Movatterモバイル変換


[0]ホーム

URL:


CN116439714A - Biosignal sensing device using dynamic selection of electrodes - Google Patents

Biosignal sensing device using dynamic selection of electrodes
Download PDF

Info

Publication number
CN116439714A
CN116439714ACN202310041229.9ACN202310041229ACN116439714ACN 116439714 ACN116439714 ACN 116439714ACN 202310041229 ACN202310041229 ACN 202310041229ACN 116439714 ACN116439714 ACN 116439714A
Authority
CN
China
Prior art keywords
electrodes
electrode
active
electronic device
subset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310041229.9A
Other languages
Chinese (zh)
Inventor
E·阿泽米
A·莫因
A·帕拉加达
J·盧香君
V·M·鲍威尔
J·明查
S·P·霍特林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/094,841external-prioritypatent/US20230225659A1/en
Application filed by Apple IncfiledCriticalApple Inc
Publication of CN116439714ApublicationCriticalpatent/CN116439714A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明涉及“使用电极的动态选择的生物信号感测设备。”本发明涉及一种可穿戴电子设备,该可穿戴电子设备包括:壳体,以及附接到该壳体并且具有非平面表面的电极载体。该可穿戴电子设备包括一组电极,该组电极包括定位在该非平面表面上的不同位置处的电极。该可穿戴电子设备包括传感器电路和开关电路。该开关电路可操作为将该组电极中的一个或多个电极的多个不同子组电连接到该传感器电路。

The present invention relates to a "biological signal sensing device using dynamic selection of electrodes." The present invention relates to a wearable electronic device comprising: a housing, and a non-planar surface attached to the housing. Electrode carrier. The wearable electronic device includes a set of electrodes including electrodes positioned at different locations on the non-planar surface. The wearable electronic device includes a sensor circuit and a switch circuit. The switching circuit is operable to electrically connect different subsets of one or more electrodes of the set of electrodes to the sensor circuit.

Description

Translated fromChinese
使用电极的动态选择的生物信号感测设备Biosignal sensing device using dynamic selection of electrodes

相关申请的交叉引用Cross References to Related Applications

本申请是2022年1月14日提交的美国临时专利申请第63/299,864号的非临时性申请,并且根据35U.S.C.§119(e)要求该美国临时专利申请的权益,该美国临时专利申请的内容如同在本文中完全公开一样以引用方式并入本文。This application is a non-provisional application of U.S. Provisional Patent Application No. 63/299,864, filed January 14, 2022, and claims the benefit of that U.S. Provisional Patent Application under 35 U.S.C. § 119(e), which The contents of are incorporated herein by reference as if fully disclosed herein.

技术领域technical field

本文所述的实施方案总体涉及一种用于测量来自用户的生物信号参数的可穿戴电子设备。Embodiments described herein generally relate to a wearable electronic device for measuring biosignal parameters from a user.

背景技术Background technique

可以使用放置在用户头皮上的电极来监测脑活动。在一些情况下,电极可以放置在用户的外耳内或外耳周围。使用放置在外耳中或外耳周围的电极来测量脑活动可能是优选的,因为与需要将电极放置在用户头皮周围的可见区域上的其他设备相比,存在多种益处,例如设备的移动性降低和电极的可见性下降。然而,为了使用耳脑电图(EEG)设备精确地测量脑活动,可能需要为用户的耳朵定制耳EEG设备(例如,可能为用户的外耳、耳道、耳屏等定制),并且可能需要为不同的用户进行不同的定制,使得放置在耳EEG设备上的电极可以保持与用户的身体持续接触。因为耳朵的尺寸和形状因人而异,并且因为单个用户的耳朵尺寸和形状以及诸如用户耳道的结构的尺寸和形状可能随时间变化,甚至定制的耳EEG设备可能有时(或随时间)不能产生精确的测量。此外,定制的耳EEG设备可能是昂贵的。Brain activity can be monitored using electrodes placed on the user's scalp. In some cases, electrodes may be placed in or around the user's outer ear. Measuring brain activity using electrodes placed in or around the outer ear may be preferable because of several benefits, such as reduced mobility of the device, compared to other devices that require electrodes to be placed on a visible area around the user's scalp and electrode visibility is reduced. However, in order to accurately measure brain activity using an ear electroencephalography (EEG) device, the ear EEG device may need to be customized for the user's ear (e.g., it may be customized for the user's outer ear, ear canal, tragus, etc.), and may need to be customized for the user's ear. Different users make different customizations, so that the electrodes placed on the ear EEG device can maintain continuous contact with the user's body. Because ear size and shape vary from person to person, and because an individual user's ear size and shape, as well as the size and shape of structures such as the user's ear canal, may vary over time, even custom ear EEG devices may sometimes (or over time) not produce precise measurements. Also, custom ear EEG equipment can be expensive.

发明内容Contents of the invention

本文所述的实施方案/方面总体涉及一种用于测量用户的生物信号的可穿戴电子设备。该设备可以具有比测量给定用户的生物信号所需的电极更多的电极,并且该设备可以动态地选择用于在给定时间测量给定用户的生物信号的电极子组。该设备可以动态地选择电极的不同子组,用于为不同用户或在不同时间测量生物信号(例如,取决于用户的参数、设备如何佩戴、环境影响等)。在一些情况下,本文所述的实施方案/方面涉及一种耳塞和/或头戴式耳机。Embodiments/aspects described herein generally relate to a wearable electronic device for measuring biosignals of a user. The device may have more electrodes than are required to measure a given user's biosignal, and the device may dynamically select a subset of electrodes for measuring a given user's biosignal at a given time. The device can dynamically select different subsets of electrodes for measuring biosignals for different users or at different times (eg, depending on user parameters, how the device is worn, environmental influences, etc.). In some cases, embodiments/aspects described herein relate to earplugs and/or headphones.

在一个方面,描述了一种可穿戴电子设备。该可穿戴电子设备可以包括壳体和附接到该壳体的、具有非平面表面的电子载体。该可穿戴电子设备可以包括一组电极、传感器电路和开关电路,该组电极包括定位在该非平面表面上的不同位置处的电极。该开关电路可操作为将该组电极中的一个或多个电极的多个不同子组电连接到该传感器电路。In one aspect, a wearable electronic device is described. The wearable electronic device may include a housing and an electronics carrier having a non-planar surface attached to the housing. The wearable electronic device may include a set of electrodes, sensor circuitry, and switching circuitry, the set of electrodes including electrodes positioned at different locations on the non-planar surface. The switching circuit is operable to electrically connect different subsets of one or more electrodes of the set of electrodes to the sensor circuit.

在第二方面,描述了一种可穿戴电子设备。该可穿戴电子设备可以包括壳体、一组有源电极以及一组参考电极。该组有源电极和该组参考电极设置在该壳体的不同位置或区域中。该可穿戴电子设备包括开关电路以及一个或多个参考电极子组,该开关电路被配置为形成一个或多个有源电极子组,每个有源电极子组包括该组有源电极中的至少一个有源电极,每个参考电极子组包括该组参考电极中的至少一个参考电极。In a second aspect, a wearable electronic device is described. The wearable electronic device may include a housing, a set of active electrodes, and a set of reference electrodes. The set of active electrodes and the set of reference electrodes are disposed in different locations or regions of the housing. The wearable electronic device includes a switching circuit configured to form one or more active electrode subgroups, and one or more reference electrode subgroups, each active electrode subgroup including one of the active electrode subgroups in the group. At least one active electrode, each reference electrode sub-set includes at least one reference electrode of the set of reference electrodes.

在第三方面,描述了一种被配置为测量生物信号的装置。该装置可以包括被配置为佩戴在第一耳朵上或第一耳朵中的第一部件,以及被配置为佩戴在第二耳朵上或第二耳朵中的第二部件。该第一部件可以包括设置在该第一部件的壳体的不同区域中的一组有源电极,并且该第二部件可以包括设置在该第二部件的壳体的不同区域中的一组参考电极。该装置可以包括至少一个开关电路,该至少一个开关电路电联接到该组有源电极和该组参考电极。该装置可以包括至少一个处理器,该至少一个处理器被配置为使用该至少一个开关电路来形成一个或多个有源电极子组。该至少一个处理器还可以被配置为使用该至少一个开关电路来形成一个或多个参考电极子组。每个有源电极子组可以包括该组有源电极中的至少一个有源电极,并且每个参考电极子组可以包括该组参考电极中的至少一个参考电极。In a third aspect, an apparatus configured to measure a biological signal is described. The device may include a first component configured to be worn on or in a first ear, and a second component configured to be worn on or in a second ear. The first component may comprise a set of active electrodes disposed in different regions of the housing of the first component, and the second component may comprise a set of reference electrodes disposed in different regions of the housing of the second component. electrode. The device may include at least one switching circuit electrically coupled to the set of active electrodes and the set of reference electrodes. The apparatus may include at least one processor configured to form one or more active electrode subsets using the at least one switching circuit. The at least one processor may also be configured to use the at least one switching circuit to form one or more reference electrode subsets. Each active electrode subset may include at least one active electrode of the set of active electrodes, and each reference electrode subset may include at least one reference electrode of the set of reference electrodes.

附图说明Description of drawings

现在将参考在附图中示出的代表性实施方案/方面。应当理解,以下描述并非旨在将本公开限制于一个所包括的实施方案。相反,本公开提供的该公开旨在涵盖可被包括在所述实施方案的实质和范围内并由所附权利要求限定的替代形式、修改形式和等同形式。Reference will now be made to representative embodiments/aspects illustrated in the accompanying drawings. It should be understood that the following description is not intended to limit the disclosure to one included embodiment. On the contrary, the disclosure provided herein is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the described embodiments and defined by the appended claims.

图1示出了示例性可穿戴电子设备(例如耳塞)。Figure 1 illustrates an exemplary wearable electronic device (eg, earbuds).

图2示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)。FIG. 2 illustrates an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments.

图3示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)的一部分的一个视图。3 illustrates a view of a portion of an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments.

图4示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)的一部分的一个视图。4 illustrates a view of a portion of an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments.

图5示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)以及打开或关闭特征部以测量生物信号。5 illustrates an exemplary wearable electronic device (eg, an earbud) as described herein and opening or closing features to measure biosignals, according to some embodiments.

图6示出了根据一些实施方案的如本文所述的可穿戴电子设备的电框图。6 illustrates an electrical block diagram of a wearable electronic device as described herein, according to some embodiments.

图7A至图7C示出了根据一些实施方案的如本文所述的可穿戴电子设备的壳体上的多个电极图案。7A-7C illustrate a plurality of electrode patterns on a housing of a wearable electronic device as described herein, according to some embodiments.

图8示出了根据一些实施方案的如本文所述的可穿戴电子设备的感测电路的电框图。8 illustrates an electrical block diagram of a sensing circuit of a wearable electronic device as described herein, according to some embodiments.

图9示出了根据一些实施方案的如本文所述的一个或多个有源电极的选择的示例。Figure 9 illustrates an example of a selection of one or more active electrodes as described herein, according to some embodiments.

图10示出了根据一些实施方案的如本文所述的可穿戴电子设备(例如有线头戴式耳机)。FIG. 10 illustrates a wearable electronic device (eg, a wired headset) as described herein, according to some embodiments.

图11A至图11B示出了根据一些实施方案的如本文所述的由电极测量的生物信号的示例视图。11A-11B illustrate example views of biosignals measured by electrodes as described herein, according to some embodiments.

在不同附图中使用相同或相似的附图标记来指示相似、相关或者相同的项目。The use of the same or similar reference numbers in different figures indicates similar, related or identical items.

附加地,应当理解,各个特征部和元件(以及其集合和分组)的比例和尺寸(相对的或绝对的)以及其间呈现的界限、间距和位置关系在附图中被提供,以仅用于促进对本文所述的各个实施方案的理解,并因此可不必要地被呈现或示出以进行缩放并且并非旨在指示对所示的实施方案的任何偏好或要求,以排除结合其所述的实施方案。Additionally, it should be understood that the proportions and dimensions (relative or absolute) of the various features and elements (and collections and groupings thereof), as well as the boundaries, spacings and positional relationships presented therebetween, are provided in the drawings for purposes of illustration only to facilitate understanding of the various embodiments described herein, and thus may not necessarily be presented or shown to scale and are not intended to indicate any preference or requirement over the illustrated embodiments to the exclusion of implementations described in connection therewith plan.

具体实施方式Detailed ways

现在将具体地参考在附图中示出的代表性实施方案/方面。应当理解,以下描述不旨在将实施方案限制于一个优选实施方案。相反,其旨在涵盖可被包括在由所附权利要求书限定的所述实施方案的实质和范围内的另选形式、修改形式和等同形式。Reference will now be made in detail to representative embodiments/aspects illustrated in the accompanying drawings. It should be understood that the following description is not intended to limit the embodiments to one preferred embodiment. On the contrary, it is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the described embodiments as defined by the appended claims.

本文所述的实施方案包括一种可穿戴电子设备,例如耳塞、一对耳塞和/或有线头戴式耳机。如本文所述的可穿戴电子设备可以包括壳体以及在该壳体上的多个有源电极和参考电极。该多个有源电极和参考电极可以被配置为测量该可穿戴电子设备的用户的生物信号。由可穿戴电子设备测量的生物信号可以包括但不限于脑电图(EEG)。在一些实施方案中,可以测量其他生物信号,例如肌电图(EMG)、眼电图(EOG)、心电图(ECG)、皮肤电反应(GSR)、血容量脉搏(BVP)等。Embodiments described herein include a wearable electronic device, such as earbuds, a pair of earbuds, and/or a wired headset. A wearable electronic device as described herein may include a housing and a plurality of active and reference electrodes on the housing. The plurality of active electrodes and reference electrodes may be configured to measure biosignals of a user of the wearable electronic device. Biosignals measured by wearable electronic devices may include, but are not limited to, electroencephalograms (EEGs). In some embodiments, other biological signals may be measured, such as electromyography (EMG), electrooculogram (EOG), electrocardiogram (ECG), galvanic skin response (GSR), blood volume pulse (BVP), and the like.

使用可置于耳道内或耳朵周围的可穿戴电子设备(例如耳塞或有线头戴式耳机)测量生物信号(例如EEG)可能需要有源电极和参考电极在特定位置保持与用户身体接触。然而,每个人的耳朵或耳道可能有不同的形状和大小,在一些实施方案中,耳朵或耳道的形状或大小可能随时间变化。结果,有源电极和/或参考电极可能不能与用户身体适当接触,从而可能降低生物信号测量的准确性。Measuring biosignals such as EEG using wearable electronics that can be placed in or around the ear canal, such as earbuds or wired headphones, may require active and reference electrodes to remain in contact with the user's body at specific locations. However, each person's ear or ear canal may have a different shape and size, and in some embodiments, the shape or size of the ear or ear canal may change over time. As a result, the active and/or reference electrodes may not make proper contact with the user's body, which may reduce the accuracy of biosignal measurements.

在一些实施方案中,通过动态地选择该多个有源电极中的一个或多个有源电极和/或该多个有源电极中的一个或多个参考电极来测量生物信号,可以减少和/或避免生物信号测量的不准确性。多个有源电极和/或多个参考电极可以离散地放置在该可穿戴电子设备的壳体上。换句话说,每个有源电极和每个参考电极可以设置在该壳体的不同区域中。在一些实施方案中,可以使用柔性(例如,柔性)电路衬底和/或微型轴向电缆来连接多个有源电极和/或多个参考电极。在一些实施方案中,该电极载体可以是耳机(例如,耳内件、耳外件或耳上件)和/或该壳体的壁。在一些实施方案中,可以有一组微型轴向电缆或一组柔性电路衬底。In some embodiments, by dynamically selecting one or more active electrodes of the plurality of active electrodes and/or one or more reference electrodes of the plurality of active electrodes to measure biological signals, the and and/or avoid inaccuracies in biosignal measurements. Multiple active electrodes and/or multiple reference electrodes may be discretely placed on the housing of the wearable electronic device. In other words, each active electrode and each reference electrode may be arranged in different regions of the housing. In some embodiments, flexible (eg, flexible) circuit substrates and/or micro-axial cables can be used to connect multiple active electrodes and/or multiple reference electrodes. In some embodiments, the electrode carrier can be an earphone (eg, in-ear, extra-auricular, or on-ear) and/or a wall of the housing. In some embodiments, there may be a set of miniature axial cables or a set of flexible circuit substrates.

在一些实施方案中,可以基于包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位等的标准来选择动态选择的该一个或多个有源电极和该一个或多个参考电极。形成一个或多个有源电极子组中的有源电极子组的该一个或多个有源电极和形成一个或多个参考电极子组中的参考电极子组的该一个或多个参考电极的选择可以在测量生物信号的周期开始前进行。在一些实施方案中,并且作为非限制性示例,可以周期性地更新该有源电极和/或参考电极子组,以从用于测量生物信号的有源电极子组和/或参考电极子组添加、更新和/或移除有源电极和/或参考电极。In some embodiments, criteria including, but not limited to, impedance level, noise (e.g., ambient noise and/or electrode-skin interface noise, etc.), physical distance between active and reference electrodes, half-cell potential, etc. to select the dynamically selected one or more active electrodes and the one or more reference electrodes. the one or more active electrodes forming an active electrode subset of the one or more active electrode subsets and the one or more reference electrodes forming a reference electrode subset of the one or more reference electrode subsets The selection of can be made before the period in which the biosignal is measured begins. In some embodiments, and by way of non-limiting example, the active electrode and/or reference electrode subsets may be periodically refreshed to obtain an active electrode subset and/or reference electrode subset for measuring biological signals Add, update and/or remove active and/or reference electrodes.

在一些实施方案中,可以使用基于机器学习的模型来执行该一个或多个有源电极和/或参考电极的选择。基于从一个或者多个用户获得的输入数据或者用户自身校准数据,该机器学习模型可以被配置为基于多个特征来选择该有源电极子组中的该一个或多个(并且在一些情况下全部)有源电极和/或该参考电极子组中的一个或多个(并且在一些情况下全部)参考电极,这些特征包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位等。该机器学习模型可以基于多模态学习、监督学习和/或无监督学习方法。In some embodiments, the selection of the one or more active and/or reference electrodes can be performed using a machine learning based model. Based on input data obtained from one or more users or users' own calibration data, the machine learning model can be configured to select the one or more (and in some cases All) active electrodes and/or one or more (and in some cases all) reference electrodes in the subset of reference electrodes, these characteristics include but are not limited to impedance level, noise (e.g., ambient noise and/or electrode- skin interface noise, etc.), physical distance between active and reference electrodes, half-cell potential, etc. The machine learning model can be based on multimodal learning, supervised learning and/or unsupervised learning methods.

在一些实施方案中,可以选择所有有源电极和/或所有参考电极来测量生物信号,而不是选择一个或多个有源电极和/或一个或多个参考电极。然而,有源电极中的每个电极和/或参考电极中的每个电极可以被分配不同的权重。分配给有源电极和/或参考电极中的每个电极的权重可以基于多个特征来确定,这些特征包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位和/或电极的布置等。附加地或另选地,可以基于从一个或多个用户获得的输入数据或用户自身校准数据来确定分配给每个电极的权重。In some embodiments, instead of selecting one or more active electrodes and/or one or more reference electrodes, all active electrodes and/or all reference electrodes may be selected for measuring biosignals. However, each of the active electrodes and/or each of the reference electrodes may be assigned a different weight. The weight assigned to each of the active and/or reference electrodes may be determined based on a number of characteristics including, but not limited to, impedance level, noise (e.g., environmental noise and/or electrode-skin interface noise, etc.) , the physical distance between the active and reference electrodes, the half-cell potential and/or the arrangement of the electrodes, etc. Additionally or alternatively, the weight assigned to each electrode may be determined based on input data obtained from one or more users or the users' own calibration data.

在一些实施方案中,使用有源电极中的每个有源电极和/或参考电极中的每个参考电极测量的生物信号可以是EEG信号,例如频带中的EEG信号(例如,8至12Hz的α频带中的EEG信号)。在α频带中,对应于包括有源电极和参考电极的电极对的原始信号的幅度电平在用户闭上眼睛时一般会增加,而在用户睁开眼睛时则会减少。原始信号的幅度电平可以测量为有源电极处测量的电压(V_active)与参考电极处测量的电压(V_ref)之间的差,例如(V_active-V_ref)。因此,基于对应于每对有源电极和参考电极的原始信号,连同其各自施加的权重,可以获得对应于所有的有源电极和参考电极对的频域中的优化信号。作为非限制性示例,对应于所有有源电极和参考电极对的优化信号可以是根据分配给每个有源电极和参考电极对的相应权重产生的单个时间序列信号。当用户的眼睛闭上时对应于所有的有源电极和参考电极对的优化信号与当用户的眼睛睁开时对应于所有的有源电极和参考电极对的优化信号的比率期望大于一。因此,基于执行各种测量,可以确定和分配每个有源电极和参考电极对的适当权重。In some embodiments, the biological signal measured using each of the active electrodes and/or each of the reference electrodes may be an EEG signal, such as an EEG signal in a frequency band (e.g., 8 to 12 Hz EEG signal in the alpha band). In the alpha frequency band, the amplitude level of the raw signal corresponding to the electrode pair including the active electrode and the reference electrode generally increases when the user closes the eyes and decreases when the user opens the eyes. The amplitude level of the raw signal can be measured as the difference between the voltage measured at the active electrode (V_active) and the voltage measured at the reference electrode (V_ref), eg (V_active−V_ref). Thus, based on the raw signals corresponding to each pair of active and reference electrodes, together with their respective applied weights, optimized signals in the frequency domain corresponding to all pairs of active and reference electrodes can be obtained. As a non-limiting example, the optimized signal corresponding to all active electrode and reference electrode pairs may be a single time series signal generated according to the respective weights assigned to each active electrode and reference electrode pair. The ratio of the optimized signal corresponding to all active and reference electrode pairs when the user's eyes are closed to the optimized signal corresponding to all active and reference electrode pairs when the user's eyes are open is desirably greater than one. Thus, based on performing various measurements, appropriate weights for each active and reference electrode pair can be determined and assigned.

在一些实施方案中,该一个或多个有源电极的子组(或所有有源电极)和/或该一个或多个参考电极的子组(或所有参考电极)可以由将一个电极与另一个电极电联接的开关电路形成。该开关电路可以由处理器控制,该处理器可以是例如微控制器、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、数字信号处理器(DSP)等。该处理器可以与存储指令的一个或多个存储器通信地联接,这些指令在由处理器执行时使处理器执行算法或执行指令,以分别动态地选择该有源电极和/或参考电极子组的一个或多个有源电极和/或参考电极,如本文所述。附加地或另选地,所存储的指令在由处理器执行时使该处理器使用所有有源电极和/或所有参考电极执行测量,并确定和/或分配相应的权重值给每个有源电极和/或参考电极,如本文所述。In some embodiments, a subset of the one or more active electrodes (or all active electrodes) and/or a subset of the one or more reference electrodes (or all reference electrodes) may be formed by combining one electrode with another A switching circuit in which the electrodes are electrically coupled is formed. The switching circuit may be controlled by a processor, which may be, for example, a microcontroller, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP), or the like. The processor may be communicatively coupled to one or more memories storing instructions that, when executed by the processor, cause the processor to execute algorithms or execute instructions to dynamically select the active electrode and/or reference electrode subset, respectively One or more active electrodes and/or reference electrodes, as described herein. Additionally or alternatively, the stored instructions, when executed by the processor, cause the processor to perform measurements using all active electrodes and/or all reference electrodes, and to determine and/or assign a corresponding weight value to each active electrode Electrodes and/or reference electrodes, as described herein.

如本文所述,每个用户的耳道形状和大小各不相同。因此,在壳体上具有一个预定位置的有源电极在一种情况下(例如,对于一个用户或在特定时间)可产生较高强度的信号,但在另一种情况下(例如,对于不同用户或在不同时间)可能不产生良好质量的信号。因此,其中电极被放置在特定用户的特定位置以从该特定用户获得良好质量测量的定制可穿戴电子设备可能是有用的。然而,此类定制设备可能是昂贵的。如本公开中所述,该问题的解决方案是将多个有源电极放置在可穿戴电子设备的壳体的表面上,并且动态地选择能够在给定时间并且可能在给定的一组其他条件(例如,环境条件)下最佳地测量给定用户的生物信号的电极子组。然后可以使用开关电路来电联接所选择的电极子组。未被选择的电极可以被禁用,因此减少了可穿戴电子设备的能量消耗并且提高了测量的准确性。As described in this article, each user's ear canal is different in shape and size. Thus, an active electrode having a predetermined location on the housing may produce a higher strength signal in one instance (e.g., for one user or at a particular time), but in another instance (e.g., for a different users or at different times) may not produce a good quality signal. Therefore, a custom wearable electronic device in which electrodes are placed at a specific location for a specific user to obtain good quality measurements from that specific user may be useful. However, such custom equipment can be expensive. A solution to this problem, as described in this disclosure, is to place multiple active electrodes on the surface of the housing of a wearable electronic device and dynamically select the A subset of electrodes that optimally measures a given user's biosignal under conditions (eg, environmental conditions). Switching circuits may then be used to electrically couple selected subsets of electrodes. Non-selected electrodes can be disabled, thus reducing energy consumption of the wearable electronic device and improving measurement accuracy.

在一些实施方案中,并且作为非限制性示例,多个有源电极可以设置在该可穿戴电子设备(例如耳塞)的耳尖区域中,并且多个参考电极可以设置在该耳塞的外壳或区域上,该耳塞通常留在耳道之外。如本文所述,可根据用于选择有源电极的标准,基于诸如机器学习模型的算法来选择一个或多个有源电极。然后可以使用至少一个开关电路将所选择的电极电联接到相同的通道。作为非限制性示例,电极可以以多种不同的图案放置,或者可以被选择以形成一种图案或多种不同的图案。In some embodiments, and by way of non-limiting example, active electrodes may be disposed in the ear tip region of the wearable electronic device (e.g., an earbud), and reference electrodes may be disposed on the housing or region of the earbud , the earplug usually stays out of the ear canal. As described herein, one or more active electrodes may be selected based on an algorithm, such as a machine learning model, according to the criteria used to select the active electrodes. Selected electrodes can then be electrically coupled to the same channel using at least one switching circuit. As a non-limiting example, electrodes may be placed in a variety of different patterns, or may be selected to form one pattern or a variety of different patterns.

在一些实施方案中,多个有源电极可以具有圆形形状,例如点形状。例如,多个有源电极可以围绕一个或多个同心环形形状放置。在一些实施方案中,多个有源电极可以以一定距离间隔设置在一个或多个同心环中。不同对相邻电极之间的距离可以相同或不同。其中设置有源电极的同心环的数量可以变化,并且不同对相邻同心环之间的间隔可以相同或可以变化。根据本文所述的标准,可以从一个或多个同心环选择一个或多个有源电极,从而形成有源电极的子组。In some embodiments, the plurality of active electrodes may have a circular shape, such as a dot shape. For example, multiple active electrodes may be placed around one or more concentric annular shapes. In some embodiments, multiple active electrodes may be spaced apart in one or more concentric rings. The distance between different pairs of adjacent electrodes may be the same or different. The number of concentric rings in which active electrodes are disposed may vary, and the spacing between different pairs of adjacent concentric rings may be the same or may vary. One or more active electrodes may be selected from one or more concentric rings to form a subset of active electrodes according to the criteria described herein.

在一些实施方案中,多个有源电极可以具有混合形状。换句话说,电极的形状可以包括部分圆形、部分椭圆形、部分正方形和/或未定义的形状。In some embodiments, multiple active electrodes can have mixed shapes. In other words, the shape of the electrode may include a partial circle, a partial ellipse, a partial square, and/or an undefined shape.

在一些实施方案中,可以选择多个有源环形电极中的特定电极环。在一些实施方案中,有源电极可以是椭圆形的,因此可以具有更大的与用户皮肤的接触面积。In some embodiments, a particular electrode ring in a plurality of active ring electrodes can be selected. In some embodiments, the active electrode may be oval in shape and thus may have a larger contact area with the user's skin.

在一些实施方案中,连接多个有源电极和/或参考电极的柔性和/或微型轴向电缆可以具有连接有源电极的多种几何形状。例如,该柔性和/或微型轴向电缆的形状可以是脊柱、章鱼和/或网状等。例如,为该柔性和/或微型轴向电缆选择的设计可以取决于该可穿戴电子设备的大小。在一些实施方案中,该柔性和/或微型轴向电缆可以嵌入该可穿戴电子设备的壳体内。In some embodiments, flexible and/or miniature axial cables connecting multiple active electrodes and/or reference electrodes can have various geometries connecting active electrodes. For example, the flexible and/or miniature axial cable can be shaped like a spine, octopus, and/or mesh, among others. For example, the design chosen for the flexible and/or miniature axial cable may depend on the size of the wearable electronic device. In some embodiments, the flexible and/or miniature axial cable can be embedded within the housing of the wearable electronic device.

在一些实施方案中,除了多个有源电极和/或参考电极,还可以有至少一个接地(GND)连接。在一些实施方案中,在用户触摸或轻击多个参考电极中的参考电极时可以开始测量。在一些实施方案中,可以有单个参考电极,该单个参考电极可以设置在占据较大面积的外壳上。单个参考节点可以是任何形状,例如圆形、椭圆形和/或三角形等。In some embodiments, there may be at least one ground (GND) connection in addition to the plurality of active electrodes and/or reference electrodes. In some embodiments, the measurement may begin when the user touches or taps a reference electrode of the plurality of reference electrodes. In some embodiments, there may be a single reference electrode, which may be disposed on a housing that occupies a larger area. A single reference node can be of any shape, such as circle, ellipse, and/or triangle, etc.

在一些实施方案中,该可穿戴电子设备还可以包括电池和放大器或另一合适的电源。该一个或多个有源电极与相应的一个或多个参考电极之间的电压电位降(其为模拟信号)可使用放大器来放大。正极和负极电池端子连接到放大器,该放大器可以提供电信号(作为电压和/或电流)作为到一个或多个有源电极和/或一个或多个参考电极的输入。In some embodiments, the wearable electronic device may also include a battery and an amplifier or another suitable power source. The voltage potential drop (which is an analog signal) between the one or more active electrodes and the corresponding one or more reference electrodes can be amplified using an amplifier. The positive and negative battery terminals are connected to an amplifier that can provide an electrical signal (as voltage and/or current) as input to one or more active electrodes and/or one or more reference electrodes.

在一些实施方案中,然后可以使用模数转换器将放大的或非放大的模拟信号转换为数字信号。该数字信号可以存储在该可穿戴电子设备的存储器中。在一些实施方案中,来自测量的数字信号可使用无线通信协议(例如蓝牙和/或Wi-Fi等)传输到用户装备(例如移动电话)。在一些实施方案中,测量可使用任何无线电接入技术(例如3G、4G、5G、6G、Wi-Fi、WiMax等)和/或有线技术传输到服务器。该服务器可以将该测量存储为历史数据,该历史数据可以被该用户和/或被允许访问该测量的另一人访问。因此,生物信号的测量可以用于通知用户各种生物信号驱动的用况,例如睡眠监测或其他异常(例如疾病发作)。In some embodiments, the amplified or non-amplified analog signal can then be converted to a digital signal using an analog-to-digital converter. The digital signal can be stored in a memory of the wearable electronic device. In some embodiments, digital signals from measurements may be transmitted to user equipment (eg, mobile phone) using wireless communication protocols (eg, Bluetooth and/or Wi-Fi, etc.). In some embodiments, measurements may be transmitted to the server using any radio access technology (eg, 3G, 4G, 5G, 6G, Wi-Fi, WiMax, etc.) and/or wired technology. The server can store the measurements as historical data that can be accessed by the user and/or another person who is permitted to access the measurements. Thus, the measurement of biosignals can be used to inform users of various biosignal-driven use cases, such as sleep monitoring or other abnormalities such as disease onset.

在一些实施方案中,还可以使用诸如低通滤波器和/或带通滤波器的滤波器来降低噪声水平。In some embodiments, filters such as low pass filters and/or band pass filters may also be used to reduce the noise level.

在一些实施方案中,期望有源电极和对应参考电极之间的距离尽可能大。因此,有源电极和参考电极可以设置在不同的耳塞上。例如,有源电极可以放置在右耳塞上,而参考电极可以放置在左耳塞上,反之亦然。位于任一个耳塞中的至少一个处理器和至少一个开关电路然后可以形成用于测量生物信号的有源电极子组和参考电极子组,如本公开所述。In some embodiments, it is desirable that the distance between the active electrode and the corresponding reference electrode be as large as possible. Therefore, the active electrode and the reference electrode can be provided on different earplugs. For example, the active electrode can be placed on the right earbud while the reference electrode can be placed on the left earbud, or vice versa. At least one processor and at least one switching circuit located in either earbud may then form a subset of active electrodes and a subset of reference electrodes for measuring biosignals, as described in this disclosure.

在一些实施方案中,该可穿戴电子设备可以是有线头戴式耳机,并且有源电极和参考电极可以在该头戴式耳机的不同侧上。例如,有源电极可以在该头戴式耳机的右侧,而参考电极可以在该头戴式耳机的左侧。有源电极和参考电极可以与导线、微型轴向电缆和/或柔性衬底电联接和/或通信地联接。In some embodiments, the wearable electronic device can be a wired headset, and the active and reference electrodes can be on different sides of the headset. For example, the active electrode can be on the right side of the headset and the reference electrode can be on the left side of the headset. The active and reference electrodes may be electrically and/or communicatively coupled with wires, micro-axial cables, and/or flexible substrates.

前述实施方案和其他实施方案以及其各种另选方案和其变型在本文中参考附图进行讨论,以便于解释,并促进对诸如本文所述的系统的各种配置和构造的理解。然而,对于本领域的技术人员而言将显而易见的是,本文所呈现的具体细节中的一些细节可为实践特定的所述实施方案或其等同物所不需要的。The foregoing embodiments and other embodiments, as well as various alternatives and modifications thereof, are discussed herein with reference to the accompanying figures for the purpose of explanation and to facilitate an understanding of various configurations and constructions of systems such as those described herein. It will be apparent, however, to one skilled in the art that some of the specific details presented herein may not be required to practice a particular described embodiment, or equivalents thereof.

图1示出了示例性可穿戴电子设备(例如耳塞)。如图1所示,左耳或右耳的耳塞100可以包括尖端102、听筒104和柄106。尖端102可以由任何材料制成,例如塑料、橡胶、导电材料、硅树脂或这些材料的混合物。在一些实施方案中,尖端102下方的壳体可由金属、陶瓷、玻璃、塑料材料或它们的混合物中的任一者制成。听筒104和/或柄106也可由金属、陶瓷、玻璃、塑料材料或它们的混合物中的任一者制成。尖端102、听筒104和/或柄106的中空部分可形成耳塞100的壳体。Figure 1 illustrates an exemplary wearable electronic device (eg, earbuds). As shown in FIG. 1 , earplug 100 for left or right ear may include tip 102 , earpiece 104 and stem 106 . Tip 102 may be made of any material, such as plastic, rubber, conductive material, silicone, or a mixture of these materials. In some embodiments, the housing below the tip 102 may be made of any of metal, ceramic, glass, plastic material, or mixtures thereof. Earpiece 104 and/or handle 106 may also be made of any of metal, ceramic, glass, plastic material, or mixtures thereof. The hollow portion of the tip 102 , earpiece 104 and/or stem 106 may form the housing of the earbud 100 .

耳塞的壳体可包括电路,该电路还可以包括但不限于一个或多个扬声器、一个或多个麦克风、电池或另一合适的电源、用于对电池或其他合适的电源充电的充电电路、光学传感器、一个或多个运动加速度计、陀螺仪、通信电路系统、处理器和/或存储器等。The housing of the earbud may include circuitry which may also include, but is not limited to, one or more speakers, one or more microphones, a battery or another suitable power source, charging circuitry for charging the battery or other suitable power source, Optical sensors, one or more motion accelerometers, gyroscopes, communication circuitry, processor and/or memory, etc.

在一些实施方案中,图1所示的阴影部分108可用作输入系统以接收来自用户的各种命令。该输入系统可以包括加速度计、触摸传感器、力传感器、压力传感器等中的一者或多者。例如,阴影部分108上的挤压、单轻击和/或双轻击可以由该输入系统接收作为来自用户的输入,并且可以解释为各种命令,诸如播放音乐、应答呼叫、断开呼叫、增大/减小音量等,这取决于用户如何设置耳塞。In some embodiments, the shaded portion 108 shown in FIG. 1 may be used as an input system to receive various commands from a user. The input system may include one or more of accelerometers, touch sensors, force sensors, pressure sensors, and the like. For example, a squeeze, a single tap, and/or a double tap on shaded portion 108 may be received by the input system as input from the user and may be interpreted as various commands, such as play music, answer a call, disconnect a call, Volume up/down etc. depending on how the user has set up the earbuds.

在一些实施方案中,加速度计可用于确定耳塞的取向并自动启动或停止各种功能。在一些实施方案中,在检测到对应于用户耳朵中的耳塞的耳塞位置时,可以自动播放音乐和/或可以自动启动另一功能。In some embodiments, an accelerometer can be used to determine the orientation of the earbud and automatically activate or deactivate various functions. In some embodiments, upon detection of an earbud position corresponding to an earbud in a user's ear, music may be automatically played and/or another function may be automatically initiated.

在一些实施方案中,通信电路系统可以使用诸如蓝牙、Wi-Fi和/或近场通信(NFC)等的通信协议与另一用户装备(UE)(例如,用户的电话)通信。该通信电路系统可以从使用该通信电路系统的其他UE发送和/或接收数据。In some embodiments, the communication circuitry may communicate with another user equipment (UE) (eg, a user's phone) using a communication protocol such as Bluetooth, Wi-Fi, and/or near field communication (NFC). The communication circuitry may transmit and/or receive data from other UEs using the communication circuitry.

该处理器可以是微处理器、微控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)等。存储器可以包括只读存储器(ROM)、随机存取存储器和/或静态随机存取存储器(SRAM)等。该存储器可以存储对应于算法和/或机器学习模型的指令以执行所配置的各种功能。The processor may be a microprocessor, a microcontroller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. The memory may include read only memory (ROM), random access memory, and/or static random access memory (SRAM), among others. The memory may store instructions corresponding to algorithms and/or machine learning models to perform various configured functions.

耳塞100可以用于测量生物信号,例如用于测量脑活动的脑电图(EEG)。如前所述,当前可用的用于测量EEG的耳塞可以包括尖端102上的有源电极和听筒104和/或柄106上的参考电极。由于用于测量用户的脑电活动的有源电极的位置或接触点保持固定,并且每个人的耳道形状和大小各不相同,所以用于EEG测试的所测量的电活动可能不准确,和/或可能需要根据用户耳道的形状和大小定制的耳塞。然而,如本文根据一些实施方案使用图2至图6、图7A至图7C和图8至图10所述的耳塞可以解决定制耳塞和/或EEG测量不准确的问题。The earplug 100 may be used to measure biological signals, such as an electroencephalogram (EEG) for measuring brain activity. As previously mentioned, currently available earplugs for measuring EEG may include active electrodes on the tip 102 and reference electrodes on the earpiece 104 and/or stem 106 . Since the position or point of contact of the active electrodes used to measure the user's brain electrical activity remains fixed, and the shape and size of the ear canal varies from person to person, the measured electrical activity for EEG testing may be inaccurate, and and/or may require earplugs custom-made to the shape and size of the user's ear canal. However, earplugs as described herein using FIGS. 2-6 , 7A-7C , and 8-10 according to some embodiments can address the issue of custom earplugs and/or inaccurate EEG measurements.

图2示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)。与图1所示的耳塞100类似,图2所示的耳塞200可以包括尖端202、听筒204和柄206。FIG. 2 illustrates an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments. Similar to the earplug 100 shown in FIG. 1 , the earplug 200 shown in FIG. 2 may include a tip 202 , an earpiece 204 and a handle 206 .

尖端202可以由任何材料制成,例如塑料、橡胶、导电材料、硅树脂或这些材料的混合物。在一些实施方案中,尖端202下方的壳体可由金属、陶瓷、玻璃、塑料材料或它们的混合物中的任一者制成。听筒204和/或柄206也可由金属、陶瓷、玻璃、塑料材料或它们的混合物中的任一者制成。尖端202、听筒204和/或柄206的中空部分可形成耳塞200的壳体。Tip 202 may be made of any material, such as plastic, rubber, conductive material, silicone, or a mixture of these materials. In some embodiments, the housing below the tip 202 may be made of any of metal, ceramic, glass, plastic material, or mixtures thereof. Earpiece 204 and/or handle 206 may also be made of any of metal, ceramic, glass, plastic material, or mixtures thereof. The hollow portion of the tip 202 , earpiece 204 and/or stem 206 may form the housing of the earbud 200 .

耳塞的壳体可包括电路,该电路还可以包括例如一个或多个扬声器、一个或多个麦克风、电池或另一合适的电源、用于对电池或其他合适的电源充电的充电电路、光学传感器、一个或多个运动加速度计、陀螺仪、通信电路系统、处理器和/或存储器等,它们可执行如本文参照图1所示的耳塞100所述的类似功能。The housing of the earbud may include circuitry that may also include, for example, one or more speakers, one or more microphones, a battery or another suitable power source, a charging circuit for charging the battery or other suitable power source, an optical sensor , one or more motion accelerometers, gyroscopes, communication circuitry, processors, and/or memory, etc., which may perform similar functions as described herein with reference to earbud 100 shown in FIG. 1 .

如图2所示,包括多个有源电极208a-208q的一组电极设置在耳塞200的尖端202上。作为非限制性示例,多个有源电极208a-208q可以在尖端202的表面上和/或嵌入用于形成尖端202的材料内。As shown in FIG. 2 , a set of electrodes comprising a plurality of active electrodes 208 a - 208 q is disposed on the tip 202 of the earplug 200 . As a non-limiting example, a plurality of active electrodes 208a - 208q may be on the surface of tip 202 and/or embedded within the material used to form tip 202 .

在一些实施方案中,尖端202可以由导电材料制成。在一些实施方案中,当有源电极嵌入用于尖端202的材料内时,尖端202可以由导电材料制成。在一些实施方案中,只有有源电极嵌入用于形成尖端202的材料内的区域可以由导电材料制成。In some embodiments, the tip 202 can be made of a conductive material. In some embodiments, when the active electrodes are embedded within the material used for tip 202, tip 202 may be made of a conductive material. In some embodiments, only the region where the active electrode is embedded within the material used to form tip 202 may be made of a conductive material.

在一些实施方案中,该组电极还可以包括设置在耳塞200的听筒204上的多个参考电极210a-210c。在图2中,示出了三个参考电极,但是可以有少于或多于三个参考电极。在一些实施方案中,可以有单个参考电极。In some embodiments, the set of electrodes may also include a plurality of reference electrodes 210a - 210c disposed on the earpiece 204 of the earbud 200 . In Fig. 2, three reference electrodes are shown, but there may be less or more than three reference electrodes. In some embodiments, there may be a single reference electrode.

在一些实施方案中,并且作为非限制性示例,有源电极208a-208q和参考电极210a-210c可以接收电信号(作为电压和/或电流)作为来自电池或另一合适电源的输入。在一些实施方案中,可以使用放大器来放大到有源电极和/或参考电极的电输入信号。In some embodiments, and by way of non-limiting example, active electrodes 208a-208q and reference electrodes 210a-210c may receive electrical signals (as voltage and/or current) as input from a battery or another suitable power source. In some embodiments, an amplifier can be used to amplify the electrical input signal to the active electrode and/or the reference electrode.

在图2中,多个有源电极208a-208q中的每个有源电极被示为具有圆形形状,例如点形状。例如,多个有源电极可以围绕一个或多个同心环形形状放置。然而,如本文所述,有源电极208a-208q可以具有任何合适的形状或尺寸。参考电极210a具有围绕听筒204的环形形状。参考电极210a的形状可以被配置为例如如图2所示,使得其便于用户使用触摸、挤压和/或一个或多个轻击等来提供输入。该一个或多个参考电极210a-210c还可以散布有一个或多个加速度计和/或一个或多个力传感器,以接收来自用户的输入,如本文所述。因此,例如,在示出参考电极210a的区域中的单个轻击可以解释为开始测量生物信号(例如,EEG)的命令。In FIG. 2, each active electrode of the plurality of active electrodes 208a-208q is shown as having a circular shape, such as a dot shape. For example, multiple active electrodes may be placed around one or more concentric annular shapes. However, active electrodes 208a-208q may have any suitable shape or size, as described herein. The reference electrode 210 a has a ring shape surrounding the earpiece 204 . The shape of the reference electrode 210a may be configured, eg, as shown in FIG. 2, such that it is convenient for a user to provide input using touch, squeeze, and/or one or more taps, and the like. The one or more reference electrodes 210a-210c may also be interspersed with one or more accelerometers and/or one or more force sensors to receive input from a user, as described herein. Thus, for example, a single tap in the area showing reference electrode 210a may be interpreted as a command to start measuring a biosignal (eg, EEG).

为了测量EEG,可以选择一个或多个有源电极或数个有源电极208a-208q作为有源电极子组。类似地,也可以选择多个参考电极210a-210c中的一个或多个参考电极作为参考电极子组。可以使用耳塞200的壳体上的电极载体来连接和/或联接有源电极子组中的一个或多个有源电极。如图2所示,耳塞200的壳体具有非平面表面,并且电极载体可以是柔性衬底或柔性电路衬底、柔性电路和/或微型轴向电缆。在一些实施方案中,电极载体可以是听筒(例如,耳内件、耳外件或耳上件)。在一些实施方案中,电极载体可以是壳体的壁,例如耳塞200的壳体的非平面表面。For measuring EEG, one or more active electrodes or several active electrodes 208a-208q may be selected as a subset of active electrodes. Similarly, one or more reference electrodes among the plurality of reference electrodes 210a-210c may also be selected as the reference electrode subset. The electrode carrier on the housing of the earplug 200 may be used to connect and/or couple one or more active electrodes in the active electrode subset. As shown in Figure 2, the housing of the earplug 200 has a non-planar surface, and the electrode carrier may be a flexible substrate or a flexible circuit substrate, a flexible circuit and/or a miniature axial cable. In some embodiments, the electrode carrier may be an earpiece (eg, an in-ear, out-of-ear, or supra-auricular). In some embodiments, the electrode carrier may be a wall of a housing, such as a non-planar surface of the housing of earplug 200 .

在一些实施方案中,接地电极(GND)212可以放置在可穿戴电子设备200的壳体上,如图2所示。GND 212可用于防止噪声干扰感兴趣的小生物电位信号。In some embodiments, a ground electrode (GND) 212 may be placed on the housing of the wearable electronic device 200, as shown in FIG. 2 . GND 212 can be used to prevent noise from interfering with small biopotential signals of interest.

在一些实施方案中,如本文所述的开关电路可以电连接子组的一个或多个有源电极(或所有有源电极)和/或多个此类子组,从而形成传感器电路。作为非限制性示例,多个此类子组可以包括一个或多个(或所有)有源电极的第一子组以及一个或多个(或所有)参考电极的第二子组。在第一模式中,开关电路可以由处理器根据算法和/或机器学习模型来控制,该算法和/或机器学习模型被配置为基于以下特征来选择一个或多个有源电极(或所有有源电极),这些特征包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位等。换句话说,在第一模式中,可以测量一组有源电极的有源电极(“第一电极”)和一组参考电极的参考电极(“第二电极”)之间的阻抗以及其他参数。在一些实施方案中,第一电极和第二电极之间的物理距离可以是已知的或计算的。在第二模式中,开关电路和/或传感器电路可以由处理器控制,以测量生物信号,例如脑区域中的电活动。换句话说,在第二模式中,可以测量所选择的第一电极和第二电极之间的电压差,用于测量生物信号。作为非限制性示例,生物信号可以是对应于有源电极第一子组的优化生物信号和/或对应于有源电极第二子组的优化生物信号,该优化生物信号通过分别向该有源电极第一子组的每个有源电极和/或该参考电极第二子组的每个参考电极施加相应的权重而产生。In some embodiments, a switching circuit as described herein may electrically connect one or more active electrodes (or all active electrodes) of a subgroup and/or a plurality of such subgroups to form a sensor circuit. As a non-limiting example, a plurality of such subsets may include a first subset of one or more (or all) active electrodes and a second subset of one or more (or all) reference electrodes. In the first mode, the switching circuit may be controlled by the processor according to an algorithm and/or machine learning model configured to select one or more active electrodes (or all active electrodes) based on Source electrode), these characteristics include but are not limited to impedance level, noise (eg, environmental noise and/or electrode-skin interface noise, etc.), physical distance between active electrode and reference electrode, half-cell potential, etc. In other words, in the first mode, it is possible to measure, among other parameters, the impedance between an active electrode of a set of active electrodes ("first electrode") and a reference electrode of a set of reference electrodes ("second electrode") . In some embodiments, the physical distance between the first electrode and the second electrode may be known or calculated. In a second mode, the switching circuit and/or the sensor circuit may be controlled by the processor to measure biosignals, such as electrical activity in a brain region. In other words, in the second mode, the voltage difference between the selected first electrode and the second electrode can be measured for measuring the biological signal. As a non-limiting example, the bio-signal may be an optimized bio-signal corresponding to the first subset of active electrodes and/or an optimized bio-signal corresponding to the second subset of active electrodes, the optimized bio-signal being passed to the active electrodes respectively. Each active electrode of the first subset of electrodes and/or each reference electrode of the second subset of reference electrodes is generated by applying a corresponding weight.

在一些实施方案中,由传感器电路测量的电活动可以由处理器进一步分析,和/或可以使用本文所述的通信电路传送到另一用户装备(UE)和/或服务器。在一些实施方案中,可以根据来自测量的所分析的电活动向用户发送通知。该通知可以作为听觉信号、视觉信号、触觉反馈、电子邮件和/或文本等发送。In some embodiments, the electrical activity measured by the sensor circuit can be further analyzed by the processor and/or can be transmitted to another user equipment (UE) and/or server using the communication circuit described herein. In some embodiments, notifications may be sent to the user based on the analyzed electrical activity from the measurements. The notification can be sent as an audible signal, visual signal, tactile feedback, email and/or text, and the like.

图3示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)的一部分的一个视图。图3所示的耳塞300的部分是耳塞的尖端302,该尖端具有有源电极304a-304c。尖端302上的有源电极304a-304c中的每个有源电极可以是环形或与图2所示的有源电极的形状相同(或不同)的形状。根据一些实施方案,如本文所述,可以选择一个或多个有源电极304a-304c用于测量生物信号。3 illustrates a view of a portion of an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments. The portion of earplug 300 shown in FIG. 3 is tip 302 of the earplug, which has active electrodes 304a-304c. Each of the active electrodes 304a - 304c on the tip 302 may be annular or have the same (or different) shape as the active electrodes shown in FIG. 2 . According to some embodiments, one or more active electrodes 304a-304c may be selected for measuring biological signals as described herein.

图4示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)的一部分的一个视图。图4所示的耳塞400的一部分示出了耳塞的尖端402,该尖端具有有源电极404a-404f。尖端402上的有源电极404a-404f中的每个有源电极可以是例如椭圆形的。有源电极404a-404f中的每个有源电极可以具有相同的尺寸或不同的尺寸。根据一些实施方案,如本文所述,可以选择一个或多个有源电极404a-404f用于测量生物信号。在另选的实施方案中,电极404a-404f可以是矩形或具有其他形状。电极404a-404f可以各自具有相同的形状和尺寸或者可以具有不同的形状或尺寸。4 illustrates a view of a portion of an exemplary wearable electronic device (eg, an earbud) as described herein, according to some embodiments. The portion of earplug 400 shown in FIG. 4 shows the tip 402 of the earplug with active electrodes 404a-404f. Each of active electrodes 404a-404f on tip 402 may be, for example, oval. Each of active electrodes 404a-404f may have the same size or different sizes. According to some embodiments, one or more active electrodes 404a-404f may be selected for measuring biological signals as described herein. In alternative embodiments, electrodes 404a-404f may be rectangular or have other shapes. Electrodes 404a-404f may each have the same shape and size or may have different shapes or sizes.

图5示出了根据一些实施方案的如本文所述的示例性可穿戴电子设备(例如耳塞)以及打开或关闭特征部以测量生物信号。图5所示的耳塞500包括听筒502和柄504。一个或多个参考电极506a-506c可以设置在听筒504上。例如,该一个或多个参考电极506a-506c中的每个参考电极可以是椭圆形的。然而,参考电极可以是任何形状或尺寸。5 illustrates an exemplary wearable electronic device (eg, an earbud) as described herein and opening or closing features to measure biosignals, according to some embodiments. The earplug 500 shown in FIG. 5 includes an earpiece 502 and a handle 504 . One or more reference electrodes 506a - 506c may be disposed on the earpiece 504 . For example, each of the one or more reference electrodes 506a-506c may be oval in shape. However, the reference electrode can be of any shape or size.

在一些实施方案中,参考电极也可用于开始或停止生物信号的测量。参考电极还可以包括力传感器和/或加速度计或与其联接以接收来自用户的输入。来自用户的输入可以是轻击、触摸和/或挤压等,如图5中508所示。In some embodiments, the reference electrode can also be used to start or stop the measurement of the biological signal. The reference electrode may also include or be coupled to a force sensor and/or an accelerometer to receive input from a user. The input from the user may be a tap, touch and/or squeeze, etc., as shown at 508 in FIG. 5 .

在一些实施方案中,来自用户的输入可以是音频输入,可以在耳塞的麦克风处接收该音频输入。在一些实施方案中,耳塞中的光学传感器还可以被配置为接收来自用户的输入,以开始和/或停止生物信号的测量。In some embodiments, the input from the user may be audio input, which may be received at the microphone of the earbud. In some embodiments, the optical sensor in the earbud can also be configured to receive input from the user to start and/or stop the measurement of the biosignal.

图6示出了根据一些实施方案的如本文所述的可穿戴电子设备600的电框图。电框图600包括一组电极602,该组电极包括多个有源电极604和多个参考电极606。该多个有源电极604可以包括有源电极604a-604h。该多个参考电极606可以包括参考电极606a-606c。有源电极604a-604h和参考电极606a-606c可以由电极载体608承载,该电极载体可以是柔性电缆和/或一组微型同轴电缆,并且可以电联接到控制器610。FIG. 6 shows an electrical block diagram of a wearable electronic device 600 as described herein, according to some embodiments. Electrical block diagram 600 includes a set of electrodes 602 including a plurality of active electrodes 604 and a plurality of reference electrodes 606 . The plurality of active electrodes 604 may include active electrodes 604a-604h. The plurality of reference electrodes 606 may include reference electrodes 606a-606c. Active electrodes 604 a - 604 h and reference electrodes 606 a - 606 c may be carried by electrode carrier 608 , which may be a flexible cable and/or a set of micro coaxial cables, and may be electrically coupled to controller 610 .

在一些实施方案中,控制器610可以包括处理器、微控制器、DSP、FPGA和/或ASIC等。控制器610可以选择一个或多个有源电极604a-604h以形成多个有源电极子组中的有源电极子组。可以基于本文所述的标准来选择一个或多个有源电极604a-604h,所述标准例如包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位等。类似地,控制器610可以选择一个或多个参考电极606a-606c以形成多个参考电极子组中的参考电极子组。控制器610然后可以使用所选择的有源电极子组和参考电极子组来执行测量测试。在一个示例中,该测量可以用于测量EEG。In some embodiments, the controller 610 may include a processor, microcontroller, DSP, FPGA, and/or ASIC, among others. Controller 610 may select one or more active electrodes 604a-604h to form an active electrode subgroup of the plurality of active electrode subgroups. One or more active electrodes 604a-604h may be selected based on criteria described herein, such as, but not limited to, impedance level, noise (e.g., environmental noise and/or electrode-skin interface noise, etc.), active Physical distance between electrode and reference electrode, half-cell potential, etc. Similarly, the controller 610 may select one or more of the reference electrodes 606a-606c to form a reference electrode subset of the plurality of reference electrode subsets. The controller 610 can then perform a measurement test using the selected active and reference electrode subsets. In one example, this measurement can be used to measure EEG.

图7A至图7C示出了根据一些实施方案的如本文所述的可穿戴电子设备的壳体上的多个电极图案。如图7A至图7C所示,每个图中的框图700可以表示电极的视图,例如以特定图案布置的多个有源电极。例如,在图7A中,示出了视图702,其中使用电极载体(例如,柔性电路衬底)将有源电极704a-704f布置成脊柱的形式。在图7B中,示出了视图706,其中使用电极载体(例如,柔性电路衬底)将有源电极708a-708d布置成章鱼形状。在图7C中,示出了视图710,其中使用电极载体(例如,柔性电路衬底)将有源电极712a-712i布置成网状网络。可布置有源电极的具体形式或形状不限于本文所述的形式或形状。该形式或形状可以基于耳塞的尺寸和用于柔性衬底、柔性电路衬底和/或一组一个或多个微型轴向电缆布线的可用空间来选择。7A-7C illustrate a plurality of electrode patterns on a housing of a wearable electronic device as described herein, according to some embodiments. As shown in FIGS. 7A-7C , block diagram 700 in each figure may represent a view of an electrode, such as a plurality of active electrodes arranged in a particular pattern. For example, in FIG. 7A, a view 702 is shown in which active electrodes 704a-704f are arranged in the form of spines using an electrode carrier (eg, a flexible circuit substrate). In FIG. 7B, a view 706 is shown in which active electrodes 708a-708d are arranged in an octopus shape using an electrode carrier (eg, a flexible circuit substrate). In FIG. 7C , a view 710 is shown in which active electrodes 712a - 712i are arranged in a mesh network using an electrode carrier (eg, a flexible circuit substrate). The specific form or shape in which the active electrodes may be arranged is not limited to the forms or shapes described herein. The form or shape may be selected based on the size of the earbud and the space available for routing of the flexible substrate, flexible circuit substrate and/or set of one or more miniature axial cables.

图8示出了根据一些实施方案的如本文所述的可穿戴电子设备800的感测电路的电框图。感测电路802可以包括开关电路804,该开关电路包括一个或多个开关806a-806d。该一个或多个开关806a-806d中的每个开关可以连接到多个有源电极和/或参考电极808a-808d中的有源电极和/或参考电极。可以类似于控制器610的处理器814可以包括和/或执行算法812以选择一个或多个有源电极来形成多个有源电极子组中的有源电极子组,并且选择一个或多个参考电极来形成一个或多个参考电极子组中的参考电极子组。处理器814可以使用分析器810评估用于选择一个或多个有源电极的标准。分析器可以评估的标准包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位等。使用算法812的处理器814可以使用所选择的有源电极子组和所选择的参考电极子组来启动生物信号的测量。在一些情况下,电极子组的电极可以暂时成组,并且生物信号的测量可以作为有源电极子组和参考电极子组之间的电压来获得。在一些情况下,可以使用不同的电极子组对测量生物信号(例如,使用有源电极第一子组和参考电极第一子组;然后使用有源电极第二子组和参考电极第一子组;然后使用有源电极第一子组和有源电极第二子组;等等)。在一些情况下,生物信号的测量可以作为从有源电极子组和参考电极子组中选择的一对有源电极和参考电极之间的电压来获得。在一些情况下,可以使用分别从有源电极子组和参考电极子组中选择的不同的有源电极和参考电极对来依次获得生物信号的测量结果。每个电极子组可以包括一个或多个电极。FIG. 8 illustrates an electrical block diagram of a sensing circuit of a wearable electronic device 800 as described herein, according to some embodiments. The sensing circuit 802 may include a switching circuit 804 including one or more switches 806a-806d. Each of the one or more switches 806a-806d may be connected to an active electrode and/or a reference electrode in a plurality of active and/or reference electrodes 808a-808d. A processor 814, which may be similar to controller 610, may include and/or execute an algorithm 812 to select one or more active electrodes to form an active electrode subgroup of the plurality of active electrode subgroups, and to select one or more A reference electrode is used to form a reference electrode subset of one or more reference electrode subsets. Processor 814 may use analyzer 810 to evaluate criteria for selecting one or more active electrodes. Criteria that the analyzer can evaluate include, but are not limited to, impedance levels, noise (eg, environmental noise and/or electrode-skin interface noise, etc.), physical distance between active and reference electrodes, half-cell potential, and the like. Processor 814 using algorithm 812 may initiate measurement of biosignals using the selected subset of active electrodes and the selected subset of reference electrodes. In some cases, the electrodes of the electrode subset can be temporarily grouped, and the measurement of the biological signal can be obtained as a voltage between the active electrode subset and the reference electrode subset. In some cases, biosignals may be measured using different pairs of electrode subsets (e.g., using a first subset of active electrodes and a first subset of reference electrodes; then using a second subset of active electrodes and a first subset of reference electrodes). group; then use the first subset of active electrodes and the second subset of active electrodes; etc.). In some cases, the measurement of the biological signal may be obtained as a voltage between a pair of active electrodes and a reference electrode selected from the subset of active electrodes and the reference electrode. In some cases, measurements of biological signals may be sequentially obtained using different pairs of active electrodes and reference electrodes respectively selected from the subsets of active electrodes and reference electrodes. Each electrode subset may include one or more electrodes.

图9示出了根据一些实施方案的如本文所述的一个或多个有源电极900的选择的示例。如图9所示,参考电极902可以分别与有源电极904b、904a和904c相距d1 906a、d2906b和d3 906c距离。在一些实施方案中,有源电极和参考电极之间的阻抗可以取决于它们之间的距离。阻抗可以随有源电极和参考电极之间距离的增加而增加。有源电极和参考电极之间的较高阻抗可以产生更精确的EEG测量。因此,可以为有源电极子组选择离参考电极最远的有源电极。FIG. 9 illustrates an example of a selection of one or more active electrodes 900 as described herein, according to some embodiments. As shown in FIG. 9, the reference electrode 902 may be at a distance d1 906a, d2 906b, and d3 906c from the active electrodes 904b, 904a, and 904c, respectively. In some embodiments, the impedance between the active electrode and the reference electrode can depend on the distance between them. Impedance can increase with increasing distance between active and reference electrodes. A higher impedance between the active and reference electrodes can yield more accurate EEG measurements. Thus, the active electrode furthest from the reference electrode can be selected for the active electrode subgroup.

图10示出了根据一些实施方案的如本文所述的可穿戴电子设备(例如一组耳塞)。一组耳塞1000可以包括第一耳塞1002和第二耳塞1004。在第一耳塞1002上,可以有多个有源电极(或一组有源电极)1008a-1008h,而在第二耳塞1004上,可以有多个参考电极(或一组参考电极)1006a-1006c。第一耳塞1002和第二耳塞1004可以使用电缆1010彼此电联接和/或通信地联接。在一些实施方案中,至少一个开关电路(如图6所示)可以电联接到多个有源电极和多个参考电极。FIG. 10 illustrates a wearable electronic device (eg, a set of earbuds) as described herein, according to some embodiments. A set of earbuds 1000 may include a first earbud 1002 and a second earbud 1004 . On the first earbud 1002, there may be a plurality of active electrodes (or a set of active electrodes) 1008a-1008h, while on the second earbud 1004, there may be a plurality of reference electrodes (or a set of reference electrodes) 1006a-1006c . First earbud 1002 and second earbud 1004 may be electrically and/or communicatively coupled to each other using cable 1010 . In some embodiments, at least one switching circuit (as shown in FIG. 6 ) can be electrically coupled to multiple active electrodes and multiple reference electrodes.

在一些实施方案中,图10中所示的可穿戴电子设备可以另选地是一组耳机件或头戴式耳机。例如,第一耳塞1002可用该组耳机件(或头戴式耳机)中的第一耳机件(或第一耳机)替换,而第二耳塞1004可用该组耳机件(或头戴式耳机)中的第二耳机件(或第二头戴式耳机)替换。第一耳机件和第二耳机件可以使用电缆1010彼此电联接和/或通信地联接。在一些实施方案中,电缆1010可以用头带替换,该头带物理地、电气地和/或通信地联接第一耳机件和第二耳机件。In some embodiments, the wearable electronic device shown in FIG. 10 may alternatively be a set of earphones or headphones. For example, the first earbud 1002 can be replaced with the first earphone piece (or first earphone) of the set of earphone pieces (or headphones), and the second earbud 1004 can be replaced with the first earphone piece (or headphone) of the set of earphone pieces (or headphones). The second earphone piece (or second headset) to replace. The first ear piece and the second ear piece may be electrically and/or communicatively coupled to each other using a cable 1010 . In some embodiments, the cable 1010 may be replaced with a headband that physically, electrically, and/or communicatively couples the first ear piece and the second ear piece.

本文中参考图2至图9描述的各种特征可以结合到可穿戴电子设备1000中。因此,为了简洁起见,这里不再描述这些实施方案。可穿戴电子设备1000可以在有源电极和参考电极之间提供更大的距离,因为它们被设置在不同的耳塞上。在一些实施方案中,有源电极和参考电极之间的电磁场变化可用于测量生物信号。Various features described herein with reference to FIGS. 2 to 9 may be incorporated into the wearable electronic device 1000 . Therefore, for the sake of brevity, these embodiments are not described again here. The wearable electronic device 1000 can provide a greater distance between the active electrode and the reference electrode because they are disposed on different earbuds. In some embodiments, changes in the electromagnetic field between the active electrode and the reference electrode can be used to measure biosignals.

在一些实施方案中,图10中所示的可穿戴电子设备可以另选地是一副眼镜,并且有源电极和参考电极可以放置在这副眼镜的镜腿区域中。例如,有源电极和参考电极可以分别定位在这副眼镜的第一柄和第二柄上。根据一些实施方案,有源电极和参考电极可以如本文所述电联接或脱离。In some embodiments, the wearable electronic device shown in FIG. 10 may alternatively be a pair of glasses, and the active and reference electrodes may be placed in the temple regions of the pair of glasses. For example, an active electrode and a reference electrode may be positioned on the first and second stems of the pair of glasses, respectively. According to some embodiments, the active and reference electrodes may be electrically coupled or decoupled as described herein.

图11A至图11B示出了根据一些实施方案的如本文所述的由电极测量的生物信号的示例视图。如图11A的视图1100a所示,生物信号1102a-g可以由可穿戴电子设备1000的电极测量。生物信号1102a-g可以包括由所有或一部分有源电极和/或所有或一部分参考电极测量的生物信号。生物信号1102a-g是时间序列信号,每个生物信号1102a-g由有源电极和参考电极的不同对(或子组)测量。由于根据包括但不限于阻抗水平、噪声(例如,环境噪声和/或电极-皮肤界面噪声等)、有源电极和参考电极之间的物理距离、半电池电位和/或电极的放置等的标准,每个有源电极和/或每个参考电极可以被分配不同的权重,或者每对有源电极和参考电极可以被分配不同的权重,可以产生对应于眼睛闭合时所有有源电极和参考电极对的生物信号的加权和的优化信号(即,第一生物信号),其在图11A中被示为优化信号1104a,并且可以产生对应于眼睛睁开时所有有源电极和参考电极对的生物信号的加权和的优化信号(例如,第二生物信号),其在图11A中被示为优化信号1104b。优化信号1104a和1104b中的每一者是针对α波段(8-12Hz)呈现的,并且优化信号1104a和1104b中的每一者可以通过使用快速傅立叶变换(FFT)算法处理分别在眼睛闭合时和眼睛睁开时来自有源电极和/或参考电极对的单个时间序列信号来产生。使用FFT算法,可以根据分配给每个有源电极和/或每个参考电极和/或每对有源电极和参考电极的相应权重来识别时变信号的各种频率分量。对应于眼睛闭合时和眼睛睁开时所得的优化信号在图11A中分别示为1104a和1104b。11A-11B illustrate example views of biosignals measured by electrodes as described herein, according to some embodiments. As shown in view 1100a of FIG. 11A , biosignals 1102a - g may be measured by electrodes of wearable electronic device 1000 . Biosignals 1102a-g may include biosignals measured by all or a portion of the active electrodes and/or all or a portion of the reference electrodes. Biosignals 1102a-g are time series signals, each biosignal 1102a-g measured by a different pair (or subset) of active and reference electrodes. Due to criteria including but not limited to impedance level, noise (e.g., ambient noise and/or electrode-skin interface noise, etc.), physical distance between active and reference electrodes, half-cell potential, and/or electrode placement, etc. , each active electrode and/or each reference electrode can be assigned different weights, or each pair of active electrodes and reference electrodes can be assigned different weights, which can generate The optimized signal (i.e., the first biological signal) of the weighted sum of the biological signals of the pair, which is shown as the optimized signal 1104a in FIG. An optimized signal (eg, a second biological signal) of the weighted sum of signals, which is shown in FIG. 11A as optimized signal 1104b. Each of the optimized signals 1104a and 1104b is presented for the alpha band (8-12Hz), and each of the optimized signals 1104a and 1104b can be processed by using a Fast Fourier Transform (FFT) algorithm when the eyes are closed and when the eyes are closed, respectively. A single time-series signal from the active and/or reference electrode pair is generated while the eye is open. Using an FFT algorithm, various frequency components of the time-varying signal can be identified according to the respective weights assigned to each active electrode and/or each reference electrode and/or each pair of active and reference electrodes. The resulting optimized signals corresponding to when the eyes are closed and when the eyes are open are shown in FIG. 11A as 1104a and 1104b, respectively.

在一些情况下,可能期望对应于眼睛闭合时在其能量峰值处的优化信号1104a与对应于眼睛睁开时在其能量峰值处的优化参考信号1104b的比率大于1。因此,可以确定(例如,根据需要选择然后调整)和分配每个有源电极和/或参考电极或每对有源电极和参考电极的相应权重以实现该目标。In some cases, it may be desirable that the ratio of the optimized signal 1104a corresponding to the eyes closed at their energy peaks to the optimized reference signal 1104b corresponding to the eyes open at their energy peaks be greater than one. Accordingly, a respective weight for each active electrode and/or reference electrode or pair of active electrodes and reference electrodes may be determined (eg, selected and then adjusted as desired) and assigned to achieve this goal.

如图11B的视图1100b所示,生物信号1106a-g各自可以表示如由该可穿戴电子设备1000的电极测量的生物信号。生物信号1106a-g可以包括由所有或一部分有源电极和/或所有或一部分参考电极测量的生物信号。然而,生物信号1106c可能是某些伪影或与用户的皮肤接触不良的结果。在检测到与生物信号1106c相关的伪影之后,可以通过向检测生物信号1106c的电极给出零权重或最小权重,或者向其中电极不产生包含有用信息的生物信号1106c的一个时间窗(或多个时间窗)给出零权重或最小权重来去除伪影。如此产生的优化信号与(原始或测量的)生物信号一起显示为1108。用于产生优化信号的示例性公式在图11B中示为1110。然而,也可以使用其他公式或算法来产生优化信号。As shown in view 1100b of FIG. 11B , biosignals 1106a - g may each represent a biosignal as measured by electrodes of the wearable electronic device 1000 . Biosignals 1106a-g may include biosignals measured by all or a portion of the active electrodes and/or all or a portion of the reference electrodes. However, biosignal 1106c may be the result of certain artifacts or poor contact with the user's skin. After detection of an artifact associated with the biosignal 1106c, it can be achieved by giving zero or minimal weight to the electrodes that detected the biosignal 1106c, or a time window (or more time window) to give zero weight or minimum weight to remove artifacts. The optimized signal thus generated is shown as 1108 together with the (raw or measured) biological signal. An exemplary formula for generating an optimized signal is shown at 1110 in FIG. 11B. However, other formulas or algorithms may also be used to generate the optimization signal.

在图11B中示为1110的示例性算法Xoptim(t)=Xraw*W中,W可以表示给予每个原始信号Xraw以产生优化信号的权重。此外,可以选择W,使得从有源电极和参考电极对产生的特定频带(例如,频带fa)中的优化信号的能量与从有源电极和参考电极对产生的特定参考频带(例如,频带fref,)中的优化信号的能量的比率最大化。In the exemplary algorithm Xoptim (t)=Xraw *W shown as 1110 in FIG. 11B , W may represent the weight given to each raw signal Xraw to produce an optimized signal. Furthermore, W can be chosen such that the energy of an optimized signal in a specific frequency band (e.g., frequency band fa ) generated from an active electrode and reference electrode pair is comparable to a specific reference frequency band (e.g., frequency band f a ) generated from an active electrode and reference electrode pair. The ratio of the energy of the optimized signal in fref ,) is maximized.

如本文所用,在用术语“和”或“或”分开项目中任何项目的一系列项目之后的短语“中的至少一者”是将列表作为整体进行修饰,而不是修饰列表中的每个成员。短语“中的至少一者”不要求选择所列出的每个项目中的至少一个;相反,该短语允许包括项目中任何项目中的最少一者和/或项目的任何组合中的最少一者和/或项目中每个项目中的最少一者的含义。举例来说,短语“A、B和C中的至少一者”或“A、B或C中的至少一者”各自是指仅A、仅B或仅C;A、B和C的任意组合;和/或A、B和C中的每一者中的一者或多者。类似地,应当理解,针对本文提供的结合列表或分离列表而呈现的元素的顺序不应被解释为将本公开仅限于所提供的顺序。As used herein, the phrase "at least one of" after a series of items separating any of the items with the term "and" or "or" modifies the list as a whole, not each member of the list . The phrase "at least one of" does not require selection of at least one of each of the listed items; rather, the phrase allows for the inclusion of at least one of any of the items and/or at least one of any combination of items and/or the meaning of at least one of each of the items. For example, the phrases "at least one of A, B, and C" or "at least one of A, B, or C" each refer to only A, only B, or only C; any combination of A, B, and C ; and/or one or more of each of A, B and C. Similarly, it should be understood that the order in which elements are presented herein, either in combination or separately, should not be construed to limit the disclosure to the order presented.

可以理解的是,尽管本文公开了许多实施方案,但相对于本文所述的方法和技术所提供的操作和步骤旨在为示例性的并且因此不是穷举的。可以进一步理解的是,针对特定的实施方案可以要求或者期望另选的步骤顺序或者更少或附加的操作。It is to be understood that, while many embodiments are disclosed herein, the operations and steps presented with respect to the methods and techniques described herein are intended to be exemplary and thus not exhaustive. It is further to be understood that an alternative order of steps or fewer or additional operations may be required or desired for a particular embodiment.

尽管根据各种示例性实施方案和具体实施描述了本文的公开内容,但应当理解,一个或多个单独实施方案中描述的各种特征、方面和功能不限于将它们应用于它们被描述的具体实施方案中,而是相反地它们可单独地或者以各种组合应用于一些实施方案中的一个或多个,而不论此类实施方案是否被描述以及此类特征是否作为所述实施方案的一部分被呈现。因此,本说明书的广度和范围不应受到本文所述的任何示例性实施方案的限制,但相反地受本文所提供的权利要求书的限定。Although the disclosure herein has been described in terms of various exemplary embodiments and specific implementations, it should be understood that various features, aspects, and functions described in one or more individual embodiments are not limited to their application to the specific implementations for which they are described. embodiments, but instead they may be applied to one or more of some embodiments alone or in various combinations, regardless of whether such embodiments are described and whether such features are part of said embodiments is presented. Thus, the breadth and scope of this description should not be limited by any of the exemplary embodiments described herein, but are instead defined by the claims presented herein.

Claims (20)

CN202310041229.9A2022-01-142023-01-13Biosignal sensing device using dynamic selection of electrodesPendingCN116439714A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US63/299,8642022-01-14
US18/094,841US20230225659A1 (en)2022-01-142023-01-09Biosignal Sensing Device Using Dynamic Selection of Electrodes
US18/094,8412023-01-09

Publications (1)

Publication NumberPublication Date
CN116439714Atrue CN116439714A (en)2023-07-18

Family

ID=87134419

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202310041229.9APendingCN116439714A (en)2022-01-142023-01-13Biosignal sensing device using dynamic selection of electrodes

Country Status (1)

CountryLink
CN (1)CN116439714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP4529842A1 (en)*2023-09-272025-04-02Tata Consultancy Services LimitedMethod and system for real-time calibration of ear-eeg device

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20180116514A1 (en)*2016-11-022018-05-03Bragi GmbHEarpiece with in-ear electrodes
US11026628B1 (en)*2015-09-302021-06-08Apple Inc.Systems and methods of spatial filtering for measuring electrical signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11026628B1 (en)*2015-09-302021-06-08Apple Inc.Systems and methods of spatial filtering for measuring electrical signals
US20180116514A1 (en)*2016-11-022018-05-03Bragi GmbHEarpiece with in-ear electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP4529842A1 (en)*2023-09-272025-04-02Tata Consultancy Services LimitedMethod and system for real-time calibration of ear-eeg device

Similar Documents

PublicationPublication DateTitle
US20230225659A1 (en)Biosignal Sensing Device Using Dynamic Selection of Electrodes
Looney et al.The in-the-ear recording concept: User-centered and wearable brain monitoring
EP3376780A1 (en)A hearing system for monitoring a health related parameter
US11297448B2 (en)Portable system for gathering and processing data from EEG, EOG, and/or imaging sensors
JP6104035B2 (en) Earphone and eye movement estimation device
EP3011902B1 (en)Automatic sound equalization device
US11235156B2 (en)Wearable audio device with vagus nerve stimulation
Kidmose et al.Ear-EEG from generic earpieces: A feasibility study
KR101579364B1 (en)Wireless Earhook Earset/Earphone concealing electrodes and acquisition system of electroencephalograph for brain monitoring and brain-computer interface
Looney et al.Ear-EEG: user-centered and wearable BCI
US20210000370A1 (en)In-Ear EEG Sensor Using Malleable Form Fitting Foam
CN105376684B (en) Hearing aid system with improved signal processing including implanted portion
US11494001B2 (en)Gesture detection system for personal head wearable device
KR20120131778A (en)Method for testing hearing ability and hearing aid using the same
CN110051347A (en)A kind of user's sleep detection method and system
JP6861380B2 (en) Electronics
US20220218280A1 (en)Biological information monitoring system
WO2018226424A1 (en)Active unipolar dry electrode open ear wireless headset and brain computer interface
WO2018154289A2 (en)System, method, computer program and computer program product for detecting a change in hearing response
JPWO2019163374A1 (en) Biological signal measuring device, electroencephalograph, and control method
CN111465347A (en) EEG brain computer interface in and around the ear
CN116439714A (en)Biosignal sensing device using dynamic selection of electrodes
US12419577B2 (en)Multi-body earpiece
Kaveh et al.A Wireless, multielectrode, user-generic ear EEG recording system
CN218124896U (en)Earphone accessory and signal acquisition system

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp