Movatterモバイル変換


[0]ホーム

URL:


CN116800969A - Encoding and decoding methods, devices and equipment - Google Patents

Encoding and decoding methods, devices and equipment
Download PDF

Info

Publication number
CN116800969A
CN116800969ACN202210272443.0ACN202210272443ACN116800969ACN 116800969 ACN116800969 ACN 116800969ACN 202210272443 ACN202210272443 ACN 202210272443ACN 116800969 ACN116800969 ACN 116800969A
Authority
CN
China
Prior art keywords
precision
geometric information
information
geometric
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210272443.0A
Other languages
Chinese (zh)
Inventor
吕卓逸
邹文杰
张伟
杨付正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivo Mobile Communication Co Ltd
Original Assignee
Vivo Mobile Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivo Mobile Communication Co LtdfiledCriticalVivo Mobile Communication Co Ltd
Priority to CN202210272443.0ApriorityCriticalpatent/CN116800969A/en
Priority to PCT/CN2023/081641prioritypatent/WO2023174337A1/en
Publication of CN116800969ApublicationCriticalpatent/CN116800969A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本申请公开了一种编码、解码方法、装置及设备,涉及编解码技术领域。该编码方法,包括:编码端对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;所述编码端获取所述第一精度几何信息的第一几何图和占位图;所述编码端根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;所述编码端对所述第二几何图和所述占位图进行编码;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。

This application discloses a coding and decoding method, device and equipment, and relates to the technical field of coding and decoding. The encoding method includes: the encoding end quantifies the geometric information of the target three-dimensional grid, and obtains the first precision geometric information and the second precision geometric information; the encoding end obtains the first geometric map and the first precision geometric information of the first precision geometric information. placeholder map; the encoding end obtains a second geometric diagram including the second precision geometric information and the first precision geometric information based on the second precision geometric information and the first geometric diagram; the encoding end The second geometric map and the placeholder map are encoded; wherein the first precision geometric information is the quantized geometric information of the target three-dimensional grid, and the second precision geometric information is the quantized target three-dimensional grid. Geometric information lost in the process.

Description

Translated fromChinese
编码、解码方法、装置及设备Encoding and decoding methods, devices and equipment

技术领域Technical field

本申请属于编解码技术领域,具体涉及一种编码、解码方法、装置及设备。This application belongs to the field of coding and decoding technology, and specifically relates to a coding and decoding method, device and equipment.

背景技术Background technique

三维网格(Mesh)可以被认为是过去多年来最流行的三维模型的表示方法,其在许多应用程序中扮演着重要的角色。它的表示简便,因此被大量以硬件算法集成到电脑、平板电脑和智能手机的图形处理单元(GPU)中,专门用于渲染三维网格。Three-dimensional mesh (Mesh) can be considered the most popular representation method of three-dimensional models in the past many years, and it plays an important role in many applications. Its expression is simple, so it is widely integrated into the graphics processing unit (GPU) of computers, tablets and smartphones with hardware algorithms, specifically used to render three-dimensional meshes.

由于Mesh的顶点与点云都是空间中一组无规则分布的离散点集,具有相似的特点。因此,三维网格几何信息可以用点云压缩算法进行压缩。但相比于点云,三维网格的顶点具有空间分布更加稀疏,更加不均匀的特点。使用点云压缩算法来压缩三维网格模型的几何信息,压缩效率并不高。Since the vertices and point clouds of Mesh are both a set of randomly distributed discrete points in space, they have similar characteristics. Therefore, 3D mesh geometry information can be compressed using point cloud compression algorithms. However, compared with point clouds, the vertices of three-dimensional grids are spatially distributed more sparsely and unevenly. The point cloud compression algorithm is used to compress the geometric information of the three-dimensional mesh model, but the compression efficiency is not high.

发明内容Contents of the invention

本申请实施例提供一种编码、解码方法、装置及设备,能够解决现有技术的对于三维网格几何信息的压缩方式,存在压缩效率不高的问题。Embodiments of the present application provide an encoding and decoding method, device and equipment, which can solve the problem of low compression efficiency in the existing compression methods for three-dimensional grid geometric information.

第一方面,提供了一种编码方法,包括:The first aspect provides an encoding method, including:

编码端对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;The encoding end quantifies the geometric information of the target three-dimensional grid and obtains the first-precision geometric information and the second-precision geometric information;

所述编码端获取所述第一精度几何信息的第一几何图和占位图;The encoding end obtains the first geometric map and placeholder map of the first precision geometric information;

所述编码端根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The encoding end obtains a second geometric diagram including the second precision geometric information and the first precision geometric information based on the second precision geometric information and the first geometric diagram;

对所述第二几何图和所述占位图进行编码;Encode the second geometric diagram and the placeholder diagram;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

第二方面,提供了一种编码装置,包括:In a second aspect, an encoding device is provided, including:

量化模块,用于对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;The quantification module is used to quantify the geometric information of the target three-dimensional grid and obtain the first-precision geometric information and the second-precision geometric information;

第一获取模块,用于获取所述第一精度几何信息的第一几何图和占位图;A first acquisition module, configured to acquire the first geometric diagram and placeholder diagram of the first precision geometric information;

第二获取模块,用于根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;A second acquisition module, configured to acquire a second geometric diagram including the second precision geometric information and the first precision geometric information according to the second precision geometric information and the first geometric diagram;

编码模块,用于对所述第二几何图和所述占位图进行编码;An encoding module, used to encode the second geometric diagram and the placeholder diagram;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

第三方面,提供了一种解码方法,包括:The third aspect provides a decoding method, including:

解码端对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;The decoder decomposes the obtained code stream of the target three-dimensional grid, and obtains the placeholder map and the second geometric map containing the second-precision geometric information and the first-precision geometric information;

所述解码端根据所述第二几何图,获取第二精度几何信息以及第一几何图;The decoding end obtains second precision geometric information and the first geometric map according to the second geometric map;

所述解码端根据第一几何图和所述占位图,获取第一精度几何信息;The decoding end obtains first precision geometric information based on the first geometric diagram and the placeholder diagram;

所述解码端根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;The decoder performs inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

第四方面,提供了一种解码装置,包括:In the fourth aspect, a decoding device is provided, including:

第三获取模块,用于对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;The third acquisition module is used to decompose the acquired code stream of the target three-dimensional grid, and acquire the placeholder map and the second geometric map containing the second-precision geometric information and the first-precision geometric information;

第四获取模块,用于根据所述第二几何图,获取第二精度几何信息以及第一几何图;The fourth acquisition module is used to acquire the second precision geometric information and the first geometric figure according to the second geometric figure;

第五获取模块,用于根据第一几何图和所述占位图,获取第一精度几何信息;The fifth acquisition module is used to acquire the first precision geometric information according to the first geometric diagram and the placeholder diagram;

第六获取模块,用于根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;A sixth acquisition module, configured to perform inverse quantization according to the second precision geometric information and the first precision geometric information, and obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

第五方面,提供了一种编码设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。In a fifth aspect, a coding device is provided, including a processor and a memory. The memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, the first The steps of the method described in this aspect.

第六方面,提供了一种编码设备,包括处理器及通信接口,其中,所述处理器用于对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;获取所述第一精度几何信息的第一几何图和占位图;根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;对所述第二几何图和所述占位图进行编码;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。In a sixth aspect, an encoding device is provided, including a processor and a communication interface, wherein the processor is used to quantify the geometric information of the target three-dimensional grid and obtain first precision geometric information and second precision geometric information; obtain The first geometric diagram and placeholder diagram of the first precision geometric information; according to the second precision geometric information and the first geometric diagram, obtain a second geometry including the second precision geometric information and the first precision geometric information. Figure; encode the second geometric diagram and the placeholder diagram; wherein the first precision geometric information is the quantized geometric information of the target three-dimensional grid, and the second precision geometric information is the Geometric information lost during target 3D mesh quantization.

第七方面,提供了一种解码设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。In a seventh aspect, a decoding device is provided, including a processor and a memory. The memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, the third process is implemented. The steps of the method described in this aspect.

第八方面,提供了一种解码设备,包括处理器及通信接口,其中,所述处理器用于对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;根据所述第二几何图,获取第二精度几何信息以及第一几何图;根据第一几何图和所述占位图,获取第一精度几何信息;根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;In an eighth aspect, a decoding device is provided, including a processor and a communication interface, wherein the processor is used to decompose the obtained code stream of the target three-dimensional grid, obtain the placeholder map and the second precision geometric information and A second geometric diagram of the first precision geometric information; according to the second geometric diagram, obtain the second precision geometric information and the first geometric diagram; obtain the first precision geometric information according to the first geometric diagram and the placeholder map; Perform inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

第九方面,提供了一种通信系统,包括:编码设备和解码设备,所述编码设备可用于执行如第一方面所述的方法的步骤,所述解码设备可用于执行如第三方面所述的方法的步骤。In a ninth aspect, a communication system is provided, including: an encoding device and a decoding device. The encoding device can be used to perform the steps of the method described in the first aspect, and the decoding device can be used to perform the steps of the method described in the third aspect. steps of the method.

第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.

第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。In an eleventh aspect, a chip is provided. The chip includes a processor and a communication interface. The communication interface is coupled to the processor. The processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.

第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。In a twelfth aspect, a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect steps of the method.

在本申请实施例中,通过依据量化后得到的第二精度几何信息与第一精度几何信息的第一几何图获取包含第二精度几何信息和第一精度几何信息的第二几何图,能够利用第一精度几何信息的几何图来编码第二精度几何信息,以此提升对第二精度几何信息的编码效率,进而能够提升使用量化方案压缩几何信息的效率。In the embodiment of the present application, by obtaining the second geometric map including the second precision geometric information and the first precision geometric information based on the first geometric map of the second precision geometric information and the first precision geometric information obtained after quantization, it is possible to use The geometric map of the first-precision geometric information is used to encode the second-precision geometric information, thereby improving the coding efficiency of the second-precision geometric information, thereby improving the efficiency of compressing the geometric information using a quantization scheme.

附图说明Description of the drawings

图1是本申请实施例的编码方法的流程示意图;Figure 1 is a schematic flow chart of the encoding method according to the embodiment of the present application;

图2是raw patch示意图;Figure 2 is a schematic diagram of raw patch;

图3是基于网格的精细划分过程示意图;Figure 3 is a schematic diagram of the fine division process based on grid;

图4是Patch排列的八种方向示意图;Figure 4 is a schematic diagram of the eight directions of patch arrangement;

图5是按照低精度几何信息的位置来排布高精度几何信息对应的排列值后的几何图的示意图;Figure 5 is a schematic diagram of a geometric diagram after arranging the arrangement values corresponding to the high-precision geometric information according to the positions of the low-precision geometric information;

图6是按照水平方向向左平移像素紧密排布的分布来排布高精度排列值后的几何图的示意图;Figure 6 is a schematic diagram of the geometric diagram after arranging high-precision arrangement values according to the distribution of closely spaced pixels that is translated to the left in the horizontal direction;

图7是基于视频的三维网格几何信息编码框架示意图;Figure 7 is a schematic diagram of the video-based three-dimensional grid geometric information encoding framework;

图8是本申请实施例的编码装置的模块示意图;Figure 8 is a schematic module diagram of an encoding device according to an embodiment of the present application;

图9是本申请实施例的编码设备的结构示意图;Figure 9 is a schematic structural diagram of an encoding device according to an embodiment of the present application;

图10是本申请实施例的解码方法的流程示意图;Figure 10 is a schematic flow chart of the decoding method according to the embodiment of the present application;

图11是几何信息重建框图;Figure 11 is a block diagram of geometric information reconstruction;

图12是基于视频的三维网格几何信息解码框架示意图;Figure 12 is a schematic diagram of the video-based three-dimensional grid geometric information decoding framework;

图13是本申请实施例的解码装置的模块示意图;Figure 13 is a schematic module diagram of a decoding device according to an embodiment of the present application;

图14是本申请实施例的通信设备的结构示意图。Figure 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art fall within the scope of protection of this application.

本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。The terms "first", "second", etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and "second" are distinguished objects It is usually one type, and the number of objects is not limited. For example, the first object can be one or multiple. In addition, "and/or" in the description and claims indicates at least one of the connected objects, and the character "/" generally indicates that the related objects are in an "or" relationship.

值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long TermEvolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time DivisionMultiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。It is worth pointing out that the technology described in the embodiments of this application is not limited to Long Term Evolution (LTE)/LTE Evolution (LTE-Advanced, LTE-A) systems, and can also be used in other wireless communication systems, such as code division Multiple Access (Code Division Multiple Access, CDMA), Time Division Multiple Access (Time Division Multiple Access, TDMA), Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA), Orthogonal Frequency Division Multiple Access (OFDMA) , Single-carrier Frequency Division Multiple Access (SC-FDMA) and other systems. The terms "system" and "network" in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies. The following description describes a New Radio (NR) system for example purposes, and NR terminology is used in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6thgeneration Generation, 6G) communication system.

下面对与本申请相关的现有技术简要说明如下。The prior art related to this application is briefly described below.

近年来,随着多媒体技术的迅速发展,相关研究成果迅速产业化,并成为人们生活中不可或缺的重要组成部分。三维模型成为继音频、图像、视频之后的新一代数字化媒体。三维网格和点云是两种常用的三维模型表示方式。三维网格模型与传统的图像、视频等多媒体相比具有更强的交互性和逼真性的特点,使其在商业、制造业、建筑业、教育、医学、娱乐、艺术、军事等各个领域都得到了越来越广泛的应用。In recent years, with the rapid development of multimedia technology, related research results have been rapidly industrialized and become an indispensable and important part of people's lives. Three-dimensional models have become a new generation of digital media after audio, images, and videos. Three-dimensional mesh and point cloud are two commonly used three-dimensional model representation methods. Compared with traditional multimedia such as images and videos, 3D mesh models are more interactive and realistic, making them useful in various fields such as commerce, manufacturing, construction, education, medicine, entertainment, art, and military. has been increasingly widely used.

而随着人们对三维网格模型在视觉效果上越来越高的需求,以及许多更加成熟的三维扫描技术和三维建模软件的涌现,通过三维扫描设备或三维建模软件获取的三维网格模型的数据规模和复杂度也在急剧地增长着。因此,如何高效压缩三维网格数据是实现三维网格数据方便地传输、存储和处理的关键。With people's increasing demand for the visual effects of 3D mesh models, and the emergence of many more mature 3D scanning technologies and 3D modeling software, 3D mesh models obtained through 3D scanning equipment or 3D modeling software The size and complexity of data are also growing rapidly. Therefore, how to efficiently compress 3D mesh data is the key to realizing convenient transmission, storage and processing of 3D mesh data.

一个三维网格往往同时包含了拓扑信息、几何信息及属性信息三种主要信息。拓扑信息用于描述网格中顶点和面片等元素之间的连接关系;几何信息是网格中所有顶点的三维坐标;属性信息则记录了附着在网格上的其它信息,比如法向量、纹理坐标以及颜色等。虽然一些传统的通用的数据压缩方法能够减少一定的三维网格数据量,但是由于三维网格数据的特殊性,直接将这些压缩方法用于压缩三维网格数据往往不能获得理想的效果。因此,对三维网格数据的压缩面临着新的挑战。在三维网格的数据中,几何数据往往比拓扑数据需要占用更多的存储空间,对几何数据进行高效压缩将对减少三维网格数据的存储空间具有极为重要的意义。因此,三维网格几何信息的压缩成为了人们的研究重点。A three-dimensional mesh often contains three main types of information: topological information, geometric information and attribute information. Topological information is used to describe the connection relationship between elements such as vertices and patches in the mesh; geometric information is the three-dimensional coordinates of all vertices in the mesh; attribute information records other information attached to the mesh, such as normal vectors, Texture coordinates and colors, etc. Although some traditional general data compression methods can reduce a certain amount of 3D grid data, due to the particularity of 3D grid data, directly using these compression methods to compress 3D grid data often cannot achieve ideal results. Therefore, the compression of three-dimensional mesh data faces new challenges. Among three-dimensional grid data, geometric data often takes up more storage space than topological data. Efficient compression of geometric data will be of extremely important significance in reducing the storage space of three-dimensional grid data. Therefore, the compression of three-dimensional mesh geometric information has become a research focus.

三维网格几何信息压缩算法可以使用点云的三维几何信息压缩算法。近年来点云压缩的国际标准主要有两种,分别是V-PCC(Video-based Point Cloud Compression,基于视频的点云压缩)和G-PCC(Geometry-based Point Cloud Compression,基于几何的点云压缩)。The 3D mesh geometric information compression algorithm can use the 3D geometric information compression algorithm of point cloud. In recent years, there are two main international standards for point cloud compression, namely V-PCC (Video-based Point Cloud Compression, video-based point cloud compression) and G-PCC (Geometry-based Point Cloud Compression, geometry-based point cloud compression). compression).

V-PCC的主要思路是将点云的几何和属性信息投影成二维视频,利用已有的视频编码技术对二维视频进行压缩,从而达到压缩点云的目的。V-PCC的几何编码是通过将几何信息投影成占位视频和几何视频,利用视频编码器分别编码这两路视频来实现的。The main idea of V-PCC is to project the geometric and attribute information of the point cloud into a two-dimensional video, and use existing video coding technology to compress the two-dimensional video to achieve the purpose of compressing the point cloud. The geometric coding of V-PCC is achieved by projecting geometric information into placeholder video and geometric video, and using a video encoder to encode the two videos separately.

V-PCC几何信息编码的过程主要包括:首先生成三维片(3D patch),patch是指点云中投影平面相同且连通的顶点集合。目前生成3D patch的方法是,利用近邻点估计每个顶点的法向量,根据每个点的法向量和预设平面的法向量,计算每个顶点的投影平面,将连通的具有相同投影平面顶点组成一个patch。然后,将3D patch投影到2D平面上形成2Dpatch,并将2D patch排列在一张二维图像上,这个过程称为片打包(patch packing)。为了使patch排列的更加紧密从而提高压缩性能,目前的排列方法有:优先级排列、时域一致排列、全局patch分配等。然后,生成占位图和几何图。占位图是表示二维图像中顶点占位信息的图像,占位图中有顶点投影的位置值为1,其余位置值为0。按照一定规则将patch排列在二维图像中,就生成了占位图。几何图中存储的是每个顶点到投影平面的距离。利用顶点的三维坐标、顶点的投影平面以及占位图可以直接计算出每个顶点的深度信息,从而生成几何图。对于投影位置重复的顶点,将除第一个投影顶点外的顶点几何坐标排列进raw patch里放入几何图或者单独进行编码。为了提高压缩效率,对几何图像执行图像填充过程。图像填充方法“推拉”背景填充算法、基于稀疏线性模型(Sparse Linear Model)的填充方法、谐波背景填充(Harmonic Background Filling)等方法。图像填充后,得到最终的几何图,使用现有的视频编码器压缩占位图和几何图,得到视频码流。最后,将占位视频码流、几何视频码流以及包含patch信息的子码流合成为最终的总码流。The process of V-PCC geometric information encoding mainly includes: first, generating a three-dimensional patch (3D patch). A patch refers to a set of vertices with the same and connected projection plane in the point cloud. The current method of generating 3D patches is to use nearby points to estimate the normal vector of each vertex, calculate the projection plane of each vertex based on the normal vector of each point and the normal vector of the preset plane, and connect the connected vertices with the same projection plane Make up a patch. Then, the 3D patch is projected onto a 2D plane to form a 2D patch, and the 2D patches are arranged on a two-dimensional image. This process is called patch packing. In order to arrange patches more closely to improve compression performance, current arrangement methods include: priority arrangement, time domain consistent arrangement, global patch allocation, etc. Then, placeholder images and geometric images are generated. A placeholder map is an image that represents the placeholder information of vertices in a two-dimensional image. The position value of the vertex projection in the placeholder map is 1, and the other position values are 0. By arranging patches in a two-dimensional image according to certain rules, a placeholder image is generated. What is stored in the geometric graph is the distance from each vertex to the projection plane. The depth information of each vertex can be directly calculated using the three-dimensional coordinates of the vertex, the projection plane of the vertex and the placeholder map, thereby generating a geometric map. For vertices with repeated projection positions, arrange the geometric coordinates of the vertices except the first projected vertex into the raw patch and put it into a geometric diagram or encode it separately. To improve compression efficiency, an image filling process is performed on the geometric image. Image filling methods include "push-pull" background filling algorithm, filling method based on sparse linear model (Sparse Linear Model), harmonic background filling (Harmonic Background Filling) and other methods. After the image is filled, the final geometric map is obtained. The existing video encoder is used to compress the placeholder map and geometric map to obtain the video code stream. Finally, the placeholder video code stream, the geometric video code stream, and the sub-code stream containing patch information are synthesized into the final total code stream.

下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的编码、解码方法、装置及设备进行详细地说明。The encoding and decoding methods, devices and equipment provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings through some embodiments and their application scenarios.

如图1所示,本申请实施例提供一种编码方法,包括:As shown in Figure 1, this embodiment of the present application provides an encoding method, including:

步骤101,编码端对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;Step 101: The encoding end quantifies the geometric information of the target three-dimensional grid and obtains the first precision geometric information and the second precision geometric information;

需要说明的是,本申请中所说的目标三维网格可以理解为任意视频帧对应的三维网格,该目标三维网格的几何信息可以理解为是三维网格中顶点的坐标,该坐标通常指的是三维坐标。It should be noted that the target three-dimensional grid mentioned in this application can be understood as the three-dimensional grid corresponding to any video frame. The geometric information of the target three-dimensional grid can be understood as the coordinates of the vertices in the three-dimensional grid. These coordinates are usually Refers to three-dimensional coordinates.

需要说明的是,该第一精度几何信息可以理解为低精度几何信息,即低精度几何信息指的是目标三维网格量化后的几何信息,即量化后的目标三维网格包括的各顶点三维坐标信息。该第二精度几何信息可以理解为高精度几何信息,高精度几何信息可以看作是量化过程中丢失的几何信息,即丢失的三维坐标信息。It should be noted that the first precision geometric information can be understood as low-precision geometric information, that is, the low-precision geometric information refers to the quantized geometric information of the target three-dimensional grid, that is, the three-dimensional coordinates of each vertex included in the quantized target three-dimensional grid. coordinate information. The second precision geometric information can be understood as high-precision geometric information, and the high-precision geometric information can be regarded as geometric information lost in the quantization process, that is, lost three-dimensional coordinate information.

需要说明的是,通过对目标三维网格的几何信息进行量化,使得量化后三维网格的顶点间距减少,进而减少投影后二维顶点的间距,以此提高压缩效率。It should be noted that by quantizing the geometric information of the target three-dimensional mesh, the vertex spacing of the quantized three-dimensional mesh is reduced, thereby reducing the spacing of the two-dimensional vertices after projection, thereby improving compression efficiency.

步骤102,所述编码端获取所述第一精度几何信息的第一几何图和占位图;Step 102: The encoding end obtains the first geometric diagram and placeholder diagram of the first precision geometric information;

这里需要说明的是,该第一几何图可以理解为是低精度的几何图。It should be noted here that the first geometric diagram can be understood as a low-precision geometric diagram.

步骤103,所述编码端根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;Step 103: The encoding end obtains a second geometric diagram including the second precision geometric information and the first precision geometric information based on the second precision geometric information and the first geometric diagram;

步骤104,所述编码端对所述第二几何图和所述占位图进行编码;Step 104: The encoding end encodes the second geometric image and the placeholder image;

需要说明的是,在对目标三维网格的几何信息进行量化得到第一精度几何信息和第二精度几何信息后,获取包含第二精度几何信息与第一精度几何信息的几何图,然后再进行编码,得到相应的子码流;上述方案,通过对三维网格的几何信息进行量化,使得量化后三维网格的顶点的间距减少,进而缩短投影后二维顶点的间距,以此可以提高三维网格的几何信息的压缩效率。此外,由于将第二精度几何信息包含在第二几何图中进行编码,信息量较低,从而使得三维网格的几何信息的压缩效率较高。It should be noted that after the geometric information of the target three-dimensional mesh is quantified to obtain the first precision geometric information and the second precision geometric information, a geometric map containing the second precision geometric information and the first precision geometric information is obtained, and then the Encoding to obtain the corresponding sub-code stream; the above scheme, by quantizing the geometric information of the three-dimensional grid, reduces the distance between the vertices of the three-dimensional grid after quantization, thereby shortening the distance between the two-dimensional vertices after projection, which can improve the three-dimensional The compression efficiency of the geometric information of the mesh. In addition, since the second-precision geometric information is included in the second geometric map for encoding, the amount of information is low, so that the compression efficiency of the geometric information of the three-dimensional grid is high.

可选地,上述的步骤101的具体实现方式为:Optionally, the specific implementation method of the above step 101 is:

所述编码端根据每一分量的量化参数,对所述目标三维网格中的每一顶点进行量化,获取第一精度几何信息;The encoding end quantizes each vertex in the target three-dimensional grid according to the quantization parameter of each component to obtain first precision geometric information;

所述编码端根据所述第一精度几何信息以及所述每一分量的量化参数,获取第二精度几何信息。The encoding end obtains second precision geometric information based on the first precision geometric information and the quantization parameter of each component.

需要说明的是,每一分量的量化参数可以根据使用需求灵活设置;量化参数主要包括X向、Y向和Z向三个分量上的量化参数。It should be noted that the quantization parameters of each component can be flexibly set according to usage requirements; the quantization parameters mainly include quantization parameters on the three components of X, Y and Z.

通常情况下,对于精度要求不高的量化,在量化后可以只保留低精度几何信息;而对于精度要求较高的量化,在量化时不仅要记录低精度几何信息,也需要记录高精度几何信息,以此在解码时能够实现精准的网格恢复。Normally, for quantization that does not require high accuracy, only low-precision geometric information can be retained after quantization; while for quantization that requires higher accuracy, not only low-precision geometric information must be recorded during quantization, but also high-precision geometric information. , in order to achieve accurate grid recovery during decoding.

例如,假设某顶点的三维坐标为(x,y,z),量化参数为(QPx,QPy,QPz),低精度几何信息(xl,yl,zl)和高精度几何信息(xh,yh,zh)的计算过程如公式一至公式六所示:For example, assume that the three-dimensional coordinates of a vertex are (x, y, z), the quantization parameters are (QPx , QPy , QPz ), low-precision geometric information (xl , yl , zl ) and high-precision geometric information The calculation process of (xh ,yh ,zh ) is as shown in Formula 1 to Formula 6:

公式一:xl=f1(x,QPx);Formula 1: xl =f1 (x,QPx );

公式二:yl=f1(y,QPy);Formula 2: yl =f1 (y,QPy );

公式三:zl=f1(z,QPz);Formula 3: zl =f1 (z,QPz );

公式四:xh=f2(x,xl,QPx);Formula 4: xh =f2 (x, xl ,QPx );

公式五:yh=f2(y,yl,QPy);Formula 5: yh =f2 (y, yl ,QPy );

公式六:zh=f2(z,zl,QPz);Formula 6: zh = f2 (z,zl ,QPz );

其中,公式一至公式三中的f1函数是量化函数,量化函数的输入为某一维度的坐标和该维度的量化参数,输出为量化后的坐标值;公式四至公式六中的f2函数输入为原始坐标值、量化后的坐标值以及该维度的量化参数,输出为高精度的坐标值。Among them, the f1 function in Formula 1 to Formula 3 is a quantization function. The input of the quantization function is the coordinates of a certain dimension and the quantization parameter of that dimension, and the output is the quantized coordinate value; the f2 function input in Formula 4 to Formula 6 is It is the original coordinate value, the quantized coordinate value and the quantized parameter of this dimension, and the output is a high-precision coordinate value.

f1函数可以有多种计算方式,比较通用的一种计算方式如公式七至公式九所示,使用每个维度的原始坐标除以该维度的量化参数来计算。其中,/为除法运算符,对除法运算的结果可以采用不同的方式进行舍入,如四舍五入、向下取整、向上取整等。f2函数也存在多种计算方式,与公式七至公式九相对应的实现方式如公式十至公式十二所示,其中,*为乘法运算符。The f1 function can be calculated in a variety of ways. A more common calculation method is as shown in Formula 7 to Formula 9, which is calculated by dividing the original coordinates of each dimension by the quantization parameter of that dimension. Among them, / is the division operator, and the result of the division operation can be rounded in different ways, such as rounding, rounding down, rounding up, etc. There are also multiple calculation methods for the f2 function. The implementation methods corresponding to Formula 7 to Formula 9 are as shown in Formula 10 to Formula 12, where * is the multiplication operator.

公式七:xl=x/QPxFormula 7: xl =x/QPx ;

公式八:yl=y/QPyFormula 8: yl =y/QPy ;

公式九:zl=z/QPzFormula 9: zl =z/QPz ;

公式十:xh=x-xl*QPxFormula 10: xh =xxl *QPx ;

公式十一:yh=y-yl*QPyFormula 11: yh =yyl *QPy ;

公式十二:zh=z-zl*QPzFormula 12: zh =zzl *QPz ;

当量化参数为2的整数次幂时,f1函数和f2函数可以使用位运算实现,如公式十三至公式十八:When the quantization parameter is an integer power of 2, the f1 function and f2 function can be implemented using bit operations, such as Formula 13 to Formula 18:

公式十三:xl=x>>log2QPxFormula 13: xl =x>>log2 QPx ;

公式十四:yl=y>>log2QPyFormula 14: yl =y>>log2 QPy ;

公式十五:zl=z>>log2QPzFormula 15: zl =z>>log2 QPz ;

公式十六:xh=x&(QPx-1);Formula 16: xh =x&(QPx -1);

公式十七:yh=y&(QPy-1);Formula 17: yh =y&(QPy -1);

公式十八:zh=z&(QPz-1);Formula 18: zh =z&(QPz -1);

值得注意的是,无论f1函数和f2函数采用哪种计算方式,量化参数QPx、QPy和QPz都可以灵活设置。首先,不同分量的量化参数并不一定相等,可以利用不同分量的量化参数的相关性,建立QPx、QPy和QPz之间的关系,为不同分量设置不同的量化参数;其次,不同空间区域的量化参数也不一定相等,可以根据局部区域顶点分布的稀疏程度自适应的设置量化参数。It is worth noting that no matter which calculation method is used for the f1 function and f2 function, the quantization parameters QPx , QPy and QPz can be set flexibly. First, the quantization parameters of different components are not necessarily equal. You can use the correlation of the quantization parameters of different components to establish the relationship between QPx , QPy and QPz , and set different quantization parameters for different components; secondly, different spaces The quantization parameters of the regions are not necessarily equal. The quantization parameters can be adaptively set according to the sparsity of the vertex distribution in the local region.

需要说明的是,高精度几何信息包含的是三维网格的轮廓的细节信息。为了进一步提高压缩效率,可以对高精度几何信息(xh,yh,zh)进一步处理。在三维网格模型中,不同区域的顶点高精度几何信息的重要程度是不同的。对于顶点分布稀疏的区域,高精度几何信息的失真并不会对三维网格的视觉效果产生较大影响。这时为了提高压缩效率,可以选择对高精度几何信息进一步量化,或者只保留部分点的高精度几何信息。It should be noted that the high-precision geometric information contains detailed information of the outline of the three-dimensional mesh. In order to further improve the compression efficiency, the high-precision geometric information (xh , yh , zh ) can be further processed. In a three-dimensional mesh model, the importance of high-precision geometric information of vertices in different areas is different. For areas where vertices are sparsely distributed, the distortion of high-precision geometric information will not have a major impact on the visual effect of the three-dimensional mesh. At this time, in order to improve the compression efficiency, you can choose to further quantify the high-precision geometric information, or only retain the high-precision geometric information of some points.

可选地,所述对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息的情况下,所述方法,还包括:Optionally, when the geometric information of the target three-dimensional mesh is quantified and the first precision geometric information and the second precision geometric information are obtained, the method further includes:

基于对目标三维网格的几何信息进行量化,获取补充点的信息;Based on the quantification of the geometric information of the target three-dimensional grid, the information of the supplementary points is obtained;

需要说明的是,补充点的信息是指量化过程中产生的需要额外处理的点的信息,也就是说,所述补充点为量化过程中产生的需要额外处理的点,例如,坐标位置出现重叠的重复点等,通过对重复点进行处理,可以使得在量化中坐标位置重叠的顶点在反量化后恢复到原来的位置。It should be noted that the information of supplementary points refers to the information of points that require additional processing generated during the quantification process. That is to say, the supplementary points are points that require additional processing generated during the quantification process. For example, the coordinate positions overlap. By processing the repeated points, the vertices whose coordinate positions overlap during quantization can be restored to their original positions after dequantization.

可选地,该补充点的信息,包括以下至少一项:Optionally, the supplementary point information includes at least one of the following:

A11、补充点对应的第一精度几何信息中顶点的索引;A11. Supplement the index of the vertex in the first precision geometric information corresponding to the point;

需要说明的是,通过标识索引,便可知道量化后的网格中,哪些点标识的是量化前的三维网格中的多个点,即量化前的三维网格中的多个点在量化后重合到了一起,通过顶点的索引便可确定补充点的低精度几何信息。It should be noted that by identifying the index, you can know which points in the quantized grid identify multiple points in the three-dimensional grid before quantification, that is, multiple points in the three-dimensional grid before quantization are After they are coincident together, the low-precision geometric information of the supplementary points can be determined through the index of the vertices.

A12、补充点的第三精度几何信息;A12. Supplement the third precision geometric information of the point;

需要说明的是,该第三精度几何信息可以理解为补充点的低精度几何信息,即补充点被量化后的三维坐标信息。It should be noted that the third-precision geometric information can be understood as low-precision geometric information of the supplementary points, that is, the quantized three-dimensional coordinate information of the supplementary points.

A13、补充点的第四精度几何信息;A13. Supplement the fourth precision geometric information of the point;

需要说明的是,该第四精度几何信息可以理解为补充点的高精度几何信息,即补充点在被量化过程中丢失的三维坐标信息。It should be noted that the fourth precision geometric information can be understood as the high-precision geometric information of the supplementary point, that is, the three-dimensional coordinate information of the supplementary point that is lost during the quantization process.

这里需要说明的是,在具体使用时,通过A11和A13或者通过A12和A13便可确定得到量化后隐藏的点有哪些。What needs to be noted here is that in specific use, you can determine which points are hidden after quantification through A11 and A13 or A12 and A13.

具体地,补充点的信息的具体获取方式为:所述编码端根据所述目标三维网格的几何信息和所述第一精度几何信息,确定补充点的信息。Specifically, the specific method for obtaining the information of the supplementary points is: the encoding end determines the information of the supplementary points based on the geometric information of the target three-dimensional grid and the first precision geometric information.

也就是说,在得到所有顶点的低精度几何信息后,将低精度几何信息重复的点作为补充点,单独进行编码。补充点的几何信息同样可以分为低精度几何信息和高精度几何信息两部分,根据应用对压缩失真的要求,可以选择保留所有补充点或者只保留其中一部分补充点。对补充点的高精度几何信息,也可以进行进一步量化,或者只保留部分点的高精度几何信息。That is to say, after obtaining the low-precision geometric information of all vertices, the points with repeated low-precision geometric information are used as supplementary points and encoded separately. The geometric information of supplementary points can also be divided into two parts: low-precision geometric information and high-precision geometric information. According to the application's requirements for compression distortion, you can choose to retain all supplementary points or only a part of them. The high-precision geometric information of the supplementary points can also be further quantified, or the high-precision geometric information of only some points can be retained.

可选地,补充点的几何图的获取方式为:Optionally, the geometric diagram of the supplementary point is obtained by:

所述编码端将所述补充点的第三精度几何信息排列成第一原始片;The encoding end arranges the third precision geometric information of the supplementary points into a first original slice;

所述编码端按照与所述第一原始片相同的排列顺序,将所述补充点的第四精度几何信息排列成第二原始片;The encoding end arranges the fourth precision geometric information of the supplementary points into a second original slice in the same order as the first original slice;

所述编码端对所述第一原始片和所述第二原始片进行压缩,获取补充点的几何图。The encoding end compresses the first original slice and the second original slice to obtain a geometric map of the supplementary points.

需要说明的是,本申请实施例中对于补充点的几何信息分为的低精度部分和高精度部分分别进行编码。首先,按照任意顺序将补充点的低精度几何信息排列成补充点低精度raw patch;其中,第一步先获取顶点排列顺序,逐行从左向右扫描低精度几何图,将每个顶点的扫描顺序作为raw patch中顶点的排列顺序。第二步,生成raw patch。raw patch是将顶点的三维坐标按照如图2所示的方式逐行排列,形成的矩形patch。按照第一步中得到的顶点排列顺序,将顶点的低精度几何信息依次排列,得到低精度几何信息raw patch;然后,按照与补充点低精度raw patch相同的顺序将高精度几何信息排列成补充点高精度rawpatch;最后,对补充点低精度raw patch和高精度raw patch进行压缩,可以采用多种压缩方法。其中,一种方法是对raw patch中的值进行游程编码、熵编码等方式编码,另一种方法是,将补充点低精度raw patch和补充点高精度raw patch加入低精度的几何图中的空白区域,得到补充点的几何图;最后利用视频编码器编码几何图,得到补充点的几何图子码流。It should be noted that in the embodiment of the present application, the low-precision part and the high-precision part of the geometric information of the supplementary points are encoded separately. First, arrange the low-precision geometric information of the supplementary points into a low-precision raw patch of supplementary points in any order; among them, the first step is to obtain the vertex arrangement order, scan the low-precision geometric map line by line from left to right, and add the The scan order is used as the order of vertices in the raw patch. The second step is to generate raw patch. A raw patch is a rectangular patch formed by arranging the three-dimensional coordinates of vertices row by row as shown in Figure 2. According to the vertex arrangement order obtained in the first step, the low-precision geometric information of the vertices is arranged in order to obtain the low-precision geometric information raw patch; then, the high-precision geometric information is arranged into supplementary points in the same order as the supplementary point low-precision raw patch. Point high-precision rawpatch; finally, to compress the supplementary point low-precision raw patch and high-precision raw patch, a variety of compression methods can be used. Among them, one method is to encode the values in the raw patch by run-length coding, entropy coding, etc., and the other method is to add the supplementary point low-precision raw patch and the supplementary point high-precision raw patch to the low-precision geometric map. In the blank area, the geometric map of the supplementary points is obtained; finally, the geometric map is encoded by the video encoder to obtain the geometric map sub-stream of the supplementary points.

可选地,步骤102的具体实现过程,包括:Optionally, the specific implementation process of step 102 includes:

步骤1021,所述编码端对所述第一精度几何信息进行三维片划分;Step 1021: The encoding end divides the first precision geometric information into three-dimensional slices;

需要说明的是,此种情况下,主要是将低精度几何信息进行片(Patch)划分,得到多个三维片;此步骤的具体实现方式为:编码端确定第一精度几何信息中包含的每个顶点的投影平面;编码端根据所述投影平面对所述第一精度几何信息中所包含的顶点进行片划分;编码端对所述第一精度几何信息中所包含的顶点进行聚类,得到划分后的每一片。也就是说,对于Patch划分的过程主要包括:首先估计每个顶点的法向量,选择平面法向量与顶点法向量之间的夹角最小的候选投影平面作为该顶点的投影平面;然后,根据投影平面对顶点进行初始划分,将投影平面相同且连通的顶点组成patch;最后,使用精细划分算法优化聚类结果,得到最终的三维片(3D patch)。It should be noted that in this case, the main step is to divide the low-precision geometric information into patches to obtain multiple three-dimensional patches; the specific implementation method of this step is: the encoding end determines each element contained in the first-precision geometric information. The projection plane of the vertices; the coding end performs slice division on the vertices contained in the first precision geometric information according to the projection plane; the coding end clusters the vertices contained in the first precision geometric information, and obtains Each piece after division. That is to say, the process of patch division mainly includes: first estimating the normal vector of each vertex, selecting the candidate projection plane with the smallest angle between the plane normal vector and the vertex normal vector as the projection plane of the vertex; then, according to the projection The plane initially divides the vertices, and vertices with the same and connected projection planes are composed into patches; finally, a fine division algorithm is used to optimize the clustering results and obtain the final three-dimensional patch (3D patch).

下面对由第一精度几何信息得到三维片的过程的具体实现进行详细说明如下。The specific implementation of the process of obtaining the three-dimensional slice from the first-precision geometric information is described in detail below.

首先估计每个点的法向量。切线平面和它对应的法线是根据每个点的最近的邻居顶点m在一个预定义的搜索距离定义的。K-D树用于分离数据,并在点pi附近找到相邻点,该集合的重心用于定义法线。重心c的计算方法如下:First estimate the normal vector of each point. The tangent plane and its corresponding normal are defined based on each point's nearest neighbor vertex m at a predefined search distance. KD tree is used to separate data and find adjacent points near point pi , the center of gravity of the set Used to define normals. The calculation method of the center of gravity c is as follows:

公式十九:Formula 19:

使用特征分解法估计顶点法向量,计算过程公式二十所示:Use the eigendecomposition method to estimate the vertex normal vector, and the calculation process formula is shown in Formula 20:

公式二十:Formula 20:

在初始划分阶段,初步选择每个顶点的投影平面。设顶点法向量的估计值为候选投影平面的法向量为/>选择法向量方向与顶点法向量方向最接近的平面作为该顶点的投影平面,平面选择的计算过程如公式二十一所示:In the initial partitioning stage, the projection plane of each vertex is initially selected. Let the estimated value of the vertex normal vector be The normal vector of the candidate projection plane is/> Select the plane whose normal vector direction is closest to the vertex normal vector direction as the projection plane of the vertex. The calculation process of plane selection is as shown in Equation 21:

公式二十一:Formula 21:

精细划分过程可以采用基于网格的算法来降低算法的时间复杂度,基于网格的精细划分算法流程如图3所示,具体包括:The fine division process can use a grid-based algorithm to reduce the time complexity of the algorithm. The grid-based fine division algorithm flow is shown in Figure 3, which specifically includes:

先设置循环次数(numlter)为0,判断循环次数是否小于最大循环次数(需要说明的是,该最大循环次数可以根据使用需求设置),若小于则执行下述过程:First set the number of cycles (numlter) to 0 and determine whether the number of cycles is less than the maximum number of cycles (it should be noted that the maximum number of cycles can be set according to usage requirements). If it is less than the maximum number of cycles, perform the following process:

步骤S301,将(x,y,z)几何坐标空间划分为体素。Step S301: Divide the (x, y, z) geometric coordinate space into voxels.

需要说明的是,此处的几何坐标空间指的是由量化得到的第一精度几何信息所构成的几何坐标空间。例如,对于使用体素大小为8的10位Mesh,每个坐标上的体素数量将是1024/8=128,此坐标空间中的体素总数将是128×128×128。It should be noted that the geometric coordinate space here refers to the geometric coordinate space composed of the first-precision geometric information obtained by quantization. For example, for a 10-bit mesh using a voxel size of 8, the number of voxels at each coordinate would be 1024/8 = 128, and the total number of voxels in this coordinate space would be 128×128×128.

步骤S302,查找填充体素,填充体素是指网格中包含至少有一个点的体素。Step S302: Find filled voxels. Filled voxels refer to voxels that contain at least one point in the grid.

步骤S303,计算每个填充体素在每个投影平面上的平滑分数,记为voxScoreSmooth,体素在某投影平面的体素平滑分数是通过初始分割过程聚集到该投影平面的点的数量。Step S303, calculate the smoothing score of each filled voxel on each projection plane, recorded as voxScoreSmooth. The voxel smoothing score of the voxel on a certain projection plane is the number of points gathered to the projection plane through the initial segmentation process.

步骤S304,使用KD-Tree分区查找近邻填充体素,记为nnFilledVoxels,即每个填充体素(在搜索半径内和/或限制到最大数量的相邻体素)的最近的填充体素。Step S304, use KD-Tree partitioning to find neighboring filled voxels, recorded as nnFilledVoxels, that is, the nearest filled voxels of each filled voxel (within the search radius and/or limited to the maximum number of adjacent voxels).

步骤S305,使用近邻填充体素在每个投影平面的体素平滑分数,计算每个填充体素的平滑分数(scoreSmooth),计算过程如公式二十二所示:Step S305, use the voxel smoothing score of the nearest neighbor filled voxel in each projection plane to calculate the smoothing score (scoreSmooth) of each filled voxel. The calculation process is as shown in Equation 22:

公式二十二:Formula twenty-two:

其中,p是投影平面的索引,v是近邻填充体素的索引。一个体素中所有点的scoreSmooth是相同的。where p is the index of the projection plane and v is the index of the nearest neighbor filling voxel. The scoreSmooth of all points in a voxel is the same.

步骤S306,使用顶点的法向量与候选投影平面的法向量计算法向分数,记为scoreNormal,计算过程如公式二十三所示:Step S306: Calculate the normal score using the normal vector of the vertex and the normal vector of the candidate projection plane, recorded as scoreNormal. The calculation process is as shown in Formula 23:

公式二十三:scoreNormal[i][p]=normal[i]·orientation[p];Formula 23: scoreNormal[i][p]=normal[i]·orientation[p];

其中,p是投影平面的索引,i是顶点的索引。where p is the index of the projection plane and i is the index of the vertex.

步骤S307,使用scoreSmooth和scoreNormal计算每个体素在各个投影平面上的最终分数,计算过程如公式二十四所示:Step S307, use scoreSmooth and scoreNormal to calculate the final score of each voxel on each projection plane. The calculation process is as shown in Equation 24:

公式二十四:Formula twenty-four:

其中,i为顶点索引,p为投影平面的索引,v是顶点i所在的体素索引。Among them, i is the vertex index, p is the index of the projection plane, and v is the voxel index where vertex i is located.

步骤S308,使用步骤307中的分数对顶点进行聚类,得到精细划分的patch。Step S308: Use the scores in step 307 to cluster the vertices to obtain finely divided patches.

多次迭代上述过程,直到得到较为准确的patch。Iterate the above process multiple times until a more accurate patch is obtained.

步骤1022,所述编码端将划分的三维片进行二维投影,获取二维片;Step 1022: The encoding end performs two-dimensional projection on the divided three-dimensional slice to obtain the two-dimensional slice;

需要说的是,此过程是将3D patch投影到二维平面得到二维片(2D patch)。What needs to be said is that this process is to project the 3D patch onto a two-dimensional plane to obtain a two-dimensional patch (2D patch).

步骤1023,所述编码端将所述二维片进行打包,获取二维图像信息;Step 1023: The encoding end packages the two-dimensional slices to obtain two-dimensional image information;

需要说明的是,此步骤实现的是片打包(Patch packing),Patch packing的目的是将2D patch排列在一张二维图像上,Patch packing的基本原则是将patch不重叠的排列在二维图像上或者将patch的无像素部分进行部分重叠的排列在二维图像上,通过优先级排列、时域一致排列等算法,使patch排列的更加紧密,且具有时域一致性,提高编码性能。It should be noted that this step implements patch packing. The purpose of patch packing is to arrange 2D patches on a two-dimensional image. The basic principle of patch packing is to arrange patches on a two-dimensional image without overlapping or The pixel-free parts of the patch are partially overlapped and arranged on the two-dimensional image. Through priority arrangement, time domain consistent arrangement and other algorithms, the patches are arranged more closely and have time domain consistency to improve coding performance.

假设,二维图像的分辨率为WxH,定义patch排列的最小块大小为T,它指定了放置在这个2D网格上的不同补丁之间的最小距离。Assume that the resolution of the 2D image is WxH, and the minimum block size that defines the patch arrangement is T, which specifies the minimum distance between different patches placed on this 2D grid.

首先,patch按照不重叠的原则插入放置在2D网格上。每个patch占用由整数个T×T块组成的区域。此外,相邻patch之间要求至少有一个T×T块的距离。当没有足够的空间放置下一个patch时,图像的高度将变成原来的2倍,然后继续放置patch。First, patches are inserted and placed on the 2D grid according to the non-overlapping principle. Each patch occupies an area consisting of an integer number of T×T blocks. In addition, the distance between adjacent patches is required to be at least one T×T block. When there is not enough space to place the next patch, the height of the image will be doubled and the patch will continue to be placed.

为了使patch排列的更加紧密,patch可以选择多种不同的排列方向。例如,可以采用八种不同的排列方向,如图4所示,包括0度、180度、90度、270度以及前四种方向的镜像。In order to arrange the patches more closely, the patches can choose a variety of different arrangement directions. For example, eight different arrangement directions can be adopted, as shown in Figure 4, including 0 degrees, 180 degrees, 90 degrees, 270 degrees, and mirror images of the first four directions.

为了获得更好的适应视频编码器帧间预测的特性,采用一种具有时域一致性的Patch排列方法。在一个GOF(Group of frame)中,第一帧的所有patch按照从大到小的顺序依次排列。对于GOF中的其他帧,使用时域一致性算法调整patch的排列顺序。In order to obtain better adaptability to inter-frame prediction characteristics of video encoders, a patch arrangement method with temporal consistency is adopted. In a GOF (Group of frame), all patches of the first frame are arranged in order from largest to smallest. For other frames in the GOF, the temporal consistency algorithm is used to adjust the order of patches.

这里还需要说明的是,在得到二维图像信息后便能根据获取二维图像信息过程中的信息得到patch信息,之后便可以进行片信息的编码,获取片信息子码流。It should also be noted here that after obtaining the two-dimensional image information, the patch information can be obtained based on the information in the process of obtaining the two-dimensional image information, and then the patch information can be encoded to obtain the patch information sub-stream.

这里需要说明的是,在进行二维图像信息过程中需要记录patch划分的信息、patch投影平面的信息以及patch packing位置的信息,所以patch信息记录的是获取二维图像过程中各步骤操作的信息,即patch信息包括:patch划分的信息、patch投影平面的信息以及patch packing位置的信息。What needs to be explained here is that in the process of obtaining two-dimensional image information, it is necessary to record the information of patch division, the information of patch projection plane and the information of patch packing position, so the patch information records the information of each step operation in the process of obtaining two-dimensional image. , that is, the patch information includes: patch division information, patch projection plane information, and patch packing position information.

步骤1024,所述编码端根据所述二维图像信息,获取第一几何图和占位图。Step 1024: The encoding end obtains the first geometric map and placeholder map based on the two-dimensional image information.

需要说的是,对于获取占位图的过程,主要为:利用patch packing得到的patch排列信息,将二维图像中存在顶点的位置设为1,其余位置设为0,得到占位图。对于获取第一几何图的过程,主要为:在通过投影得到2D patch的过程中,保存了每个顶点到投影平面的距离,这个距离称为深度,几何图压缩部分就是将2D patch中每个顶点的深度值,排列到该顶点在占位图中的位置上,得到第一几何图。What needs to be said is that the process of obtaining the placeholder map is mainly: using the patch arrangement information obtained by patch packing, setting the position of the vertex in the two-dimensional image to 1, and setting the remaining positions to 0 to obtain the placeholder map. The process of obtaining the first geometric map is mainly as follows: in the process of obtaining the 2D patch through projection, the distance from each vertex to the projection plane is saved. This distance is called depth. The geometric map compression part is to compress each of the 2D patches in the 2D patch. The depth value of the vertex is arranged to the position of the vertex in the placeholder map, and the first geometric map is obtained.

可选地,所述步骤103的实现方式为:Optionally, the implementation of step 103 is:

所述编码端对所述第二精度几何信息中的每个顶点的三个维度的坐标值进行排列,获取每个顶点对应的一个排列值;The encoding end arranges the three-dimensional coordinate values of each vertex in the second precision geometric information, and obtains an arrangement value corresponding to each vertex;

所述编码端将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The encoding end arranges the arrangement values corresponding to each vertex in the first area, and obtains a second geometric map containing second precision geometric information and first precision geometric information;

其中,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the first area is the area remaining after excluding the first precision geometric information projection distribution area from the two-dimensional projection distribution area of the target three-dimensional grid's geometric information.

需要说明的是,通过将高精度几何信息的三维坐标三个分量的编码改为一个分量的编码,可以提高视频编码器的编码效率。It should be noted that by changing the coding of three components of the three-dimensional coordinates of high-precision geometric information to the coding of one component, the coding efficiency of the video encoder can be improved.

需要说的是,对于高精度几何信息,先将高精度几何信息逐顶点地把xyz三个维度的值按预设排列规则(需要说明的是,该预设排列规则可以为预先约定的,通常情况下,编码端在进行编码时将该预设排列规则编进码流中,解码端在进行码流解码时,获取到该预设排列规则,以利用该预设排列规则进行解码)进行排列,如xyz、yzx或zxy的顺序排布为一个值(排列值)。再在量化后低精度几何信息投影分布缩小后省出的区域(即第一区域)内放置每个顶点的排列值,以此来将低精度顶点对应的高精度排列值排布在低精度几何图中的高精度几何信息区域,得到包含低精度几何信息和高精度几何信息的几何图。What needs to be said is that for high-precision geometric information, the values of the three dimensions of xyz are first arranged vertex by vertex according to the preset arrangement rules (it should be noted that the preset arrangement rules can be pre-agreed, usually In this case, the encoding end encodes the preset arrangement rule into the code stream when encoding, and the decoding end obtains the preset arrangement rule when decoding the code stream, so as to use the preset arrangement rule for decoding) for arrangement. , such as the sequence of xyz, yzx or zxy is arranged as a value (arrangement value). Then, the arrangement value of each vertex is placed in the area saved after the projection distribution of the quantized low-precision geometric information is reduced (i.e., the first area), so that the high-precision arrangement value corresponding to the low-precision vertex is arranged in the low-precision geometry. In the high-precision geometric information area in the graph, a geometric graph containing low-precision geometric information and high-precision geometric information is obtained.

可选地,所述将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图的实现方式可以采用如下一项:Optionally, the implementation of arranging the arrangement values corresponding to each vertex in the first area and obtaining the second geometric graph containing the second precision geometric information and the first precision geometric information can be implemented by one of the following:

B11、所述编码端在第一区域将每个顶点对应的排列值的像素按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行排布,获取包含第二精度几何信息和第一精度几何信息的第二几何图;B11. The encoding end arranges the pixels of the arrangement value corresponding to each vertex in the first area according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information, and obtains the second precision geometric information. and a second geometric map of the first precision geometric information;

需要说明的是,投影点指的是将三维网格的顶点进行二维片投影后,顶点在二维图像中中对应的点。二维图像中的一个像素对应一个顶点的投影点。在占位图中投影点所对应的像素值通常为1,在几何图中投影点所对应的深度值通常大于0。It should be noted that the projection point refers to the point corresponding to the vertex in the two-dimensional image after projecting the vertex of the three-dimensional grid into a two-dimensional slice. A pixel in a two-dimensional image corresponds to the projection point of a vertex. The pixel value corresponding to the projected point in the placeholder map is usually 1, and the depth value corresponding to the projected point in the geometric map is usually greater than 0.

需要说明的是,第一精度几何信息中顶点对应的投影点的像素分布可以为占位图和/或几何图中低精度顶点对应的投影点的像素分布,此种情况下,是利用占位图和/或几何图中低精度顶点对应的投影点的像素位置来对应排布高精度几何信息中的顶点的排列值。It should be noted that the pixel distribution of the projection points corresponding to the vertices in the first precision geometric information can be the pixel distribution of the projection points corresponding to the low-precision vertices in the placeholder map and/or the geometry map. In this case, the placeholder is used. The pixel positions of the projection points corresponding to the low-precision vertices in the graph and/or geometric diagram correspond to the arrangement values of the vertices in the high-precision geometric information.

也就是说,此种方式下第一精度几何信息是如何分布的,第二精度几何信息中的顶点的排列值在第一区域按照同样的分布进行排列。即在量化后低精度几何信息投影分布缩小后省出的区域内按照低精度几何信息的二维投影分布,将低精度顶点对应的高精度排列值排布在低精度几何图中的高精度几何信息区域,得到还包含高精度几何信息的几何图。如图5所示,为按照低精度几何信息的位置来排布高精度几何信息对应的排列值后的几何图的示意图,高精度几何信息对应的排列值在图5中分布在图像的下半部分。That is to say, how the first-precision geometric information is distributed in this way, and the arrangement values of the vertices in the second-precision geometric information are arranged according to the same distribution in the first area. That is, in the area saved after the projection distribution of low-precision geometric information is reduced after quantization, according to the two-dimensional projection distribution of low-precision geometric information, the high-precision arrangement values corresponding to low-precision vertices are arranged in the high-precision geometry in the low-precision geometric map. information area to obtain a geometric map that also contains high-precision geometric information. As shown in Figure 5, it is a schematic diagram of the geometric diagram after arranging the permutation values corresponding to the high-precision geometric information according to the position of the low-precision geometric information. The permutation values corresponding to the high-precision geometric information are distributed in the lower half of the image in Figure 5. part.

B12、所述编码端在第一区域按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行所述第二精度几何信息中的每个顶点对应的投影点的像素排布,并将像素进行平移处理,将顶点的排列值排列在经平移处理后的第一区域中的与所述顶点对应的投影点的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图;B12. The encoding end arranges the pixels of the projection points corresponding to each vertex in the second precision geometric information in the first area according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information. , and perform translation processing on the pixels, arrange the arrangement values of the vertices at the pixel positions of the projection points corresponding to the vertices in the first area after translation processing, and obtain the second precision geometric information and the first precision geometric information. The second geometric figure;

需要说明的是,此种方式是将第二精度几何信息中的顶点的排列值在水平方向或垂直方向进行紧密排布,即在量化后低精度几何信息投影分布缩小后省出的区域内水平方向或垂直方向平移紧密排布的分布,将低精度顶点对应的高精度排列值排布在低精度几何图中的高精度几何信息区域,得到还包含高精度几何信息的几何图。如图6所示,为按照水平方向向左平移像素紧密排布的分布来排布高精度排列值后的几何图的示意图,高精度几何信息对应的排列值在图6中分布在图像的下半部分。It should be noted that this method is to closely arrange the arrangement values of the vertices in the second precision geometric information in the horizontal or vertical direction, that is, in the area saved after the projection distribution of the low-precision geometric information is reduced after quantization, the horizontal Translate the closely arranged distribution in the direction or vertical direction, arrange the high-precision arrangement values corresponding to the low-precision vertices in the high-precision geometric information area in the low-precision geometric map, and obtain a geometric map that also contains high-precision geometric information. As shown in Figure 6, it is a schematic diagram of the geometric image after arranging the high-precision arrangement values according to the distribution of closely spaced pixels in the horizontal direction. The arrangement values corresponding to the high-precision geometric information are distributed at the bottom of the image in Figure 6. half part.

这里还需要说明的是,可选地,此种实现方式下的具体实现过程为:It should also be noted here that, optionally, the specific implementation process under this implementation method is:

所述编码端对所述第二精度几何信息中的顶点对应的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的像素的位置索引重新进行行内或列内的编号;The encoding end scans the pixels of the projection points corresponding to the vertices in the second precision geometric information along the first direction row by row or column by column, and re-scans the position index of the pixels in each row or column within the row or column. number within;

所述编码端按照扫描顺序,在第一区域将所述第二精度几何信息中的每一顶点对应的排列值排列在所述顶点对应的投影点的像素的位置索引指定的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图;According to the scanning order, the encoding end arranges the arrangement value corresponding to each vertex in the second precision geometric information in the first area at the pixel position specified by the position index of the pixel of the projection point corresponding to the vertex, and obtains the The second precision geometric information and the second geometric map of the first precision geometric information;

其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.

需要说明的是,通常情况下,第二精度几何信息中的顶点对应的投影点的像素之间并不是紧密相邻的,而是有一定的间隔,本申请实施例中所说的扫描重新编号即将同一行或同一列中存在间距的像素以像素相邻的方式重新进行编号,例如,在某一行中,对应存在5个像素,由左向右其编号分别为1、3、5、7、8,在经过由左向右的扫描后,重新对这5个像素进行编号,则重新编号后,这5个像素由左向右的新编号为1、2、3、4、5。It should be noted that, under normal circumstances, the pixels of the projection points corresponding to the vertices in the second precision geometric information are not closely adjacent to each other, but have a certain interval. The scan renumbering mentioned in the embodiment of the present application That is, pixels with gaps in the same row or column are renumbered in a pixel-adjacent manner. For example, in a certain row, there are 5 pixels, and their numbers from left to right are 1, 3, 5, 7, 8. After scanning from left to right, renumber the five pixels. After renumbering, the new numbers of the five pixels from left to right are 1, 2, 3, 4, and 5.

需要说明的是,此种实现方式是先将第二精度几何信息中的顶点对应的投影点的像素进行行或列的扫描,重新进行编号,当进行的是水平方向的扫描时,是按照水平方向逐行进行扫描,对每行中的顶点对应的投影点的像素位置重新进行行内的位置索引的编号,当进行的是垂直方向的扫描时,是按照垂直方向逐列进行扫描,对每列中的顶点对应的投影点的像素位置重新进行列内的位置索引的编号;通过将第二精度几何信息中的顶点对应的投影点的像素按照水平或者垂直方向进行平移,并将顶点的排列值排列到该顶点对应的投影点的像素位置,得到像素排列紧密的几何图,最后利用视频编码器对包含高精度几何信息和低精度几何信息的几何图进行压缩,得到几何图子码流。It should be noted that this implementation method is to first scan the pixels of the projection points corresponding to the vertices in the second precision geometric information in rows or columns, and renumber them. When scanning in the horizontal direction, the pixels are scanned according to the horizontal direction. Scan row by row in the direction, and re-number the position index within the row for the pixel position of the projection point corresponding to the vertex in each row. When scanning in the vertical direction, scan column by column in the vertical direction, and scan each column column by column. The pixel position of the projection point corresponding to the vertex in the column is re-numbered by the position index in the column; by translating the pixels of the projection point corresponding to the vertex in the second precision geometric information in the horizontal or vertical direction, and the arrangement value of the vertex Arrange the pixel positions of the projection points corresponding to the vertices to obtain a geometric map with closely arranged pixels. Finally, use a video encoder to compress the geometric map containing high-precision geometric information and low-precision geometric information to obtain a geometric map sub-stream.

需要说明的是,通过对三维坐标三个分量的编码改为一个分量的编码,且经过紧密排布后可以提高视频编码器的编码效率,从总体上提高对高精度几何信息的编码效率。It should be noted that by changing the encoding of three components of three-dimensional coordinates to the encoding of one component, and closely arranged, the encoding efficiency of the video encoder can be improved, and the encoding efficiency of high-precision geometric information can be improved overall.

综上可知,对于编码端而言,首先对三维网格进行量化,由此可能会得到低精度的几何信息、高精度的几何信息以及补充点的信息。对于低精度几何信息的编码,可以使用投影的方法生成占位图和低精度几何图,通过视频编码器对其进行编码。本申请中特别地提出一种对高精度几何信息的表示和编码方法。对于高精度几何信息编码,先将高精度几何信息逐顶点地把xyz三个维度的值按预设排列规则排布为一个值。再在量化后低精度几何信息投影分布缩小后省出的区域内按照低精度几何信息的二维投影分布或水平方向(或垂直方向)平移紧密排布的分布,来将低精度顶点对应的高精度排列值排布在低精度几何图中的高精度几何信息区域。对于补充点的几何信息,分为低精度部分和高精度部分,可以单独编码成一路码流,也可以将低精度部分和高精度部分采用raw patch的方式排列在低精度几何图中。最后,使用视频编码器对占位图、包含高精度几何信息的低精度几何图进行编码。对于解码端而言,使用视频解码器解码得到占位图、包含高精度几何信息的低精度几何图,可以使用占位图和包含高精度几何信息的低精度几何图中的低精度几何信息重构低精度的三维网格,在利用低精度几何图中的高精度几何信息(排列值)将低精度的三维网格重构成高精度的三维网格。To sum up, it can be seen that for the encoding end, the three-dimensional grid is first quantized, from which low-precision geometric information, high-precision geometric information and supplementary point information may be obtained. For encoding low-precision geometric information, the projection method can be used to generate placeholder images and low-precision geometric images, which are encoded through a video encoder. This application specifically proposes a method for representing and encoding high-precision geometric information. For high-precision geometric information encoding, the high-precision geometric information is first arranged vertex by vertex into one value according to the preset arrangement rules in the xyz three dimensions. Then, in the area saved after the projection distribution of the low-precision geometric information is reduced after quantization, the closely arranged distribution is translated according to the two-dimensional projection distribution of the low-precision geometric information or in the horizontal direction (or vertical direction) to convert the high-precision vertices corresponding to the low-precision vertices. Precision arrangement values are arranged in high-precision geometric information areas in low-precision geometry maps. The geometric information of supplementary points is divided into low-precision parts and high-precision parts, which can be separately encoded into a code stream, or the low-precision parts and high-precision parts can be arranged in a low-precision geometric map using raw patches. Finally, a video encoder is used to encode placeholder images, low-precision geometric maps containing high-precision geometric information. For the decoder, the video decoder is used to decode the placeholder image and the low-precision geometric image containing high-precision geometric information. The low-precision geometric information in the placeholder image and the low-precision geometric image containing high-precision geometric information can be used to reconstruct the placeholder image. Construct a low-precision three-dimensional grid, and use the high-precision geometric information (arrangement values) in the low-precision geometric map to reconstruct the low-precision three-dimensional grid into a high-precision three-dimensional grid.

本申请实施例的基于视频的三维网格几何信息编码框架如图7所示,总体编码流程为:首先,在量化之前可以选择是否对三维网格进行抽样简化;然后,对三维网格进行量化,由此可能会产生低精度几何信息、高精度几何信息和补充点信息三部分;对于低精度几何信息,采用投影的方式进行patch划分、patch排列生成patch序列压缩信息(patch的划分信息)、占位图和低精度几何图;对于存在的高精度几何信息可以先将高精度几何信息逐顶点地把xyz三个维度的值排布为一个值。再在量化后低精度几何信息投影分布缩小后省出的区域内按照低精度几何信息的二维投影分布或水平方向(或垂直方向)平移紧密排布的分布,来将低精度顶点对应的高精度排列值排布在低精度几何图中的高精度几何信息区域;对于可能存在的补充点,可以将补充点的几何信息分为低精度部分和高精度部分,分别进行raw patch排列,单独编码成一路码流,或者将raw patch加入几何图中;最后,编码patch序列压缩信息、占位图、几何图,并将多路子码流混流,得到最终输出码流。The video-based three-dimensional mesh geometric information encoding framework of the embodiment of the present application is shown in Figure 7. The overall encoding process is: first, you can choose whether to sample and simplify the three-dimensional mesh before quantization; then, quantify the three-dimensional mesh , which may produce three parts: low-precision geometric information, high-precision geometric information and supplementary point information; for low-precision geometric information, projection is used to divide patches, and patch arrangement generates patch sequence compression information (patch division information), Placement map and low-precision geometric map; for the existing high-precision geometric information, the high-precision geometric information can be arranged into one value in the xyz three dimensions vertex by vertex. Then, in the area saved after the projection distribution of the low-precision geometric information is reduced after quantization, the closely arranged distribution is translated according to the two-dimensional projection distribution of the low-precision geometric information or in the horizontal direction (or vertical direction) to convert the high-precision vertices corresponding to the low-precision vertices. The precision arrangement values are arranged in the high-precision geometric information area in the low-precision geometric map; for possible supplementary points, the geometric information of the supplementary points can be divided into low-precision parts and high-precision parts, and are arranged in raw patches and encoded separately. into one code stream, or add the raw patch to the geometric map; finally, encode the patch sequence to compress the information, placeholder map, and geometric map, and mix the multiple sub-streams to obtain the final output code stream.

需要说明的是,本申请给出了如何进行三维网格的几何信息进行编码的实现方式,通过将三维网格的几何信息进行量化,对量化得到的高精度几何信息的三维坐标值三个分量的编码改为一个分量的编码,并按照低精度几何图位置进行排布,可以提高视频编码器对高精度几何信息的压缩效率;另外,对高精度几何图进行紧密排布,也可以提高视频编码器对高精度几何信息的压缩效率;通过上述方案,能够进一步提高使用量化方案压缩几何信息的效率。It should be noted that this application provides an implementation method of encoding the geometric information of a three-dimensional grid. By quantifying the geometric information of the three-dimensional grid, the three components of the three-dimensional coordinate value of the quantified high-precision geometric information are The encoding is changed to a component encoding and arranged according to the position of the low-precision geometric map, which can improve the compression efficiency of the video encoder for high-precision geometric information; in addition, the tight arrangement of the high-precision geometric map can also improve the video The encoder's compression efficiency for high-precision geometric information; through the above scheme, the efficiency of compressing geometric information using quantization schemes can be further improved.

本申请实施例提供的编码方法,执行主体可以为编码装置。本申请实施例中以编码装置执行编码方法为例,说明本申请实施例提供的编码装置。For the encoding method provided by the embodiment of the present application, the execution subject may be an encoding device. In the embodiment of the present application, the encoding device performing the encoding method is taken as an example to illustrate the encoding device provided by the embodiment of the present application.

如图8所示,本申请实施例提供一种编码装置800,包括:As shown in Figure 8, this embodiment of the present application provides an encoding device 800, which includes:

量化模块801,用于对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;Quantization module 801 is used to quantify the geometric information of the target three-dimensional grid and obtain first-precision geometric information and second-precision geometric information;

第一获取模块802,用于获取所述第一精度几何信息的第一几何图和占位图;The first acquisition module 802 is used to acquire the first geometric diagram and placeholder diagram of the first precision geometric information;

第二获取模块803,用于根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The second acquisition module 803 is configured to acquire a second geometric diagram containing the second precision geometric information and the first precision geometric information according to the second precision geometric information and the first geometric diagram;

编码模块804,用于对所述第二几何图和所述占位图进行编码;Encoding module 804, used to encode the second geometric image and the placeholder image;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

可选地,所述第二获取模块803,包括:Optionally, the second acquisition module 803 includes:

第一获取单元,用于对所述第二精度几何信息中的每个顶点的三个维度的坐标值进行排列,获取每个顶点对应的一个排列值;A first acquisition unit configured to arrange the coordinate values in three dimensions of each vertex in the second precision geometric information and obtain an arrangement value corresponding to each vertex;

第二获取单元,用于将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The second acquisition unit is used to arrange the arrangement values corresponding to each vertex in the first area, and acquire the second geometric map containing the second precision geometric information and the first precision geometric information;

其中,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the first area is the area remaining after excluding the first precision geometric information projection distribution area from the two-dimensional projection distribution area of the target three-dimensional grid's geometric information.

可选地,所述第二获取单元,用于实现以下一项:Optionally, the second acquisition unit is used to implement one of the following:

在第一区域将每个顶点对应的排列值的像素按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行排布,获取包含第二精度几何信息和第一精度几何信息的第二几何图;Arrange the pixels of the arrangement value corresponding to each vertex in the first area according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information, and obtain the second precision geometric information and the first precision geometric information. The second geometric figure;

在第一区域按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行所述第二精度几何信息中的每个顶点对应的投影点的像素排布,并将像素进行平移处理,将顶点的排列值排列在经平移处理后的第一区域中的与所述顶点对应的投影点的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图。In the first area, the pixels of the projection points corresponding to each vertex in the second precision geometric information are arranged according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information, and the pixels are translated. Processing: arranging the arrangement values of the vertices at the pixel positions of the projection points corresponding to the vertices in the first area after translation processing, and obtaining a second geometric map containing the second precision geometric information and the first precision geometric information.

可选地,所述将像素进行平移处理,将顶点的排列值排列在经平移处理后的第一区域中的与所述顶点对应的投影点的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图的实现方式,为:Optionally, the pixels are translated, the arrangement values of the vertices are arranged at the pixel positions of the projection points corresponding to the vertices in the first area after translation processing, and the second precision geometric information and the second precision are obtained. The implementation method of the second geometric graph of one-precision geometric information is:

对所述第二精度几何信息中的顶点对应的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的像素的位置索引重新进行行内或列内的编号;Scan the pixels of the projection points corresponding to the vertices in the second precision geometric information along the first direction row by row or column by column, and re-number the position index of the pixels in each row or column within the row or column;

按照扫描顺序,在第一区域将所述第二精度几何信息中的每一顶点对应的排列值排列在所述顶点对应的投影点的像素的位置索引指定的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图;According to the scanning order, the arrangement value corresponding to each vertex in the second precision geometric information is arranged in the first area at the pixel position specified by the position index of the pixel of the projection point corresponding to the vertex, and the second precision geometry is obtained. information and a second geometric map of the first precision geometric information;

其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.

可选地,所述第一获取模块802,包括:Optionally, the first acquisition module 802 includes:

划分单元,用于对所述第一精度几何信息进行三维片划分;A dividing unit, used to divide the first precision geometric information into three-dimensional slices;

第三获取单元,用于将划分的三维片进行二维投影,获取二维片;The third acquisition unit is used to perform two-dimensional projection on the divided three-dimensional slices to obtain the two-dimensional slices;

第四获取单元,用于将所述二维片进行打包,获取二维图像信息;The fourth acquisition unit is used to package the two-dimensional slices and acquire two-dimensional image information;

第五获取单元,用于根据所述二维图像信息,获取第一几何图和占位图。The fifth acquisition unit is used to acquire the first geometric map and placeholder map according to the two-dimensional image information.

可选地,在所述第四获取单元将所述二维片进行打包,获取二维图像信息之后,还包括:Optionally, after the fourth acquisition unit packages the two-dimensional slices and acquires the two-dimensional image information, it also includes:

第六获取单元,用于根据获取二维图像信息过程中的信息,获取片信息;The sixth acquisition unit is used to acquire slice information based on the information in the process of acquiring two-dimensional image information;

第七获取单元,用于对所述片信息进行编码,获取片信息子码流。The seventh acquisition unit is used to encode the slice information and obtain the slice information sub-stream.

可选地,所述装置,还包括:Optionally, the device also includes:

第三获取模块,用于基于对目标三维网格的几何信息进行量化,获取补充点的信息;The third acquisition module is used to obtain supplementary point information based on quantification of the geometric information of the target three-dimensional grid;

其中,所述补充点的信息为量化过程中产生的需要额外处理的点的信息。Wherein, the information of the supplementary points is the information of points generated during the quantification process that require additional processing.

可选地,所述第三获取模块,用于:Optionally, the third acquisition module is used for:

根据所述目标三维网格的几何信息和所述第一精度几何信息,确定补充点的信息。Information on supplementary points is determined based on the geometric information of the target three-dimensional grid and the first precision geometric information.

可选地,所述补充点的信息,包括以下至少一项:Optionally, the supplementary point information includes at least one of the following:

补充点对应的第一精度几何信息中顶点的索引;The index of the vertex in the first precision geometric information corresponding to the supplementary point;

补充点的第三精度几何信息,所述第三精度几何信息为补充点被量化后的三维坐标信息;Third-precision geometric information of the supplementary point, where the third-precision geometric information is the quantified three-dimensional coordinate information of the supplementary point;

补充点的第四精度几何信息,所述第四精度几何信息为补充点在被量化过程中丢失的三维坐标信息。The fourth precision geometric information of the supplementary point is the three-dimensional coordinate information lost during the quantization process of the supplementary point.

可选地,所述量化模块801,包括:Optionally, the quantization module 801 includes:

第八获取单元,用于根据每一分量的量化参数,对所述目标三维网格中的每一顶点进行量化,获取第一精度几何信息;The eighth acquisition unit is used to quantize each vertex in the target three-dimensional grid according to the quantization parameter of each component, and obtain the first precision geometric information;

第九获取单元,用于根据所述第一精度几何信息以及所述每一分量的量化参数,获取第二精度几何信息。A ninth acquisition unit is configured to acquire second-precision geometric information based on the first-precision geometric information and the quantized parameters of each component.

该装置实施例与上述编码方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该装置实施例中,且能达到相同的技术效果。This device embodiment corresponds to the above-mentioned encoding method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this device embodiment, and can achieve the same technical effect.

本申请实施例还提供了一种编码设备,包括处理器及通信接口,其中,所述处理器用于对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;获取所述第一精度几何信息的第一几何图和占位图;根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;对所述第二几何图和所述占位图进行编码;Embodiments of the present application also provide an encoding device, including a processor and a communication interface, wherein the processor is used to quantify the geometric information of the target three-dimensional grid and obtain the first precision geometric information and the second precision geometric information; Obtain the first geometric diagram and placeholder diagram of the first precision geometric information; obtain the second precision geometric information including the second precision geometric information and the first precision geometric information according to the second precision geometric information and the first geometric diagram. Geometric diagram; encoding the second geometric diagram and the placeholder diagram;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

具体地,本申请实施例还提供了一种编码设备,如图9所示,该编码设备900包括:处理器901、网络接口902和存储器903。其中,网络接口902例如为通用公共无线接口(common public radio interface,CPRI)。Specifically, this embodiment of the present application also provides an encoding device. As shown in Figure 9 , the encoding device 900 includes: a processor 901, a network interface 902, and a memory 903. The network interface 902 is, for example, a common public radio interface (CPRI).

具体地,本申请实施例的编码设备900还包括:存储在存储器903上并可在处理器901上运行的指令或程序,处理器901调用存储器903中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the encoding device 900 in the embodiment of the present application also includes: instructions or programs stored in the memory 903 and executable on the processor 901. The processor 901 calls the instructions or programs in the memory 903 to execute the modules shown in Figure 8 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.

如图10所示,本申请实施例还提供一种解码方法,包括:As shown in Figure 10, this embodiment of the present application also provides a decoding method, including:

步骤1001,解码端对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;Step 1001: The decoder decomposes the obtained code stream of the target three-dimensional grid, and obtains a placeholder map and a second geometric map containing second-precision geometric information and first-precision geometric information;

步骤1002,所述解码端根据所述第二几何图,获取第二精度几何信息以及第一几何图;Step 1002: The decoder obtains the second precision geometric information and the first geometric map according to the second geometric map;

步骤1003,所述解码端根据第一几何图和所述占位图,获取第一精度几何信息;Step 1003: The decoder obtains first precision geometric information based on the first geometric map and the placeholder map;

步骤1004,所述解码端根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;Step 1004: The decoder performs inverse quantization based on the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

可选地,所述对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图的具体实现为:Optionally, the specific implementation of decomposing the obtained code stream of the target three-dimensional grid and obtaining the placeholder map and the second geometric map containing the second precision geometric information and the first precision geometric information is:

所述解码端根据获取的目标三维网格的码流,获取目标子码流,所述目标子码流包括:片信息子码流、占位图子码流和几何图子码流;The decoding end obtains a target sub-code stream according to the obtained code stream of the target three-dimensional grid. The target sub-code stream includes: a slice information sub-stream, a placeholder map sub-stream and a geometric map sub-stream;

所述解码端根据所述目标子码流,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图。The decoding end obtains a placeholder map and a second geometric map including second precision geometric information and first precision geometric information according to the target sub-stream.

可选地,所述根据所述第二几何图,获取第二精度几何信息以及第一几何图的具体实现为:Optionally, the specific implementation of obtaining the second precision geometric information and the first geometric diagram according to the second geometric diagram is:

所述解码端在所述第二几何图中分别获取第二精度几何信息中每个顶点对应的排列值以及第一精度几何信息对应的第一几何图;The decoder obtains, in the second geometric graph, the arrangement value corresponding to each vertex in the second precision geometric information and the first geometric graph corresponding to the first precision geometric information;

所述解码端按照顶点的排列顺序将所述每个顶点对应的排列值进行三个维度坐标值的恢复,得到第二精度几何信息;The decoding end restores the three-dimensional coordinate values of the arrangement values corresponding to each vertex according to the arrangement order of the vertices to obtain second precision geometric information;

其中,每个顶点对应的排列值排布于所述第二几何图的第一区域,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the arrangement value corresponding to each vertex is arranged in the first area of the second geometric graph, and the first area is the two-dimensional projection distribution area of the geometric information of the target three-dimensional grid except for the first accuracy. The area remaining after the geometric information is projected onto the distribution area.

可选地,所述在所述第二几何图中获取第二精度几何信息中每个顶点对应的排列值的实现方式,包括以下一项:Optionally, the implementation of obtaining the arrangement value corresponding to each vertex in the second precision geometric information in the second geometric graph includes one of the following:

所述解码端在所述第二几何图中的第一区域中按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置恢复第二精度几何信息中每个顶点对应的排列值;The decoding end restores the arrangement value corresponding to each vertex in the second precision geometric information according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information in the first area in the second geometric diagram. ;

所述解码端对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值。The decoder performs translation processing on the pixels of the projection points in the first area in the second geometric diagram, and obtains the arrangement value corresponding to each vertex in the second precision geometric information.

可选地,所述对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值,包括:Optionally, the translation process is performed on the pixels of the projection points in the first area in the second geometric diagram to obtain the arrangement value corresponding to each vertex in the second precision geometric information, including:

所述解码端对所述第一几何图的投影点的像素沿第一方向进行逐行或逐列扫描,获取每行或每列中的每个像素所在的行内或列内的位置索引;The decoding end scans the pixels of the projection points of the first geometric figure along the first direction row by row or column by column, and obtains the position index within the row or column where each pixel in each row or column is located;

所述解码端对所述第二几何图中的第一区域中的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的每个像素按照与所述第一几何图中的投影点的像素对应的位置索引重新进行行内或列内的编号;The decoding end scans the pixels of the projection points in the first area in the second geometric figure row by row or column by column along the first direction, and scans each pixel in each row or column according to the first The position index corresponding to the pixel of the projection point in a geometric figure is re-numbered within the row or column;

需要说明的是,此处的重新编号可以理解为:第二精度几何信息中的顶点对应的投影点的像素在第一区域中是紧密相邻的,而实际的顶点对应的投影点的像素是有一定的间隔的,本申请实施例中所说的扫描重新编号即将同一行或同一列中存在间距的像素以像素相邻的方式重新进行编号,例如,在某一行中,对应存在5个像素,由左向右其编号分别为1、2、3、4、5,在经过由左向右的扫描后,重新按照第一几何图的投影点的像素分布对这5个像素进行编号,这5个像素由左向右的新编号为:1、3、5、7、8。It should be noted that the renumbering here can be understood as: the pixels of the projection points corresponding to the vertices in the second precision geometric information are closely adjacent in the first area, and the pixels of the projection points corresponding to the actual vertices are There are certain intervals. The scanning renumbering mentioned in the embodiment of this application means that the pixels with gaps in the same row or the same column are renumbered in a pixel-adjacent manner. For example, in a certain row, there are 5 pixels corresponding to each other. , the numbers from left to right are 1, 2, 3, 4, and 5 respectively. After scanning from left to right, the five pixels are numbered again according to the pixel distribution of the projection point of the first geometric figure. This The new numbers of the 5 pixels from left to right are: 1, 3, 5, 7, 8.

所述解码端按照扫描顺序,将从所述第二几何图中的第一区域中获取第二精度几何信息中每个顶点对应的排列值;The decoding end will obtain the arrangement value corresponding to each vertex in the second precision geometric information from the first area in the second geometric graph according to the scanning order;

其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.

需要说明的是,因第一几何图的投影点的像素在编码过程中没有进行像素平移,因此在解码时,需要按照未进行像素平移的第一几何图恢复另一个像素平移的部分中的顶点对应的投影点的像素的位置,以此保证第二精度几何信息中顶点的准确恢复。It should be noted that because the pixels of the projection points of the first geometric figure are not pixel translated during the encoding process, during decoding, it is necessary to restore the vertices in another pixel translated part according to the first geometric figure without pixel translation. The position of the pixel of the corresponding projection point is used to ensure the accurate recovery of the vertices in the second precision geometric information.

可选地,所述解码端根据第一几何图和所述占位图,获取第一精度几何信息,包括:Optionally, the decoder obtains first precision geometric information based on the first geometric map and the placeholder map, including:

所述解码端根据第一几何图和所述占位图,获取二维图像信息;The decoding end obtains two-dimensional image information based on the first geometric diagram and the placeholder diagram;

所述解码端根据所述二维图像信息,获取二维片;The decoding end obtains a two-dimensional slice according to the two-dimensional image information;

所述解码端根据片信息子码流对应的片信息对所述二维片进行三维逆投影,获取三维片;The decoding end performs three-dimensional back-projection on the two-dimensional slice according to the slice information corresponding to the slice information sub-stream to obtain the three-dimensional slice;

所述解码端根据所述三维片,获取第一精度几何信息。The decoder acquires first precision geometric information based on the three-dimensional slice.

可选地,所述根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取目标三维网格的几何信息的实现方式为:Optionally, the implementation method of performing inverse quantization based on the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid is:

所述解码端根据所述第一精度几何信息以及每一分量的量化参数,确定所述第一精度几何信息中的每一顶点的坐标;The decoder determines the coordinates of each vertex in the first precision geometry information based on the first precision geometry information and the quantization parameter of each component;

所述解码端根据所述第一精度几何信息中的每一顶点的坐标以及所述第二精度几何信息,确定所述目标三维网格。The decoder determines the target three-dimensional mesh based on the coordinates of each vertex in the first precision geometry information and the second precision geometry information.

可选地,在对获取的目标三维网格的码流进行分解的情况下,所述方法,还包括:Optionally, in the case of decomposing the obtained code stream of the target three-dimensional grid, the method further includes:

获取补充点的几何图;Get the geometry of the supplementary point;

根据所述补充点的几何图,确定所述补充点的第三精度几何信息对应的第一原始片以及所述补充点的第四精度几何信息对应的第二原始片;According to the geometric map of the supplementary point, determine the first original slice corresponding to the third precision geometric information of the supplementary point and the second original slice corresponding to the fourth precision geometric information of the supplementary point;

所述解码端根据所述第一原始片和所述第二原始片,确定补充点的信息;The decoding end determines the information of the supplementary point based on the first original slice and the second original slice;

其中,所述补充点的信息为量化过程中产生的需要额外处理的点的信息。Wherein, the information of the supplementary points is the information of points generated during the quantification process that require additional processing.

可选地,所述补充点的信息,包括以下至少一项:Optionally, the supplementary point information includes at least one of the following:

补充点对应的第一精度几何信息中顶点的索引;The index of the vertex in the first precision geometric information corresponding to the supplementary point;

补充点的第三精度几何信息,所述第三精度几何信息为补充点被量化后的三维坐标信息;Third-precision geometric information of the supplementary point, where the third-precision geometric information is the quantified three-dimensional coordinate information of the supplementary point;

补充点的第四精度几何信息,所述第四精度几何信息为补充点在被量化过程中丢失的三维坐标信息。The fourth precision geometric information of the supplementary point is the three-dimensional coordinate information lost during the quantization process of the supplementary point.

需要说明的是,本申请实施例中对于补充点的几何信息分为的低精度部分和高精度部分分别进行解码。首先,对补充点的几何图进行解压缩,可以采用多种解压缩方法。其中,一种方法是对几何图进行游程解码、熵解码等方式解码,另一种方法是,将补充点低精度raw patch和补充点高精度raw patch从低精度几何图中取出。然后,按照特定顺序从补充点低精度raw patch中获取补充点的低精度几何信息,按照特定顺序从补充点高精度rawpatch中获取高精度几何信息;这里需要说明的是,该特定顺序是解码端通过解析码流得到的,即编码端采用何种顺序生成补充点低精度raw patch和补充点高精度raw patch是会通过码流告知解码端的。It should be noted that in the embodiment of the present application, the geometric information of the supplementary points is divided into low-precision parts and high-precision parts and is decoded separately. First, the geometric map of the supplementary points is decompressed. Various decompression methods can be used. Among them, one method is to decode the geometric map through run-length decoding, entropy decoding, etc., and the other method is to extract the supplementary point low-precision raw patch and the supplementary point high-precision raw patch from the low-precision geometric map. Then, the low-precision geometric information of the supplementary points is obtained from the low-precision raw patch of the supplementary points in a specific order, and the high-precision geometric information of the supplementary points is obtained from the high-precision rawpatch of the supplementary points in a specific order; it should be noted here that this specific order is the decoding end Obtained by parsing the code stream, that is, the order in which the encoding end generates the supplementary point low-precision raw patch and the supplementary point high-precision raw patch will be informed to the decoder through the code stream.

可选地,所述根据所述第一精度几何信息中的每一顶点的坐标以及所述第二精度几何信息,确定所述目标三维网格的实现方式为:Optionally, the implementation method of determining the target three-dimensional mesh based on the coordinates of each vertex in the first precision geometric information and the second precision geometric information is:

所述解码端根据所述补充点的信息、所述第二精度几何信息以及所述第一精度几何信息中的每一顶点的坐标,确定所述目标三维网格。The decoding end determines the target three-dimensional mesh based on the information of the supplementary points, the second precision geometric information, and the coordinates of each vertex in the first precision geometric information.

需要说明的是,本申请实施例中基于视频的三维网格几何信息解码过程包括:将码流分解为patch信息子码流、占位图码流和几何图码流;然后,分别解码这三路子码流,得到patch信息、占位图和几何图;最后,使用patch信息、占位图和几何图重建几何信息。具体的,如图11所示,最关键的是几何信息重建的具体过程为:It should be noted that the video-based three-dimensional grid geometric information decoding process in the embodiment of the present application includes: decomposing the code stream into a patch information sub-stream, a placeholder image code stream and a geometric image code stream; and then decoding these three respectively. Path code stream, obtain patch information, placeholder map and geometric map; finally, use patch information, placeholder map and geometric map to reconstruct geometric information. Specifically, as shown in Figure 11, the most critical thing is the specific process of geometric information reconstruction:

步骤S111、获取2D patch;Step S111, obtain the 2D patch;

需要说明的是,获取2D patch是指利用patch信息从占位图和几何图中分割出2Dpatch的占位信息和深度信息。Patch信息中包含了每个2D patch的包围盒在占位图和低精度几何图中的位置和大小,利用patch信息、占位图和低精度几何图可以直接获取到2Dpatch的占位信息和低精度几何信息。对于高精度几何信息,利用低精度几何图的顶点分布,将高精度几何信息区域中高精度几何信息排列值与低精度几何图顶点进行对应,再从中按照编码端使用的预设排列规则分离出xyz三维几何信息,从而得到高精度几何信息。对于补充点的几何信息,直接解码补充点的低精度raw patch和高精度raw patch即可获得补充点的低精度几何信息和高精度几何信息。It should be noted that obtaining the 2D patch refers to using the patch information to segment the occupancy information and depth information of the 2D patch from the occupancy map and geometric map. The patch information contains the position and size of the bounding box of each 2D patch in the placeholder map and low-precision geometry map. The occupancy information and low-precision geometry map of the 2D patch can be directly obtained using the patch information, placeholder map, and low-precision geometry map. Precision geometric information. For high-precision geometric information, the vertex distribution of the low-precision geometric graph is used to correspond the high-precision geometric information arrangement values in the high-precision geometric information area to the vertices of the low-precision geometric graph, and then xyz is separated from them according to the preset arrangement rules used by the encoding end. Three-dimensional geometric information, thereby obtaining high-precision geometric information. For the geometric information of the supplementary points, the low-precision geometric information and high-precision geometric information of the supplementary points can be obtained by directly decoding the low-precision raw patch and the high-precision raw patch of the supplementary points.

步骤S112,重建3D patch;Step S112, reconstruct the 3D patch;

需要说明的是,重建3D patch是指利用2D patch中的占位信息和低精度几何信息,将2D patch中的顶点重建为低精度3D patch。2D patch的占位信息中包含了顶点在patch投影平面局部坐标系中相对于坐标原点的位置,深度信息包含了顶点在投影平面法线方向上的深度值。因此,利用占位信息和深度信息可以在局部坐标系中将2D patch重建为低精度3D patch。It should be noted that reconstructing a 3D patch refers to using the placeholder information and low-precision geometric information in the 2D patch to reconstruct the vertices in the 2D patch into a low-precision 3D patch. The occupancy information of the 2D patch contains the position of the vertex relative to the coordinate origin in the local coordinate system of the patch projection plane, and the depth information contains the depth value of the vertex in the normal direction of the projection plane. Therefore, the 2D patch can be reconstructed into a low-precision 3D patch in the local coordinate system using the occupancy information and depth information.

步骤S113,重建低精度几何模型;Step S113, reconstruct the low-precision geometric model;

需要说明的是,重建低精度几何模型是指利用重建的低精度3D patch,重建整个低精度三维几何模型。Patch信息中包含了3D patch由局部坐标系转换成三维几何模型全局坐标系的转换关系,利用坐标转换关系将所有的3D patch转换到全局坐标系下,就得到了低精度三维几何模型。此外,对于补充点,直接利用低精度raw patch中的几何信息,得到补充点在全局坐标系下的低精度坐标值,从而得到完整的低精度三维几何模型。It should be noted that reconstructing a low-precision geometric model refers to using the reconstructed low-precision 3D patch to reconstruct the entire low-precision 3D geometric model. The patch information contains the conversion relationship of the 3D patch from the local coordinate system to the global coordinate system of the three-dimensional geometric model. Using the coordinate conversion relationship to convert all 3D patches to the global coordinate system, a low-precision three-dimensional geometric model is obtained. In addition, for the supplementary points, the geometric information in the low-precision raw patch is directly used to obtain the low-precision coordinate values of the supplementary points in the global coordinate system, thereby obtaining a complete low-precision three-dimensional geometric model.

步骤S114,重建高精度几何模型;Step S114, reconstruct the high-precision geometric model;

需要说明的是,重建高精度几何模型是指在低精度几何模型的基础上,利用高精度几何信息,重建高精度几何模型的过程。在获取2D patch的过程中,将高精度几何信息与低精度几何信息进行了对应,根据顶点的高精度几何信息和低精度几何信息可以重建出顶点的高精度三维坐标。根据应用的要求,可以选择重建全部顶点的高精度三维坐标,也可以重建部分顶点的高精度三维坐标。高精度三维坐标(xr,yr,zr)的计算过程,如公式二十五至公式二十七所示:It should be noted that reconstructing a high-precision geometric model refers to the process of using high-precision geometric information to reconstruct a high-precision geometric model based on a low-precision geometric model. In the process of obtaining the 2D patch, high-precision geometric information and low-precision geometric information are mapped, and the high-precision three-dimensional coordinates of the vertex can be reconstructed based on the high-precision geometric information and low-precision geometric information of the vertex. According to the requirements of the application, you can choose to reconstruct the high-precision three-dimensional coordinates of all vertices or reconstruct the high-precision three-dimensional coordinates of some vertices. The calculation process of high-precision three-dimensional coordinates (xr , yr , zr ) is as shown in Formula 25 to Formula 27:

公式二十五:xr=f3(xl,xh,QPx);Formula 25: xr =f3 (xl ,xh ,QPx );

公式二十六:yr=f3(yl,yh,QPy);Formula 26: yr =f3 (yl ,yh ,QPy );

公式二十七:zr=f3(zl,zh,QPz);Formula 27: zr = f3 (zl ,zh ,QPz );

f3函数是重建函数,重建函数的计算过程与编码端量化函数的计算过程相对应,有多种实现方式。如果f1函数采用式公式七至公式十二的实现方式,则重建函数的实现方式如公式二十八至公式三十所示:The f3 function is a reconstruction function. The calculation process of the reconstruction function corresponds to the calculation process of the quantization function at the encoding end, and there are many ways to implement it. If the f1 function adopts the implementation method of Formula 7 to Formula 12, then the reconstruction function is implemented as shown in Formula 28 to Formula 30:

公式二十八:xr=xl*QPx+xhFormula 28: xr =xl *QPx +xh ;

公式二十九:yr=yl*QPy+yhFormula 29: yr =yl *QPy +yh ;

公式三十:zr=zl*QPz+zhFormula 30: zr =zl *QPz +zh ;

如果f1函数采用公式十三至公式十八的实现方式,则重建函数的实现方式如公式三十一至公式三十三所示:If the f1 function adopts the implementation method of Formula 13 to Formula 18, the reconstruction function is implemented as shown in Formula 31 to Formula 33:

公式三十一:xr=(xl<<log2QPx)|xhFormula 31: xr = (xl <<log2 QPx )|xh ;

公式三十二:yr=(yl<<log2QPy)|yhFormula 32: yr = (yl <<log2 QPy )|yh ;

公式三十三:zr=(zl<<log2QPz)|zhFormula 33: zr = (zl <<log2 QPz )|zh .

本申请实施例的基于视频的三维网格几何信息解码框架如图12所示,总体解码流程为:The video-based three-dimensional grid geometric information decoding framework of the embodiment of this application is shown in Figure 12. The overall decoding process is:

首先,将码流分解成patch信息子码流、占位图子码流、几何图子码流,并分别进行解码;使用占位图、几何图中的低精度部分可以重建低精度网格的几何信息,再使用占位图和几何图中的高精度部分可以重建高精度网格的几何信息;最终,使用重建的几何信息以及其他编解码方式得到的连接关系等信息重建网格。First, the code stream is decomposed into a patch information sub-stream, a placeholder map sub-stream, and a geometry map sub-stream, and decoded separately; the low-precision grid can be reconstructed using the low-precision parts of the placeholder map and geometry map. Geometric information, and then use the high-precision parts of the placeholder map and the geometric map to reconstruct the geometric information of the high-precision grid; finally, use the reconstructed geometric information and information such as connection relationships obtained by other encoding and decoding methods to reconstruct the grid.

需要说明的是,本申请实施例是与上述编码方法的实施例对应的对端的方法实施例,解码过程为编码的反过程,上述编码侧的所有实现方式均适用于该解码端的实施例中,也能达到与之相同的技术效果,在此不再赘述。It should be noted that the embodiment of the present application is a method embodiment of the opposite end corresponding to the embodiment of the above encoding method. The decoding process is the inverse process of encoding. All the above implementation methods on the encoding side are applicable to the embodiment of the decoding end. The same technical effect can also be achieved, which will not be described again here.

如图13所示,本申请实施例还提供一种解码装置1300,包括:As shown in Figure 13, this embodiment of the present application also provides a decoding device 1300, which includes:

第三获取模块1301,用于对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;The third acquisition module 1301 is used to decompose the acquired code stream of the target three-dimensional grid, and acquire the placeholder map and the second geometric map containing the second precision geometric information and the first precision geometric information;

第四获取模块1302,用于根据所述第二几何图,获取第二精度几何信息以及第一几何图;The fourth acquisition module 1302 is used to acquire second precision geometric information and the first geometric graph according to the second geometric graph;

第五获取模块1303,用于根据第一几何图和所述占位图,获取第一精度几何信息;The fifth acquisition module 1303 is used to acquire first precision geometric information according to the first geometric diagram and the placeholder diagram;

第六获取模块1304,用于根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;The sixth acquisition module 1304 is used to perform inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

可选地,所述第三获取模块1301,包括:Optionally, the third acquisition module 1301 includes:

第十获取单元,用于根据获取的码流,获取目标子码流,所述目标子码流包括:片信息子码流、占位图子码流和几何图子码流;The tenth acquisition unit is used to acquire a target sub-code stream according to the obtained code stream. The target sub-code stream includes: a slice information sub-stream, a placeholder map sub-stream and a geometric map sub-stream;

第十一获取单元,用于根据所述目标子码流,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图。An eleventh acquisition unit, configured to acquire a placeholder image and a second geometric image containing second-precision geometric information and first-precision geometric information according to the target sub-code stream.

可选地,所述第四获取模块1302,包括:Optionally, the fourth acquisition module 1302 includes:

第十二获取单元,用于在所述第二几何图中分别获取第二精度几何信息中每个顶点对应的排列值以及第一精度几何信息对应的第一几何图;A twelfth acquisition unit, configured to obtain, in the second geometric graph, the arrangement value corresponding to each vertex in the second precision geometric information and the first geometric graph corresponding to the first precision geometric information;

第十三获取单元,用于按照顶点的排列顺序将所述每个顶点对应的排列值进行三个维度坐标值的恢复,得到第二精度几何信息;The thirteenth acquisition unit is used to restore the three-dimensional coordinate values of the arrangement values corresponding to each vertex according to the arrangement order of the vertices to obtain second precision geometric information;

其中,每个顶点对应的排列值排布于所述第二几何图的第一区域,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the arrangement value corresponding to each vertex is arranged in the first area of the second geometric graph, and the first area is the two-dimensional projection distribution area of the geometric information of the target three-dimensional grid except for the first accuracy. The area remaining after the geometric information is projected onto the distribution area.

可选地,所述第十二获取单元,用于实现以下一项:Optionally, the twelfth acquisition unit is used to implement one of the following:

在所述第二几何图中的第一区域中按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置恢复第二精度几何信息中每个顶点对应的排列值;Restore the arrangement value corresponding to each vertex in the second precision geometric information according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information in the first area in the second geometric diagram;

对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值。Translation processing is performed on the pixels of the projection points in the first area in the second geometric diagram to obtain the arrangement value corresponding to each vertex in the second precision geometric information.

可选地,所述对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值的实现方式,为:Optionally, the implementation method of performing translation processing on the pixels of the projection points in the first area in the second geometric diagram to obtain the arrangement value corresponding to each vertex in the second precision geometric information is:

对所述第一几何图的投影点的像素沿第一方向进行逐行或逐列扫描,获取每行或每列中的每个像素所在的行内或列内的位置索引;Scan the pixels of the projection points of the first geometric figure row by row or column by column along the first direction to obtain the position index within the row or column where each pixel in each row or column is located;

对所述第二几何图中的第一区域中的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的每个像素按照与所述第一几何图中的投影点的像素对应的位置索引重新进行行内或列内的编号;The pixels of the projection points in the first area in the second geometric figure are scanned row by row or column by column along the first direction, and each pixel in each row or column is scanned according to the same pattern as in the first geometric figure. The position index corresponding to the pixel of the projection point is renumbered within the row or column;

按照扫描顺序,将从所述第二几何图中的第一区域中获取第二精度几何信息中每个顶点对应的排列值;According to the scanning order, the arrangement value corresponding to each vertex in the second precision geometric information will be obtained from the first area in the second geometric graph;

其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.

可选地,所述第五获取模块1303,包括:Optionally, the fifth acquisition module 1303 includes:

第十四获取单元,用于根据第一几何图和所述占位图,获取二维图像信息;A fourteenth acquisition unit, configured to acquire two-dimensional image information based on the first geometric diagram and the placeholder map;

第十五获取单元,用于根据所述二维图像信息,获取二维片;The fifteenth acquisition unit is used to acquire two-dimensional slices according to the two-dimensional image information;

第十六获取单元,用于根据片信息子码流对应的片信息对所述二维片进行三维逆投影,获取三维片;The sixteenth acquisition unit is used to perform three-dimensional back-projection of the two-dimensional slice according to the slice information corresponding to the slice information sub-stream, and obtain the three-dimensional slice;

第十七获取单元,用于根据所述三维片,获取第一精度几何信息。The seventeenth acquisition unit is used to acquire first precision geometric information based on the three-dimensional slice.

可选地,所述第六获取模块1304,包括:Optionally, the sixth acquisition module 1304 includes:

第一确定单元,用于根据所述第一精度几何信息以及每一分量的量化参数,确定所述第一精度几何信息中的每一顶点的坐标;A first determination unit configured to determine the coordinates of each vertex in the first precision geometry information according to the first precision geometry information and the quantization parameter of each component;

第二确定单元,用于根据所述第一精度几何信息中的每一顶点的坐标以及所述第二精度几何信息,确定所述目标三维网格。A second determination unit configured to determine the target three-dimensional mesh based on the coordinates of each vertex in the first precision geometric information and the second precision geometric information.

可选地,所述装置,还包括:Optionally, the device also includes:

第七获取模块,用于获取补充点的几何图;The seventh acquisition module is used to obtain the geometric diagram of the supplementary point;

第一确定模块,用于根据所述补充点的几何图,确定所述补充点的第三精度几何信息对应的第一原始片以及所述补充点的第四精度几何信息对应的第二原始片;A first determination module, configured to determine the first original slice corresponding to the third precision geometric information of the supplementary point and the second original slice corresponding to the fourth precision geometric information of the supplementary point according to the geometric map of the supplementary point. ;

第二确定模块,用于根据所述第一原始片和所述第二原始片,确定补充点的信息;a second determination module, configured to determine the information of the supplementary point according to the first original slice and the second original slice;

其中,所述补充点的信息为量化过程中产生的需要额外处理的点的信息。Wherein, the information of the supplementary points is the information of points generated during the quantification process that require additional processing.

可选地,所述第二确定单元,用于:Optionally, the second determining unit is used to:

根据所述补充点的信息、所述第二精度几何信息以及所述第一精度几何信息中的每一顶点的坐标,确定所述目标三维网格。The target three-dimensional mesh is determined based on the information of the supplementary points, the second precision geometric information and the coordinates of each vertex in the first precision geometric information.

可选地,所述补充点的信息,包括以下至少一项:Optionally, the supplementary point information includes at least one of the following:

补充点对应的第一精度几何信息中顶点的索引;The index of the vertex in the first precision geometric information corresponding to the supplementary point;

补充点的第三精度几何信息,所述第三精度几何信息为补充点被量化后的三维坐标信息;Third-precision geometric information of the supplementary point, where the third-precision geometric information is the quantified three-dimensional coordinate information of the supplementary point;

补充点的第四精度几何信息,所述第四精度几何信息为补充点在被量化过程中丢失的三维坐标信息。The fourth precision geometric information of the supplementary point is the three-dimensional coordinate information lost during the quantization process of the supplementary point.

需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。It should be noted that this device embodiment is a device corresponding to the above-mentioned method. All implementation methods in the above-mentioned method embodiment are applicable to this device embodiment and can achieve the same technical effect, which will not be described again here.

优选的,本申请实施例还提供一种解码设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述的解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Preferably, the embodiment of the present application also provides a decoding device, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor. When the program or instruction is executed by the processor, the above-mentioned decoding device is implemented. Each process of the decoding method embodiment can achieve the same technical effect. To avoid repetition, it will not be described again here.

本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述的解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the computer-readable storage medium. When the program or instructions are executed by a processor, each process of the above-mentioned decoding method embodiment is implemented, and the same process can be achieved. To avoid repetition, the technical effects will not be repeated here.

其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。Wherein, the computer-readable storage medium is such as read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

本申请实施例还提供了一种解码设备,包括处理器及通信接口,其中,所述处理器用于对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;根据所述第二几何图,获取第二精度几何信息以及第一几何图;根据第一几何图和所述占位图,获取第一精度几何信息;根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;Embodiments of the present application also provide a decoding device, including a processor and a communication interface, wherein the processor is used to decompose the obtained code stream of the target three-dimensional grid, obtain the placeholder map and the second precision geometric information. and a second geometric diagram of the first precision geometric information; according to the second geometric diagram, obtain the second precision geometric information and the first geometric diagram; according to the first geometric diagram and the placeholder map, obtain the first precision geometric information ; Perform inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;

其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.

该解码设备实施例是与上述解码方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该解码设备实施例中,且能达到相同的技术效果。This decoding device embodiment corresponds to the above-mentioned decoding method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this decoding device embodiment, and can achieve the same technical effect.

具体地,本申请实施例还提供了一种解码设备。具体地,该解码设备的结构如图9所示,在此不再赘述。具体地,本申请实施例的解码设备还包括:存储在存储器上并可在处理器上运行的指令或程序,处理器调用存储器中的指令或程序执行图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the embodiment of the present application also provides a decoding device. Specifically, the structure of the decoding device is shown in Figure 9, which will not be described again here. Specifically, the decoding device in the embodiment of the present application also includes: instructions or programs stored in the memory and executable on the processor. The processor calls the instructions or programs in the memory to execute the method executed by each module shown in Figure 13, and To achieve the same technical effect, to avoid repetition, we will not repeat them here.

本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above decoding method embodiment is implemented, and the same process can be achieved. To avoid repetition, the technical effects will not be repeated here.

其中,所述处理器为上述实施例中所述的解码设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。Wherein, the processor is the processor in the decoding device described in the above embodiment. The readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.

可选的,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为编码设备时,该程序或指令被处理器1401执行时实现上述编码方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为解码设备时,该程序或指令被处理器1401执行时实现上述解码方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。Optionally, as shown in Figure 14, this embodiment of the present application also provides a communication device 1400, which includes a processor 1401 and a memory 1402. The memory 1402 stores programs or instructions that can be run on the processor 1401, such as , when the communication device 1400 is a coding device, when the program or instruction is executed by the processor 1401, each step of the above coding method embodiment is implemented, and the same technical effect can be achieved. When the communication device 1400 is a decoding device, when the program or instruction is executed by the processor 1401, each step of the above decoding method embodiment is implemented and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.

本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述编码方法或解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。An embodiment of the present application further provides a chip. The chip includes a processor and a communication interface. The communication interface is coupled to the processor. The processor is used to run programs or instructions to implement the above encoding method or decoding method. Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.

应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。It should be understood that the chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.

本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述编码方法或解码方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present application further provide a computer program/program product. The computer program/program product is stored in a storage medium. The computer program/program product is executed by at least one processor to implement the above encoding method or decoding method. Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.

本申请实施例还提供了一种通信系统,至少包括:编码设备和解码设备,所述编码设备可用于执行如上所述的编码方法的步骤,所述解码设备可用于执行如上所述的解码方法的步骤。且能达到相同的技术效果,为避免重复,这里不再赘述。Embodiments of the present application also provide a communication system, which at least includes: an encoding device and a decoding device. The encoding device can be used to perform the steps of the encoding method as described above. The decoding device can be used to perform the decoding method as described above. A step of. And can achieve the same technical effect. To avoid repetition, they will not be described again here.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this document, the terms "comprising", "comprises" or any other variations thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or device that includes a series of elements not only includes those elements, It also includes other elements not expressly listed or inherent in the process, method, article or apparatus. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, but may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions may be performed, for example, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。Through the above description of the embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation. Based on this understanding, the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology. The computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings. However, the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Inspired by this application, many forms can be made without departing from the purpose of this application and the scope protected by the claims, all of which fall within the protection of this application.

Claims (25)

Translated fromChinese
1.一种编码方法,其特征在于,包括:1. An encoding method, characterized in that it includes:编码端对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;The encoding end quantifies the geometric information of the target three-dimensional grid and obtains the first-precision geometric information and the second-precision geometric information;所述编码端获取所述第一精度几何信息的第一几何图和占位图;The encoding end obtains the first geometric map and placeholder map of the first precision geometric information;所述编码端根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The encoding end obtains a second geometric diagram including the second precision geometric information and the first precision geometric information based on the second precision geometric information and the first geometric diagram;所述编码端对所述第二几何图和所述占位图进行编码;The encoding end encodes the second geometric diagram and the placeholder diagram;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.2.根据权利要求1所述的方法,其特征在于,所述根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图,包括:2. The method according to claim 1, characterized in that, according to the second precision geometric information and the first geometric map, obtaining a second geometry including the second precision geometry information and the first precision geometry information. Figures, including:所述编码端对所述第二精度几何信息中的每个顶点的三个维度的坐标值进行排列,获取每个顶点对应的一个排列值;The encoding end arranges the three-dimensional coordinate values of each vertex in the second precision geometric information, and obtains an arrangement value corresponding to each vertex;所述编码端将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The encoding end arranges the arrangement values corresponding to each vertex in the first area, and obtains a second geometric map containing second precision geometric information and first precision geometric information;其中,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the first area is the area remaining after excluding the first precision geometric information projection distribution area from the two-dimensional projection distribution area of the target three-dimensional grid's geometric information.3.根据权利要求2所述的方法,其特征在于,所述将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图,包括以下一项:3. The method according to claim 2, characterized in that: arranging the arrangement values corresponding to each vertex in the first area to obtain a second geometric map containing second precision geometric information and first precision geometric information. , including one of the following:所述编码端在第一区域将每个顶点对应的排列值的像素按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行排布,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The encoding end arranges the pixels of the arrangement value corresponding to each vertex in the first area according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information, and obtains the second precision geometric information and the second precision geometric information. a second geometric map of precision geometric information;所述编码端在第一区域按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置进行所述第二精度几何信息中的每个顶点对应的投影点的像素排布,并将像素进行平移处理,将顶点的排列值排列在经平移处理后的第一区域中的与所述顶点对应的投影点的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图。The encoding end arranges the pixels of the projection points corresponding to each vertex in the second precision geometric information in the first area according to the pixel distribution positions of the projection points corresponding to the vertices in the first precision geometric information, and Perform a translation process on the pixels, arrange the arrangement values of the vertices at the pixel positions of the projection points corresponding to the vertices in the first area after translation processing, and obtain the second precision geometric information and the first precision geometric information. Two geometric figures.4.根据权利要求3所述的方法,其特征在于,所述将像素进行平移处理,将顶点的排列值排列在经平移处理后的第一区域中的与所述顶点对应的投影点的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图,包括:4. The method according to claim 3, characterized in that, the pixels are translated and the arrangement values of the vertices are arranged in the pixels of the projection points corresponding to the vertices in the first region after the translation process. Position, obtain the second geometric map containing the second precision geometric information and the first precision geometric information, including:所述编码端对所述第二精度几何信息中的顶点对应的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的像素的位置索引重新进行行内或列内的编号;The encoding end scans the pixels of the projection points corresponding to the vertices in the second precision geometric information along the first direction row by row or column by column, and re-scans the position index of the pixels in each row or column within the row or column. number within;所述编码端按照扫描顺序,在第一区域将所述第二精度几何信息中的每一顶点对应的排列值排列在所述顶点对应的投影点的像素的位置索引指定的像素位置,获取包含第二精度几何信息和第一精度几何信息的第二几何图;According to the scanning order, the encoding end arranges the arrangement value corresponding to each vertex in the second precision geometric information in the first area at the pixel position specified by the position index of the pixel of the projection point corresponding to the vertex, and obtains the The second precision geometric information and the second geometric map of the first precision geometric information;其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.5.根据权利要求1所述的方法,其特征在于,所述编码端获取所述第一精度几何信息的第一几何图和占位图,包括:5. The method according to claim 1, characterized in that the encoding end obtains the first geometric diagram and placeholder diagram of the first precision geometric information, including:所述编码端对所述第一精度几何信息进行三维片划分;The encoding end divides the first precision geometric information into three-dimensional slices;所述编码端将划分的三维片进行二维投影,获取二维片;The encoding end performs two-dimensional projection on the divided three-dimensional slice to obtain the two-dimensional slice;所述编码端将所述二维片进行打包,获取二维图像信息;The encoding end packages the two-dimensional slices to obtain two-dimensional image information;所述编码端根据所述二维图像信息,获取第一几何图和占位图。The encoding end obtains the first geometric map and placeholder map based on the two-dimensional image information.6.根据权利要求1所述的方法,其特征在于,所述对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息的情况下,所述方法,还包括:6. The method according to claim 1, characterized in that when the geometric information of the target three-dimensional grid is quantified and the first precision geometric information and the second precision geometric information are obtained, the method further includes :所述编码端基于对目标三维网格的几何信息进行量化,获取补充点的信息;The encoding end obtains supplementary point information based on quantification of the geometric information of the target three-dimensional grid;其中,所述补充点的信息为量化过程中产生的需要额外处理的点的信息。Wherein, the information of the supplementary points is the information of points generated during the quantification process that require additional processing.7.根据权利要求6所述的方法,其特征在于,所述获取补充点的信息,包括:7. The method according to claim 6, characterized in that said obtaining the information of supplementary points includes:所述编码端根据所述目标三维网格的几何信息和所述第一精度几何信息,确定补充点的信息。The encoding end determines the information of the supplementary point based on the geometric information of the target three-dimensional grid and the first precision geometric information.8.根据权利要求6或7所述的方法,其特征在于,所述补充点的信息,包括以下至少一项:8. The method according to claim 6 or 7, characterized in that the information of the supplementary point includes at least one of the following:补充点对应的第一精度几何信息中顶点的索引;The index of the vertex in the first precision geometric information corresponding to the supplementary point;补充点的第三精度几何信息,所述第三精度几何信息为补充点被量化后的三维坐标信息;Third-precision geometric information of the supplementary point, where the third-precision geometric information is the quantified three-dimensional coordinate information of the supplementary point;补充点的第四精度几何信息,所述第四精度几何信息为补充点在被量化过程中丢失的三维坐标信息。The fourth precision geometric information of the supplementary point is the three-dimensional coordinate information lost during the quantization process of the supplementary point.9.根据权利要求1所述的方法,其特征在于,所述对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息,包括:9. The method according to claim 1, characterized in that, quantizing the geometric information of the target three-dimensional grid and obtaining the first precision geometric information and the second precision geometric information includes:所述编码端根据每一分量的量化参数,对所述目标三维网格中的每一顶点进行量化,获取第一精度几何信息;The encoding end quantizes each vertex in the target three-dimensional grid according to the quantization parameter of each component to obtain first precision geometric information;所述编码端根据所述第一精度几何信息以及所述每一分量的量化参数,获取第二精度几何信息。The encoding end obtains second precision geometric information based on the first precision geometric information and the quantization parameter of each component.10.一种解码方法,其特征在于,包括:10. A decoding method, characterized by comprising:解码端对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;The decoder decomposes the obtained code stream of the target three-dimensional grid, and obtains the placeholder map and the second geometric map containing the second-precision geometric information and the first-precision geometric information;所述解码端根据所述第二几何图,获取第二精度几何信息以及第一几何图;The decoding end obtains second precision geometric information and the first geometric map according to the second geometric map;所述解码端根据第一几何图和所述占位图,获取第一精度几何信息;The decoding end obtains first precision geometric information based on the first geometric diagram and the placeholder diagram;所述解码端根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取所述目标三维网格的几何信息;The decoder performs inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.11.根据权利要求10所述的方法,其特征在于,所述对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图,包括:11. The method according to claim 10, characterized in that the code stream of the obtained target three-dimensional grid is decomposed to obtain a placeholder map and a second precision geometric information containing the second precision geometric information and the first precision geometric information. Geometric drawings, including:所述解码端根据获取的目标三维网格的码流,获取目标子码流,所述目标子码流包括:片信息子码流、占位图子码流和几何图子码流;The decoding end obtains a target sub-code stream according to the obtained code stream of the target three-dimensional grid. The target sub-code stream includes: a slice information sub-stream, a placeholder map sub-stream and a geometric map sub-stream;所述解码端根据所述目标子码流,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图。The decoding end obtains a placeholder map and a second geometric map including second precision geometric information and first precision geometric information according to the target sub-stream.12.根据权利要求10所述的方法,其特征在于,所述根据所述第二几何图,获取第二精度几何信息以及第一几何图,包括:12. The method according to claim 10, characterized in that, according to the second geometric figure, obtaining the second precision geometric information and the first geometric figure includes:所述解码端在所述第二几何图中分别获取第二精度几何信息中每个顶点对应的排列值以及第一精度几何信息对应的第一几何图;The decoder obtains, in the second geometric graph, the arrangement value corresponding to each vertex in the second precision geometric information and the first geometric graph corresponding to the first precision geometric information;所述解码端按照顶点的排列顺序将所述每个顶点对应的排列值进行三个维度坐标值的恢复,得到第二精度几何信息;The decoding end restores the three-dimensional coordinate values of the arrangement values corresponding to each vertex according to the arrangement order of the vertices to obtain second precision geometric information;其中,每个顶点对应的排列值排布于所述第二几何图的第一区域,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the arrangement value corresponding to each vertex is arranged in the first area of the second geometric graph, and the first area is the two-dimensional projection distribution area of the geometric information of the target three-dimensional grid except for the first accuracy. The area remaining after the geometric information is projected onto the distribution area.13.根据权利要求12所述的方法,其特征在于,所述在所述第二几何图中获取第二精度几何信息中每个顶点对应的排列值,包括以下一项:13. The method according to claim 12, wherein said obtaining the arrangement value corresponding to each vertex in the second precision geometric information in the second geometric diagram includes one of the following:所述解码端在所述第二几何图中的第一区域中按照与所述第一精度几何信息中顶点对应的投影点的像素分布位置恢复第二精度几何信息中每个顶点对应的排列值;The decoding end restores the arrangement value corresponding to each vertex in the second precision geometric information according to the pixel distribution position of the projection point corresponding to the vertex in the first precision geometric information in the first area in the second geometric diagram. ;所述解码端对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值。The decoder performs translation processing on the pixels of the projection points in the first area in the second geometric diagram, and obtains the arrangement value corresponding to each vertex in the second precision geometric information.14.根据权利要求13所述的方法,其特征在于,所述对所述第二几何图中的第一区域中的投影点的像素进行平移处理,获取第二精度几何信息中每个顶点对应的排列值,包括:14. The method according to claim 13, characterized in that the pixels of the projection points in the first area in the second geometric figure are translated to obtain the corresponding vertex of each vertex in the second precision geometric information. Arrangement values, including:所述解码端对所述第一几何图的投影点的像素沿第一方向进行逐行或逐列扫描,获取每行或每列中的每个像素所在的行内或列内的位置索引;The decoding end scans the pixels of the projection points of the first geometric figure along the first direction row by row or column by column, and obtains the position index within the row or column where each pixel in each row or column is located;所述解码端对所述第二几何图中的第一区域中的投影点的像素沿第一方向进行逐行或逐列扫描,对每行或每列中的每个像素按照与所述第一几何图中的投影点的像素对应的位置索引重新进行行内或列内的编号;The decoding end scans the pixels of the projection points in the first area in the second geometric figure row by row or column by column along the first direction, and scans each pixel in each row or column according to the first The position index corresponding to the pixel of the projection point in a geometric figure is re-numbered within the row or column;所述解码端按照扫描顺序,将从所述第二几何图中的第一区域中获取第二精度几何信息中每个顶点对应的排列值;The decoding end will obtain the arrangement value corresponding to each vertex in the second precision geometric information from the first area in the second geometric graph according to the scanning order;其中,所述第一方向为水平方向或垂直方向。Wherein, the first direction is a horizontal direction or a vertical direction.15.根据权利要求10所述的方法,其特征在于,所述解码端根据第一几何图和所述占位图,获取第一精度几何信息,包括:15. The method according to claim 10, characterized in that the decoding end obtains the first precision geometric information according to the first geometric map and the placeholder map, including:所述解码端根据第一几何图和所述占位图,获取二维图像信息;The decoding end obtains two-dimensional image information based on the first geometric diagram and the placeholder diagram;所述解码端根据所述二维图像信息,获取二维片;The decoding end obtains a two-dimensional slice according to the two-dimensional image information;所述解码端根据片信息子码流对应的片信息对所述二维片进行三维逆投影,获取三维片;The decoding end performs three-dimensional back-projection on the two-dimensional slice according to the slice information corresponding to the slice information sub-stream to obtain the three-dimensional slice;所述解码端根据所述三维片,获取第一精度几何信息。The decoder acquires first precision geometric information based on the three-dimensional slice.16.根据权利要求10所述的方法,其特征在于,所述根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取目标三维网格的几何信息,包括:16. The method according to claim 10, characterized in that, performing inverse quantization according to the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid includes:所述解码端根据所述第一精度几何信息以及每一分量的量化参数,确定所述第一精度几何信息中的每一顶点的坐标;The decoder determines the coordinates of each vertex in the first precision geometry information based on the first precision geometry information and the quantization parameter of each component;所述解码端根据所述第一精度几何信息中的每一顶点的坐标以及所述第二精度几何信息,确定所述目标三维网格。The decoder determines the target three-dimensional mesh based on the coordinates of each vertex in the first precision geometry information and the second precision geometry information.17.根据权利要求16所述的方法,其特征在于,在对获取的目标三维网格的码流进行分解的情况下,所述方法,还包括:17. The method according to claim 16, characterized in that, in the case of decomposing the obtained code stream of the target three-dimensional grid, the method further includes:所述解码端获取补充点的几何图;The decoding end obtains the geometric diagram of the supplementary point;所述解码端根据所述补充点的几何图,确定所述补充点的第三精度几何信息对应的第一原始片以及所述补充点的第四精度几何信息对应的第二原始片;The decoding end determines the first original slice corresponding to the third precision geometric information of the supplementary point and the second original slice corresponding to the fourth precision geometric information of the supplementary point according to the geometric map of the supplementary point;所述解码端根据所述第一原始片和所述第二原始片,确定补充点的信息;The decoding end determines the information of the supplementary point based on the first original slice and the second original slice;其中,所述补充点的信息为量化过程中产生的需要额外处理的点的信息。Wherein, the information of the supplementary points is the information of points generated during the quantification process that require additional processing.18.根据权利要求17所述的方法,其特征在于,所述根据所述第一精度几何信息中的每一顶点的坐标以及所述第二精度几何信息,确定所述目标三维网格,包括:18. The method of claim 17, wherein determining the target three-dimensional mesh according to the coordinates of each vertex in the first precision geometry information and the second precision geometry information includes: :所述解码端根据所述补充点的信息、所述第二精度几何信息以及所述第一精度几何信息中的每一顶点的坐标,确定所述目标三维网格。The decoding end determines the target three-dimensional mesh based on the information of the supplementary points, the second precision geometric information, and the coordinates of each vertex in the first precision geometric information.19.根据权利要求17或18所述的方法,其特征在于,所述补充点的信息,包括以下至少一项:19. The method according to claim 17 or 18, characterized in that the supplementary point information includes at least one of the following:补充点对应的第一精度几何信息中顶点的索引;The index of the vertex in the first precision geometric information corresponding to the supplementary point;补充点的第三精度几何信息,所述第三精度几何信息为补充点被量化后的三维坐标信息;Third-precision geometric information of the supplementary point, where the third-precision geometric information is the quantified three-dimensional coordinate information of the supplementary point;补充点的第四精度几何信息,所述第四精度几何信息为补充点在被量化过程中丢失的三维坐标信息。The fourth precision geometric information of the supplementary point is the three-dimensional coordinate information lost during the quantization process of the supplementary point.20.一种编码装置,其特征在于,包括:20. An encoding device, characterized in that it includes:量化模块,用于对目标三维网格的几何信息进行量化,获取第一精度几何信息和第二精度几何信息;The quantification module is used to quantify the geometric information of the target three-dimensional grid and obtain the first-precision geometric information and the second-precision geometric information;第一获取模块,用于获取所述第一精度几何信息的第一几何图和占位图;A first acquisition module, configured to acquire the first geometric diagram and placeholder diagram of the first precision geometric information;第二获取模块,用于根据所述第二精度几何信息以及所述第一几何图,获取包含第二精度几何信息和第一精度几何信息的第二几何图;A second acquisition module, configured to acquire a second geometric diagram including the second precision geometric information and the first precision geometric information according to the second precision geometric information and the first geometric diagram;编码模块,用于对所述第二几何图和所述占位图进行编码;An encoding module, used to encode the second geometric diagram and the placeholder diagram;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.21.根据权利要求20所述的装置,其特征在于,所述第二获取模块,包括:21. The device according to claim 20, characterized in that the second acquisition module includes:第一获取单元,用于对所述第二精度几何信息中的每个顶点的三个维度的坐标值进行排列,获取每个顶点对应的一个排列值;A first acquisition unit configured to arrange the coordinate values in three dimensions of each vertex in the second precision geometric information and obtain an arrangement value corresponding to each vertex;第二获取单元,用于将每个顶点对应的排列值排布在第一区域,获取包含第二精度几何信息和第一精度几何信息的第二几何图;The second acquisition unit is used to arrange the arrangement values corresponding to each vertex in the first area, and acquire the second geometric map containing the second precision geometric information and the first precision geometric information;其中,所述第一区域为所述目标三维网格的几何信息的二维投影分布区域除去所述第一精度几何信息投影分布区域之后所剩余的区域。Wherein, the first area is the area remaining after excluding the first precision geometric information projection distribution area from the two-dimensional projection distribution area of the target three-dimensional grid's geometric information.22.一种编码设备,其特征在于,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至9任一项所述的编码方法的步骤。22. An encoding device, characterized in that it includes a processor and a memory, the memory stores a program or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the claims are implemented The steps of the encoding method described in any one of 1 to 9.23.一种解码装置,其特征在于,包括:23. A decoding device, characterized in that it includes:第三获取模块,用于对获取的目标三维网格的码流进行分解,获取占位图和包含第二精度几何信息和第一精度几何信息的第二几何图;The third acquisition module is used to decompose the acquired code stream of the target three-dimensional grid, and acquire the placeholder map and the second geometric map containing the second-precision geometric information and the first-precision geometric information;第四获取模块,用于根据所述第二几何图,获取第二精度几何信息以及第一几何图;The fourth acquisition module is used to acquire the second precision geometric information and the first geometric figure according to the second geometric figure;第五获取模块,用于根据第一几何图和所述占位图,获取第一精度几何信息;The fifth acquisition module is used to acquire the first precision geometric information according to the first geometric diagram and the placeholder diagram;第六获取模块,用于根据所述第二精度几何信息和所述第一精度几何信息进行反量化,获取目标三维网格的几何信息;A sixth acquisition module, configured to perform inverse quantization based on the second precision geometric information and the first precision geometric information to obtain the geometric information of the target three-dimensional grid;其中,所述第一精度几何信息为所述目标三维网格量化后的几何信息,所述第二精度几何信息为所述目标三维网格量化过程中丢失的几何信息。Wherein, the first precision geometric information is the geometric information after quantization of the target three-dimensional grid, and the second precision geometric information is the geometric information lost during the quantization process of the target three-dimensional grid.24.一种解码设备,其特征在于,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求10至19任一项所述的解码方法的步骤。24. A decoding device, characterized in that it includes a processor and a memory, the memory stores a program or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the claims are implemented The steps of the decoding method described in any one of 10 to 19.25.一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至9任一项所述的编码方法的步骤或如权利要求10至19任一项所述的解码方法的步骤。25. A readable storage medium, characterized in that the readable storage medium stores programs or instructions, and when the programs or instructions are executed by a processor, the encoding method according to any one of claims 1 to 9 is implemented. or the steps of the decoding method according to any one of claims 10 to 19.
CN202210272443.0A2022-03-182022-03-18Encoding and decoding methods, devices and equipmentPendingCN116800969A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
CN202210272443.0ACN116800969A (en)2022-03-182022-03-18Encoding and decoding methods, devices and equipment
PCT/CN2023/081641WO2023174337A1 (en)2022-03-182023-03-15Coding method, decoding method, apparatus and device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210272443.0ACN116800969A (en)2022-03-182022-03-18Encoding and decoding methods, devices and equipment

Publications (1)

Publication NumberPublication Date
CN116800969Atrue CN116800969A (en)2023-09-22

Family

ID=88022376

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210272443.0APendingCN116800969A (en)2022-03-182022-03-18Encoding and decoding methods, devices and equipment

Country Status (2)

CountryLink
CN (1)CN116800969A (en)
WO (1)WO2023174337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2025077729A1 (en)*2023-10-102025-04-17西安光锥视象科技有限公司Method and apparatus for encoding and decoding partition information and arrangement information for mesh parameterization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11259048B2 (en)*2019-01-092022-02-22Samsung Electronics Co., Ltd.Adaptive selection of occupancy map precision
KR102640235B1 (en)*2019-01-112024-02-23삼성전자주식회사Method and apparatus for encoding 3-dimensional data and method and apparatus for decoding 3-dimensional data
WO2020196680A1 (en)*2019-03-252020-10-01パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカThree-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
US11450030B2 (en)*2019-09-242022-09-20Apple Inc.Three-dimensional mesh compression using a video encoder
CN112565764B (en)*2020-12-032022-10-04西安电子科技大学 A method for inter-frame encoding and decoding of point cloud geometric information
CN112637608B (en)*2020-12-182022-11-29南京邮电大学 A dynamic point cloud geometric information compression rate distortion optimization method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2025077729A1 (en)*2023-10-102025-04-17西安光锥视象科技有限公司Method and apparatus for encoding and decoding partition information and arrangement information for mesh parameterization

Also Published As

Publication numberPublication date
WO2023174337A1 (en)2023-09-21

Similar Documents

PublicationPublication DateTitle
CN113892128B (en) Point cloud encoding and decoding method, device and electronic device
CN113994383B (en) Point cloud encoding and decoding method, device, electronic device and storage medium
JP2023184727A (en) Image processing device and method
US12217465B2 (en)Method and apparatus for point cloud coding
KR20230056750A (en) Patch zippering for mesh compression
WO2023181875A1 (en)Information processing device and method
KR20230060534A (en) Point cloud encoding and decoding method and apparatus based on two-dimensional normalized plane projection
WO2023193709A1 (en)Coding method and apparatus, decoding method and apparatus, and device
US20240404120A1 (en)Coding method, apparatus, and device
CN116843771A (en) Encoding method, decoding method and terminal
US20240404119A1 (en)Coding Method, Decoding Method, and Device
WO2023179710A1 (en)Coding method and terminal
WO2023174337A1 (en)Coding method, decoding method, apparatus and device
CN117178299A (en) Convolution method to quickly and compactly pack 3D meshes into 2D maps
WO2023179705A1 (en)Encoding and decoding methods and apparatuses, and devices
WO2023174334A1 (en)Encoding method and apparatus, decoding method and apparatus, and device
US20250211784A1 (en)V-pcc based dynamic textured mesh coding without occupancy maps
CN116458158B (en) Intra-frame prediction method and device, codec, device, and storage medium
WO2023174336A1 (en)Encoding method and apparatus, decoding method and apparatus, and device
KR20240001126A (en) Information processing devices and methods
EP4510076A1 (en)Coding method, decoding method and terminal
CN118923118A (en)Dynamic V-PCC-based texture trellis encoding without occupancy maps
WO2023179706A1 (en)Encoding method, decoding method, and terminal
Li et al.A survey on recent approaches of mesh compressions
CN118694979A (en) Three-dimensional grid displacement information encoding method, decoding method, device and terminal

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp