Movatterモバイル変換


[0]ホーム

URL:


CN116824925B - A method to improve TCAS target track quality based on hybrid surveillance - Google Patents

A method to improve TCAS target track quality based on hybrid surveillance
Download PDF

Info

Publication number
CN116824925B
CN116824925BCN202311115914.8ACN202311115914ACN116824925BCN 116824925 BCN116824925 BCN 116824925BCN 202311115914 ACN202311115914 ACN 202311115914ACN 116824925 BCN116824925 BCN 116824925B
Authority
CN
China
Prior art keywords
intruder
message
machine
ads
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311115914.8A
Other languages
Chinese (zh)
Other versions
CN116824925A (en
Inventor
刘永刚
郭小杰
吴俊�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Jiuzhou ATC Technology Co Ltd
Original Assignee
Sichuan Jiuzhou ATC Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Jiuzhou ATC Technology Co LtdfiledCriticalSichuan Jiuzhou ATC Technology Co Ltd
Priority to CN202311115914.8ApriorityCriticalpatent/CN116824925B/en
Publication of CN116824925ApublicationCriticalpatent/CN116824925A/en
Application grantedgrantedCritical
Publication of CN116824925BpublicationCriticalpatent/CN116824925B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种基于混合监视提高TCAS目标航迹质量的方法,其包括:TCAS设备对包含入侵机的空中位置信息的应答报文进行处理,以得到ADS‑B信号源下入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;TCAS设备制作S模式询问列表,以向具备S模式应答机的入侵机通过询问,基于对应答报文的分析,得到入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;将两种信号源下的斜距、方位、高度进行对比,如果同时满足斜距差绝对值条件、方位差绝对值条件和高度差绝对值条件,则能够用ADS‑B信息源下的距离、高度、方位进行混合监视目标航迹的位置信息更新。本发明提高了入侵机的航迹稳定性和位置精度。

The invention discloses a method for improving TCAS target track quality based on hybrid surveillance. It includes: TCAS equipment processes the response message containing the air position information of the intruder to obtain the relationship between the intruder and the local intruder under the ADS-B signal source. The relative slant distance between the machines, the orientation of the intruder machine relative to the nose of the machine and the height of the intruder machine; the TCAS device makes an S-mode query list to query the intruder machine with a mode S transponder, based on the corresponding response message Through analysis, we can obtain the relative slant range between the intruder and the host machine, the orientation of the intruder machine relative to the nose of the host machine, and the height of the intruder machine; compare the slant range, orientation, and height of the two signal sources. If at the same time If the conditions for the absolute value of the slant range difference, the absolute value of the azimuth difference and the absolute value of the altitude difference are met, the distance, altitude and azimuth from the ADS-B information source can be used to update the position information of the hybrid surveillance target track. The invention improves the track stability and position accuracy of the intruder.

Description

Translated fromChinese
一种基于混合监视提高TCAS目标航迹质量的方法A method to improve TCAS target track quality based on hybrid surveillance

技术领域Technical field

本发明涉及通信技术领域,特别是一种基于混合监视提高TCAS目标航迹质量的方法。The invention relates to the field of communication technology, in particular to a method for improving TCAS target track quality based on hybrid surveillance.

背景技术Background technique

TCAS(机载防撞系统)设备利用仅C的全呼叫询问和S模式询问对装备有空管应答机(S模式/ATCRBS应答机)的飞机进行监视,通过一问一答的方式建立并更新入侵机的航迹,监视处理模块周期性将入侵机的航迹信息发送给防撞处理模块,计算出入侵机相对于本机的距离、高度、方位以及运动趋势,结合本机的运动趋势给出爬升或者下降建议,以达到规避飞机相撞的目的。TCAS设备是防止空域中飞机相撞,保持飞机之间安全间隔的必不可少的有效设备。TCAS设备中监视模块对于入侵机航迹的建立、更新、维护的质量直接影响了防撞处理模块给出的最终垂直决断告警建议。TCAS (Airborne Collision Avoidance System) equipment uses C-only all-call interrogation and Mode S interrogation to monitor aircraft equipped with air traffic control transponders (Mode S/ATCRBS transponders), and is established and updated through a question-and-answer approach. The monitoring and processing module periodically sends the intruder's track information to the anti-collision processing module, calculates the distance, height, orientation and movement trend of the intruder relative to the aircraft, and combines the movement trend of the aircraft to Provide climb or descent suggestions to avoid aircraft collision. TCAS equipment is an indispensable and effective equipment to prevent aircraft collisions in the airspace and maintain safe separation between aircraft. The quality of the establishment, update, and maintenance of the intruder's track by the monitoring module in the TCAS equipment directly affects the final vertical decision warning recommendations given by the anti-collision processing module.

TCAS设备在使用过程中,将入侵机的类型分为4类,按照威胁等级从低到高进行排序,分别是OT(其他飞机),PT(接近威胁飞机),TA(交通告警飞机),RA(决断告警飞机)。如果出现了RA告警,TCAS设备会输出语音告警(比如爬升或者下降)以及显示告警(在显示器上以红绿条带的方式显示,红色条带表示本机应该规避远离的升降速度,绿色条带表示飞机应该保持或者接近的升降速度)以提醒飞行员采取机动,达到规避飞机相撞的目的。在实际使用过程中,TCAS设备送出去的入侵机类型大部分是OT和PT,该类型的入侵机在显示器上显示的信息主要包括入侵机的距离、方位、高度(高度包括相对高度或者绝对高度,飞行员可以手动切换)。飞行员可以通过TCAS设备送给显示器的入侵机信息实时观察本机附近空域装备有ATCRBS模式的常规应答机或者S模式应答机的入侵机的位置信息,提前采取规避动作。During the use of the TCAS equipment, the types of intruders are divided into 4 categories, sorted from low to high according to the threat level, namely OT (other aircraft), PT (approaching threat aircraft), TA (traffic alert aircraft), RA (Decision warning aircraft). If an RA alarm occurs, the TCAS device will output a voice alarm (such as climbing or descending) and display the alarm (displayed in the form of red and green strips on the display. The red strip indicates that the machine should avoid the lifting speed and the green strip Indicates the lifting speed that the aircraft should maintain or be close to) to remind the pilot to take maneuvers to avoid aircraft collision. In actual use, most of the intruder types sent out by TCAS equipment are OT and PT. The information displayed on the display of this type of intruder mainly includes the distance, orientation, and height of the intruder (height includes relative height or absolute height). , the pilot can switch manually). Pilots can use the intruder information sent to the display by the TCAS device to observe the location information of intruders equipped with ATCRBS mode conventional transponders or S-mode transponders in the airspace near the aircraft in real time, and take evasive actions in advance.

TCAS设备主要包括两大功能模块,分别为监视处理模块和防撞处理模块,其中监视处理模块是基于二次雷达的原理来实现对于入侵机航迹的探测,进而再进行防撞处理模块逻辑算法的处理,TCAS设备发射频率为1030MHz,接收中心频率1090MHz,TCAS设备通过控制天线波束指向,对飞机前、后、左、右4个区域进行扫描询问,附近装有空管应答机(S模式/ATCRBS应答机)的飞机会做出应答。The TCAS equipment mainly includes two functional modules, namely the monitoring and processing module and the anti-collision processing module. The monitoring and processing module is based on the principle of secondary radar to detect the trajectory of the intruder, and then performs the logic algorithm of the anti-collision processing module. For processing, the TCAS equipment transmitting frequency is 1030MHz and the receiving center frequency is 1090MHz. The TCAS equipment controls the direction of the antenna beam to scan and interrogate the four areas in front, behind, left and right of the aircraft. An air traffic control transponder (S mode/ ATCRBS transponder) aircraft will respond.

TCAS设备在进行航迹更新的时候会使用本周期询问得到的入侵机的距离、高度、方位等三种信息与上周期该入侵机航迹信息里的距离、高度、方位进行关联,如果关联不上,则不会采纳本周期询问得到的入侵机的距离、高度、方位信息,而是在历史航迹的基础上利用alpha beta滤波算法外推入侵机在本周期的距离、高度、方位信息,如果连续多个周期探测得到距离、高度、方位等三种信息关联不上航迹信息,则会删除该入侵机的航迹信息。When updating the track, the TCAS device will use the distance, altitude, and azimuth of the intruder inquired in this cycle to correlate it with the distance, altitude, and azimuth in the intruder's track information in the previous cycle. If the correlation is not successful, , the distance, altitude, and orientation information of the intruder obtained from this cycle will not be used. Instead, the alpha beta filtering algorithm will be used to extrapolate the distance, altitude, and orientation information of the intruder in this cycle based on the historical track. If the distance, altitude, azimuth and other information obtained through multiple consecutive cycles cannot be correlated with the track information, the track information of the intruder will be deleted.

TCAS设备对于入侵机的距离探测是利用询问应答时间差计算得到,高度探测是从应答报文中提取相关信息得到,距离和高度探测都较精准。TCAS设备对于方位的探测主要使用振幅定向法或者相位定向法计算得到。在振幅定向法中,TCAS设备通过控制天线波束指向,对飞机前(0度)、后(180度)、左(270度)、右(90度)4个区域进行扫描询问,再对入侵机的应答信号进行译码,如果TCAS设备探测发现0度天线和90度天线收到的信号幅度最大并且相等,则表示入侵机方位在0度和90度之间,并且在0度天线和90天线的等强信号方向,即入侵机的方位为45度。在相位定向法中,TCAS设备将两个天线所收到的信号的相位加以比较来确定入侵机在一个坐标平面内的方向。由于TCAS设备的定向天线只有4个天线波束,各自负责90度区域内的定向以实现水平方向上360度的定位,因此不管是使用振幅定向法或是相位定向法,TCAS设备对于入侵机方位的探测精度并不高(根据DO185B的要求,测角的方位精度小于均方根9度)。不仅如此,在实际使用过程中,由于TCAS设备定向天线附近其他突出的天线或结构件的遮挡,会导致TCAS设备定向天线收到的信号幅度出现变化,从而引起TCAS设备计算得到的入侵机方位与实际方位偏差十多度以上。The distance detection of the intruder by the TCAS device is calculated by using the query response time difference, and the altitude detection is obtained by extracting relevant information from the response message. Both distance and altitude detection are relatively accurate. The azimuth detection of TCAS equipment is mainly calculated using the amplitude orientation method or the phase orientation method. In the amplitude directional method, the TCAS equipment controls the direction of the antenna beam to scan and interrogate the four areas in front of the aircraft (0 degrees), behind (180 degrees), left (270 degrees), and right (90 degrees), and then scan and interrogate the intruder. Decode the response signal. If the TCAS device detects that the signal amplitudes received by the 0-degree antenna and the 90-degree antenna are the largest and equal, it means that the intruder's orientation is between 0 degrees and 90 degrees, and between the 0-degree antenna and the 90-degree antenna. The direction of the signal of equal strength, that is, the azimuth of the intruder is 45 degrees. In the phase orientation method, the TCAS device compares the phases of signals received by two antennas to determine the direction of the intruder in a coordinate plane. Since the directional antenna of the TCAS device has only 4 antenna beams, each of which is responsible for the orientation within a 90-degree area to achieve 360-degree positioning in the horizontal direction, no matter whether the amplitude directional method or the phase directional method is used, the TCAS device has a certain accuracy of the intruder's orientation. The detection accuracy is not high (according to the requirements of DO185B, the azimuth accuracy of angle measurement is less than 9 degrees root mean square). Not only that, during actual use, due to the obstruction of other protruding antennas or structural parts near the directional antenna of the TCAS device, the amplitude of the signal received by the directional antenna of the TCAS device will change, causing the orientation of the intruder calculated by the TCAS device to be different from that of the intruder. The actual orientation deviation is more than ten degrees.

基于以上描述,在飞行过程中,基于振幅定向法或者相位定向法进行测角的TCAS设备最终上报给飞行仪表显示界面的入侵机方位经常出现方位错误(例如在机头左侧的飞机显示为机头右侧)或者由于每个周期探测得到的方位偏差过大引起方位相关不上航迹不稳定反复起批的情况,给飞行员带来不好的使用感受或者使飞行员对入侵机的位置信息判断错误。Based on the above description, during flight, the TCAS equipment that measures angles based on the amplitude orientation method or the phase orientation method often reports the orientation of the intruder to the flight instrument display interface. For example, the aircraft on the left side of the nose is displayed as an aircraft. (right side of the head) or due to the excessive azimuth deviation detected in each cycle, the azimuth correlation is not stable and the track is unstable and repeated, which brings a bad user experience to the pilot or causes the pilot to misjudge the position information of the intruder. .

发明内容Contents of the invention

针对TCAS设备对于入侵机方位探测精度不高引起的入侵机方位显示不准确以及方位不稳定等问题,本发明提供了一种基于混合监视提高TCAS目标航迹质量的方法。Aiming at problems such as inaccurate azimuth display and unstable azimuth of intruders caused by TCAS equipment's low accuracy in detecting intruder azimuths, the present invention provides a method for improving TCAS target track quality based on hybrid surveillance.

本发明公开了一种基于混合监视提高TCAS目标航迹质量的方法,其包括:The invention discloses a method for improving TCAS target track quality based on hybrid surveillance, which includes:

步骤1:TCAS设备对接收到的包含入侵机的空中位置信息的应答报文进行处理,以得到ADS-B信号源下入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;Step 1: The TCAS device processes the received response message containing the air position information of the intruder to obtain the relative slant distance between the intruder and the local machine under the ADS-B signal source. The intruder is relative to the local machine. The orientation of the head and the height of the intruder;

步骤2:TCAS设备制作S模式询问列表,以向具备S模式应答机的入侵机通过询问,基于对应答报文的分析,得到入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;Step 2: The TCAS device makes an S-mode query list to query the intruder with an S-mode transponder. Based on the analysis of the response message, the relative slant distance between the intruder and the local machine is obtained. The intruder is relative to the local machine. The orientation of the aircraft's nose and the height of the intruder;

步骤3:将步骤1和步骤2中得到的两种信号源下的斜距、方位、高度进行对比,如果同时满足斜距差绝对值条件、方位差绝对值条件和高度差绝对值条件,则认为具备S模式应答机的入侵机为一个混合监视目标并且混合监视确认成功,能够用ADS-B信息源下的距离、高度、方位进行混合监视目标航迹的位置信息更新。Step 3: Compare the slant range, azimuth and height of the two signal sources obtained in step 1 and step 2. If the absolute value condition of slant range difference, absolute value condition of azimuth difference and absolute value condition of height difference are met at the same time, then It is considered that an intruder equipped with an S-mode transponder is a hybrid surveillance target and the hybrid surveillance confirmation is successful. The distance, altitude, and orientation under the ADS-B information source can be used to update the position information of the hybrid surveillance target track.

进一步地,所述步骤1包括:Further, the step 1 includes:

步骤11:接收入侵机的ADS-B报文,并在入侵机的ADS-B报文的基础上附上此时本机,即安装有TCAS设备的飞机,的经纬度、高度、真航向;Step 11: Receive the ADS-B message from the intruder, and attach the longitude, latitude, altitude, and true heading of the aircraft at this time, that is, the aircraft equipped with TCAS equipment, based on the ADS-B message of the intruder;

步骤12:提取ADS-B报文中的S模式地址,与现存航迹数组中的S模式地址进行一一对比,得到本机和入侵机位置;Step 12: Extract the S-mode address in the ADS-B message and compare it one-to-one with the S-mode address in the existing track array to obtain the location of the local aircraft and the intruder;

步骤13:基于本机和入侵机位置,得出入侵机和本机之间的斜距;Step 13: Based on the positions of the host machine and the intruder machine, obtain the slant distance between the intruder machine and the host machine;

步骤14:判断入侵机的ADS-B信息是否可信;Step 14: Determine whether the ADS-B information of the intruder is trustworthy;

步骤15:当入侵机的ADS-B信息可信时,计算得到入侵机相对于本机机头的方位以及入侵机的高度。Step 15: When the ADS-B information of the intruder is credible, calculate the orientation of the intruder relative to the nose of the own machine and the height of the intruder.

进一步地,所述步骤12包括:Further, the step 12 includes:

步骤121:当收到第一条空中位置报文时,保存该空中位置报文至航迹数组中;Step 121: When receiving the first air position message, save the air position message into the track array;

步骤122:当收到第二条空中位置报文时,将其与第一条空中位置报文对比判断是否属于一对奇偶报文;若不属于一对奇偶报文,则将第一条空中位置报文丢弃,将第二条空中位置报文更新为第一条空中位置报文,停止后续处理;若属于一对奇偶报文,则开始全局解码计算:解码失败时丢弃第二条空中位置报文,停止后续处理;解码成功时获得初始位置,将初始位置与本机位置进行范围检查;Step 122: When the second air position message is received, compare it with the first air position message to determine whether it belongs to a pair of parity messages; if it does not belong to a pair of parity messages, compare the first air position message The position message is discarded, the second air position message is updated to the first air position message, and subsequent processing is stopped; if it belongs to a pair of odd-even messages, global decoding calculation is started: the second air position message is discarded when decoding fails. message and stop subsequent processing; when the decoding is successful, the initial position is obtained, and the range of the initial position and the local position is checked;

步骤123:当收到第三条空中位置报文,将其与步骤122中全局解码位置进行本地解码,将第三条空中位置报文对应的本地解码位置以及步骤11中存储的第三条空中位置报文中的本机经纬高信息,从WGS 84坐标系下转换到地心坐标系下。Step 123: When the third air position message is received, locally decode it with the global decoding position in step 122, and combine the local decoding position corresponding to the third air position message with the third air position stored in step 11. The local longitude, latitude and height information in the position message is converted from the WGS 84 coordinate system to the geocentric coordinate system.

进一步地,所述将初始位置与本机位置进行范围检查,包括:Further, the range check between the initial position and the local machine position includes:

若超出预设有效范围,则丢弃第二条空中位置报文,停止后续处理;否则在有效范围内继续接收、处理后续报文。If it exceeds the preset valid range, the second air position message will be discarded and subsequent processing will stop; otherwise, subsequent messages will continue to be received and processed within the valid range.

进一步地,所述步骤14包括:Further, the step 14 includes:

若入侵机和本机之间的相对速度小于预设速度,则认为入侵机的ADS-B信息可信,同时根据本周期和上周期本机的经纬度、高度,得到本机的绝对速度,当该绝对速度小于预设绝对速度时,则认为本机的ADS-B信息可信。If the relative speed between the intruder and the host is less than the preset speed, the ADS-B information of the intruder is considered credible. At the same time, the absolute speed of the host is obtained based on the longitude, latitude, and altitude of the host in this cycle and the previous cycle. When When the absolute speed is less than the preset absolute speed, the ADS-B information of the machine is considered credible.

进一步地,所述步骤12之前,还包括:Further, before step 12, it also includes:

提取ADS-B报文的下行格式号,当下行格式号为17或者下行格式号为18并且代码字段为0,1,6时,对ADS-B报文中的S模式地址进行过滤,过滤原则为S模式地址不能为全0或者全1,也不能为本机的S模式地址;当类型字段位于[9,18]或者[20,22]区间时,则ADS-B报文为空中类型的报文。Extract the downstream format number of the ADS-B message. When the downstream format number is 17 or the downstream format number is 18 and the code field is 0, 1, 6, filter the S mode address in the ADS-B message. Filtering principles The S mode address cannot be all 0s or all 1s, nor can it be the S mode address of the local machine; when the type field is in the range [9, 18] or [20, 22], the ADS-B message is of air type. message.

进一步地,所述步骤15包括:Further, the step 15 includes:

将利用反三角函数得出的入侵机相对本机的方位减去步骤11中存储的本机真航向,即得到入侵机相对于本机机头的方位;直接从空中位置报文中解析出入侵机的高度信息。Subtract the true heading of the own aircraft stored in step 11 from the orientation of the intruder relative to the own aircraft obtained using the inverse trigonometric function to obtain the orientation of the intruder relative to the nose of the own aircraft; directly parse the intruder from the air position message machine height information.

进一步地,所述步骤2包括:Further, the step 2 includes:

本机中的TCAS设备制作S模式询问列表,TCAS设备发出格式为UF0的S模式询问以后接收下行格式为16的S模式应答报文,通过询问以及应答报文的时间差乘以光速计算得到探测条件下的入侵机与本机之间的相对斜距,通过振幅定向法或者相位定向法计算得到探测条件下的入侵机相对于本机机头的方位,通过下行格式为16的高度代码字段计算得到入侵机的高度。The TCAS device in the local machine makes an S-mode inquiry list. The TCAS device sends an S-mode inquiry in the format of UF0 and then receives the downlink S-mode response message in the format of 16. The detection conditions are calculated by multiplying the time difference between the inquiry and response messages by the speed of light. The relative slant distance between the intruder and the own machine is calculated through the amplitude orientation method or the phase orientation method to obtain the orientation of the intruder relative to the nose of the own machine under detection conditions. It is calculated through the altitude code field with the downlink format of 16. The height of the intruder.

进一步地,所述混合监视目标航迹的位置信息更新,包括:Further, the location information update of the hybrid monitoring target track includes:

根据入侵机的威胁程度,TCAS设备对于入侵机的监视周期分为两类:m秒1次的监视周期和n秒1次的监视周期;n大于m;According to the threat level of the intruder, the monitoring cycle of the TCAS device for the intruder is divided into two categories: a monitoring cycle of once m seconds and a monitoring cycle of once n seconds; n is greater than m;

TCAS设备对于装备有S模式应答机并且交叉链接能力字段为1的入侵机,每10秒按照步骤2和步骤3的处理流程进行一次确认;For intruders equipped with Mode S transponders and with a cross-link capability field of 1, the TCAS device will confirm every 10 seconds according to the processing procedures of steps 2 and 3;

对于监视周期为n秒1次并且混合监视确认成功的入侵机,在非主动询问期间,利用ADS-B信息源下的距离、高度、方位进行航迹的位置信息更新,在主动询问期间分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择差值最小的方位信息进行混合目标的位置信息更新;For an intruder with a monitoring period of n seconds and a successful hybrid monitoring confirmation, during the non-active inquiry period, the distance, altitude, and azimuth under the ADS-B information source are used to update the location information of the track, and during the active inquiry period, the There is a difference between the detected azimuth and the azimuth in the historical track, and the difference between the azimuth under the ADS-B information source and the azimuth in the historical track, and the azimuth information with the smallest difference is selected to update the position information of the hybrid target;

对于监视周期为m秒1次并且混合监视确认成功的入侵机,每周期分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择差值最小的方位信息进行混合目标的位置信息更新。For an intruder with a monitoring cycle of m seconds and a successful hybrid monitoring confirmation, the difference between the detected orientation and the orientation in the historical track is used in each cycle, and the orientation under the ADS-B information source is compared with the orientation in the historical track. The azimuth difference is made, and the azimuth information with the smallest difference is selected to update the position information of the mixed target.

进一步地,计算入侵机相对于本机的相对时间,用tau表示,tau=TCAS设备探测得到的入侵机相对于本机的斜距除以入侵机和本机之间的相对速度;Further, calculate the relative time of the intruder relative to the own machine, represented by tau, tau=the slant distance of the intruder detected by the TCAS device relative to the own machine divided by the relative speed between the intruder and the own machine;

若tau>预设时间,则TCAS设备对于入侵机的监视周期为n秒1次,若tau<预设时间,则TCAS设备对于入侵机的监视周期为m秒1次。If tau > the preset time, the TCAS device monitors the intruder every n seconds. If tau < the preset time, the TCAS device monitors the intruder every m seconds.

由于采用了上述技术方案,本发明具有如下的优点:Due to the adoption of the above technical solution, the present invention has the following advantages:

本发明利用ADS-B信息源对具备ADS-B OUT功能的S模式目标进行混合监视,经过本机和入侵机的经纬高进行对比,形成在WGS 84坐标系下入侵机相对于本机的位置信息,与TCAS设备探测得到的位置信息进行比较得到与历史航迹最为相近的位置信息,由于ADS-B报文中空中位置报文的精度为5米,并且ADS-B报文的位置信息的广播周期为0.5秒,比TCAS设备的监视周期(1秒±0.1秒)更加频繁,因此利用ADS-B信息源进行位置信息修正以后的入侵机方位更加准确,航迹更加稳定。This invention uses the ADS-B information source to perform mixed surveillance on S-mode targets with ADS-B OUT functions. By comparing the longitude and latitude of the local machine and the intruder, the position of the intruder relative to the local machine in the WGS 84 coordinate system is formed. Information is compared with the position information detected by the TCAS device to obtain the position information closest to the historical track. Since the accuracy of the air position message in the ADS-B message is 5 meters, and the position information of the ADS-B message is The broadcast cycle is 0.5 seconds, which is more frequent than the monitoring cycle of TCAS equipment (1 second ± 0.1 seconds). Therefore, the position information correction using the ADS-B information source will make the intruder's position more accurate and its trajectory more stable.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to explain the technical solutions in the embodiments of the present invention more clearly, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only those recorded in the embodiments of the present invention. For some embodiments, those of ordinary skill in the art can also obtain other drawings based on these drawings.

图1为本发明实施例的一种基于混合监视提高TCAS目标航迹质量的方法的流程示意图。Figure 1 is a schematic flow chart of a method for improving TCAS target track quality based on hybrid surveillance according to an embodiment of the present invention.

具体实施方式Detailed ways

结合附图和实施例对本发明作进一步说明,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。The present invention will be further described with reference to the accompanying drawings and embodiments. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all of the embodiments. All other embodiments obtained by those of ordinary skill in the art should fall within the scope of protection of the embodiments of the present invention.

参见图1,本发明提供了一种基于混合监视提高TCAS目标航迹质量的方法的实施例,其可以分为3个流程,分别是ADS-B报文接收处理,混合目标位置确认以及混合目标航机更新,具体描述如下:Referring to Figure 1, the present invention provides an embodiment of a method for improving TCAS target track quality based on hybrid monitoring, which can be divided into three processes, namely ADS-B message reception processing, hybrid target position confirmation and hybrid target Aircraft update, detailed description is as follows:

S1、ADS-B报文接收处理的处理流程如下:The processing flow of S1 and ADS-B message reception is as follows:

S11、接收入侵机的ADS-B报文,并在原有ADS-B报文的基础上附上此时本机(即安装有TCAS设备的飞机)的经纬度、高度、真航向,用于在后续的混合监视目标中用于同步计算该混合目标相对于本机的距离、高度、方位;S11. Receive the ADS-B message from the intruder, and attach the longitude, latitude, altitude, and true heading of the aircraft (i.e., the aircraft equipped with TCAS equipment) on the basis of the original ADS-B message for subsequent use. Used in the hybrid surveillance target to synchronously calculate the distance, height, and orientation of the hybrid target relative to the aircraft;

S12、提取ADS-B报文的下行格式号,根据DO260B标准的要求,只有当下行格式号为17或者下行格式号为18并且代码字段为0,1,6时才进行下一步处理;S12. Extract the downstream format number of the ADS-B message. According to the requirements of the DO260B standard, the next step is processed only when the downstream format number is 17 or the downstream format number is 18 and the code field is 0, 1, or 6;

S13、对ADS-B报文中的S模式地址进行过滤,过滤原则为S模式地址不能为全0或者全1,也不能为本机的S模式地址(为防止接收到本机广播的ADS-B OUT信息产生虚警);S13. Filter the S mode address in the ADS-B message. The filtering principle is that the S mode address cannot be all 0s or all 1s, nor can it be the S mode address of the local machine (in order to prevent the reception of the ADS-B broadcasted by the local machine) B OUT information generates false alarm);

S14、根据DO185B标准要求,TCAS设备仅对空中的入侵机产生决断告警建议,因此对ADS-B报文中的类型字段进行判断,只有当类型字段位于[9,18]或者[20,22]区间(即该ADS-B报文为空中类型的报文)时才进行下一步处理,当类型字段位于[20,22]区间时,宣布该ADS-B报文对应的飞机的大气高度数据无效;S14. According to the DO185B standard requirements, TCAS equipment only generates decisive alarm suggestions for intruders in the air. Therefore, the type field in the ADS-B message is judged only when the type field is located in [9, 18] or [20, 22] interval (that is, the ADS-B message is an air type message), the next step is processed. When the type field is in the [20,22] interval, the atmospheric altitude data corresponding to the ADS-B message is declared invalid. ;

S15、提取ADS-B报文中的S模式地址,与现存航迹数组中的S模式地址进行一一对比;S15. Extract the S-mode address in the ADS-B message and compare it one-to-one with the S-mode address in the existing track array;

S16、当收到第一条空中位置报文时,保存该空中位置报文至航迹数组中,有效时间为10s;S16. When receiving the first air position message, save the air position message to the track array, and the validity time is 10s;

S17、当收到第二条空中位置报文,与第一条报文对比判断是否是一对奇偶报文,如果不是则将第一条空中位置报文丢弃,将本条空中位置报文更新为第一条报文,停止后续处理。如果是则开始全局解码计算(全局解码的具体算法参见DO260B标准T.5):解码失败时丢弃第二条报文,停止后续处理;解码成功时获得初始位置,将该值与本机位置(即安装有TCAS设备的飞机)进行范围检查。如果超出50nm的有效范围(即TCAS设备的威力范围,因为接收ADS-B报文的目的是与TCAS设备探测得到的入侵机信息相结合形成混合目标,因此超过50nm以外的ADS-B空中位置报文不予处理)则认为该结果是错误的,丢弃第二条空中位置报文,停止后续处理;否则在有效范围内继续接收、处理后续报文;S17. When receiving the second air position message, compare it with the first message to determine whether it is a pair of parity messages. If not, discard the first air position message and update this air position message to For the first message, subsequent processing is stopped. If so, start the global decoding calculation (for the specific algorithm of global decoding, please refer to DO260B standard T.5): when the decoding fails, discard the second message and stop subsequent processing; when the decoding is successful, the initial position is obtained, and this value is compared with the local position ( i.e. aircraft equipped with TCAS equipment) conduct range inspections. If it exceeds the effective range of 50nm (that is, the power range of the TCAS device, because the purpose of receiving ADS-B messages is to combine with the intruder information detected by the TCAS device to form a mixed target, the ADS-B air position report beyond 50nm If the message is not processed), the result is considered to be wrong, the second air position message is discarded, and subsequent processing is stopped; otherwise, subsequent messages are continued to be received and processed within the valid range;

S18、当收到第三条空中位置报文,将该报文与S17中全局解码位置进行本地解码(本地解码的具体算法参见DO260B标准T.5)计算本地解码位置,按照如下转换公式,将利用第三条空中位置报文对应的本地解码位置以及S11中存储的第三条空中位置报文中本机经纬高信息,从WGS 84坐标系下转换成地心坐标系下,转换公式具体如下:S18. When the third air position message is received, locally decode the message and the global decoding position in S17 (for the specific algorithm of local decoding, please refer to DO260B standard T.5) to calculate the local decoding position. According to the following conversion formula, Using the local decoding position corresponding to the third air position message and the longitude and latitude height information of the aircraft stored in the third air position message stored in S11, convert from the WGS 84 coordinate system to the geocentric coordinate system. The conversion formula is as follows :

X=(N + h) cosφcosλX=(N + h) cosφcosλ

Y=(N + h)cosφsinλY=(N + h)cosφsinλ

Z=(N(1 – e2) + h)sinφZ=(N(1 – e2 ) + h)sinφ

式中:X、Y、Z分别表示地心坐标系下的x轴坐标、y轴坐标、z轴坐标;In the formula: X, Y, Z respectively represent the x-axis coordinate, y-axis coordinate, and z-axis coordinate in the geocentric coordinate system;

表示椭球表面点(λ,φ)和椭球轴线相交点之间与椭球呈法向的线的长度。 Represents the length of the line normal to the ellipsoid between the ellipsoid surface point (λ, φ) and the intersection point of the ellipsoid axis.

h=WGS 84坐标系下高度,φ= WGS 84坐标系下纬度,λ= WGS 84坐标系下经度。h=height under WGS 84 coordinate system, φ=latitude under WGS 84 coordinate system, λ=longitude under WGS 84 coordinate system.

e2=(a2- b2)/a2表示WGS 84椭球第一偏心率的平=6.6943799901410-3e2 =(a2 - b2 )/a2 represents the square of the first eccentricity of the WGS 84 ellipsoid = 6.6943799901410-3 .

a =WGS 84椭球的半长轴= 6378137.0米。a = semi-major axis of WGS 84 ellipsoid = 6378137.0 meters.

b =WGS 84椭球的半短轴=6356752.3142米。b = Semi-minor axis of WGS 84 ellipsoid = 6356752.3142 meters.

S19、通过上述转换公式将本机位置转换成地心坐标系下的、/>、/>,将入侵机位置转换成地心坐标系下的/>、/>、/>,再采用标准等式得出入侵机和本机之间的斜距:S19. Use the above conversion formula to convert the local position into the geocentric coordinate system. ,/> ,/> , convert the intruder's position into the geocentric coordinate system/> ,/> ,/> , and then use the standard equation to obtain the slant distance between the intruder and the local machine:

r2=(X入侵机- X本机)2+ (Y入侵机- Y本机)2+ (Z入侵机–Z本机)2r2 =(Xintruder - Xlocal machine )2 + (Yintruder - Ylocal machine )2 + (Zintruder - Zlocal machine )2

S110、由于DO185B中规定了算法的适用范围为两机之间的相对速度小于1200kt,因此在计算得到入侵机和本机之间的斜距以后,需要对入侵机和本机之间的接近速度进行判断,小于1200kt则认为入侵机的ADS-B信息可信,同时为防止本机经纬度跳变导致解算出来的入侵机相对于本机的位置信息跳变,也需要将本周期和上周期本机的经纬度、高度进行计算,得到本机的绝对速度,小于600kt则认为本机的ADS-B信息可信;S110. Since DO185B stipulates that the applicable range of the algorithm is that the relative speed between the two machines is less than 1200kt, so after calculating the slant distance between the intruder and the machine, it is necessary to calculate the approaching speed between the intruder and the machine. To judge, if it is less than 1200kt, the ADS-B information of the intruder is considered credible. At the same time, in order to prevent the jump of the longitude and latitude of the local machine from causing the calculated position information of the intruder relative to the local machine to jump, it is also necessary to compare the current cycle and the previous cycle. Calculate the longitude, latitude, and altitude of the aircraft to obtain the absolute speed of the aircraft. If it is less than 600kt, the ADS-B information of the aircraft is considered credible;

S111、再利用反三角函数可以得出入侵机相对本机的方位(将入侵机和本机视作两个点,方位为相对于正北的方位):S111. Then use the inverse trigonometric function to get the orientation of the intruder relative to the own machine (regarding the intruder and the host as two points, the orientation is relative to true north):

Thita(方位)= atan2(X入侵机- X本机,Y入侵机- Y本机)Thita (azimuth) = atan2 (Xintruder - Xlocal machine , Yintruder - Ylocal machine )

S112、由于TCAS设备对外上报的是入侵机相对于本机机头的方位,因此需要用Thita再减去S11中存储的本机真航向,即可得到入侵机相对于本机机头的方位;S112. Since the TCAS device externally reports the orientation of the intruder relative to the nose of the aircraft, it is necessary to use Thita and subtract the true heading of the aircraft stored in S11 to obtain the orientation of the intruder relative to the nose of the aircraft;

S113、直接从空中位置报文中解析出该入侵机的高度信息;S113. Directly parse the altitude information of the intruder from the air position message;

S114、通过上述步骤计算得到具备ADS-B功能的入侵机在ADS-B信息源下相对于本机的距离、高度、方位信息。S114. Through the above steps, calculate the distance, height, and orientation information of the intruder with ADS-B function relative to the own machine under the ADS-B information source.

S2、混合监视目标位置确认的处理流程如下:S2. The processing flow of hybrid monitoring target location confirmation is as follows:

S21、对于装备有S模式应答机的入侵机,从DF0报文中提取交叉链接能力字段,如果交叉链接能力字段为1,则表示其支持空中交通警戒与防撞系统交联能力,可以通过S模式询问报文提取入侵机的空中位置报文信息;S21. For intruders equipped with S-mode transponders, extract the cross-link capability field from the DF0 message. If the cross-link capability field is 1, it means that it supports the air traffic warning and anti-collision system cross-link capability. It can be passed through S The mode query message extracts the air position message information of the intruder;

S22、TCAS设备制作S模式询问列表,针对交叉链接能力字段=1的S模式应答机的入侵机,设置询问报文中的应答长度字段=1(表示S模式应答机需要应答下行格式为16格式的长报文),设置询问字段中的地面通信B寄存器号为5,表明希望提取入侵机的空中位置报文;TCAS设备发出格式为UF0的S模式询问以后接收下行格式为16的S模式应答报文,通过询问以及应答报文的时间差乘以光速计算得到探测条件下的入侵机与本机之间的相对斜距,通过振幅定向法或者相位定向法计算得到探测条件下的入侵机相对于本机机头的方位,通过下行格式为16的高度代码字段计算得到入侵机的高度;S22. The TCAS device makes a Mode S query list. For the intruder of the Mode S transponder with the cross-link capability field = 1, set the response length field in the query message = 1 (indicating that the Mode S transponder needs to respond to the downlink format to 16 format long message), set the ground communication B register number in the query field to 5, indicating that it hopes to extract the air position message of the intruder; the TCAS device sends a Mode S query in the format of UF0 and then receives a Mode S response in the downlink format of 16 message, the relative slant distance between the intruder and the local machine under detection conditions is calculated by multiplying the time difference of the inquiry and response messages by the speed of light, and the relative slant distance between the intruder and the host machine under detection conditions is calculated by the amplitude orientation method or phase orientation method. The orientation of the aircraft's nose is calculated by calculating the height of the intruder through the height code field in the downstream format of 16;

S23、TCAS设备对收到的下行格式为16应答报文中的通信字段进行处理,通信字段即包含了该入侵机的空中位置信息报文,该处理方式与本专利中提到的“ADS-B报文接收处理”的处理流程完全一致,通过该流程可以得到ADS-B信号源下入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;S23. The TCAS device processes the communication field in the received downlink response message with a format of 16. The communication field contains the air position information message of the intruder. This processing method is the same as the "ADS- The processing flow of "B message reception processing" is exactly the same. Through this process, the relative slant distance between the intruder and the host machine under the ADS-B signal source, the orientation of the intruder machine relative to the nose of the host machine and the height of the intruder machine can be obtained ;

S24、将S22和S23中得到的两种信号源下的斜距、方位、高度进行对比,如果同时满足斜距差绝对值<= 290米,方位差绝对值<= 45度,高度差绝对值<= 100英尺,则宣布该装备有S模式应答机的入侵机为一个混合监视目标并且混合监视确认成功,可以用ADS-B信息源下的距离、高度、方位进行混合监视目标航迹的位置信息更新。S24. Compare the slant range, azimuth, and height of the two signal sources obtained in S22 and S23. If both the absolute value of the slant range difference <= 290 meters, the absolute value of the azimuth difference <= 45 degrees, and the absolute value of the height difference are met. <= 100 feet, then the intruder equipped with a Mode S transponder is declared as a hybrid surveillance target and the hybrid surveillance confirmation is successful. The distance, altitude, and azimuth under the ADS-B information source can be used to conduct hybrid surveillance target track position. information update.

S3、混合监视目标航迹更新的处理流程如下:S3. The processing flow of hybrid surveillance target track update is as follows:

S31、TCAS设备对于入侵机的监视周期,根据入侵机的威胁程度大致分为两类,1秒1次的监视周期和5秒1次的监视周期;S31. The monitoring cycle of the TCAS device for the intruder is roughly divided into two categories according to the threat level of the intruder: a monitoring cycle of once every second and a monitoring cycle of once every 5 seconds;

S32、计算入侵机相对于本机的相对时间,用tau表示,tau=TCAS设备探测得到的入侵机相对于本机的斜距/两机的相对速度;S32. Calculate the relative time of the intruder relative to the own machine, represented by tau, tau = the slant distance of the intruder detected by the TCAS device relative to the own machine/the relative speed of the two machines;

S33、如果tau>60秒,则TCAS设备对于入侵机的监视周期为5秒1次,如果tau<60秒,则TCAS设备对于入侵机的监视周期为1秒1次;S33. If tau>60 seconds, the TCAS device monitors the intruder every 5 seconds. If tau<60 seconds, the TCAS device monitors the intruder every 1 second.

S34、TCAS设备对于装备有S模式应答机并且交叉链接能力字段为1的入侵机,每10秒按照本专利中“混合监视目标位置确认”的处理流程进行一次确认;S34. For intruders equipped with Mode S transponders and with a cross-link capability field of 1, the TCAS device will confirm every 10 seconds according to the "Hybrid Monitoring Target Location Confirmation" processing flow in this patent;

S35、对于监视周期为5秒1次并且混合监视确认成功的入侵机,在非主动询问期间,利用ADS-B信息源下的距离、高度、方位进行航迹的位置信息更新,在主动询问期间分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择最优的位置信息(即差值最小的方位信息)进行混合目标的位置信息更新;S35. For intruders whose monitoring cycle is once every 5 seconds and whose hybrid monitoring confirmation is successful, during the non-active inquiry period, the distance, altitude, and azimuth under the ADS-B information source are used to update the location information of the track. During the active inquiry period, The difference between the detected azimuth and the azimuth in the historical track, and the difference between the azimuth under the ADS-B information source and the azimuth in the historical track are used to select the optimal position information (that is, the azimuth information with the smallest difference). Update the location information of hybrid targets;

S36、对于监视周期为1秒1次并且混合监视确认成功的入侵机,每周期分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择最优的位置信息(即差值最小的方位信息)进行混合目标的位置信息更新(因为主动探测得到的距离、高度信息可靠,且同步性更高,因此只针对方位信息采用择优更新的方式)。S36. For intruders with a monitoring cycle of once per second and hybrid monitoring confirmation success, the difference between the detected orientation and the historical track is used in each cycle, as well as the orientation under the ADS-B information source and the historical track. Make a difference in the azimuth, and select the optimal position information (that is, the azimuth information with the smallest difference) to update the position information of the mixed target (because the distance and height information obtained by active detection are reliable and more synchronized, only the azimuth is used. Information is updated on a selective basis).

本发明利用ADS-B信息源进行位置信息修正以后的入侵机方位更加准确,航迹更加稳定,可以解决在TCAS设备使用过程中出现的入侵机方位显示错误或者由于航迹信息关联不上导致航迹反复起批的问题。After the present invention uses the ADS-B information source to correct the position information, the orientation of the intruder is more accurate and the track is more stable. It can solve the error in the orientation display of the intruder that occurs during the use of the TCAS device or the flight path caused by the failure to correlate the track information. The problem of repeated batches.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention and not to limit it. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that the present invention can still be modified. Modifications or equivalent substitutions may be made to the specific embodiments, and any modifications or equivalent substitutions that do not depart from the spirit and scope of the invention shall be covered by the scope of the claims of the invention.

Claims (9)

Translated fromChinese
1.一种基于混合监视提高TCAS目标航迹质量的方法,其特征在于,包括:1. A method to improve the quality of TCAS target tracks based on hybrid surveillance, which is characterized by:步骤1:TCAS设备对接收到的包含入侵机的空中位置信息的应答报文进行处理,以得到ADS-B信号源下入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;Step 1: The TCAS device processes the received response message containing the air position information of the intruder to obtain the relative slant distance between the intruder and the local machine under the ADS-B signal source. The intruder is relative to the local machine. The orientation of the head and the height of the intruder;步骤2:TCAS设备制作S模式询问列表,以向具备S模式应答机的入侵机通过询问,基于对应答报文的分析,得到入侵机与本机之间的相对斜距,入侵机相对于本机机头的方位以及入侵机的高度;Step 2: The TCAS device makes an S-mode query list to query the intruder with an S-mode transponder. Based on the analysis of the response message, the relative slant distance between the intruder and the local machine is obtained. The intruder is relative to the local machine. The orientation of the aircraft's nose and the height of the intruder;步骤3:将步骤1和步骤2中得到的两种信号源下的斜距、方位、高度进行对比,如果同时满足斜距差绝对值条件、方位差绝对值条件和高度差绝对值条件,则认为具备S模式应答机的入侵机为一个混合监视目标并且混合监视确认成功,能够用ADS-B信息源下的距离、高度、方位进行混合监视目标航迹的位置信息更新;Step 3: Compare the slant range, azimuth and height of the two signal sources obtained in step 1 and step 2. If the absolute value condition of slant range difference, absolute value condition of azimuth difference and absolute value condition of height difference are met at the same time, then It is considered that an intruder equipped with an S-mode transponder is a hybrid surveillance target and the hybrid surveillance confirmation is successful. The distance, altitude, and orientation under the ADS-B information source can be used to update the position information of the hybrid surveillance target track;所述混合监视目标航迹的位置信息更新,包括:The location information update of the hybrid surveillance target track includes:根据入侵机的威胁程度,TCAS设备对于入侵机的监视周期分为两类:m秒1次的监视周期和n秒1次的监视周期;n大于m;According to the threat level of the intruder, the monitoring cycle of the TCAS device for the intruder is divided into two categories: a monitoring cycle of once m seconds and a monitoring cycle of once n seconds; n is greater than m;TCAS设备对于装备有S模式应答机并且交叉链接能力字段为1的入侵机,每k秒按照步骤2和步骤3的处理流程进行一次确认;k大于n;For intruders equipped with Mode S transponders and with a cross-link capability field of 1, the TCAS device will confirm once every k seconds according to the processing procedures of steps 2 and 3; k is greater than n;对于监视周期为n秒1次并且混合监视确认成功的入侵机,在非主动询问期间,利用ADS-B信息源下的距离、高度、方位进行航迹的位置信息更新,在主动询问期间分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择差值最小的方位信息进行混合目标的位置信息更新;For an intruder with a monitoring period of n seconds and a successful hybrid monitoring confirmation, during the non-active inquiry period, the distance, altitude, and azimuth under the ADS-B information source are used to update the location information of the track, and during the active inquiry period, the There is a difference between the detected azimuth and the azimuth in the historical track, and the difference between the azimuth under the ADS-B information source and the azimuth in the historical track, and the azimuth information with the smallest difference is selected to update the position information of the hybrid target;对于监视周期为m秒1次并且混合监视确认成功的入侵机,每周期分别用探测得到的方位与历史航迹中的方位做差,以及ADS-B信息源下的方位与历史航迹中的方位做差,选择差值最小的方位信息进行混合目标的位置信息更新。For an intruder with a monitoring cycle of m seconds and a successful hybrid monitoring confirmation, the difference between the detected orientation and the orientation in the historical track is used in each cycle, and the orientation under the ADS-B information source is compared with the orientation in the historical track. The azimuth difference is made, and the azimuth information with the smallest difference is selected to update the position information of the mixed target.2.根据权利要求1所述的方法,其特征在于,所述步骤1包括:2. The method according to claim 1, characterized in that said step 1 includes:步骤11:接收入侵机的ADS-B报文,并在入侵机的ADS-B报文的基础上附上此时本机,即安装有TCAS设备的飞机,的经纬度、高度、真航向;Step 11: Receive the ADS-B message from the intruder, and attach the longitude, latitude, altitude, and true heading of the aircraft at this time, that is, the aircraft equipped with TCAS equipment, based on the ADS-B message of the intruder;步骤12:提取ADS-B报文中的S模式地址,与现存航迹数组中的S模式地址进行一一对比,得到本机和入侵机位置;Step 12: Extract the S-mode address in the ADS-B message and compare it one-to-one with the S-mode address in the existing track array to obtain the location of the local aircraft and the intruder;步骤13:基于本机和入侵机位置,得出入侵机和本机之间的斜距;Step 13: Based on the positions of the host machine and the intruder machine, obtain the slant distance between the intruder machine and the host machine;步骤14:判断入侵机的ADS-B信息是否可信;Step 14: Determine whether the ADS-B information of the intruder is trustworthy;步骤15:当入侵机的ADS-B信息可信时,计算得到入侵机相对于本机机头的方位以及入侵机的高度。Step 15: When the ADS-B information of the intruder is credible, calculate the orientation of the intruder relative to the nose of the own machine and the height of the intruder.3.根据权利要求2所述的方法,其特征在于,所述步骤12包括:3. The method according to claim 2, characterized in that said step 12 includes:步骤121:当收到第一条空中位置报文时,保存该空中位置报文至航迹数组中;Step 121: When receiving the first air position message, save the air position message into the track array;步骤122:当收到第二条空中位置报文时,将其与第一条空中位置报文对比判断是否属于一对奇偶报文;若不属于一对奇偶报文,则将第一条空中位置报文丢弃,将第二条空中位置报文更新为第一条空中位置报文,停止后续处理;若属于一对奇偶报文,则开始全局解码计算:解码失败时丢弃第二条空中位置报文,停止后续处理;解码成功时获得初始位置,将初始位置与本机位置进行范围检查;Step 122: When the second air position message is received, compare it with the first air position message to determine whether it belongs to a pair of parity messages; if it does not belong to a pair of parity messages, compare the first air position message The position message is discarded, the second air position message is updated to the first air position message, and subsequent processing is stopped; if it belongs to a pair of odd-even messages, global decoding calculation is started: the second air position message is discarded when decoding fails. message and stop subsequent processing; when the decoding is successful, the initial position is obtained, and the range of the initial position and the local position is checked;步骤123:当收到第三条空中位置报文,将其与步骤122中全局解码位置进行本地解码,将第三条空中位置报文对应的本地解码位置以及步骤11中存储的第三条空中位置报文中的本机经纬高信息,从WGS 84坐标系下转换到地心坐标系下。Step 123: When the third air position message is received, locally decode it with the global decoding position in step 122, and combine the local decoding position corresponding to the third air position message with the third air position stored in step 11. The local longitude, latitude and height information in the position message is converted from the WGS 84 coordinate system to the geocentric coordinate system.4.根据权利要求3所述的方法,其特征在于,所述将初始位置与本机位置进行范围检查,包括:4. The method according to claim 3, characterized in that the range check between the initial position and the local machine position includes:若超出预设有效范围,则丢弃第二条空中位置报文,停止后续处理;否则在有效范围内继续接收、处理后续报文。If it exceeds the preset valid range, the second air position message will be discarded and subsequent processing will stop; otherwise, subsequent messages will continue to be received and processed within the valid range.5.根据权利要求2所述的方法,其特征在于,所述步骤14包括:5. The method according to claim 2, characterized in that said step 14 includes:若入侵机和本机之间的相对速度小于预设速度,则认为入侵机的ADS-B信息可信,同时根据本周期和上周期本机的经纬度、高度,得到本机的绝对速度,当该绝对速度小于预设绝对速度时,则认为本机的ADS-B信息可信。If the relative speed between the intruder and the host is less than the preset speed, the ADS-B information of the intruder is considered credible. At the same time, the absolute speed of the host is obtained based on the longitude, latitude, and altitude of the host in this cycle and the previous cycle. When When the absolute speed is less than the preset absolute speed, the ADS-B information of the machine is considered credible.6.根据权利要求2所述的方法,其特征在于,所述步骤12之前,还包括:6. The method according to claim 2, characterized in that before step 12, it also includes:提取ADS-B报文的下行格式号,当下行格式号为17或者下行格式号为18并且代码字段为0,1,6时,对ADS-B报文中的S模式地址进行过滤,过滤原则为S模式地址不能为全0或者全1,也不能为本机的S模式地址;当类型字段位于[9,18]或者[20,22]区间时,则ADS-B报文为空中类型的报文。Extract the downstream format number of the ADS-B message. When the downstream format number is 17 or the downstream format number is 18 and the code field is 0, 1, 6, filter the S mode address in the ADS-B message. Filtering principles The S mode address cannot be all 0s or all 1s, nor can it be the S mode address of the local machine; when the type field is in the range [9, 18] or [20, 22], the ADS-B message is of air type. message.7.根据权利要求2所述的方法,其特征在于,所述步骤15包括:7. The method according to claim 2, characterized in that said step 15 includes:将利用反三角函数得出的入侵机相对本机的方位减去步骤11中存储的本机真航向,即得到入侵机相对于本机机头的方位;直接从空中位置报文中解析出入侵机的高度信息。Subtract the true heading of the own aircraft stored in step 11 from the orientation of the intruder relative to the own aircraft obtained using the inverse trigonometric function to obtain the orientation of the intruder relative to the nose of the own aircraft; directly parse the intruder from the air position message machine height information.8.根据权利要求1所述的方法,其特征在于,所述步骤2包括:8. The method of claim 1, wherein step 2 includes:本机中的TCAS设备制作S模式询问列表,TCAS设备发出格式为UF0的S模式询问以后接收下行格式为16的S模式应答报文,通过询问以及应答报文的时间差乘以光速计算得到探测条件下的入侵机与本机之间的相对斜距,通过振幅定向法或者相位定向法计算得到探测条件下的入侵机相对于本机机头的方位,通过下行格式为16的高度代码字段计算得到入侵机的高度。The TCAS device in the local machine makes an S-mode inquiry list. The TCAS device sends an S-mode inquiry in the format UF0 and then receives the downlink mode S response message in the format 16. The detection conditions are calculated by multiplying the time difference between the inquiry and response messages by the speed of light. The relative slant distance between the intruder and the own machine is calculated through the amplitude orientation method or the phase orientation method to obtain the orientation of the intruder relative to the nose of the own machine under detection conditions, and is calculated through the altitude code field with a downlink format of 16. The height of the intruder.9.根据权利要求1所述的方法,其特征在于,计算入侵机相对于本机的相对时间,用tau表示,tau=TCAS设备探测得到的入侵机相对于本机的斜距除以入侵机和本机之间的相对速度;9. The method according to claim 1, characterized in that the relative time of the intruder relative to the local machine is calculated, represented by tau, tau=the slant distance of the intruder detected by the TCAS device relative to the local machine divided by the intruder The relative speed between the machine and the machine;若tau>预设时间,则TCAS设备对于入侵机的监视周期为n秒1次,若tau<预设时间,则TCAS设备对于入侵机的监视周期为m秒1次。If tau > the preset time, the TCAS device monitors the intruder every n seconds. If tau < the preset time, the TCAS device monitors the intruder every m seconds.
CN202311115914.8A2023-08-312023-08-31 A method to improve TCAS target track quality based on hybrid surveillanceActiveCN116824925B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202311115914.8ACN116824925B (en)2023-08-312023-08-31 A method to improve TCAS target track quality based on hybrid surveillance

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202311115914.8ACN116824925B (en)2023-08-312023-08-31 A method to improve TCAS target track quality based on hybrid surveillance

Publications (2)

Publication NumberPublication Date
CN116824925A CN116824925A (en)2023-09-29
CN116824925Btrue CN116824925B (en)2023-11-03

Family

ID=88127929

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202311115914.8AActiveCN116824925B (en)2023-08-312023-08-31 A method to improve TCAS target track quality based on hybrid surveillance

Country Status (1)

CountryLink
CN (1)CN116824925B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2002008784A1 (en)*2000-07-202002-01-31Adsi, Inc.Hybrid surveillance device and method
WO2003044561A1 (en)*2001-11-202003-05-30United Parcel Service Of America, Inc.Systems and methods for correlation in an air traffic control system of interrogation-based intruder positional data and gps-based intruder positional data
EP1704549A1 (en)*2004-01-152006-09-27Honeywell International Inc.Integrated traffic surveillance apparatus
CN102364553A (en)*2011-10-212012-02-29广州航新航空科技股份有限公司Regional airspace management monitoring system based on traffic alert and collision avoidance system (TCAS)
CN102509475A (en)*2011-10-262012-06-20南京航空航天大学Air traffic control system and method for four-dimensional (4D)-trajectory-based operation
CN103617750A (en)*2013-12-052014-03-05中国航空无线电电子研究所Hybrid monitoring collision avoidance warning method and system for multiplex omni-directional antennas
CN103680217A (en)*2013-11-152014-03-26中国航空无线电电子研究所Mixed monitoring tracking method of airborne collision avoidance system
CN106251709A (en)*2015-01-072016-12-21江苏理工学院aircraft trajectory prediction method
CN108153980A (en)*2017-12-262018-06-12上海交通大学Synthesis display method based on ADS-B Yu TCAS data fusions
CN110491176A (en)*2019-07-012019-11-22四川九洲空管科技有限责任公司A kind of TCAS target combination surveillance implementation method
CN112083420A (en)*2020-09-112020-12-15中国航空工业集团公司雷华电子技术研究所Unmanned aerial vehicle collision avoidance method and device and unmanned aerial vehicle
CN112435506A (en)*2020-11-132021-03-02四川九洲空管科技有限责任公司Hybrid unmanned aerial vehicle surveys and dodges system
CN114002668A (en)*2020-07-282022-02-01泰勒斯公司 Secondary radar to improve air safety via ultra-long-range ADS-B detection
CN115862386A (en)*2022-11-112023-03-28中国航空工业集团公司西安飞行自动控制研究所 Airborne air traffic surveillance system and method with sounding and communication integration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7761196B2 (en)*2004-10-012010-07-20Honeywell International Inc.Methods and systems of determining bearing when ADS-B data is unavailable
FR3002066B1 (en)*2013-02-082015-02-20Thales Sa EXTENDED AND INTEGRATED SYSTEM OF SAFETY AND AERONAUTICAL MONITORING

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2002008784A1 (en)*2000-07-202002-01-31Adsi, Inc.Hybrid surveillance device and method
WO2003044561A1 (en)*2001-11-202003-05-30United Parcel Service Of America, Inc.Systems and methods for correlation in an air traffic control system of interrogation-based intruder positional data and gps-based intruder positional data
EP1704549A1 (en)*2004-01-152006-09-27Honeywell International Inc.Integrated traffic surveillance apparatus
CN102364553A (en)*2011-10-212012-02-29广州航新航空科技股份有限公司Regional airspace management monitoring system based on traffic alert and collision avoidance system (TCAS)
CN102509475A (en)*2011-10-262012-06-20南京航空航天大学Air traffic control system and method for four-dimensional (4D)-trajectory-based operation
CN103680217A (en)*2013-11-152014-03-26中国航空无线电电子研究所Mixed monitoring tracking method of airborne collision avoidance system
CN103617750A (en)*2013-12-052014-03-05中国航空无线电电子研究所Hybrid monitoring collision avoidance warning method and system for multiplex omni-directional antennas
CN106251709A (en)*2015-01-072016-12-21江苏理工学院aircraft trajectory prediction method
CN108153980A (en)*2017-12-262018-06-12上海交通大学Synthesis display method based on ADS-B Yu TCAS data fusions
CN110491176A (en)*2019-07-012019-11-22四川九洲空管科技有限责任公司A kind of TCAS target combination surveillance implementation method
CN114002668A (en)*2020-07-282022-02-01泰勒斯公司 Secondary radar to improve air safety via ultra-long-range ADS-B detection
CN112083420A (en)*2020-09-112020-12-15中国航空工业集团公司雷华电子技术研究所Unmanned aerial vehicle collision avoidance method and device and unmanned aerial vehicle
CN112435506A (en)*2020-11-132021-03-02四川九洲空管科技有限责任公司Hybrid unmanned aerial vehicle surveys and dodges system
CN115862386A (en)*2022-11-112023-03-28中国航空工业集团公司西安飞行自动控制研究所 Airborne air traffic surveillance system and method with sounding and communication integration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Data integrity augmentation by ADS-B SSR hybrid techniques;Paolo Mariano;《2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)》;4F1-1-4F1-10*
综合化防撞系统混合监视的设计与实现;李铜波;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》(第7期);C031-74*

Also Published As

Publication numberPublication date
CN116824925A (en)2023-09-29

Similar Documents

PublicationPublication DateTitle
EP2136222B1 (en)Validity check of vehicle position information
US6094169A (en)Multilateration auto-calibration and position error correction
CN109147398B (en)Target monitoring and tracking performance optimization method for airborne collision avoidance system
EP2603814B1 (en)Method for providing spoof detection
EP1912077B1 (en)Deployable passive broadband aircraft tracking
US7616149B2 (en)Methods and apparatus for radar time sensor
US7809496B2 (en)Error control in a traffic management system
US12061485B2 (en)Method and apparatus for ensuring aviation safety in the presence of ownship aircraft
US20040046687A1 (en)Surveillance system and method for aircraft approach and landing
US11867796B2 (en)Secondary radar improving aerial safety via very-long-range ADS-B detection
CN114120717A (en) An ADS-B Anti-collision Method Based on DO185B Standard
US5463398A (en)Method and apparatus for multiple reply rejection when decoding transponder replay signals
CN116824925B (en) A method to improve TCAS target track quality based on hybrid surveillance
CN118982935A (en) Optimal Track Processing Method for New Collision Avoidance System
CN110621067B (en) An ADS-B anti-interference and anti-deception multi-station system
US6766250B2 (en)System and method for inhibiting transponder replies
US20110001654A1 (en)Process and a device for detecting aircrafts circulating in an air space surrounding an airplane
US20230053158A1 (en)Avionics-free global aviation surveillance systems and processes
US11480671B1 (en)Mode A/C/S transponder positioning system and method for using the same
KR101899344B1 (en)System for monitoring moving object intrusion in airport anti-radiation zone

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp