一些示例中,传感器160可以包括加速度计,该加速度计被配置为检测和/或确定位置和/或患者移动、预定时间量内的患者移动历史等。在一些示例中,传感器160可以是被配置为接收和传达主观的患者反馈的患者输入设备,例如,外部编程器150、智能手机或计算设备、或任何其他合适的设备。例如,传感器160可被配置为接收疼痛反应、疼痛评分、疼痛区域、感觉异常量、感觉异常区域、与排泄和/或排泄率(例如,每天排泄的次数)相关的信息等。在一些示例中,传感器160可以是被配置为检测和/或确定患者所处的环境的声音、温度、湿度和压力等的环境传感器,比如麦克风、温度计、湿度计、压力传感器等。In some examples, sensors 160 may be physiological sensors and/or patient posture or behavior sensors. For example, sensor 160 may be a heart rate monitor configured to detect and/or determine heart rate and/or heart rate variability. Sensor 160 may be configured to detect and/or determine galvanic skin response, or to detect and/or determine biopotentials. Sensor 160 may be a thermometer configured to detect and/or determine the temperature of at least a portion of the patient's anatomy. Sensor 160 may be configured to measure pressure, such as the patient's blood pressure, or to measure the impedance of at least a portion of the patient's anatomy. Sensor 160 may be a blood flow sensor that measures blood flow and provides information related to blood flow associated with the patient's tissue. For example, sensor 160 may provide blood flow values or other information indicative of blood flow values or changes in blood flow values. The blood flow value may be an instantaneous blood flow measurement value, or may be a blood flow measurement value within a period of time, such as an average blood flow value, a maximum blood flow value, and a minimum blood flow value during a period of time. In some examples, sensor 160 may be a microphone configured to detect/determine sounds from at least a portion of the patient's anatomy. In some examples, sensor 160 may include, at least in part, electrodes 132A, 132B. For example, sensor 160 may be configured to detect and/or determine ECAP, LFP, network excitability, etc. In some examples, sensor 160 may include an accelerometer configured to detect and/or determine position and/or patient movement, patient movement history over a predetermined amount of time, or the like. In some examples, sensor 160 may be a patient input device configured to receive and communicate subjective patient feedback, such as an external programmer 150, a smartphone or computing device, or any other suitable device. For example, sensor 160 may be configured to receive a pain response, a pain score, an area of pain, an amount of paresthesia, an area of paresthesia, information related to excretion and/or excretion rate (eg, number of excretions per day), and the like. In some examples, sensor 160 may be an environmental sensor configured to detect and/or determine sound, temperature, humidity, pressure, etc. of the environment in which the patient is located, such as a microphone, thermometer, hygrometer, pressure sensor, etc.

当递送神经刺激时,可能期望IMD 110经由最接近刺激目标的电极递送电刺激。例如,当向患者105的脊髓120递送神经刺激时,可能期望IMD 110经由最接近脊髓120的神经根的电极132A/132B中的电极递送电刺激。然而,各种情况可能使得难以确定电极132A/132B中的哪些电极最接近刺激目标。作为一个示例,刺激目标可能相对较小(例如,相对于承载电极的引线)。作为另一个示例,患者105的移动可能导致电极132A/132B与刺激目标之间的相对移动。如果电刺激没有到达刺激目标,治疗可能不会成功。另外,电刺激零星到达刺激目标可能会分散患者105的注意力。When delivering nerve stimulation, it may be desirable for the IMD 110 to deliver electrical stimulation via the electrode closest to the target of stimulation. For example, when delivering nerve stimulation to the spinal cord 120 of the patient 105 , it may be desirable for the IMD 110 to deliver electrical stimulation via electrodes in electrodes 132A/132B that are closest to the nerve roots of the spinal cord 120 . However, various circumstances may make it difficult to determine which of electrodes 132A/132B are closest to the stimulation target. As one example, the stimulation target may be relatively small (eg, relative to the leads carrying the electrodes). As another example, movement of patient 105 may cause relative movement between electrodes 132A/132B and the stimulation target. If the electrical stimulation does not reach the stimulation target, the treatment may not be successful. Additionally, electrical stimulation that reaches the stimulation target sporadically may distract the patient 105 .

根据本公开的一种或多种技术,IMD 110可以经由双极电极组合的时间交错级联来递送电刺激。例如,与经由电极132A/132B中的特定的一对电极连续递送电刺激相反,当递送电刺激时,IMD 110可以扫描通过多对不同的电极132A/132B。作为一个示例,IMD 110可以在第一时间经由第一对电极132A/132B递送电刺激,在第二时间经由第二对电极132A/132B递送电刺激,并且在第三时间经由第三对电极132A/132B递送刺激。电极对可以具有共同的电极。这些电极对可以包括不同的对,其中一对中的至少一个电极处于与至少另一对中的电极不同的位置。扫描频率(例如,IMD 110在电极对之间切换的频率)可以被选择使得患者感觉不到扫描(例如,频率大于20Hz、大于30Hz、大于45Hz等)。以这种方式,IMD 110可以有效地向更大的区域递送刺激,使得刺激击中刺激目标的概率更大。即使刺激被有效地递送到更大的区域,递送刺激所消耗的能量的量也不会显著增加。In accordance with one or more techniques of the present disclosure, IMD 110 may deliver electrical stimulation via a time-staggered cascade of bipolar electrode combinations. For example, rather than continuously delivering electrical stimulation via a particular pair of electrodes 132A/132B, IMD 110 may scan through multiple different pairs of electrodes 132A/132B when delivering electrical stimulation. As one example, IMD 110 may deliver electrical stimulation via a first pair of electrodes 132A/132B at a first time, a second pair of electrodes 132A/132B at a second time, and a third pair of electrodes 132A at a third time. /132B delivers stimulation. The electrode pairs may have a common electrode. The pairs of electrodes may include different pairs in which at least one electrode of one pair is in a different position than an electrode of at least one other pair. The scanning frequency (eg, the frequency at which the IMD 110 switches between pairs of electrodes) may be selected such that the patient does not feel the scanning (eg, the frequency is greater than 20 Hz, greater than 30 Hz, greater than 45 Hz, etc.). In this manner, the IMD 110 can effectively deliver stimulation to a larger area, resulting in a greater probability of the stimulation hitting the stimulation target. Even if stimulation is effectively delivered to a larger area, the amount of energy consumed to deliver the stimulation does not increase significantly.

图2是根据本公开的一种或多种技术展示了IMD 200的部件的示例配置的框图。IMD 200可以是图1的IMD 110的示例。在图2所示的示例中,IMD 200可以包括刺激生成电路202、开关电路204、感测电路206、遥测电路208、(多个)传感器222、承载电极232A的引线230A(其可以对应于图1的引线130A和电极132A)以及承载电极232B的引线230B(其可以对应于图1的引线130B和电极132B)。在图2所示的示例中,IMD 200包括处理电路210、电源224和存储设备212。处理电路210可以包括被配置为执行IMD 200的各种操作的一个或多个处理器。在图2所示的示例中,存储设备212可以存储刺激参数设置242。2 is a block diagram illustrating an example configuration of components of IMD 200 in accordance with one or more techniques of this disclosure. IMD 200 may be an example of IMD 110 of FIG. 1 . In the example shown in Figure 2, IMD 200 may include stimulus generation circuitry 202, switching circuitry 204, sensing circuitry 206, telemetry circuitry 208, sensor(s) 222, leads 230A carrying electrodes 232A (which may correspond to Figure 2). 1 ) and lead 230B carrying electrode 232B (which may correspond to lead 130B and electrode 132B of FIG. 1 ). In the example shown in FIG. 2 , IMD 200 includes processing circuitry 210 , power supply 224 , and storage device 212 . Processing circuitry 210 may include one or more processors configured to perform various operations of IMD 200 . In the example shown in FIG. 2 , storage device 212 may store stimulation parameter settings 242 .

刺激生成电路202包括电刺激电路,该电刺激电路被配置为生成电刺激脉冲,这些电刺激脉冲被选择为缓解一种或多种疾病、障碍或综合征的症状。虽然描述了刺激脉冲,但刺激信号可以采用其他形式,比如连续时间信号(例如,正弦波)等。电刺激电路可以驻留在例如IMD的植入式外壳中。引线230A、230B中的每一个可以包括任何数量的电极232A、232B。电极被配置为向患者递送电刺激。在图2的示例中,每组电极232A、232B包括八个电极A至H。在一些示例中,电极以双极组合布置。双极电极组合可以使用由相同引线230A、230B或不同引线承载的电极。例如,电极232A中的电极A可以是阴极并且电极232A中的电极B可以是阳极,从而形成双极组合。开关电路204可以包括一个或多个开关阵列、一个或多个多路复用器、一个或多个开关(例如,开关矩阵或其他开关集合)、或被配置为将来自刺激生成电路202的刺激信号引导至电极232A、232B中的一个或多个或者将来自电极232A、232B中的一个或多个的感测信号引导至感测电路206的其他电路。电流可以由电极发起或汇集,使得电极可以选择性地形成阳极或阴极。具体地,在一些示例中,电极232A、232B中的每一个可以与相应的经调节的电流源和电流汇电路相关联,以选择性地且独立地将电极配置为经调节的阴极或阳极。刺激生成电路202和/或感测电路206还可以包括用于引导在电极232A、232B中的一个或多个处感测的电信号的感测电路。Stimulation generation circuitry 202 includes electrical stimulation circuitry configured to generate electrical stimulation pulses selected to alleviate symptoms of one or more diseases, disorders, or syndromes. Although stimulation pulses are described, stimulation signals may take other forms, such as continuous time signals (eg, sine waves), etc. The electrical stimulation circuitry may reside in, for example, an implantable housing of an IMD. Each of leads 230A, 230B may include any number of electrodes 232A, 232B. The electrodes are configured to deliver electrical stimulation to the patient. In the example of Figure 2, each set of electrodes 232A, 232B includes eight electrodes A through H. In some examples, the electrodes are arranged in a bipolar combination. Bipolar electrode combinations may use electrodes carried by the same leads 230A, 230B or different leads. For example, electrode A of electrode 232A may be the cathode and electrode B of electrode 232A may be the anode, thereby forming a bipolar combination. Switch circuit 204 may include one or more switch arrays, one or more multiplexers, one or more switches (e.g., a switch matrix or other set of switches), or be configured to convert stimuli from stimulus generation circuit 202 Signals are directed to one or more of electrodes 232A, 232B or other circuitry that directs sensing signals from one or more of electrodes 232A, 232B to sensing circuitry 206 . Electrical current can be initiated or pooled by the electrodes so that the electrodes can selectively form anodes or cathodes. Specifically, in some examples, each of the electrodes 232A, 232B can be associated with a respective regulated current source and current sink circuit to selectively and independently configure the electrode as a regulated cathode or anode. Stimulus generation circuitry 202 and/or sensing circuitry 206 may also include sensing circuitry for directing electrical signals sensed at one or more of electrodes 232A, 232B.

感测电路206可以被配置为监测来自电极232A、232B的任何组合的信号。在一些示例中,感测电路206包括一个或多个放大器、滤波器和模数转换器。感测电路206可以用于感测生理信号,比如ECAP信号和/或LFP信号。在一些示例中,感测电路206检测来自电极232A、232B的特定组合的ECAP信号和/或LFP信号。在一些情况下,用于感测ECAP信号和/或LFP信号的电极的特定组合包括与用于递送刺激脉冲的一组电极232A、232B不同的电极。可替代地,在其他情况下,用于感测ECAP信号和/或LFP信号的电极的特定组合包括与用于向患者105递送刺激脉冲的一组电极相同的电极中的至少一个。感测电路206可以向模数转换器提供信号,以用于转换成数字信号以供处理电路210处理、分析、存储或输出。Sensing circuit 206 may be configured to monitor signals from any combination of electrodes 232A, 232B. In some examples, sensing circuit 206 includes one or more amplifiers, filters, and analog-to-digital converters. Sensing circuit 206 may be used to sense physiological signals, such as ECAP signals and/or LFP signals. In some examples, sensing circuit 206 detects ECAP signals and/or LFP signals from specific combinations of electrodes 232A, 232B. In some cases, the particular combination of electrodes used to sense ECAP signals and/or LFP signals includes different electrodes than the set of electrodes 232A, 232B used to deliver stimulation pulses. Alternatively, in other cases, the particular combination of electrodes used to sense ECAP signals and/or LFP signals includes at least one of the same electrodes as the set of electrodes used to deliver stimulation pulses to patient 105 . Sensing circuit 206 may provide signals to an analog-to-digital converter for conversion into digital signals for processing, analysis, storage, or output by processing circuit 210 .

在处理电路210的控制下,遥测电路208支持IMD 200与外部编程器或与另一计算设备之间的无线通信。IMD 200的处理电路210可以分别经由遥测电路208从外部编程器接收各种刺激参数(比如,幅度和电极组合)的值作为对程序的更新。IMD 200的处理电路210可以在存储设备212中存储对刺激参数设置242或任何其他数据的更新。IMD 200中的遥测电路208以及本文描述的其他设备和系统中的遥测电路(比如,外部编程器)可以通过射频(RF)通信技术来实现通信。另外,遥测电路208可以经由IMD 200与外部医疗设备编程器的近端感应交互来与该外部编程器进行通信,其中该外部编程器可以是图1的外部编程器150的一个示例。因此,遥测电路208可以在连续的基础上、以周期性的间隔、或根据来自IMD110或外部编程器的请求向外部编程器发送信息。Under the control of processing circuit 210, telemetry circuit 208 supports wireless communication between IMD 200 and an external programmer or with another computing device. The processing circuitry 210 of the IMD 200 may receive values for various stimulation parameters (eg, amplitude and electrode combination) from an external programmer via telemetry circuitry 208, respectively, as updates to the program. Processing circuitry 210 of IMD 200 may store updates to stimulation parameter settings 242 or any other data in storage device 212 . Telemetry circuitry 208 in IMD 200, as well as telemetry circuitry (eg, external programmers) in other devices and systems described herein, may communicate via radio frequency (RF) communications technology. Additionally, telemetry circuitry 208 may communicate with an external medical device programmer via proximal sensing interaction of IMD 200 with the external programmer, which may be one example of external programmer 150 of FIG. 1 . Accordingly, telemetry circuitry 208 may send information to the external programmer on a continuous basis, at periodic intervals, or upon request from the IMD 110 or the external programmer.

处理电路210可以包括一个或多个处理器,比如以下任何一项或多项:微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、离散逻辑电路、或被配置为提供归因于处理电路210的功能的任何其他处理电路,在本文这些电路可以体现为固件、硬件、软件、或其任何组合。处理电路210控制刺激生成电路202根据刺激参数设置242生成刺激信号。在一些示例中,处理电路210可以分别执行存储在存储设备212中的其他指令,以应用由程序中的一个或多个指定的刺激参数,比如每个刺激信号的幅度、脉冲宽度、脉冲速率和脉冲形状。The processing circuit 210 may include one or more processors, such as any one or more of the following: a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) ), discrete logic circuitry, or any other processing circuitry configured to provide functionality attributed to processing circuitry 210, which circuitry may be embodied herein as firmware, hardware, software, or any combination thereof. Processing circuit 210 controls stimulation generation circuit 202 to generate stimulation signals based on stimulation parameter settings 242 . In some examples, processing circuitry 210 may separately execute other instructions stored in storage device 212 to apply stimulation parameters specified by one or more of the programs, such as the amplitude, pulse width, pulse rate, and pulse rate of each stimulation signal. Pulse shape.

在图2所示的示例中,处理电路210包括电极扫描单元216,该电极扫描单元可以被配置为通过扫描通过电极对来控制电刺激的递送。电极扫描单元216可以被实施为硬件与软件的任何组合。In the example shown in Figure 2, processing circuitry 210 includes an electrode scanning unit 216 that can be configured to control the delivery of electrical stimulation by scanning through pairs of electrodes. Electrode scanning unit 216 may be implemented as any combination of hardware and software.

存储设备212可以被配置为在操作期间分别将信息存储在IMD 200内。存储设备212可以包括计算机可读存储介质或计算机可读存储设备。在一些示例中,存储设备212包括短期存储器或长期存储器中的一个或多个。存储设备212可以包括例如随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、磁盘、光盘、闪速存储器、或电可编程存储器(EPROM)或电可擦除可编程存储器(EEPROM)的形式。在一些示例中,存储设备212用于存储指示例如分别由处理电路210执行的指令的数据。如上文所讨论的,存储设备212被配置为存储刺激参数设置242。Storage device 212 may be configured to store information within IMD 200 during operation. Storage device 212 may include a computer-readable storage medium or a computer-readable storage device. In some examples, storage device 212 includes one or more of short-term memory or long-term memory. Storage device 212 may include, for example, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), magnetic disks, optical disks, flash memory, or electrically programmable memory (EPROM) or electrical memory. Erasable programmable memory (EEPROM) form. In some examples, storage device 212 is used to store data indicative of, for example, instructions to be executed by processing circuitry 210, respectively. As discussed above, storage device 212 is configured to store stimulation parameter settings 242 .

电源224可以被配置为向IMD 200的部件递送操作功率。电源224可以包括电池以及用于产生操作功率的功率生成电路。在一些示例中,电池是可再充电的以允许延长的操作。在一些示例中,充电是通过在外部充电器与IMD 200内的感应充电线圈之间的接近感应相互作用来完成的。电源224可以包括多种不同电池类型中的任何一种或多种,比如镍镉电池和锂离子电池。在一些示例中,电源224可以是主电池设备。Power supply 224 may be configured to deliver operating power to components of IMD 200 . Power supply 224 may include a battery and power generation circuitry for generating operating power. In some examples, the battery is rechargeable to allow extended operation. In some examples, charging is accomplished through proximity inductive interaction between an external charger and an inductive charging coil within IMD 200. Power source 224 may include any one or more of a number of different battery types, such as nickel-cadmium batteries and lithium-ion batteries. In some examples, power source 224 may be a primary battery device.

处理电路210控制刺激电路202以由存储在存储设备212上的一个或多个刺激参数设置242指定的刺激参数递送刺激能量。Processing circuitry 210 controls stimulation circuitry 202 to deliver stimulation energy specified by one or more stimulation parameter settings 242 stored on storage device 212 .

图3是展示了示例外部编程器300的部件的示例配置的框图。外部编程器300可以是图1的外部编程器150的示例。虽然外部编程器300通常可以被描述为手持式设备,比如平板计算机或类似智能手机的设备,但外部编程器300可以是更大的便携式设备(比如膝上型计算机)或更固定的设备(比如台式计算机)。另外,在其他示例中,外部编程器300可以作为外部充电设备的一部分包括在内,或者包括外部充电设备的功能,例如,对与IMD 200相关联的一个或多个电池进行充电。如图3中展示的,外部编程器300可以包括处理电路352、存储设备354、用户界面356、遥测电路358和电源360。在一些示例中,存储设备354可以存储指令,这些指令当由处理电路352执行时,使处理电路352和外部编程器300提供本公开中归属于外部编程器300的功能。这些部件、电路或模块中的每一个都可以包括被配置为执行本文所述功能的一些或全部功能的电路。例如,处理电路352可以包括被配置为执行关于处理电路352所讨论的过程的处理电路。3 is a block diagram illustrating an example configuration of components of an example external programmer 300. External programmer 300 may be an example of external programmer 150 of FIG. 1 . Although external programmer 300 may generally be described as a handheld device, such as a tablet or smartphone-like device, external programmer 300 may be a larger portable device, such as a laptop computer, or a more stationary device, such as desktop computer). Additionally, in other examples, external programmer 300 may be included as part of an external charging device, or include the functionality of an external charging device, such as charging one or more batteries associated with IMD 200. As shown in Figure 3, external programmer 300 may include processing circuitry 352, storage device 354, user interface 356, telemetry circuitry 358, and power supply 360. In some examples, storage device 354 may store instructions that, when executed by processing circuitry 352, cause processing circuitry 352 and external programmer 300 to provide the functionality attributed to external programmer 300 in this disclosure. Each of these components, circuits, or modules may include circuitry configured to perform some or all of the functions described herein. For example, processing circuit 352 may include processing circuitry configured to perform the processes discussed with respect to processing circuit 352 .

一般而言,外部编程器300包括单独的或与软件和/或固件组合的任何适合的硬件布置,以便执行归因于外部编程器300以及外部编程器300的处理电路352、用户界面356和遥测电路358的技术。在各种示例中,外部编程器300的处理电路352、遥测电路358或其他电路可以包括一个或多个处理器,如一个或多个微处理器、DSP、ASIC、FPGA或任何其他等效的集成或分立的逻辑电路,以及此类部件的任何组合。在各种示例中,外部编程器300还可以包括存储设备354,如RAM、ROM、PROM、EPROM、EEPROM、闪速存储器、硬盘、CD-ROM,所述存储设备包括可执行指令以使一个或多个处理器执行归因于这些处理器的动作。此外,虽然处理电路352和遥测电路358被描述为单独的模块,但在一些示例中,处理电路352和遥测电路358在功能上部分或完全集成在一起。在一些示例中,外部编程器300的处理电路352、遥测电路358或其他电路可以对应于单独的硬件单元,比如ASIC、DSP、FPGA、或其他硬件单元。Generally speaking, external programmer 300 includes any suitable hardware arrangement, alone or in combination with software and/or firmware, to perform processing circuitry 352 , user interface 356 and telemetry attributed to external programmer 300 and external programmer 300 Circuit 358 technology. In various examples, the processing circuitry 352, telemetry circuitry 358, or other circuitry of the external programmer 300 may include one or more processors, such as one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent Integrated or discrete logic circuits, and any combination of such components. In various examples, external programmer 300 may also include a storage device 354, such as RAM, ROM, PROM, EPROM, EEPROM, flash memory, hard disk, CD-ROM, that includes executable instructions to cause one or Multiple processors perform actions attributed to these processors. Furthermore, although processing circuitry 352 and telemetry circuitry 358 are described as separate modules, in some examples, processing circuitry 352 and telemetry circuitry 358 are partially or fully functionally integrated together. In some examples, the processing circuitry 352, telemetry circuitry 358, or other circuitry of the external programmer 300 may correspond to a separate hardware unit, such as an ASIC, DSP, FPGA, or other hardware unit.

处理电路352被配置为引导电刺激的递送、接收与患者反馈相关的信息。在一些示例中,处理电路352被配置为通过引导IMD使用特定刺激参数来控制电刺激电路。Processing circuitry 352 is configured to direct the delivery of electrical stimulation and receive information related to patient feedback. In some examples, processing circuitry 352 is configured to control the electrical stimulation circuitry by directing the IMD to use specific stimulation parameters.

在一些示例中,存储设备354(例如,存储设备)可以存储指令,这些指令当由处理电路352执行时,使处理电路352和外部编程器300提供本公开中归属于外部编程器300的功能。例如,存储设备354可以包括指使处理电路352从存储器获得参数集或接收用户输入并将对应命令发送给IMD 200的指令,或用于任何其他功能的指令。另外,存储设备354可以包括多个程序,其中每个程序包括定义治疗刺激或控制刺激的参数集。存储设备354还可以存储从医疗设备(例如IMD 110)和/或远程感测设备接收的数据。例如,存储设备354可以存储在医疗设备的感测模块处记录的数据,并且存储设备354还可以存储来自医疗设备的一个或多个传感器的数据。在示例中,存储设备354可以存储在远程感测设备处记录的数据,比如来自一个或多个传感器和/或患者输入设备的患者反馈。In some examples, storage device 354 (eg, storage device) may store instructions that, when executed by processing circuitry 352, cause processing circuitry 352 and external programmer 300 to provide the functionality attributed to external programmer 300 in this disclosure. For example, storage device 354 may include instructions that cause processing circuitry 352 to obtain a parameter set from memory or receive user input and send corresponding commands to IMD 200, or for any other function. Additionally, storage device 354 may include multiple programs, where each program includes a set of parameters that define a treatment stimulus or a control stimulus. Storage device 354 may also store data received from medical devices (eg, IMD 110) and/or remote sensing devices. For example, storage device 354 may store data recorded at a sensing module of the medical device, and storage device 354 may also store data from one or more sensors of the medical device. In an example, storage device 354 may store data recorded at a remote sensing device, such as patient feedback from one or more sensors and/or patient input devices.

用户界面356可以包括按钮或键盘、灯、语音命令扬声器、显示器(比如液晶(LCD))、发光二极管(LED)、或有机发光二极管(OLED)。在一些示例中,显示器包括触摸屏。用户界面356可以被配置为显示与电刺激递送相关的任何信息,包括输出。用户界面356还可以经由用户界面356接收用户输入(例如,当患者感知刺激时的指示,或者在递送刺激时患者感知的疼痛评分)。用户输入例如可以呈按下小键盘上的按钮或从触摸屏上选择图标的形式。输入可以请求开始或停止电刺激,输入可以请求新的电极组合或对现有电极组合的改变,或者输入可以请求对电刺激递送的一些其他改变,比如刺激循环幅度、脉冲宽度或脉冲速率的改变。User interface 356 may include buttons or keypad, lights, voice command speakers, a display (such as a liquid crystal (LCD)), a light emitting diode (LED), or an organic light emitting diode (OLED). In some examples, the display includes a touch screen. User interface 356 may be configured to display any information related to electrical stimulation delivery, including output. User interface 356 may also receive user input via user interface 356 (eg, an indication of when stimulation was perceived by the patient, or a pain score perceived by the patient when stimulation was delivered). User input may, for example, be in the form of pressing a button on a keypad or selecting an icon from a touch screen. The input may request to start or stop electrical stimulation, the input may request a new electrode combination or a change to an existing electrode combination, or the input may request some other change to the delivery of electrical stimulation, such as a change in stimulation cycle amplitude, pulse width, or pulse rate .

遥测电路358可以在处理电路352的控制下支持医疗设备与外部编程器300之间的无线通信。遥测电路358还可以被配置为用于经由无线通信技术与另外的计算设备通信或者通过有线连接直接通信。在一些示例中,遥测电路358经由RF或接近感应介质提供无线通信。在一些示例中,遥测电路358包括天线,其可以采用多种形式,比如内部或外部天线。Telemetry circuitry 358 may support wireless communication between the medical device and external programmer 300 under the control of processing circuitry 352 . Telemetry circuitry 358 may also be configured to communicate with additional computing devices via wireless communication technologies or directly through a wired connection. In some examples, telemetry circuitry 358 provides wireless communication via RF or proximity sensing media. In some examples, telemetry circuitry 358 includes an antenna, which may take many forms, such as an internal or external antenna.

可以用于促进外部编程器300与IMD 110之间的通信的本地无线通信技术的示例包括符合以下标准的RF通信:802.11标准、或规范集、或其他标准或专用遥测协议。以这种方式,其他外部设备可能能够与外部编程器300进行通信,而无需建立安全无线连接。如本文所述,遥测电路358可以被配置为将空间电极移动模式或其他刺激参数传输给IMD 110,以用于递送电刺激治疗。Examples of local wireless communication technologies that may be used to facilitate communication between external programmer 300 and IMD 110 include RF communications compliant with: the 802.11 standard, or Specification set, or other standard or proprietary telemetry protocol. In this manner, other external devices may be able to communicate with external programmer 300 without establishing a secure wireless connection. As described herein, telemetry circuitry 358 may be configured to transmit spatial electrode movement patterns or other stimulation parameters to IMD 110 for delivery of electrical stimulation therapy.

电源360被配置为向外部编程器300的部件递送操作功率。电源360可以包括电池以及用于产生操作功率的功率生成电路。在一些示例中,电池是可再充电的以允许延长的操作。可以通过将电源360电耦合至连接至交流电(AC)插座的托架或插头来实现再充电。另外,可以通过外部充电器与外部编程器300内的感应充电线圈之间的接近感应相互作用来实现充电。在其他示例中,可以使用传统的电池(例如,镉镍蓄电池或锂离子电池)。另外,外部编程器300可以直接耦合至交流电插座以进行操作。Power supply 360 is configured to deliver operating power to components of external programmer 300 . Power supply 360 may include a battery and power generation circuitry for generating operating power. In some examples, the battery is rechargeable to allow extended operation. Recharging may be accomplished by electrically coupling power source 360 to a bracket or plug connected to an alternating current (AC) outlet. Additionally, charging can be achieved through proximity inductive interaction between an external charger and an inductive charging coil within the external programmer 300 . In other examples, conventional batteries (eg, nickel-cadmium batteries or lithium-ion batteries) may be used. Additionally, the external programmer 300 may be coupled directly to an AC outlet for operation.

在一些示例中,外部编程器300或外部控制设备引导IMD的电刺激递送,接收与患者反馈相关的信息,并基于接收的信息生成输出,例如,用于评估刺激参数的功效和/或推荐或帮助用户对用于电刺激递送的刺激参数进行编程,或用作闭环控制设备的一部分以使用患者反馈信息自动调整刺激参数。In some examples, the external programmer 300 or external control device directs the delivery of electrical stimulation to the IMD, receives information related to patient feedback, and generates output based on the received information, e.g., for evaluating the efficacy of stimulation parameters and/or recommending or Helps users program stimulation parameters for electrical stimulation delivery, or is used as part of a closed-loop control device to automatically adjust stimulation parameters using patient feedback.

编程器300可以是患者编程器或临床医生编程器,并接收患者反馈信息,比如患者反馈数据364。编程器300接收患者反馈信息并允许用户经由用户界面356与处理电路352进行交互以便使用患者反馈信息识别有效的参数设置(比如循环和/或一个或多个其他刺激参数)。编程器300进一步通过使用显示在用户界面356上的患者反馈信息来帮助用户对神经刺激设备进行编程。Programmer 300 may be a patient programmer or clinician programmer and receives patient feedback information, such as patient feedback data 364. Programmer 300 receives patient feedback information and allows the user to interact with processing circuitry 352 via user interface 356 to identify valid parameter settings (such as cycling and/or one or more other stimulation parameters) using the patient feedback information. Programmer 300 further assists the user in programming the neurostimulation device by using patient feedback information displayed on user interface 356 .

在示例中,编程器300可以用于使IMD自动扫描多个电极组合或参数组合。处理电路352使IMD自动扫描通过多个参数组合中的每一个,包括电极组合和参数组合。In an example, the programmer 300 may be used to cause the IMD to automatically scan multiple electrode combinations or parameter combinations. Processing circuitry 352 causes the IMD to automatically scan through each of a plurality of parameter combinations, including electrode combinations and parameter combinations.

作为自动扫描过程的替代或补充,用户可以例如使用用户界面356上的箭头按钮来手动推进扫描通过电极对和/或参数组合。在一些实施例中,当用户扫描通过电极对或参数组合以测试并记录每个组合的患者反馈时,用户可以例如通过与患者的口头交互或患者经由用户输入设备输入信息来收集信息,比如指示来自组合的疼痛缓解程度信息的患者疼痛评分,或指示患者是否感知到刺激的刺激感知评分,并且经由编程器的用户界面356或用户输入设备将疼痛信息输入到编程器300中。As an alternative to or in addition to the automated scanning process, the user may manually advance the scan through electrode pairs and/or parameter combinations, such as using the arrow buttons on user interface 356. In some embodiments, as the user scans through electrode pairs or parameter combinations to test and record patient feedback for each combination, the user may gather information, such as through verbal interaction with the patient or the patient entering information via a user input device, such as instructions A patient pain score from the combined pain relief level information, or a stimulation perception score indicating whether the patient perceives stimulation, is entered into the programmer 300 via the programmer's user interface 356 or user input device.

在一些示例中,编程器300的处理电路352引导电极232A、232B的电刺激的递送,并且接收与患者反馈相关的信息,并且在闭环设置中基于接收到的患者反馈信息来控制电极232A、232B的电刺激的递送。可以经由遥测电路358直接或间接地从传感器160(图1)和/或患者输入设备接收患者反馈信息。In some examples, processing circuitry 352 of programmer 300 directs the delivery of electrical stimulation of electrodes 232A, 232B and receives information related to patient feedback and controls electrodes 232A, 232B based on the received patient feedback information in a closed loop setting Delivery of electrical stimulation. Patient feedback information may be received directly or indirectly from sensors 160 (FIG. 1) and/or patient input devices via telemetry circuitry 358.

图3中展示的外部编程器300的架构是作为示例示出的。本公开所阐述的这些技术可以在图3的示例外部编程器300中实施,也可以在本文未具体描述的其他类型的系统中实施。本公开的任何内容都不应视为将本公开的这些技术局限于图3所示的示例架构。The architecture of the external programmer 300 shown in Figure 3 is shown as an example. The techniques set forth in this disclosure may be implemented in the example external programmer 300 of FIG. 3 or in other types of systems not specifically described herein. Nothing in this disclosure should be construed as limiting the techniques of this disclosure to the example architecture shown in FIG. 3 .

图4和图5是根据本公开的一种或多种技术展示了扫描通过电极对的示例的概念图。图4展示了单调扫描的示例。图5展示了非单调扫描的示例。4 and 5 are conceptual diagrams illustrating examples of scanning through pairs of electrodes in accordance with one or more techniques of the present disclosure. Figure 4 shows an example of a monotonic scan. Figure 5 shows an example of a non-monotonic scan.

如上所述,IMD 110可以单调地扫描通过电极对。例如,IMD 110可以沿着引线的纵向轴线连续步进通过电极对。如图4所示,在第一时间402At1,IMD 110可以使用包括引线230A的电极232A中的电极A和B的第一对电极来递送双极电刺激。在第二时间402B t2,IMD110可以使用包括引线230A的电极232A中的电极B和C的第二对电极来递送双极电刺激。这样,在一些示例中,第二对电极可以包括包含在第一对电极中的电极和不包含在第一对电极中的电极。在第三时间402C t3,IMD 110可以使用包括引线230A的电极232A中的电极C和D的第三对电极来递送双极电刺激。在第四时间402D t4,IMD 110可以使用包括引线230A的电极232A中的电极D和E的第四对电极来递送双极电刺激。在第五时间402E t5,IMD 110可以使用包括引线230A的电极232A中的电极E和F的第五对电极来递送双极电刺激。As described above, IMD 110 can scan monotonically through pairs of electrodes. For example, IMD 110 may step continuously through pairs of electrodes along the longitudinal axis of the lead. As shown in FIG. 4 , at first time 402 At1 , IMD 110 may deliver bipolar electrical stimulation using a first pair of electrodes including electrodes A and B in electrode 232A of lead 230A. At a second time 402B t2 , IMD 110 may deliver bipolar electrical stimulation using a second pair of electrodes including electrodes B and C in electrode 232A of lead 230A. As such, in some examples, the second pair of electrodes may include electrodes included in the first pair of electrodes and electrodes not included in the first pair of electrodes. At a third time 402C t3 , IMD 110 may deliver bipolar electrical stimulation using a third pair of electrodes including electrodes C and D in electrode 232A of lead 230A. At fourth time 402D t4 , IMD 110 may deliver bipolar electrical stimulation using a fourth pair of electrodes including electrodes D and E in electrode 232A of lead 230A. At fifth time 402E t5 , IMD 110 may deliver bipolar electrical stimulation using a fifth pair of electrodes including electrodes E and F in electrode 232A of lead 230A.

IMD 110可以使用相同的顺序或相反的顺序在电极对上循环。当IMD 110使用相同的顺序在电极对上循环时,IMD 110可以在第五时间之后的第六时间使用引线230A的电极232A中的电极A和B递送双极电刺激(例如,随后在第六时间使用电极B和C)。当IMD 110使用相反的顺序(例如,蛇形扫描)在电极对上循环时,IMD 110可以在第五时间之后的第六时间使用引线230A的电极232A中的电极D和E递送双极电刺激(例如,随后在第七时间使用电极C和D)。The IMD 110 can cycle over the electrode pairs using the same sequence or the reverse sequence. When IMD 110 cycles over electrode pairs using the same sequence, IMD 110 may deliver bipolar electrical stimulation using electrodes A and B in electrode 232A of lead 230A at a sixth time following the fifth time (e.g., subsequently at the sixth time time using electrodes B and C). When IMD 110 cycles over the electrode pairs using a reverse sequence (eg, serpentine scan), IMD 110 may deliver bipolar electrical stimulation using electrodes D and E in electrode 232A of lead 230A at a sixth time following the fifth time. (For example, electrodes C and D are then used at time seven).

可以围绕中心点选择电极对。例如,包括电极C和D的一对电极可以被确定为覆盖刺激目标(例如,神经根)。然而,如上文所讨论的,仅经由电极C和D递送电刺激可能无法向刺激目标递送期望的治疗(例如,由于引线可能迁移、患者可能移动等)。此外,虽然增加经由电极C和D递送的电刺激的幅度可以增加刺激目标接收电刺激的概率,但是这样的增加可能具有不期望的副作用(例如,增加的能量消耗和/或不期望的其他神经(比如运动神经元)的募集,从而导致可能的不适)。通过使递送电刺激包括扫描通过/级联引线对,IMD 110可以有效地向更大的区域递送治疗(例如,增加了刺激目标接收电刺激的概率)。同样以这种方式,可以增加引线的植入耐受性(例如,外科医生可能不必如此精确)。Electrode pairs can be selected around a center point. For example, a pair of electrodes including electrodes C and D may be determined to cover a stimulation target (eg, a nerve root). However, as discussed above, delivering electrical stimulation solely via electrodes C and D may not deliver the desired treatment to the stimulation target (eg, due to possible migration of the leads, possible movement of the patient, etc.). Furthermore, while increasing the amplitude of electrical stimulation delivered via electrodes C and D may increase the probability that the stimulation target receives electrical stimulation, such an increase may have undesirable side effects (e.g., increased energy expenditure and/or undesirable other neural (such as motor neuron recruitment, resulting in possible discomfort). By enabling delivery of electrical stimulation to include scan-through/cascade lead pairs, IMD 110 can effectively deliver therapy to a larger area (eg, increasing the probability that the stimulation target receives electrical stimulation). Also in this manner, the implantation tolerance of the lead may be increased (eg, the surgeon may not have to be so precise).

如上所述,IMD 110可以非单调地扫描通过电极对。例如,IMD 110可以沿着引线的纵向轴线连续步进通过电极对,其中至少一个电极被“跳过”。如图5所示,在第一时间502At1,IMD 110可以使用包括引线230A的电极232A中的电极A和B的第一对电极来递送双极电刺激。在第二时间502Bt2,IMD 110可以使用包括引线230A的电极232A中的电极D和E的第二对电极来递送双极电刺激。这样,在一些示例中,第二对电极可以不包括第一对电极中包含的任何电极。在第三时间502C t3,IMD 110可以使用包括引线230A的电极232A中的电极B和C的第三对电极来递送双极电刺激。在第四时间502D t4,IMD 110可以使用包括引线230A的电极232A中的电极E和F的第四对电极来递送双极电刺激。在第五时间502E t5,IMD 110可以使用包括引线230A的电极232A中的电极C和D的第五对电极来递送双极电刺激。As mentioned above, IMD 110 may scan non-monotontically through pairs of electrodes. For example, the IMD 110 may continuously step through pairs of electrodes along the longitudinal axis of the lead, with at least one electrode being "skipped." As shown in FIG. 5 , at first time 502 At1 , IMD 110 may deliver bipolar electrical stimulation using a first pair of electrodes including electrodes A and B in electrode 232A of lead 230A. At a second time 502Bt2, IMD 110 may deliver bipolar electrical stimulation using a second pair of electrodes including electrodes D and E in electrode 232A of lead 230A. As such, in some examples, the second pair of electrodes may not include any electrodes included in the first pair of electrodes. At a third time 502C t3 , IMD 110 may deliver bipolar electrical stimulation using a third pair of electrodes including electrodes B and C in electrode 232A of lead 230A. At fourth time 502D t4 , IMD 110 may deliver bipolar electrical stimulation using a fourth pair of electrodes including electrodes E and F in electrode 232A of lead 230A. At fifth time 502E t5 , IMD 110 may deliver bipolar electrical stimulation using a fifth pair of electrodes including electrodes C and D in electrode 232A of lead 230A.

在一些示例中,IMD 110扫描通过的电极可以是连续的电极块。例如,如图4所示,电极A与F之间的每个电极(并且包括电极A和F在内)可以被包括在至少一对电极中。在一些示例中,IMD 110扫描通过的电极可以是不连续的电极块。例如,电极A至D和F至H中的每一个可以包括在由IMD 110扫描通过的至少一对电极中,而电极E可以不包括在由IMD 110扫描通过的任何一对电极中。In some examples, the electrodes that IMD 110 scans through may be a continuous block of electrodes. For example, as shown in FIG. 4, each electrode between (and including electrodes A and F) may be included in at least one pair of electrodes. In some examples, the electrodes that IMD 110 scans through may be discrete blocks of electrodes. For example, each of electrodes A to D and F to H may be included in at least one pair of electrodes scanned by IMD 110 , while electrode E may not be included in any pair of electrodes scanned by IMD 110 .

IMD 110可以以扫描频率扫描通过电极对。在一些示例中,扫描频率可以大于或等于25Hz。在一些示例中,扫描频率可以大于或等于30Hz。以这种方式,IMD 110可以避免或最小化闪烁,例如,当刺激在扫描期间在电极对之间移位时的波动感。IMD 110 can scan through pairs of electrodes at a scanning frequency. In some examples, the scanning frequency may be greater than or equal to 25Hz. In some examples, the scanning frequency may be greater than or equal to 30Hz. In this manner, IMD 110 can avoid or minimize flicker, such as the feeling of fluctuation when stimulation is shifted between electrode pairs during scanning.

在一些示例中,IMD 110可以经由不同的电极对递送连续的脉冲。在一些示例中,IMD 110可以经由电极对以共同的幅度递送电刺激。在其他示例中,IMD 110可以经由不同的电极对以不同的幅度递送电刺激。In some examples, IMD 110 may deliver successive pulses via different pairs of electrodes. In some examples, IMD 110 can deliver electrical stimulation via pairs of electrodes at a common amplitude. In other examples, IMD 110 may deliver electrical stimulation at different amplitudes via different electrode pairs.

图6和图7是根据本公开的一种或多种技术展示了在引线间扫描通过电极对的示例的概念图。如上文所讨论的(例如,参考图4和图5),IMD 110可以扫描通过特定引线上的电极对。如图6所示,IMD 110可以扫描通过跨两条引线的电极对(例如,包括第一引线上的第一电极和第二引线上的第二电极的一对电极)。例如,IMD 110可以使双极刺激的递送扫描通过第一多个电极中的一组电极和第二多个电极中的一个特定电极。以这种方式,IMD110可以在跨两根引线选择电极对的情况下,有效地在两个维度上扫描刺激的递送,或者在跨三根或更多引线选择电极对的情况下,有效地在三个维度上扫描刺激的递送。应当理解,为引线间扫描选择的电极可以是单调的或非单调的,如上文所讨论的。6 and 7 are conceptual diagrams illustrating examples of scanning through pairs of electrodes between leads in accordance with one or more techniques of the present disclosure. As discussed above (eg, with reference to Figures 4 and 5), IMD 110 can scan through pairs of electrodes on specific leads. As shown in Figure 6, IMD 110 may scan through a pair of electrodes spanning two leads (eg, a pair of electrodes including a first electrode on a first lead and a second electrode on a second lead). For example, IMD 110 may scan delivery of bipolar stimulation through a set of electrodes in a first plurality of electrodes and a specific electrode in a second plurality of electrodes. In this manner, the IMD110 can effectively scan the delivery of stimulation in two dimensions, in the case of electrode pairs selected across two leads, or in three, in the case of electrode pairs selected across three or more leads. Delivery of scanning stimuli in three dimensions. It should be understood that the electrodes selected for lead-to-lead scanning may be monotonic or non-monotonic, as discussed above.

图8是根据本公开的一种或多种技术展示了滴定治疗的示例方法的流程图。虽然使用IMD 200(图2)讨论了图8,但应当理解,在其他示例中,本文讨论的方法可以包括和/或利用其他系统和方法。Figure 8 is a flow diagram illustrating an example method of titrating therapy in accordance with one or more techniques of the present disclosure. Although FIG. 8 is discussed using IMD 200 (FIG. 2), it should be understood that in other examples, the methods discussed herein may include and/or utilize other systems and methods.

IMD 200可以获得一个或多个刺激参数(802)。例如,处理电路210可以从刺激参数设置242获得幅度、占空比、脉冲宽度等中的一个或多个。IMD 200 can obtain one or more stimulation parameters (802). For example, processing circuitry 210 may obtain one or more of amplitude, duty cycle, pulse width, etc. from stimulation parameter settings 242.

IMD 200可以基于一个或多个刺激参数递送电刺激治疗,包括使刺激的递送扫描通过多个电极中的不同电极对(804)。例如,电极扫描单元216可以使刺激电路202和开关电路204在第一时间经由多个电极中的第一对电极(例如,经由电极232A中的电极A和B)递送双极电刺激,并且在不同于第一时间的第二时间经由多个电极中的第二对电极(例如,经由电极232A中的电极B和C)递送双极电刺激。以这种方式,IMD 200可以根据选择用于递送刺激的电极对在不同位置之间移动刺激场。电极扫描单元216可以引起电刺激的交错双极级联的递送。IMD 200 may deliver electrical stimulation therapy based on one or more stimulation parameters, including scanning delivery of stimulation through different electrode pairs of the plurality of electrodes (804). For example, electrode scanning unit 216 may cause stimulation circuit 202 and switch circuit 204 to deliver bipolar electrical stimulation via a first pair of electrodes in the plurality of electrodes at a first time (eg, via electrodes A and B in electrodes 232A), and at a first time Bipolar electrical stimulation is delivered via a second pair of electrodes in the plurality of electrodes (eg, via electrodes B and C in electrode 232A) at a second time that is different from the first time. In this manner, the IMD 200 can move the stimulation field between different locations depending on the electrode pair selected to deliver stimulation. The electrode scanning unit 216 can cause the delivery of a staggered bipolar cascade of electrical stimulation.

在一些示例中,IMD 200可以利用各种技术来减少扫描中包括的对的数量。例如,IMD 200可以利用诱发复合动作电位(ECAP)来确定哪些电极对最接近(例如,覆盖)刺激目标(例如,神经根)。在操作中,IMD 200可以经由各个电极对递送刺激并感测(例如,经由植入更靠中间的引线上的电极)递送是否产生ECAP。如果经由特定的一对电极递送电刺激没有产生ECAP,则可以将该对特定电极从扫描中移除(或最初不包括在扫描中)。在一些示例中,经由特定的一对电极递送电刺激可能只会在特定刺激水平下产生ECAP(例如,ECAP可能较小,或只能在较高水平下诱发)。In some examples, IMD 200 may utilize various techniques to reduce the number of pairs included in the scan. For example, IMD 200 may utilize evoked compound action potentials (ECAP) to determine which electrode pairs are closest to (eg, covering) a stimulation target (eg, a nerve root). In operation, IMD 200 may deliver stimulation via individual electrode pairs and sense (eg, via electrodes implanted on more medial leads) whether the delivery produces ECAP. If delivery of electrical stimulation via a particular pair of electrodes does not produce an ECAP, that particular pair of electrodes may be removed from the scan (or initially not included in the scan). In some examples, delivery of electrical stimulation via a specific pair of electrodes may only produce ECAP at certain stimulation levels (eg, the ECAP may be smaller, or only evoked at higher levels).

在一些示例中,IMD 200可以执行选择性记录。例如,可以在距离所关注的位置相当远的结构中检测到ECAP。例如,IMD 200可以记录具有三极配置的ECAP以将ECAP集中到所关心的区域。In some examples, IMD 200 can perform selective recording. For example, ECAP can be detected in structures quite far from the location of interest. For example, IMD 200 can record ECAPs with a three-pole configuration to focus ECAPs to areas of interest.

IMD 200可以利用各种其他技术来调整扫描中包括哪些电极对。例如,IMD 200可以将患者状态(例如,心率、呼吸率、ECAP、姿势、血流、温度等)与电极对相关联。作为一个示例,响应于确定患者处于特定状态,IMD 200可以通过扫描通过被确定为适合患者状态的一组电极对来递送电刺激。这样,可以省略不适合患者状态的电极对。以这种方式,IMD 200可以减少扫描中包括的电极对的数量,这可能是期望的。The IMD 200 can utilize various other techniques to adjust which electrode pairs are included in the scan. For example, IMD 200 may associate patient status (eg, heart rate, respiratory rate, ECAP, posture, blood flow, temperature, etc.) with electrode pairs. As one example, in response to determining that the patient is in a particular state, IMD 200 may deliver electrical stimulation by scanning through a set of electrode pairs determined to be appropriate for the patient's state. In this way, electrode pairs that are inappropriate for the patient's condition can be omitted. In this manner, the IMD 200 can reduce the number of electrode pairs included in the scan, which may be desirable.

在一些示例中,IMD 200在扫描时可以利用虚拟电极。例如,每个组合可以是多极配置。每个多极配置可以由与每个电极相关联的一组权重(从-1到1)来描述。该组权重然后可以改变以实施不同的虚拟电极。作为示例,考虑权重为[-0.5 0.5 0.5 -0.5]的电极[1,2,3,4]在2和3的中间构成虚拟电极(例如,电极2.5),并且虚拟电极[-0.3 0.3 0.7 -0.7]构成更靠近电极的虚拟电极(例如,电极2.8)。IMD 200可以扫描通过虚拟电极(例如,电极2.5、电极2.8、……等)。In some examples, IMD 200 may utilize virtual electrodes when scanning. For example, each combination can be a multi-pole configuration. Each multipole configuration can be described by a set of weights (from -1 to 1) associated with each electrode. This set of weights can then be changed to implement different virtual electrodes. As an example, consider electrodes [1,2,3,4] with weights [-0.5 0.5 0.5 -0.5] forming a virtual electrode in the middle of 2 and 3 (for example, electrode 2.5), and the virtual electrode [-0.3 0.3 0.7 - 0.7] constitutes a virtual electrode closer to the electrode (for example, electrode 2.8). IMD 200 may scan through virtual electrodes (eg, electrode 2.5, electrode 2.8, ..., etc.).

以下编号的示例可以展示本公开的一个或多个方面:The following numbered examples may illustrate one or more aspects of the disclosure:

示例1.一种递送电刺激的方法,所述方法包括:通过连接到承载多个电极的引线的植入式医疗设备(IMD)获得一个或多个刺激参数;以及通过所述IMD并基于所述一个或多个刺激参数经由所述多个电极递送电刺激治疗,其中,递送所述电刺激治疗包括使所述电刺激治疗的递送扫描通过所述多个电极中的不同电极对。Example 1. A method of delivering electrical stimulation, the method comprising: obtaining one or more stimulation parameters through an implantable medical device (IMD) connected to leads carrying a plurality of electrodes; and through the IMD and based on the The one or more stimulation parameters deliver electrical stimulation therapy via the plurality of electrodes, wherein delivering the electrical stimulation therapy includes scanning delivery of the electrical stimulation therapy through different pairs of electrodes in the plurality of electrodes.

示例2.如示例1所述的方法,其中,使所述电刺激治疗的递送扫描通过所述不同电极对包括:在第一时间经由所述多个电极中的第一对电极递送双极电刺激;以及在不同于所述第一时间的第二时间经由所述多个电极中不同于所述第一对电极的第二对电极递送双极电刺激。Example 2. The method of Example 1, wherein scanning delivery of the electrical stimulation therapy through the different pairs of electrodes includes delivering bipolar electricity via a first pair of the plurality of electrodes at a first time. stimulating; and delivering bipolar electrical stimulation via a second pair of the plurality of electrodes that is different from the first pair of electrodes at a second time that is different from the first time.

示例3.如示例2所述的方法,进一步包括:在不同于所述第一时间和所述第二时间的第三时间经由所述多个电极中不同于所述第一对电极和所述第二对电极的第三对电极递送双极电刺激。Example 3. The method of Example 2, further comprising: at a third time that is different from the first time and the second time, via one of the plurality of electrodes that is different from the first pair of electrodes and the The third pair of electrodes of the second pair delivers bipolar electrical stimulation.

示例4.如示例2或示例3所述的方法,其中,所述第二对电极包括包含在所述第一对电极中的电极和不包含在所述第一对电极中的电极。Example 4. The method of Example 2 or Example 3, wherein the second pair of electrodes includes electrodes included in the first pair of electrodes and electrodes not included in the first pair of electrodes.

示例5.如示例2或示例3所述的方法,其中,所述第二对电极不包括所述第一对电极中包含的任何电极。Example 5. The method of Example 2 or Example 3, wherein the second pair of electrodes does not include any electrodes included in the first pair of electrodes.

示例6.如示例5所述的方法,其中,不包含在所述第一对电极或所述第二对电极中的至少一个电极位于所述第一对电极中的电极与所述第二对电极中的电极之间的引线上。Example 6. The method of Example 5, wherein at least one electrode not included in the first pair of electrodes or the second pair of electrodes is located between the electrode in the first pair of electrodes and the second pair of electrodes. on the leads between the electrodes in the electrodes.

示例7.如任一前述示例所述的方法,其中,使所述电刺激治疗的递送扫描通过所述不同电极对包括以扫描频率扫描通过所述电极对。Example 7. The method of any preceding example, wherein scanning delivery of the electrical stimulation therapy through the different electrode pairs includes scanning through the electrode pairs at a scanning frequency.

示例8.如示例7所述的方法,其中,所述扫描频率大于或等于25Hz。Example 8. The method of Example 7, wherein the scanning frequency is greater than or equal to 25 Hz.

示例9.如示例8所述的方法,其中,所述扫描频率大于或等于30Hz。Example 9. The method of Example 8, wherein the scanning frequency is greater than or equal to 30 Hz.

示例10.如任一前述示例所述的方法,其中,所述多个电极沿着所述引线的纵向轴线分布。Example 10. The method of any preceding example, wherein the plurality of electrodes are distributed along a longitudinal axis of the lead.

示例11.如任一前述示例所述的方法,其中,所述一个或多个刺激参数包括刺激幅度。Example 11. The method of any preceding example, wherein the one or more stimulation parameters include stimulation amplitude.

示例12.如示例11所述的方法,其中,使所述电刺激治疗的递送扫描通过所述不同电极对包括:以所述刺激幅度经由所述电极对连续递送电刺激。Example 12. The method of example 11, wherein scanning delivery of the electrical stimulation therapy through the different pairs of electrodes includes continuously delivering electrical stimulation via the pairs of electrodes at the stimulation amplitude.

示例13.如任一前述示例所述的方法,其中,所述引线包括承载第一多个电极的第一引线和承载第二多个电极的第二引线,并且其中,使所述电刺激治疗的递送扫描通过电极对包括:使所述电刺激治疗的递送扫描通过所述第一多个电极中的一组电极和所述第二多个电极中的一个特定电极。Example 13. The method of any preceding example, wherein the leads include a first lead carrying a first plurality of electrodes and a second lead carrying a second plurality of electrodes, and wherein the electrical stimulation therapy Scanning delivery through pairs of electrodes includes scanning delivery of the electrical stimulation therapy through a set of electrodes in the first plurality of electrodes and a particular electrode in the second plurality of electrodes.

示例14.如示例13所述的方法,其中,使所述电刺激治疗双极刺激的递送扫描通过所述第一多个电极中的所述一组电极和所述第二多个电极中的所述特定电极包括:在第一时间经由所述第一多个电极中的第一电极和所述第二多个电极中的所述特定电极递送双极电刺激;以及在不同于所述第一时间的第二时间经由所述第一多个电极中的第二电极和所述第二多个电极中的所述特定电极递送双极电刺激。Example 14. The method of example 13, wherein delivery of the electrical stimulation treatment bipolar stimulation is scanned through the set of electrodes in the first plurality of electrodes and a set of electrodes in the second plurality of electrodes. The specific electrodes include: delivering bipolar electrical stimulation via a first electrode of the first plurality of electrodes and the specific electrode of the second plurality of electrodes at a first time; and at a different time than the first plurality of electrodes. Bipolar electrical stimulation is delivered via a second electrode of the first plurality of electrodes and the particular electrode of the second plurality of electrodes for a second period of time.

示例15.一种系统,包括:存储器,所述存储器存储一个或多个刺激参数;以及植入式医疗设备,所述植入式医疗设备包括被配置为执行如示例1至14中任一项所述的方法的处理电路。Example 15. A system comprising: a memory storing one or more stimulation parameters; and an implantable medical device including a device configured to perform any of Examples 1-14 Processing circuit of the method described.

示例16.如示例15所述的系统,进一步包括承载多个电极的引线。Example 16. The system of example 15, further comprising a lead carrying a plurality of electrodes.

示例17.一种计算机可读介质,包括指令,所述指令在被执行时使一个或多个处理器执行如示例1至14中任一项所述的方法。Example 17. A computer-readable medium comprising instructions that, when executed, cause one or more processors to perform the method of any one of Examples 1-14.

本公开所述的这些技术可以至少部分地在硬件、软件、固件或其任何组合中实施。例如,所描述的技术的各方面可以在处理电路内实施,该处理电路包括一个或多个处理器,该一个或多个处理器包括一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程序门阵列(FPGA)或任何其他等效的集成或分立逻辑电路系统以及这类部件的任何组合。术语“处理器”或“处理电路”一般可以指代前述逻辑电路中的任何(单独的或与其他逻辑电路组合的)电路、或任何其他等效电路。包括硬件的控制单元也可以形成被配置为执行本公开的一种或多种技术的一个或多个处理器或处理电路。The techniques described in this disclosure may be implemented, at least in part, in hardware, software, firmware, or any combination thereof. For example, aspects of the described technology may be implemented within processing circuitry including one or more processors including one or more microprocessors, digital signal processors (DSPs) , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or any other equivalent integrated or discrete logic circuit system and any combination of such components. The term "processor" or "processing circuit" may generally refer to any of the aforementioned logic circuits (alone or in combination with other logic circuits), or any other equivalent circuit. The control unit, including hardware, may also form one or more processors or processing circuits configured to perform one or more techniques of this disclosure.

这样的硬件、软件和固件可以被实施,并且各种操作可以在同一设备内、不同设备内执行和/或在多个设备内、多个设备之间或跨多个设备在协调基础上执行,以支持本公开中描述的各种操作和功能。另外,所描述的单元、电路或部件中的任何一种可以一起实施或者作为分立但可互相操作的逻辑器件而分开地实施。将不同特征描绘为电路或单元旨在突出不同的功能方面并且不一定暗示此类电路或单元必须由不同的硬件或软件部件实现。相反,与一个或多个电路或单元相关联的功能可以由不同的硬件或软件部件执行,或者被集成在共同的或不同的硬件或软件部件之内。在各种示例中,本公开中描述的包括一个处理器或多个处理器的处理电路可以实施为固定功能电路、可编程电路或其组合。固定功能电路是指通过预设操作提供特定功能的电路。可编程电路是指可以被编程以执行各种任务并且在可以执行的操作中提供灵活功能的电路。例如,可编程电路可以执行软件或固件,该软件或固件使可编程电路以软件或固件的指令所定义的方式操作。固定功能电路可以执行软件指令(例如,以接收刺激参数或输出刺激参数),但是固定功能电路执行的操作类型通常是不可变的。在一些示例中,单元中的一个或多个单元可以是不同的电路块(固定功能或可编程的),并且在一些示例中,单元中的一个或多个单元可以是集成电路。Such hardware, software, and firmware may be implemented and various operations may be performed within the same device, within different devices, and/or on a coordinated basis within, between, or across multiple devices to Various operations and functions described in this disclosure are supported. Additionally, any of the described units, circuits or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as circuits or units is intended to highlight different functional aspects and does not necessarily imply that such circuits or units must be implemented by different hardware or software components. Rather, the functions associated with one or more circuits or units may be performed by different hardware or software components, or integrated within common or different hardware or software components. In various examples, processing circuits including a processor or processors described in this disclosure may be implemented as fixed function circuits, programmable circuits, or combinations thereof. Fixed function circuits are circuits that provide specific functions through preset operations. Programmable circuits are circuits that can be programmed to perform a variety of tasks and provide flexible functionality in the operations that can be performed. For example, a programmable circuit may execute software or firmware that causes the programmable circuit to operate in a manner defined by the instructions of the software or firmware. Fixed-function circuits may execute software instructions (eg, to receive stimulation parameters or to output stimulation parameters), but the types of operations performed by fixed-function circuits are generally immutable. In some examples, one or more of the units may be distinct circuit blocks (fixed function or programmable), and in some examples, one or more of the units may be integrated circuits.

在本公开所述的这些技术也可以嵌入或编码至计算机可读介质中,比如包含多项指令的计算机可读存储介质,其可以被描述为非暂态介质。嵌入或编码至计算机可读存储介质中的多项指令可以使可编程处理器、或其他处理器执行该方法,例如,当执行这些指令时。计算机可读存储介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存、硬盘、CD-ROM、软盘、磁带盒、磁介质、光介质、或其他计算机可读介质。The techniques described in this disclosure may also be embedded or encoded in a computer-readable medium, such as a computer-readable storage medium containing instructions, which may be described as a non-transitory medium. A plurality of instructions embedded or encoded in a computer-readable storage medium may cause a programmable processor, or other processor, to perform the method, for example, when the instructions are executed. Computer-readable storage media may include random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EPROM), Read memory (EEPROM), flash memory, hard disk, CD-ROM, floppy disk, tape cartridge, magnetic media, optical media, or other computer-readable media.

Claims (15)

CN202280016782.0A2021-02-242022-02-24Neural stimulation using time staggered cascade of bipolar electrode combinationsPendingCN116917002A (en)

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
US63/153,2012021-02-24
US17/652,245US12403314B2 (en)2021-02-242022-02-23Neurostimulation using time-interleaved cascade of bipolar electrode combinations
US17/652,2452022-02-23
PCT/US2022/070823WO2022183201A1 (en)2021-02-242022-02-24Neurostimulation using time-interleaved cascade of bipolar electrode combinations

Publications (1)

Publication NumberPublication Date
CN116917002Atrue CN116917002A (en)2023-10-20

Family

ID=88358852

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202280016782.0APendingCN116917002A (en)2021-02-242022-02-24Neural stimulation using time staggered cascade of bipolar electrode combinations

Country Status (1)

CountryLink
CN (1)CN116917002A (en)

Similar Documents

PublicationPublication DateTitle
JP7387650B2 (en) Control of electrical stimulation therapy by ECAP
US11071863B2 (en)Controlling electrical stimulation therapy
US9352156B2 (en)Automatic evaluation technique for deep brain stimulation programming
JP2021529570A (en) ECAP control of electrical stimulation therapy
US20090118786A1 (en)Automated fitting system for deep brain stimulation
US20210187298A1 (en)Hysteresis compensation for detection of ecaps
US12357830B2 (en)Sub-threshold stimulation based on ECAP detection
US20240307689A1 (en)Neurostimulation titration and programming based on patient feedback
WO2023017406A1 (en)Spinal cord injury therapy based on evoked compound action potentials
CN116018085A (en) Analyzing ECAP Signals
CN116917001A (en)Determination of sense electrode combinations
US20240123233A1 (en)Neurostimulation titration system
US11904170B2 (en)Patient-learned control of medical device
US20230047655A1 (en)Spinal cord injury therapy based on evoked compound action potentials
EP4297857B1 (en)Neurostimulation using time-interleaved cascade of bipolar electrode combinations
US12403314B2 (en)Neurostimulation using time-interleaved cascade of bipolar electrode combinations
CN116917002A (en)Neural stimulation using time staggered cascade of bipolar electrode combinations
US12440679B2 (en)Electric stimulation system
US20220266028A1 (en)Electric stimulation system
US20240157148A1 (en)Patient-learned control of medical device
US20230241395A1 (en)Control of medical device using representative value
WO2023149987A1 (en)Control of medical device using representative value
WO2024224226A1 (en)Optimizing sensing using an accelerometer
WO2024224224A1 (en)Controlling electrical stimulation by multiple medical devices
WO2024026031A1 (en)Automated programming based on ecap signals

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp