Movatterモバイル変換


[0]ホーム

URL:


CN116426875B - Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating - Google Patents

Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating
Download PDF

Info

Publication number
CN116426875B
CN116426875BCN202310411961.0ACN202310411961ACN116426875BCN 116426875 BCN116426875 BCN 116426875BCN 202310411961 ACN202310411961 ACN 202310411961ACN 116426875 BCN116426875 BCN 116426875B
Authority
CN
China
Prior art keywords
layer
aln
alsin
sin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310411961.0A
Other languages
Chinese (zh)
Other versions
CN116426875A (en
Inventor
李凤吉
史训旺
张善勇
赵明华
秦瀚勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Senfung Vacuum Plating Co ltd
Southwest University
Original Assignee
Shenzhen Senfung Vacuum Plating Co ltd
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Senfung Vacuum Plating Co ltd, Southwest UniversityfiledCriticalShenzhen Senfung Vacuum Plating Co ltd
Priority to CN202310411961.0ApriorityCriticalpatent/CN116426875B/en
Publication of CN116426875ApublicationCriticalpatent/CN116426875A/en
Application grantedgrantedCritical
Publication of CN116426875BpublicationCriticalpatent/CN116426875B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明涉及表面防腐涂层技术领域,具体公开了一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法和涂层,包括在基底表面依次沉积Al层、AlN层、AlSiN层、SiN层、Si层以及AlN层的步骤,还包括在沉积所述AlN层和/或所述AlSiN层的步骤之前,分别进行晶体生长调控处理的步骤。本发明提供的制备方法及涂层,形成了Al、Si元素双相梯度多层结构涂层,元素的梯度效应可以弱化腐蚀电荷的传输动力,提升涂层的耐腐蚀性能,同时采用晶体生长调控处理,抑制了AlSiN/AlN/Al层间的连续柱状生长缺陷,非连续生长结构封堵了腐蚀离子的渗入路径,进而极大提升了涂层的防腐性能。

The present invention relates to the technical field of surface anti-corrosion coatings, and specifically discloses a preparation method and coating of an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, including the steps of sequentially depositing an Al layer, an AlN layer, an AlSiN layer, a SiN layer, a Si layer and an AlN layer on the surface of a substrate, and also including the steps of respectively performing crystal growth regulation treatment before the step of depositing the AlN layer and/or the AlSiN layer. The preparation method and coating provided by the present invention form a dual-phase gradient multilayer structure coating of Al and Si elements, and the gradient effect of the elements can weaken the transmission power of the corrosion charge and improve the corrosion resistance of the coating. At the same time, the crystal growth regulation treatment is adopted to suppress the continuous columnar growth defects between the AlSiN/AlN/Al layers, and the discontinuous growth structure blocks the penetration path of the corrosion ions, thereby greatly improving the anti-corrosion performance of the coating.

Description

Translated fromChinese
一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法及涂层A preparation method and coating of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating

技术领域Technical Field

本发明属于表面防腐涂层技术领域,具体而言,它涉及一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法及涂层。The present invention belongs to the technical field of surface anti-corrosion coatings, and in particular, relates to a preparation method of an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and the coating.

背景技术Background Art

镁、铝基轻金属及其合金由于出色的性能,已经被广泛应用于航空航天、汽车工业、生物医疗、电子数码等领域。然而它们的耐腐蚀性能极差,特别是镁合金,快速腐蚀降解严重制约他们在工业生产中的进一步应用。因此,如何提高镁、铝基轻金属及其合金的耐蚀性已成它们广泛应用和产业化必须急需解决的瓶颈问题。到目前为止,很多研究都致力于提升镁、铝基轻金属及其合金的耐腐蚀性能。如净化、合金化、热处理和涂层等技术,其中,表面涂层技术能有效地将镁合金从腐蚀介质中分离出来,提高耐蚀性,延长基底服役寿命。由于其经济性和有效性,表面涂层技术被认为是提升镁、铝基轻金属及其合金耐腐蚀性能最有潜力的技术方案。Due to their excellent performance, magnesium, aluminum-based light metals and their alloys have been widely used in aerospace, automotive industry, biomedicine, electronic digital and other fields. However, their corrosion resistance is extremely poor, especially magnesium alloys. Rapid corrosion degradation seriously restricts their further application in industrial production. Therefore, how to improve the corrosion resistance of magnesium, aluminum-based light metals and their alloys has become a bottleneck problem that must be urgently solved for their widespread application and industrialization. So far, many studies have been devoted to improving the corrosion resistance of magnesium, aluminum-based light metals and their alloys. Such as purification, alloying, heat treatment and coating technologies, among which surface coating technology can effectively separate magnesium alloys from corrosive media, improve corrosion resistance, and extend the service life of the substrate. Due to its economy and effectiveness, surface coating technology is considered to be the most promising technical solution to improve the corrosion resistance of magnesium, aluminum-based light metals and their alloys.

目前,镁、铝基轻金属及其合金上的涂层主要包括纯金属涂层、聚合物涂层、无机化合物涂层、陶瓷涂层等。在众多的涂层材料中,陶瓷涂层,如AlN、SiN等,具有良好的化学惰性、稳定性和优异硬度等特性,并且原料易得、价格便宜、容易制备,因此用陶瓷涂层保护的镁、铝基轻金属及其合金往往具有很强的可控性、广泛的选择性和简单操作性,也是目前非常主流的解决方案。尽管如此,沉积在镁、铝基轻金属及其合金表面的陶瓷基涂层并不是完美无缺,也存在相应的缺陷,如陶瓷涂层的硬度高、内应力大,这导致沉积在镁、铝基轻金属及其合金表面的陶瓷基涂层和基底的结合力差。针对这一问题,目前主流的技术方案是设计梯度多层涂层。At present, the coatings on magnesium, aluminum-based light metals and their alloys mainly include pure metal coatings, polymer coatings, inorganic compound coatings, ceramic coatings, etc. Among the numerous coating materials, ceramic coatings, such as AlN, SiN, etc., have good chemical inertness, stability, and excellent hardness, and the raw materials are readily available, cheap, and easy to prepare. Therefore, magnesium, aluminum-based light metals and their alloys protected by ceramic coatings often have strong controllability, wide selectivity, and simple operability, and are also currently very mainstream solutions. Despite this, the ceramic-based coatings deposited on the surface of magnesium, aluminum-based light metals and their alloys are not perfect, and there are corresponding defects, such as high hardness and large internal stress of the ceramic coatings, which result in poor bonding between the ceramic-based coatings deposited on the surface of magnesium, aluminum-based light metals and their alloys and the substrate. To address this problem, the current mainstream technical solution is to design gradient multilayer coatings.

然而,由于陶瓷涂层固有的生长特性,特别是物理气相沉积方法制备的陶瓷涂层,相同元素的涂层之间容易发生层间连续生长的缺陷,这种缺陷为腐蚀介质提供腐蚀通道,较大程度上限制了梯度多层涂层的防腐性能。However, due to the inherent growth characteristics of ceramic coatings, especially ceramic coatings prepared by physical vapor deposition methods, defects of continuous interlayer growth are prone to occur between coatings of the same element. This defect provides a corrosion channel for the corrosive medium, which greatly limits the anti-corrosion performance of the gradient multilayer coating.

发明内容Summary of the invention

本发明的目的在于,提供一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法及涂层,该方法能够改善梯度多层涂层的防腐性能。The object of the present invention is to provide a method for preparing an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and the coating, wherein the method can improve the anti-corrosion performance of the gradient multilayer coating.

第一方面,本发明提供一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,包括在基底表面依次沉积Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤,还包括在沉积所述AlN层和/或所述AlSiN层的步骤之前,进行晶体生长调控处理的步骤;In a first aspect, the present invention provides a method for preparing an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, comprising the steps of sequentially depositing an Al layer, a first AlN layer, an AlSiN layer, a SiN layer, a Si layer and a second AlN layer on a substrate surface, and also comprising the step of performing a crystal growth regulation treatment before the step of depositing the AlN layer and/or the AlSiN layer;

其中,沉积所述第一AlN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的所述Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种;和/或,The step of crystal growth regulation treatment before depositing the first AlN layer comprises at least one of exposing the Al layer deposited on the substrate in an oxygen-containing atmosphere or bombarding the Al layer with oxygen ions in an oxygen-containing atmosphere; and/or,

沉积所述AlSiN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的AlN/Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种。The step of crystal growth regulation treatment before depositing the AlSiN layer comprises at least one of exposing the AlN/Al layer deposited on the substrate in an oxygen-containing atmosphere or bombarding it with oxygen ions in an oxygen-containing atmosphere.

可选的,沉积Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤采用真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延镀膜中的至少一种。Optionally, the steps of depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer adopt at least one of vacuum evaporation, sputtering coating, arc plasma coating, ion coating and molecular beam epitaxy coating.

可选的,沉积所述AlN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的Al层在大气气氛中进行暴露处理;和/或,Optionally, the step of crystal growth regulation treatment before depositing the AlN layer comprises exposing the Al layer deposited on the substrate to an atmospheric atmosphere; and/or,

沉积所述AlSiN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的AlN/Al层在大气气氛中进行暴露处理。The step of crystal growth regulation treatment before depositing the AlSiN layer comprises exposing the AlN/Al layer deposited on the substrate to an atmospheric atmosphere.

可选的,沉积所述Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤采用磁控溅射镀膜。Optionally, the steps of depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer are performed by magnetron sputtering coating.

可选的,沉积所述Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层包括以下步骤:Optionally, depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer comprises the following steps:

(1) 将抛光后的基底置于磁控溅射镀膜机的溅射腔室中,抽真空后,在氩气氛围下进行离子轰击刻蚀;(1) placing the polished substrate in a sputtering chamber of a magnetron sputtering coating machine, evacuating the chamber, and then performing ion bombardment etching in an argon atmosphere;

(2) 在氩气氛围下开启Al靶直流电源,在所述基底表面沉积Al层;(2) turning on a direct current power supply of an Al target in an argon atmosphere to deposit an Al layer on the surface of the substrate;

(3) 将沉积的Al层进行晶体生长调控处理,在大气气氛中进行暴露处理5min以上;(3) subjecting the deposited Al layer to a crystal growth control treatment and exposing it to an atmospheric atmosphere for more than 5 minutes;

(4) 在氩气和氮气的混合氛围下开启Al靶电源,在所述Al层的表面沉积第一AlN层;(4) turning on an Al target power supply in a mixed atmosphere of argon and nitrogen to deposit a first AlN layer on the surface of the Al layer;

(5) 将沉积的第一AlN层进行晶体生长调控处理,在大气气氛中进行暴露处理5min以上;(5) subjecting the deposited first AlN layer to a crystal growth control treatment and exposing it to an atmospheric atmosphere for more than 5 minutes;

(6)在氩气和氮气的混合氛围下同时开启Al靶、Si靶电源,在所述第一AlN层的表面沉积AlSiN层;(6) turning on the power supplies of the Al target and the Si target simultaneously in a mixed atmosphere of argon and nitrogen to deposit an AlSiN layer on the surface of the first AlN layer;

(7)在氩气和氮气的混合氛围下开启Si靶电源,在所述AlSiN层的表面沉积SiN层;(7) turning on the Si target power supply in a mixed atmosphere of argon and nitrogen to deposit a SiN layer on the surface of the AlSiN layer;

(8)在氩气氛围下开启Si靶电源,在所述SiN层的表面沉积Si层;(8) turning on the Si target power supply in an argon atmosphere to deposit a Si layer on the surface of the SiN layer;

(9)在氩气和氮气的混合氛围下开启Al靶电源,在所述Si层的表面沉积第二AlN层。(9) In a mixed atmosphere of argon and nitrogen, an Al target power supply is turned on to deposit a second AlN layer on the surface of the Si layer.

可选的,经过晶体生长调控处理,沉积的所述AlN/Al层包括AlN (100)、(101)、(102)和(112)的晶面衍射峰;和/或,Optionally, after the crystal growth regulation treatment, the deposited AlN/Al layer includes crystal plane diffraction peaks of AlN (100), (101), (102) and (112); and/or,

经过晶体生长调控处理,沉积的AlSiN/AlN/Al层包括AlN(100)和(110)的晶面衍射峰。After the crystal growth control treatment, the deposited AlSiN/AlN/Al layer includes AlN (100) and (110) crystal plane diffraction peaks.

可选的,经过晶体生长调控处理,沉积的所述AlN/Al层中AlN(101)晶面的平均晶粒尺寸为14.6nm;和/或,Optionally, after the crystal growth regulation treatment, the average grain size of the AlN (101) crystal plane in the deposited AlN/Al layer is 14.6 nm; and/or,

经过晶体生长调控处理,沉积的所述AlSiN/AlN/Al层中AlN(100)晶面的平均晶粒尺寸为12.5nm。After the crystal growth regulation treatment, the average grain size of the AlN (100) crystal plane in the deposited AlSiN/AlN/Al layer is 12.5 nm.

可选的,所述第一AlN层和Al层之间为非连续柱状生长;和/或,Optionally, the first AlN layer and the Al layer are discontinuously columnarly grown; and/or,

所述AlSiN层和第一AlN层之间为非连续柱状生长。The AlSiN layer and the first AlN layer are grown in a discontinuous columnar manner.

第二方面,本发明提供一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层,由前述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法得到。In a second aspect, the present invention provides an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, which is obtained by the aforementioned method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating.

可选的,所述Al层的厚度为0.3-1.5μm,所述第一AlN层的厚度为0.3-1.5μm,所述AlSiN层的厚度为0.3-1.5μm,所述SiN层的厚度为0.1-0.6μm,所述Si层的厚度为0.1-0.6μm,所述第二AlN层的厚度为0.1-0.6μm。Optionally, the thickness of the Al layer is 0.3-1.5 μm, the thickness of the first AlN layer is 0.3-1.5 μm, the thickness of the AlSiN layer is 0.3-1.5 μm, the thickness of the SiN layer is 0.1-0.6 μm, the thickness of the Si layer is 0.1-0.6 μm, and the thickness of the second AlN layer is 0.1-0.6 μm.

可选的,所述AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构在3.5wt%NaCl溶液中的腐蚀电势值为-1.46 V,腐蚀电流密度为4.75×10−10 A/cm2,极化电阻为5.48×107Ω /cm2,腐蚀速率为5.52×10-6 mm/year。Optionally, the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure has a corrosion potential of -1.46 V in a 3.5wt% NaCl solution, a corrosion current density of 4.75×10−10 A/cm2 , a polarization resistance of 5.48×107 Ω /cm2 , and a corrosion rate of 5.52×10-6 mm/year.

综上所述,本发明具有以下至少一种有益效果:In summary, the present invention has at least one of the following beneficial effects:

1.本发明提供一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,在基底上依次沉积Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层,由Al打底层向上开始减少Al元素,和AlSiN层开始递增Si元素,形成双相梯度结构涂层,这种梯度多层结构涂层可以将基底(如镁合金)的腐蚀电流密度降低4个数量级,耐腐蚀浸泡(3.5wt%NaCl溶液中)提升至144h,极大提升基底的耐腐蚀性能。然而,当腐蚀介质穿透SiN层时,腐蚀介质通过AlSiN/AlN/Al层中的连续柱状缺陷,渗透到涂层底部,有损于涂层的防腐性能,通过对第一AlN层和/或AlSiN层进行晶体生长调控处理,可以避免连续柱状结构的生长,进而再次提升该梯度涂层的防腐性能,能够将基底(如镁合金)的腐蚀电流密度降低6个数量级别,耐腐蚀浸泡提升至360h,到目前为止,将基底的腐蚀电流密度降低6个数量级的还没有报道。因此,这种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层具有极其优异的防腐性能。1. The present invention provides a method for preparing an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, wherein an Al layer, a first AlN layer, an AlSiN layer, a SiN layer, a Si layer and a second AlN layer are sequentially deposited on a substrate, the Al element is reduced from the Al base layer upwards, and the Si element is gradually increased from the AlSiN layer to form a dual-phase gradient structure coating. The gradient multilayer structure coating can reduce the corrosion current density of a substrate (such as a magnesium alloy) by 4 orders of magnitude, and improve the corrosion resistance immersion (in a 3.5wt% NaCl solution) to 144h, thereby greatly improving the corrosion resistance of the substrate. However, when the corrosive medium penetrates the SiN layer, the corrosive medium penetrates to the bottom of the coating through the continuous columnar defects in the AlSiN/AlN/Al layer, which damages the anti-corrosion performance of the coating. By performing crystal growth control treatment on the first AlN layer and/or the AlSiN layer, the growth of the continuous columnar structure can be avoided, thereby further improving the anti-corrosion performance of the gradient coating, which can reduce the corrosion current density of the substrate (such as magnesium alloy) by 6 orders of magnitude and improve the corrosion resistance to immersion for 360 hours. So far, there has been no report on reducing the corrosion current density of the substrate by 6 orders of magnitude. Therefore, this AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating has extremely excellent anti-corrosion performance.

2.本发明提供的一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,采用物理气相沉积,工艺过程简单,可控性强,晶体生长调控处理的步骤,仅需要将涂层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理,即隔绝了各层间联系,各层之间独立生长,从而避免连续柱状结构的生长,粗大连续柱状缺陷的抑制可以有效封锁腐蚀路径,进而提升该梯度涂层的防腐性能,另外,由于层间连续柱状结构得到抑制,即涂层的晶粒尺寸的连续生长也得到抑制,晶粒变小,晶粒细化效应使得涂层内部更加致密,也有利于抑制腐蚀介质的渗透和防腐性能的提升。2. The present invention provides a method for preparing an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, which adopts physical vapor deposition, has a simple process and strong controllability. The step of crystal growth regulation treatment only requires exposing the coating in an oxygen-containing atmosphere or bombarding it with oxygen ions in an oxygen-containing atmosphere, that is, isolating the connection between the layers, and each layer grows independently, thereby avoiding the growth of a continuous columnar structure. The suppression of coarse continuous columnar defects can effectively block the corrosion path, thereby improving the anti-corrosion performance of the gradient coating. In addition, since the continuous columnar structure between layers is suppressed, the continuous growth of the grain size of the coating is also suppressed, the grains become smaller, and the grain refinement effect makes the interior of the coating denser, which is also beneficial to suppressing the penetration of corrosive media and improving the anti-corrosion performance.

3.本发明提供的一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层,成膜均匀致密,与基体的结合力强,抗加载能力强,并且具有优异的耐腐蚀性能。3. The AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating provided by the present invention has uniform and dense film formation, strong bonding with the substrate, strong load resistance, and excellent corrosion resistance.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的结构示意图。FIG1 is a schematic diagram of the structure of the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating of the present invention.

图2是本发明AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法的工艺流程图。FIG2 is a process flow chart of the preparation method of the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating of the present invention.

图3是实施例1制得的连续生长和非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的FESEM和EDX图。FIG3 is FESEM and EDX images of the continuously grown and discontinuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coatings prepared in Example 1.

图4是实施例1制得的AlN单层、连续生长和非连续生长的AlN/Al涂层的XRD图。FIG. 4 is an XRD graph of the AlN single layer, the continuously grown AlN/Al coating and the discontinuously grown AlN/Al coating prepared in Example 1.

图5是实施例1制得的AlSiN单层、连续生长和非连续生长的AlSiN/AlN/Al多层涂层的XRD图。FIG. 5 is an XRD graph of the AlSiN single layer, the continuously grown and the discontinuously grown AlSiN/AlN/Al multilayer coatings prepared in Example 1.

图6是实施例1制得的连续生长和非连续生长AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层在3.5wt%NaCl溶液中的电化学极化曲线图。Figure 6 is an electrochemical polarization curve of the continuously grown and discontinuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating prepared in Example 1 in 3.5wt% NaCl solution.

图7是实施例1制得的连续生长和非连续生长AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层在3.5wt%NaCl溶液中的浸泡腐蚀时间对照图。Figure 7 is a comparison chart of the immersion corrosion time of the continuously grown and discontinuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coatings prepared in Example 1 in 3.5wt% NaCl solution.

附图标记说明:Description of reference numerals:

1、镁合金基底,2、Al层,3、第一AlN层,4、AlSiN层,5、SiN层,6、Si层,7、第二AlN层。1. magnesium alloy substrate, 2. Al layer, 3. first AlN layer, 4. AlSiN layer, 5. SiN layer, 6. Si layer, 7. second AlN layer.

具体实施方式DETAILED DESCRIPTION

本发明提供的一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法和涂层,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention provides a preparation method and coating of an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating. In order to make the purpose, technical solution and effect of the present invention clearer and more specific, the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.

本发明提供的制备方法,参照图1,利用物理气相沉积在镁合金基底1上依次沉积Al层2、第一AlN层3、AlSiN层4、SiN层5、Si层6以及第二AlN层7,制备得到的多层AlSi基陶瓷材料,可提高镁合金基底1的耐腐蚀性;由Al打底层向上开始减少Al元素,和AlSiN层开始递增Si元素,形成双相梯度结构涂层,这种双相元素的梯度结构设计可以有效缓解Al层与Si层之间的元素电势差,有利于弱化腐蚀电荷传输动力,进而提升涂层的防腐性能;同时由Al层向Si层硬度递增,可以缓解软层与硬层的硬度差异,提升涂层的抗加载能力。具体地,该连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层可以将镁合金基底在3.5wt%NaCl溶液中的腐蚀电流密度降低4个数量级,耐腐蚀浸泡提升至144h以上,极大提升基底的耐腐蚀性能。The preparation method provided by the present invention, with reference to FIG1, uses physical vapor deposition to sequentially deposit an Al layer 2, a first AlN layer 3, an AlSiN layer 4, a SiN layer 5, a Si layer 6, and a second AlN layer 7 on a magnesium alloy substrate 1, and the prepared multilayer AlSi-based ceramic material can improve the corrosion resistance of the magnesium alloy substrate 1; the Al element is reduced from the Al base layer upward, and the Si element is gradually increased from the AlSiN layer to form a dual-phase gradient structure coating, and the gradient structure design of this dual-phase element can effectively alleviate the element potential difference between the Al layer and the Si layer, which is conducive to weakening the corrosion charge transmission power, thereby improving the corrosion resistance of the coating; at the same time, the hardness increases from the Al layer to the Si layer, which can alleviate the hardness difference between the soft layer and the hard layer, and improve the coating's anti-loading ability. Specifically, the continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating can reduce the corrosion current density of the magnesium alloy substrate in a 3.5wt% NaCl solution by 4 orders of magnitude, and the corrosion resistance immersion is increased to more than 144h, greatly improving the corrosion resistance of the substrate.

发明人在研究过程中发现,物理气相沉积方法制备的多层梯度结构涂层,相同元素的涂层之间容易发生层间柱状连续生长的缺陷,特别是在AlSiN/AlN/Al的层与层的界面之间容易发生柱状连续生长,而这种缺陷为腐蚀介质提供腐蚀通道,极大限制了梯度多层涂层的防腐性能。经过长时间的研究,发明人惊奇地发现,参照图2,通过晶体生长调控处理,即在沉积第一AlN层之前,将镁合金基底上沉积的Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种,能够隔绝第一AlN层和Al层间的联系,使得第一AlN层和Al层之间独立生长,从而了避免第一AlN层和Al层之间发生连续柱状生长;同样的,在沉积AlSiN层之前,将基底的AlN/Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种,能够隔绝AlSiN层和第一AlN层间的联系,AlSiN层和第一AlN层之间独立生长,从而避免了AlSiN层和第一AlN层之间发生连续柱状生长;粗大连续柱状缺陷的抑制可以有效封锁腐蚀路径,进而提升该梯度涂层的防腐性能。另外,由于层间连续柱状生长得到抑制,即AlN、AlSiN的晶粒尺寸的连续生长也得到抑制,AlN、AlSiN晶粒变小,晶粒细化效应使得涂层内部更加致密,也有利于抑制腐蚀介质的渗透和防腐性能的提升。因此,该方法制备的非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层能极大提升镁合金的耐腐蚀性能。具体地,非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层可以将镁合金基底在3.5wt%NaCl溶液中的腐蚀电流密度降低6个数量级别,耐腐蚀浸泡提升至360h以上,到目前为止,将镁合金基底的腐蚀电流密度降低6个数量级的涂层还未见报道。During the research process, the inventors found that the multilayer gradient structure coating prepared by the physical vapor deposition method is prone to the defect of interlayer columnar continuous growth between coatings of the same element, especially between the interfaces of AlSiN/AlN/Al layers. This defect provides a corrosion channel for the corrosive medium, greatly limiting the anti-corrosion performance of the gradient multilayer coating. After a long period of research, the inventors surprisingly found that, referring to Figure 2, by crystal growth regulation treatment, that is, before depositing the first AlN layer, the Al layer deposited on the magnesium alloy substrate is exposed to an oxygen-containing atmosphere or subjected to oxygen ion bombardment in an oxygen-containing atmosphere. At least one of the treatments can isolate the connection between the first AlN layer and the Al layer, so that the first AlN layer and the Al layer grow independently, thereby avoiding continuous columnar growth between the first AlN layer and the Al layer; similarly, before depositing the AlSiN layer, the AlN/Al layer of the substrate is exposed to an oxygen-containing atmosphere or subjected to oxygen ion bombardment in an oxygen-containing atmosphere. At least one of the treatments can isolate the connection between the AlSiN layer and the first AlN layer, so that the AlSiN layer and the first AlN layer grow independently, thereby avoiding continuous columnar growth between the AlSiN layer and the first AlN layer; the suppression of coarse continuous columnar defects can effectively block the corrosion path, thereby improving the corrosion resistance of the gradient coating. In addition, since the continuous columnar growth between layers is suppressed, that is, the continuous growth of the grain size of AlN and AlSiN is also suppressed, the AlN and AlSiN grains become smaller, and the grain refinement effect makes the interior of the coating more compact, which is also beneficial to inhibit the penetration of corrosive media and improve the corrosion resistance. Therefore, the non-continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating prepared by this method can greatly improve the corrosion resistance of magnesium alloys. Specifically, the non-continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating can reduce the corrosion current density of the magnesium alloy substrate in 3.5wt% NaCl solution by 6 orders of magnitude, and improve the corrosion resistance immersion to more than 360h. So far, there has been no report on a coating that reduces the corrosion current density of the magnesium alloy substrate by 6 orders of magnitude.

在本发明的实施例中,上述基底的材料并不受特别限制,只要是金属材料即可,即上述非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层适用于各种不耐腐蚀的金属材料,作为一些具体示例,上述基底的材料可以为镁、铝基金属及其轻合金,例如镁合金。In an embodiment of the present invention, the material of the above-mentioned substrate is not particularly limited as long as it is a metal material. That is, the above-mentioned discontinuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating is suitable for various corrosion-resistant metal materials. As some specific examples, the material of the above-mentioned substrate can be magnesium, aluminum-based metals and their light alloys, such as magnesium alloys.

本发明涂层的沉积步骤采用物理气相沉积,包括真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延镀膜中的至少一种,优选为溅射镀膜,更优选为磁控溅射镀膜。The deposition step of the coating of the present invention adopts physical vapor deposition, including at least one of vacuum evaporation, sputtering coating, arc plasma coating, ion coating and molecular beam epitaxy coating, preferably sputtering coating, more preferably magnetron sputtering coating.

在本发明的一些实施例中,采用磁控溅射镀膜的方法制备AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层,具体包括以下步骤:In some embodiments of the present invention, a magnetron sputtering coating method is used to prepare an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, which specifically includes the following steps:

(1)将抛光后的基底置于磁控溅射镀膜机的溅射腔室中,待腔室压力抽至低于1×10-6 Torr时,在氩气氛围下进行离子轰击刻蚀;(1) Placing the polished substrate in the sputtering chamber of a magnetron sputtering coating machine, and when the chamber pressure is pumped down to less than 1×10-6 Torr, ion bombardment etching is performed in an argon atmosphere;

(2)氩气氛围下开启Al靶直流电源,在基底表面沉积Al打底层;(2) Turn on the Al target DC power supply in an argon atmosphere to deposit an Al base layer on the substrate surface;

(3)将沉积的Al打底层进行晶体生长调控处理;(3) subjecting the deposited Al base layer to crystal growth regulation treatment;

(4)待腔室压力抽至低于1×10-6 Torr时,在氩气和氮气的混合氛围下开启Al靶电源,以便在Al打底层的表面沉积AlN过渡层(第一AlN层);(4) When the chamber pressure is pumped down to less than 1×10-6 Torr, the Al target power supply is turned on in a mixed atmosphere of argon and nitrogen to deposit an AlN transition layer (the first AlN layer) on the surface of the Al base layer;

(5)将沉积的AlN过渡层进行晶体生长调控处理;(5) performing crystal growth control treatment on the deposited AlN transition layer;

(6)待腔室压力抽至低于1×10-6 Torr时,在氩气和氮气的混合氛围下同时开启Al靶、Si靶电源,以便在AlN过渡层的表面沉积AlSiN过渡层;(6) When the chamber pressure is pumped down to less than 1×10-6 Torr, the power supplies of the Al target and the Si target are simultaneously turned on in a mixed atmosphere of argon and nitrogen to deposit an AlSiN transition layer on the surface of the AlN transition layer;

(7)待腔室压力抽至低于1×10-6Torr时,在氩气和氮气的混合氛围下开启Si靶电源,以便在AlSiN过渡层的表面沉积SiN过渡层;(7) When the chamber pressure is pumped down to less than 1×10-6 Torr, a Si target power supply is turned on in a mixed atmosphere of argon and nitrogen to deposit a SiN transition layer on the surface of the AlSiN transition layer;

(8)待腔室压力抽至低于1×10-6Torr时,在氩气氛围下开启Si靶电源,以便在SiN过渡层的表面沉积Si过渡层;(8) When the chamber pressure is pumped down to less than 1×10-6 Torr, turn on the Si target power supply in an argon atmosphere to deposit a Si transition layer on the surface of the SiN transition layer;

(9)待腔室压力抽至低于1×10-6Torr时,在氩气和氮气的混合氛围下开启Al靶电源,以便在Si过渡层的表面沉积AlN顶层(第二AlN层)。(9) When the chamber pressure is pumped down to less than 1×10-6 Torr, the Al target power supply is turned on in a mixed atmosphere of argon and nitrogen to deposit an AlN top layer (the second AlN layer) on the surface of the Si transition layer.

在本发明的一些实施例中,Al靶为纯度不低于99.9%的Al单质靶,Si靶为纯度不低于99.9%的Si单质靶,氩气为纯度不低于99.999%的氩单质气体,氮气为纯度不低于99.999%的氮单质气体,任选地,步骤(1)-(9)的温度各自独立地保持在室温至300℃。In some embodiments of the present invention, the Al target is an Al single target with a purity of not less than 99.9%, the Si target is an Si single target with a purity of not less than 99.9%, the argon gas is an argon single gas with a purity of not less than 99.999%, and the nitrogen gas is a nitrogen single gas with a purity of not less than 99.999%. Optionally, the temperatures of steps (1)-(9) are each independently maintained at room temperature to 300°C.

在步骤(1)中,将基底置于磁控溅射镀膜机中,进行氩离子轰击和刻蚀,以便去除基底中残留的氧化层或其他杂质,可以保证涂层与基底具有良好的结合力。In step (1), the substrate is placed in a magnetron sputtering coating machine for argon ion bombardment and etching to remove the residual oxide layer or other impurities in the substrate, thereby ensuring that the coating has good bonding strength with the substrate.

在本发明的一些实施例中,步骤(1)中的具体过程和具体参数并不受特别限制,只要能达到上述目的即可,作为一个具体示例,将基底放在转盘上,送入溅射室后,转盘转速为30r/min,沉积室温度25-300℃即可,抽真空至小于1×10-6Torr后,通入惰性气体,气体流量40-50SCCM,基体负偏压100-150W,进行离子轰击10-20min。In some embodiments of the present invention, the specific process and specific parameters in step (1) are not particularly limited as long as the above-mentioned purpose can be achieved. As a specific example, the substrate is placed on a turntable and sent into a sputtering chamber. The turntable speed is 30 r/min, and the deposition chamber temperature is 25-300°C. After evacuating to less than 1×10-6 Torr, an inert gas is introduced with a gas flow rate of 40-50 SCCM and a negative bias voltage of 100-150 W. Ion bombardment is performed for 10-20 minutes.

在本发明的一些实施例中,上述基底在置于磁控溅射镀膜机中前,需要对其进行打磨抛光预处理,以便为后续镀膜提供一个平整光滑的附着面。进一步地,预处理的具体过程为:对金属基底进行粗磨、精磨、粗抛光、精抛光至镜面、无明细划痕即可,依次采用丙酮和无水乙醇进行超声清洗5-10min。In some embodiments of the present invention, the substrate needs to be pre-treated by grinding and polishing before being placed in the magnetron sputtering coating machine to provide a flat and smooth adhesion surface for subsequent coating. Furthermore, the specific process of pre-treatment is: the metal substrate is subjected to rough grinding, fine grinding, rough polishing, and fine polishing until it is a mirror surface without fine scratches, and ultrasonic cleaning is performed with acetone and anhydrous ethanol for 5-10 minutes in sequence.

在本发明的一些实施例中,在步骤(2)中,氩气氛围的流量为40-50SCCM,直流功率为300-400W,基体负偏压为0-50V,转盘转速为30 r/min,沉积压力为3.0-4.0×10-3Torr,沉积速率为15-20nm/min,通过控制沉积时间,可以沉积厚度为0.3-1.5μm的Al打底层。In some embodiments of the present invention, in step (2), the flow rate of the argon atmosphere is 40-50 SCCM, the DC power is 300-400 W, the substrate negative bias voltage is 0-50 V, the turntable speed is 30 r/min, the deposition pressure is 3.0-4.0×10-3 Torr, and the deposition rate is 15-20 nm/min. By controlling the deposition time, an Al base layer with a thickness of 0.3-1.5 μm can be deposited.

在步骤(3)中,通过晶体生长调控处理,为下一过渡层AlN层的生长提供新的生长表面和形核位点,从而可以抑制Al层和AlN层间的连续生长,抑制连续柱状生长缺陷。In step (3), a new growth surface and nucleation site are provided for the growth of the next transition layer, the AlN layer, through the crystal growth regulation treatment, so that the continuous growth between the Al layer and the AlN layer can be suppressed, and the continuous columnar growth defects can be suppressed.

在本发明的实施例中,步骤(3)的具体过程和具体参数并不受特别限制,可以在溅射腔室内的含氧气氛中,作为含氧气氛的一种,也可以置于大气气氛中,只要能达到上述目的即可。作为一个具体示例,将基体沉积Al打底层后,置于过渡腔室中,将过渡腔室通入大气1.0×10-1 Torr至大气压水平,样品进行暴露处理,时间为5min以上,然后再将暴露处理后的样品放入溅射腔室中,准备沉积下一层。作为另一个具体示例,晶体生长调控处理也可以将溅射腔室直接通入氧,亦或者在氧气氛围下,对样品表面进行氧离子轰击,加速进行晶体生长调控处理。In an embodiment of the present invention, the specific process and specific parameters of step (3) are not particularly limited, and the process can be carried out in an oxygen-containing atmosphere in a sputtering chamber, as a type of oxygen-containing atmosphere, or in an atmospheric atmosphere, as long as the above-mentioned purpose can be achieved. As a specific example, after depositing an Al base layer on the substrate, the substrate is placed in a transition chamber, and the transition chamber is introduced into the atmosphere at 1.0×10-1 Torr to the atmospheric pressure level, and the sample is exposed for more than 5 minutes, and then the exposed sample is placed in a sputtering chamber to prepare for the deposition of the next layer. As another specific example, the crystal growth regulation process can also be carried out by directly introducing oxygen into the sputtering chamber, or by bombarding the sample surface with oxygen ions in an oxygen atmosphere to accelerate the crystal growth regulation process.

在本发明的一些实施例中,步骤(4)中,氩气氛围的流量为40-50SCCM,氮气氛围的流量为9-12SCCM,直流功率为300-400W,转盘转速为30r/min,基体负偏压为0-50V,沉积压力为3.0-4.0×10-3Torr,沉积速率为7-10nm/min。通过控制沉积时间,可以沉积厚度为0.3-1.5μm的AlN过渡层。In some embodiments of the present invention, in step (4), the flow rate of the argon atmosphere is 40-50 SCCM, the flow rate of the nitrogen atmosphere is 9-12 SCCM, the DC power is 300-400 W, the turntable speed is 30 r/min, the substrate negative bias voltage is 0-50 V, the deposition pressure is 3.0-4.0×10-3 Torr, and the deposition rate is 7-10 nm/min. By controlling the deposition time, an AlN transition layer with a thickness of 0.3-1.5 μm can be deposited.

在步骤(5)中,通过晶体生长调控处理后,为下一过渡层AlSiN的生长提供新的生长表面和形核位点,从而可以抑制AlN和AlSiN层间的连续生长,抑制连续柱状生长缺陷。In step (5), after the crystal growth regulation treatment, a new growth surface and nucleation site are provided for the growth of the next transition layer AlSiN, thereby suppressing the continuous growth between the AlN and AlSiN layers and suppressing the continuous columnar growth defects.

在本发明的实施例中,该步骤的具体过程和具体参数并不受特别限制,可以在溅射腔室内的含氧氛围中,可以置于大气气氛中,只要能达到上述目的即可。作为一个具体示例,将基底沉积AlN过渡层后,置于过渡腔室中,将过渡腔室通入大气1.0×10-1 Torr至大气压水平,样品进行暴露处理,时间为5min以上,然后再将暴露处理后的样品放入溅射腔室中,准备沉积下一层。作为另一个具体示例,晶体生长调控处理也可以将溅射腔室直接通入氧,亦或者在氧气氛围下,对样品表面进行氧离子轰击,加速进行晶体生长调控处理。In an embodiment of the present invention, the specific process and specific parameters of this step are not particularly limited, and can be placed in an oxygen-containing atmosphere in a sputtering chamber or in an atmospheric atmosphere, as long as the above-mentioned purpose can be achieved. As a specific example, after the AlN transition layer is deposited on the substrate, it is placed in a transition chamber, and the transition chamber is introduced into the atmosphere at 1.0×10-1 Torr to the atmospheric pressure level, and the sample is exposed for more than 5 minutes, and then the exposed sample is placed in a sputtering chamber to prepare for the deposition of the next layer. As another specific example, the crystal growth regulation treatment can also be carried out by directly introducing oxygen into the sputtering chamber, or by bombarding the sample surface with oxygen ions in an oxygen atmosphere to accelerate the crystal growth regulation treatment.

在本发明的一些实施例中,步骤(6)中,氩气氛围的流量为40-50SCCM,氮气氛围的流量为9-12SCCM,Al靶直流功率为300-400W,Si靶直流功率为100-200W,基体负偏压为0-50V,转盘转速为30r/min,沉积压力为3.0-4.0×10-3Torr,沉积速率为10-15nm/min。通过控制沉积时间,可以沉积厚度为0.3-1.5μm的AlSiN过渡层。In some embodiments of the present invention, in step (6), the flow rate of the argon atmosphere is 40-50 SCCM, the flow rate of the nitrogen atmosphere is 9-12 SCCM, the DC power of the Al target is 300-400 W, the DC power of the Si target is 100-200 W, the substrate negative bias is 0-50 V, the turntable speed is 30 r/min, the deposition pressure is 3.0-4.0×10-3 Torr, and the deposition rate is 10-15 nm/min. By controlling the deposition time, an AlSiN transition layer with a thickness of 0.3-1.5 μm can be deposited.

在步骤(6)中,需要值得注意的是,由于下一层SiN过渡层一般为非晶生长结构,AlSiN过渡层的柱状晶结构很难和SiN过渡层的非晶结构连续生长,因此,AlSiN过渡层的表面不需要执行晶体生长调控处理过程。当然采取不同的沉积技术,材料的生长结构可能会不同,如果SiN过渡层为柱状晶生长结构,为防止AlSiN过渡层和SiN过渡层间的连续生长,沉积AlSiN过渡层后,对其表面仍然需要执行晶体生长调控处理。In step (6), it should be noted that since the next SiN transition layer is generally an amorphous growth structure, the columnar crystal structure of the AlSiN transition layer is difficult to grow continuously with the amorphous structure of the SiN transition layer. Therefore, the surface of the AlSiN transition layer does not need to be subjected to a crystal growth regulation process. Of course, the growth structure of the material may be different if different deposition techniques are adopted. If the SiN transition layer is a columnar crystal growth structure, in order to prevent continuous growth between the AlSiN transition layer and the SiN transition layer, after the AlSiN transition layer is deposited, its surface still needs to be subjected to a crystal growth regulation process.

在本发明的一些实施例中,在步骤(7)中,氩气氛围的流量为40-50SCCM,氮气氛围的流量为5-7SCCM,射频功率为300-400W,沉积压力3.0-4.0×10-3Torr,沉积速率为3-6nm/min。过控制沉积时间,可以沉积厚度为0.1-0.6μm的SiN过渡层。In some embodiments of the present invention, in step (7), the flow rate of the argon atmosphere is 40-50 SCCM, the flow rate of the nitrogen atmosphere is 5-7 SCCM, the RF power is 300-400 W, the deposition pressure is 3.0-4.0×10-3 Torr, and the deposition rate is 3-6 nm/min. By controlling the deposition time, a SiN transition layer with a thickness of 0.1-0.6 μm can be deposited.

在步骤(7)中,需要值得注意的是,由于SiN过渡层和Si过渡层一般都为非晶生长结构,SiN过渡层与Si过渡层之间不会发生的连续生长现象,因此SiN过渡层的表面不需要执行晶体生长调控处理过程。当然采取不同的沉积技术,材料的生长结构可能会不同,如果SiN过渡层和Si过渡层都为柱状晶生长结构,为防止SiN过渡层和Si过渡层间的连续生长,沉积SiN过渡层后,对其表面仍然需要执行晶体生长调控处理。In step (7), it should be noted that since the SiN transition layer and the Si transition layer are generally amorphous growth structures, there will be no continuous growth between the SiN transition layer and the Si transition layer, so the surface of the SiN transition layer does not need to be subjected to a crystal growth regulation process. Of course, if different deposition techniques are adopted, the growth structure of the material may be different. If the SiN transition layer and the Si transition layer are both columnar crystal growth structures, in order to prevent continuous growth between the SiN transition layer and the Si transition layer, after the SiN transition layer is deposited, its surface still needs to be subjected to a crystal growth regulation process.

在本发明的一些实施例中,在步骤(8)中,氩气氛围的流量为40-50SCCM,直流功率为300-400W,沉积压力3.0-4.0×10-3Torr,转盘转速为30r/min,沉积速率为3-6nm/min,通过控制沉积时间,可以沉积厚度为0.1-0.6μm的Si过渡层。In some embodiments of the present invention, in step (8), the flow rate of the argon atmosphere is 40-50 SCCM, the DC power is 300-400 W, the deposition pressure is 3.0-4.0×10-3 Torr, the turntable speed is 30 r/min, and the deposition rate is 3-6 nm/min. By controlling the deposition time, a Si transition layer with a thickness of 0.1-0.6 μm can be deposited.

在步骤(8)中,需要值得注意的是,由于Si过渡层一般都为非晶生长结构,Si过渡层与AlN顶层之间不会发生连续生长的现象,因此Si过渡层的表面不需要执行氧化处理过程。当然采取不同的沉积技术,材料的生长结构可能会不同,如果Si过渡层为柱状晶生长结构,为防止Si过渡层和AlN顶层层间的连续生长,沉积Si过渡层后,对其表面仍然需要执行晶体生长调控处理。In step (8), it should be noted that since the Si transition layer is generally an amorphous growth structure, there will be no continuous growth between the Si transition layer and the AlN top layer, so the surface of the Si transition layer does not need to be oxidized. Of course, the growth structure of the material may be different if different deposition techniques are used. If the Si transition layer is a columnar crystal growth structure, in order to prevent continuous growth between the Si transition layer and the AlN top layer, after the Si transition layer is deposited, its surface still needs to be subjected to crystal growth control treatment.

在本发明的一些实施例中,在步骤(9)中,氩气氛围的流量为40-50SCCM,氮气氛围的流量为5-7SCCM,射频功率为300-400W,转盘转速为30r/min,沉积压力3.0-4.0×10-3Torr,沉积速率为3-6nm/min。通过控制沉积时间,可以沉积厚度为0.1-0.6μm的AlN顶层。In some embodiments of the present invention, in step (9), the flow rate of the argon atmosphere is 40-50 SCCM, the flow rate of the nitrogen atmosphere is 5-7 SCCM, the RF power is 300-400 W, the turntable speed is 30 r/min, the deposition pressure is 3.0-4.0×10-3 Torr, and the deposition rate is 3-6 nm/min. By controlling the deposition time, an AlN top layer with a thickness of 0.1-0.6 μm can be deposited.

进一步地,上述方法还包括:沉积结束后关闭氮气,关闭弧源靶电源,继续保持真空状态,等待炉内冷却至室温,取出试样,即得非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层。在本发明的实施例中,关于磁控溅射镀膜机的结构以及使用方法的具体内容属于本领域的常规技术,在此不再赘述。Furthermore, the method further comprises: after the deposition is completed, the nitrogen is turned off, the arc source target power supply is turned off, the vacuum state is continued, the furnace is cooled to room temperature, and the sample is taken out, so as to obtain a non-continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating. In the embodiment of the present invention, the specific contents of the structure and use method of the magnetron sputtering coating machine belong to the conventional technology in the field and will not be repeated here.

在本发明的一些实施例中,Al打底层的厚度为0.3-1.5μm(例如 0.3/0.5/0.7/0.9/1.2/1.5μm),AlN过渡层的厚度为0.3-1.5μm(例如 0.3/0.5/0.7/0.9/1.2/1.5μm),AlSiN过渡层的厚度为0.3-1.5μm(例如 0.3/0.5/0.7/0.9/1.2/1.5μm),SiN过渡层的厚度为0.1-0.6μm(例如 0.1/0.2/0.3/0.4/0.5/0.6μm),Si过渡层的厚度为0.1-0.6μm(例如0.1/0.2/0.3/0.4/0.5/0.6μm),AlN顶层的厚度为0.1-0.6μm(例如 0.1/0.2/0.3/0.4/0.5/0.6μm)。非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层的总厚度为1.2-6.3μm((例如 1.2/2.1/3.0/3.9/5.1/6.3μm))。In some embodiments of the present invention, the thickness of the Al base layer is 0.3-1.5 μm (e.g., 0.3/0.5/0.7/0.9/1.2/1.5 μm), the thickness of the AlN transition layer is 0.3-1.5 μm (e.g., 0.3/0.5/0.7/0.9/1.2/1.5 μm), the thickness of the AlSiN transition layer is 0.3-1.5 μm (e.g., 0.3/0.5/0.7/0.9/1.2/1.5 μm), the thickness of the SiN transition layer is 0.1-0.6 μm (e.g., 0.1/0.2/0.3/0.4/0.5/0.6 μm), the thickness of the Si transition layer is 0.1-0.6 μm (e.g., 0.1/0.2/0.3/0.4/0.5/0.6 μm), and the thickness of the AlN top layer is 0.1-0.6 μm (e.g., The total thickness of the non-continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating is 1.2-6.3 μm (e.g. 1.2/2.1/3.0/3.9/5.1/6.3 μm).

由此,将上述各层的厚度限定在上述范围内,既能对基底起到预期的保护作用,又能保证涂层不出现大团簇、针孔、微裂纹和脱落等缺陷。发明人发现,如果Al打底层的厚度过小,会造成Al层无法填补基底微观沟壑,涂层结合力差,如果Al打底层厚度过大,会造成涂层表面缺陷增多;如果AlN过渡层的厚度过小,会造成AlN过渡层分别与Al层、AlSiN层结合力差,涂层防腐性能差,如果AlN过渡层的厚度过大,会造成柱状晶过度生长,从而导致产生大团簇和针孔等缺陷;如果AlSiN过渡层的厚度过小,会造成AlSiN过渡层分别与AlN层、SiN层结合力差,造成涂层间结合力差,如果AlSiN过渡层的厚度过大,会造成柱状晶过度生长,从而导致产生大团簇和针孔等缺陷;如果SiN过渡层的厚度过小,会造成SiN过渡层分别与AlSiN层、Si层结合力差,造成涂层间结合力差,如果SiN过渡层的厚度过大,会造成涂层表面缺陷增多,同时SiN沉积速率小,导致沉积时间过长;如果Si过渡层的厚度过小,会造成Si过渡层分别与SiN层、AlN顶层结合力差,造成涂层间结合力差,如果Si过渡层的厚度过大,会造成涂层表面缺陷增多,同时Si沉积速率小,导致沉积时间过长,涂层表面温度增加;如果AlN顶层的厚度过小,会造成涂层不能显色,如果AlN顶层的厚度过大,会造成涂层表面缺陷增多、颜色混乱。Therefore, limiting the thickness of each layer within the above range can not only provide the expected protection for the substrate, but also ensure that the coating does not have defects such as large clusters, pinholes, microcracks and falling off. The inventors found that if the thickness of the Al base layer is too small, the Al layer will not be able to fill the microscopic grooves of the substrate, and the coating will have poor adhesion. If the thickness of the Al base layer is too large, the coating surface defects will increase; if the thickness of the AlN transition layer is too small, the AlN transition layer will have poor adhesion with the Al layer and the AlSiN layer, respectively, and the coating will have poor corrosion resistance. If the thickness of the AlN transition layer is too large, it will cause excessive growth of columnar crystals, resulting in defects such as large clusters and pinholes; if the thickness of the AlSiN transition layer is too small, the AlSiN transition layer will have poor adhesion with the AlN layer and the SiN layer, respectively, resulting in poor adhesion between the coatings. If the thickness of the AlSiN transition layer is too large, it will cause excessive growth of columnar crystals, resulting in defects such as large clusters and pinholes. If the thickness of the SiN transition layer is too small, the SiN transition layer will have poor bonding with the AlSiN layer and the Si layer, resulting in poor bonding between the coatings. If the thickness of the SiN transition layer is too large, the coating surface defects will increase. At the same time, the SiN deposition rate is low, resulting in a long deposition time. If the thickness of the Si transition layer is too small, the Si transition layer will have poor bonding with the SiN layer and the AlN top layer, resulting in poor bonding between the coatings. If the thickness of the Si transition layer is too large, the coating surface defects will increase. At the same time, the Si deposition rate is low, resulting in a long deposition time and an increase in the surface temperature of the coating. If the thickness of the AlN top layer is too small, the coating will not be able to display color. If the thickness of the AlN top layer is too large, the coating surface defects will increase and the color will be confused.

本发明所用的制备、表征以及测量仪器如下:M230型多靶磁控溅射镀膜系统,北京维开科技有限公司;JSM7610F型扫描电子显微镜,日本电子株式会社;PGSTAT302N电化学工作站,Metrohm瑞士万通;D8 ADVANCE X射线衍射仪,德国布鲁克/Bruker;氩离子抛光仪,美国Gatan公司。The preparation, characterization and measurement instruments used in the present invention are as follows: M230 multi-target magnetron sputtering coating system, Beijing Weikai Technology Co., Ltd.; JSM7610F scanning electron microscope, JEOL Ltd.; PGSTAT302N electrochemical workstation, Metrohm; D8 ADVANCE X-ray diffractometer, Bruker, Germany; argon ion polisher, Gatan, USA.

下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。The present invention is described below with reference to specific embodiments. It should be noted that these embodiments are merely illustrative and do not limit the present invention in any way.

实施例Example

本实施例提供一种非连续生长AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层的制备方法,其流程图如图2所示,具体包括如下步骤:This embodiment provides a method for preparing a non-continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating, the flow chart of which is shown in FIG2 , and specifically comprises the following steps:

(1)基底预处理:选用AZ31B镁合金作为样品(B-1)的基底,将样品(B-1)经砂纸粗磨、精磨、粗抛光、精抛光至镜面后,依次用丙酮和无水乙醇进行超声清洗10min后,烘干,备用;(1) Substrate pretreatment: AZ31B magnesium alloy was selected as the substrate of sample (B-1). Sample (B-1) was rough ground, fine ground, rough polished, and fine polished to a mirror surface with sandpaper, and then ultrasonically cleaned with acetone and anhydrous ethanol for 10 min in sequence, and then dried for standby use;

采用磁控溅射镀膜机,选用靶材为1个纯度为99.9%的Al单质靶、1个纯度为99.9%的Si单质靶;工作气体为纯度99.999%的氩气,纯度99.999%的氮气;将样品(B-1)放在转盘上,将转盘放入进样室,进样室抽真空至小于4×10-2Torr后,机械手将转盘送往溅射室,调整转盘转速为30r/min,沉积室温度为室温,抽真空到小于1×10-6Torr后,通入氩气,氩气氛围的流量为40SCCM,基体负偏压100W,进行离子轰击10min。A magnetron sputtering coating machine was used, and the target materials were an Al single target with a purity of 99.9% and a Si single target with a purity of 99.9%; the working gases were argon with a purity of 99.999% and nitrogen with a purity of 99.999%; the sample (B-1) was placed on a turntable, and the turntable was placed in a sampling chamber. After the sampling chamber was evacuated to less than 4×10-2 Torr, the robot sent the turntable to the sputtering chamber, and the turntable speed was adjusted to 30r/min. The temperature of the deposition chamber was room temperature, and after evacuating to less than 1×10-6 Torr, argon was introduced, the flow rate of the argon atmosphere was 40SCCM, the substrate negative bias voltage was 100W, and ion bombardment was carried out for 10 minutes.

(2)沉积Al打底层:真空压力小于1×10-6Torr后,通入氩气,氩气氛围的流量为40SCCM,施加直流功率为400W,基体负偏压为0V,转盘转速为30r/min,沉积压力为3.8×10-3Torr,沉积速率为18nm/min;镀制Al打底层,沉积时间45min,Al打底层的厚度为0.8μm。(2) Deposition of Al base layer: After the vacuum pressure is less than 1×10-6 Torr, argon gas is introduced with a flow rate of 40 SCCM. The applied DC power is 400 W, the substrate negative bias voltage is 0 V, the turntable speed is 30 r/min, the deposition pressure is 3.8×10-3 Torr, and the deposition rate is 18 nm/min. Al base layer is plated with a deposition time of 45 min and a thickness of 0.8 μm.

(3)晶体生长调控处理:将沉积Al打底层后的样品(B-1),置于过渡腔室(送样室)中,将过渡腔室通入大气1.0×10-1Torr至大气压水平,进行暴露处理,时间为5min,然后通过机械手再将暴露处理后的样品放入溅射腔室中。(3) Crystal growth regulation treatment: The sample (B-1) after depositing Al as the base layer was placed in the transition chamber (sample delivery chamber), and the transition chamber was ventilated with air at 1.0×10-1 Torr to the atmospheric pressure level for 5 min. The sample after exposure was then placed in the sputtering chamber by a robot.

(4)沉积AlN过渡层:待腔室压力抽至低于1×10-6Torr,通入氩气和氮气,氩气氛围的流量为40SCCM,氮气氛围的流量为12SCCM,直流功率为400W,转盘转速为30r/min,基体负偏压为0V,沉积压力为3.8×10-3Torr,沉积速率为10nm/min;镀制AlN过渡层,沉积时间80min,AlN过度层的厚度为0.8μm。(4) Deposition of AlN transition layer: When the chamber pressure is pumped down to less than 1×10-6 Torr, introduce argon and nitrogen. The flow rate of the argon atmosphere is 40 SCCM, the flow rate of the nitrogen atmosphere is 12 SCCM, the DC power is 400 W, the turntable speed is 30 r/min, the substrate negative bias voltage is 0 V, the deposition pressure is 3.8×10-3 Torr, and the deposition rate is 10 nm/min. The AlN transition layer is deposited for 80 min. The thickness of the AlN transition layer is 0.8 μm.

(5)晶体生长调控处理:将沉积AlN过渡层后的样品(B-1),置于过渡腔室(送样室)中,将过渡腔室通入大气1.0×10-1Torr至大气压水平,进行暴露处理,时间为5min。然后通过机械手再将暴露处理后的样品放入溅射腔室中。(5) Crystal growth control treatment: The sample (B-1) after the AlN transition layer is deposited is placed in the transition chamber (sample delivery chamber), and the transition chamber is ventilated with air at 1.0×10-1 Torr to the atmospheric pressure level for 5 min. The sample after exposure is then placed in the sputtering chamber by a robot.

(6)沉积AlSiN过渡层:待腔室压力抽至低于1×10-6Torr时,通入氩气和氮气,氩气氛围的流量为40SCCM,氮气氛围的流量为12SCCM,Al靶直流功率为400W,Si靶直流功率为150W,基体负偏压为0V,转盘转速为30r/min,沉积压力为3.8×10-3Torr,沉积速率为15nm/min;镀制AlSiN过渡层,沉积时间54min,AlSiN过度层的厚度为0.8μm。(6) Deposition of AlSiN transition layer: When the chamber pressure was pumped down to less than 1×10-6 Torr, argon and nitrogen were introduced. The flow rate of argon atmosphere was 40 SCCM, the flow rate of nitrogen atmosphere was 12 SCCM, the DC power of Al target was 400 W, the DC power of Si target was 150 W, the negative bias voltage of substrate was 0 V, the rotation speed of turntable was 30 r/min, the deposition pressure was 3.8×10-3 Torr, and the deposition rate was 15 nm/min. AlSiN transition layer was deposited. The deposition time was 54 min and the thickness of AlSiN transition layer was 0.8 μm.

(7)沉积SiN过渡层:待腔室压力抽至低于1×10-6Torr时,通入氩气和氮气,氩气氛围的流量为40SCCM,氮气氛围的流量为5SCCM,射频功率为300W,沉积压力3.3×10-3Torr,沉积速率为5nm/min;镀制SiN过渡层,沉积时间60min,SiN过度层的厚度为0.3μm。(7) Deposition of SiN transition layer: When the chamber pressure is pumped down to less than 1×10-6 Torr, argon and nitrogen are introduced. The flow rate of argon atmosphere is 40 SCCM, the flow rate of nitrogen atmosphere is 5 SCCM, the RF power is 300 W, the deposition pressure is 3.3×10-3 Torr, and the deposition rate is 5 nm/min. The SiN transition layer is deposited for 60 min. The thickness of the SiN transition layer is 0.3 μm.

(8)沉积Si过渡层:待腔室压力抽至低于1×10-6Torr时,通入氩气,氩气氛围的流量为40SCCM,射频功率为300W,沉积压力3.0×10-3Torr,转盘转速为30r/min,沉积速率为4nm/min;镀制Si过渡层,沉积时间50min,Si过度层的厚度为0.2μm。(8) Deposition of Si transition layer: When the chamber pressure is pumped down to less than 1×10-6 Torr, introduce argon gas with a flow rate of 40 SCCM, a RF power of 300 W, a deposition pressure of 3.0×10-3 Torr, a turntable speed of 30 r/min, and a deposition rate of 4 nm/min; deposit the Si transition layer for 50 min, with a thickness of 0.2 μm.

(9)沉积AlN顶层:待腔室压力抽至低于1×10-6Torr时,通入氩气和氮气,氩气氛围的流量为40SCCM,氮气氛围的流量为6SCCM,射频功率为400W,转盘转速为30r/min,沉积压力3.5×10-3Torr,沉积速率为5nm/min;镀制AlN顶层,沉积时间60min,AlN顶层的厚度为0.3μm。(9) Deposition of AlN top layer: When the chamber pressure is pumped down to less than 1×10-6 Torr, argon and nitrogen are introduced. The flow rate of argon atmosphere is 40 SCCM, the flow rate of nitrogen atmosphere is 6 SCCM, the RF power is 400 W, the turntable speed is 30 r/min, the deposition pressure is 3.5×10-3 Torr, and the deposition rate is 5 nm/min. The AlN top layer is deposited for 60 min. The thickness of the AlN top layer is 0.3 μm.

(10)沉积结束后关闭氮气,关闭靶电源,继续保持真空状态,等待炉内冷却至室温,取出样品(B-1),样品(B-1)表面制备得到非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层。(10) After the deposition is completed, the nitrogen gas is turned off, the target power is turned off, the vacuum state is continued, and the furnace is cooled to room temperature. Sample (B-1) is taken out. A discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al multilayer gradient structure anti-corrosion coating is prepared on the surface of sample (B-1).

作为对比的,取相同的AZ31B镁合金作为样品(B-2)的基底,重复上述步骤(1)(2)(4)(6)(7)(8)(9)(10),省略晶体生长调控处理的步骤,从而在样品(B-2)表面制备得到连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层。For comparison, the same AZ31B magnesium alloy was used as the substrate of sample (B-2), and the above steps (1)(2)(4)(6)(7)(8)(9)(10) were repeated, omitting the crystal growth regulation step, thereby preparing a continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating on the surface of sample (B-2).

对实施例1制备的样品(B-1)和样品(B-2)做截面FESEM形貌和EDX元素观测,得到图3所示形貌,如图3(a)所示,可以看到没有经过晶体生长调控处理的样品(B-2)上的AlN/Si/SiN/AlSiN/AlN/Al多层涂层,在AlSiN/AlN/Al层中,表现出明显连续柱状生长的结构;如图3(c)所示,进行了晶体生长调控处理的样品(B-1)上的AlN/Si/SiN/AlSiN/AlN/Al多层涂层中,在AlSiN/AlN/Al层中连续柱状生长的结构消失,这说明AlSiN/AlN/Al层间连续柱状生长缺陷得到抑制。结合图3(b1)-(b4)和图3(d1)-(d4),EDX元素观测显示,样品(B-1)和样品(B-2)上的Al元素的颜色像素由涂层底部向上逐渐减少,Si元素的颜色像素由涂层中部向上逐渐增多,这表明多层涂层为Al、Si双相元素梯度结构。The cross-sectional FESEM morphology and EDX element observations of the samples (B-1) and (B-2) prepared in Example 1 obtained the morphology shown in FIG3 . As shown in FIG3 (a), it can be seen that the AlN/Si/SiN/AlSiN/AlN/Al multilayer coating on the sample (B-2) that has not undergone the crystal growth regulation treatment exhibits an obvious continuous columnar growth structure in the AlSiN/AlN/Al layer; as shown in FIG3 (c), in the AlN/Si/SiN/AlSiN/ AlN/ Al multilayer coating on the sample (B-1) that has undergone the crystal growth regulation treatment, the continuous columnar growth structure in the AlSiN/AlN/Al layer disappears, indicating that the continuous columnar growth defect between the AlSiN/ AlN/ Al layers is suppressed. Combined with Figure 3 (b1)-(b4) and Figure 3 (d1)-(d4), EDX element observation shows that the color pixels of the Al element on sample (B-1) and sample (B-2) gradually decrease from the bottom of the coating to the top, and the color pixels of the Si element gradually increase from the middle of the coating to the top, which indicates that the multilayer coating is an Al and Si dual-phase element gradient structure.

为分析涂层的晶体结构,取相同的AZ31B镁合金分别作为样品(B-3)、样品(B-4)、样品(B-5)、样品(B-6)、样品(B-7)、样品(B-8)的基底,分别镀制不同的涂层:In order to analyze the crystal structure of the coating, the same AZ31B magnesium alloy was used as the substrate of sample (B-3), sample (B-4), sample (B-5), sample (B-6), sample (B-7), and sample (B-8), and different coatings were plated respectively:

样品(B-3)重复上述步骤(1)(4),在样品(B-3)上镀制AlN单层;Repeat the above steps (1) and (4) for sample (B-3) to deposit an AlN single layer on sample (B-3);

样品(B-4)重复步骤(1)(2)(4),在样品(B-4)上镀制连续生长的AlN/Al层;Repeat steps (1), (2), (4) for sample (B-4) to form a continuously grown AlN/Al layer on sample (B-4);

样品(B-5)重复步骤(1)(2)(3)(4),在样品(B-5)上镀制非连续生长的AlN/Al层;Repeat steps (1), (2), (3), (4) for sample (B-5) to deposit a non-continuously grown AlN/ Al layer on sample (B-5);

样品(B-6)重复步骤(1)(6),在样品(B-6)上镀制AlSiN单层;Repeat steps (1) to (6) for sample (B-6) to deposit a single layer of AlSiN on sample (B-6);

样品(B-7)重复步骤(1)(2)(4)(6),在样品(B-7)上镀制连续生长的AlSiN/AlN/Al层;Repeat steps (1), (2), (4), (6) on sample (B-7) to deposit a continuously grown AlSiN/AlN/Al layer on sample (B-7);

样品(B-8)重复步骤(1)(2)(3)(4)(5)(6),在样品(B-8)上镀制非连续生长的AlSiN/AlN/Al层。Steps (1)(2)(3)(4)(5)(6) were repeated for sample (B-8) to deposit a non-continuously grown AlSiN/ AlN/ Al layer on sample (B-8).

分别对实施例1制备的样品(B-3)、样品(B-4)、样品(B-5)、样品(B-6)、样品(B-7)、样品(B-8)做X射线衍射测试,测试结果如图4和图5所示。X-ray diffraction tests were performed on samples (B-3), sample (B-4), sample (B-5), sample (B-6), sample (B-7), and sample (B-8) prepared in Example 1, and the test results are shown in Figures 4 and 5.

从图4中可以看出,AlN单层为AlN(100)、(101)、(102)和(112)晶面生长方向,且(101)晶面为最优生长方向;连续生长的AlN/Al涂层中观察到Al(111)、(200)、(220)和(311)晶面衍射峰,也检测到AlN(002)、(101)、(102)和(112)衍射峰,与AlN单层相比,晶粒生长方向少了(100)晶面,增加(002)晶面,且(002)晶面为最优生长方向,根据Scherrer公式,AlN单层中AlN(101)和连续生长的AlN/Al涂层中AlN(002)晶面的平均晶粒尺寸分别为14.5和18.0nm,即证实AlN/Al涂层的连续生长,导致AlN层变为垂直方向优先生长,并导致该生长方向的晶粒增大。然而,在经过晶体生长调控处理后,非连续生长的AlN/Al涂层中AlN(100)、(101)、(102)和(112)晶面衍射峰与AlN单层的晶粒生长方向一致,且(101)晶面仍为最优生长方向,根据谢乐公式(Scherrer)公式,非连续生长的AlN/Al涂层中AlN(101)的平均晶粒尺寸为14.6nm。因此,物相结构分析证实:经过晶体生长调控处理后,切断了AlN/Al层间联系,并且抑制了AlN/Al层间连续生长和晶粒长大,为非连续生长结构。As can be seen from Figure 4, the AlN monolayer grows along the AlN (100), (101), (102) and (112) crystal planes, and the (101) crystal plane is the optimal growth direction. The Al (111), (200), (220) and (311) crystal plane diffraction peaks are observed in the continuously grown AlN/Al coating, and the AlN (002), (101), (102) and (112) diffraction peaks are also detected. Compared with the AlN monolayer, the grain growth is The (100) crystal plane is missing and the (002) crystal plane is increased, and the (002) crystal plane is the optimal growth direction. According to the Scherrer formula, the average grain size of AlN (101) in the AlN monolayer and the AlN (002) crystal plane in the continuously grown AlN/Al coating is 14.5 and 18.0 nm, respectively, which confirms that the continuous growth of the AlN/Al coating causes the AlN layer to grow preferentially in the vertical direction and causes the grain size in this growth direction to increase. However, after the crystal growth regulation treatment, the diffraction peaks of AlN (100), (101), (102) and (112) crystal planes in the discontinuously grown AlN/ Al coating are consistent with the grain growth direction of the AlN monolayer, and the (101) crystal plane is still the optimal growth direction. According to the Scherrer formula, the average grain size of AlN (101) in the discontinuously grown AlN/Al coating is 14.6 nm. Therefore, the phase structure analysis confirmed that after the crystal growth regulation treatment, the connection between the AlN/Al layers was cut off, and the continuous growth of the AlN/Al layers and the grain growth were inhibited, resulting in a discontinuous growth structure.

从图5中可以看出,AlSiN单层为AlN(100)和(110)晶面生长。在连续生长的AlSiN/AlN/Al涂层中,包括Al(111)、(200)、(220)和(311)晶面衍射峰和AlN(002)、(101)、(102)和(112)晶面衍射峰,可见,AlSiN/AlN/Al涂层和AlN/Al涂层的衍射峰一样,同时检测不到AlSiN单层中AlN(100)和(110)晶面衍射峰,同时,AlN/Al和AlSiN/AlN/Al涂层中AlN(002)晶面的平均晶粒尺寸分别为18.0和27.8nm,再次证实AlSiN/AlN层间发生连续生长,并导致晶粒增粗。在经过晶体生长调控处理后,在AlSiN/AlN/Al涂层中,包括Al(111)、(200)、(220)和(311)晶面衍射峰,和AlN的(101)、(102)、(112)晶面衍射峰,以及AlN(100)和(110)晶面衍射峰,这与AlSiN单层涂层中检测到的AlN(100)和(110)晶面衍射峰一致,根据Scherrer公式,AlSiN单层和AlSiN/AlN/Al涂层中AlN(100)晶面的平均晶粒尺寸分别为12.4nm和12.5nm。这表明晶体生长调控处理后,AlSiN/AlN/Al涂层中AlSiN层形核和生长方向没有改变,证实AlSiN/AlN/Al涂层中AlSiN/AlN层没有发生连续生长和晶粒增大,因此,抑制了AlSiN/AlN层间连续生长,为非连续生长结构。As can be seen from Figure 5, the AlSiN monolayer grows on the AlN (100) and (110) crystal planes. In the continuously grown AlSiN/AlN/Al coating, there are diffraction peaks of Al (111), (200), (220) and (311) crystal planes and diffraction peaks of AlN (002), (101), (102) and (112) crystal planes. It can be seen that the diffraction peaks of the AlSiN/AlN/Al coating are the same as those of the AlN/Al coating. At the same time, no diffraction peaks of the AlN (100) and (110) crystal planes in the AlSiN monolayer can be detected. At the same time, the average grain sizes of the AlN (002) crystal plane in the AlN/Al and AlSiN/AlN/Al coatings are 18.0 and 27.8 nm, respectively, which once again confirms that continuous growth occurs between the AlSiN/AlN layers and leads to grain coarsening. After crystal growth regulation treatment, the AlSiN/ AlN/ Al coating contains diffraction peaks of Al(111), (200), (220) and (311) crystal planes, diffraction peaks of AlN (101), (102) and (112) crystal planes, and diffraction peaks of AlN (100) and (110) crystal planes, which are consistent with the diffraction peaks of AlN (100) and (110) crystal planes detected in the AlSiN single layer coating. According to the Scherrer formula, the average grain size of AlN (100) crystal plane in the AlSiN single layer and AlSiN/AlN/Al coating is 12.4nm and 12.5nm, respectively. This indicates that after the crystal growth regulation treatment, the nucleation and growth direction of the AlSiN layer in the AlSiN/ AlN/ Al coating did not change, confirming that there was no continuous growth and grain enlargement of the AlSiN/ AlN layer in the AlSiN/ AlN/ Al coating. Therefore, the continuous growth between the AlSiN/ AlN layers was inhibited, resulting in a discontinuous growth structure.

为分析涂层的耐蚀性能,取相同的AZ31B镁合金分别作为样品(B-9)、样品(B-10)、样品(B-11)、样品(B-12)的基底,分别镀制不同的涂层:In order to analyze the corrosion resistance of the coating, the same AZ31B magnesium alloy was used as the substrate of sample (B-9), sample (B-10), sample (B-11), and sample (B-12), and different coatings were plated respectively:

样品(B-9)、样品(B-10)分别重复步骤(1)(2)(4)(6)(7)(8)(9)(10),在样品(B-9)、样品(B-10)上制备连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层;Repeat steps (1)(2)(4)(6)(7)(8)(9)(10) on sample (B-9) and sample (B-10) respectively to prepare a continuously grown AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure anti-corrosion coating on sample (B-9) and sample (B-10);

样品(B-11)、样品(B-12)分别重复步骤(1)-(10),在样品(B-11)、样品(B-12)上制备非连续生长的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构防腐涂层。Repeat steps (1) to (10) for sample (B-11) and sample (B-12) respectively to prepare a discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al multilayer gradient structure anti-corrosion coating on sample (B-11) and sample (B-12).

分别对实施例1制备的样品(B-9)以及样品(B-11)进行在3.5wt%NaCl腐蚀液中的电化学腐蚀实验,实验结果如图6所示,并将Tafel模型计算得到的电化学结果汇总在表1中。Electrochemical corrosion experiments were performed on the samples (B-9) and (B-11) prepared in Example 1 in 3.5 wt % NaCl corrosion solution. The experimental results are shown in FIG6 , and the electrochemical results calculated by the Tafel model are summarized in Table 1.

表1Table 1

可见,未涂层的AZ31B、连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B和非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B的腐蚀电势值都为-1.46V,对应的腐蚀电流密度分别为1.59×10−4、3.03×10−8和4.75×10−10A/cm2。连续生长的AlN/Si/SiN/AlSiN/AlN/Al可以使镁合金的腐蚀电流密度降低4个数量级,镁合金基底的耐腐蚀性能得到极大提升。通过晶体生长调控处理,非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B腐蚀电流密度从3.03×10−8进一步降低到4.75×10−10A/cm2,腐蚀电流密度值再次降低近2个数量级,涂层的耐腐蚀性能得到极大提升。相较于AZ31B镁合金基底,非连续生长的AlN/Si/SiN/AlSiN/AlN/Al涂层使得基底的腐蚀电流密度从1.59×10−4 降低到4.75×10−10 A/cm2,腐蚀电流密度降低6个数量级,这意味着非连续生长的AlN/Si/SiN/AlSiN/AlN/Al元素梯度多层涂层将极大提升AZ31B镁合金在极限腐蚀环境中使用寿命和使用范围。到目前为止,将镁合金的腐蚀电流密度降低6个数量级的还未见报道。同时,连续生长和非连续生长涂层对应的极化电阻(Rp)分别为8.58×105和5.48×107 Ω/cm2,对应腐蚀速率分别为3.53×10-4和5.52×10-6mm/year,这进一步证实层间非连续生长的AlN/Si/SiN/AlSiN/AlN/Al元素梯度多层涂层的优异的耐腐性能。It can be seen that the corrosion potential values of uncoated AZ31B, continuously grown AlN/Si/SiN/AlSiN/AlN/Al-AZ31B and discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B are all -1.46V, and the corresponding corrosion current densities are 1.59×10−4 , 3.03×10−8 and 4.75×10−10 A/cm2 , respectively. Continuously grown AlN/Si/SiN/AlSiN/AlN/Al can reduce the corrosion current density of magnesium alloy by 4 orders of magnitude, and the corrosion resistance of magnesium alloy substrate is greatly improved. Through crystal growth regulation treatment, the corrosion current density of discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B is further reduced from 3.03×10−8 to 4.75×10−10 A/cm2 , and the corrosion current density value is reduced by nearly 2 orders of magnitude again, and the corrosion resistance of the coating is greatly improved. Compared with the AZ31B magnesium alloy substrate, the discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al coating reduces the corrosion current density of the substrate from 1.59×10-4 to 4.75×10-10 A/cm2 , which is 6 orders of magnitude lower. This means that the discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al element gradient multilayer coating will greatly improve the service life and use range of AZ31B magnesium alloy in extreme corrosion environments. So far, there has been no report on reducing the corrosion current density of magnesium alloy by 6 orders of magnitude. At the same time, the polarization resistance (Rp) corresponding to the continuously grown and discontinuously grown coatings are 8.58×105 and 5.48×107 Ω/cm2 , respectively, and the corresponding corrosion rates are 3.53×10-4 and 5.52×10-6 mm/year, respectively, which further confirms the excellent corrosion resistance of the interlayer discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al element gradient multilayer coating.

分别对实施例1制备的样品(B-10)以及样品(B-12)进行了3.5wt%NaCl腐蚀液浸泡实验,实验结果如图7所示,可以发现,浸泡144h后,连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品已经开始出现部分腐蚀,涂层表面结构部分遭到破环,即144h后样品开始出现大面积腐蚀;然而非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品表面依然完好无损。浸泡216h后,连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品已经开始出现严重的腐蚀,涂层表面结构遭到破环,表面生成黑色腐蚀产物,涂层基本失去了对基底的防护能力;而非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品依然完好无损。在浸泡360h后,非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品依然完好无损,表面光滑、结构完整、看不到任何腐蚀点,这揭示非连续生长的AlN/Si/SiN/AlSiN/AlN/Al-AZ31B样品已经具备超级耐腐蚀的能力。The samples (B-10) and (B-12) prepared in Example 1 were immersed in 3.5wt% NaCl corrosion solution. The experimental results are shown in Figure 7. It can be found that after immersion for 144 hours, the continuously grown AlN/Si/SiN/AlSiN/AlN/Al-AZ31B sample has begun to partially corrode, and the surface structure of the coating has been partially destroyed, that is, after 144 hours, the sample began to corrode on a large scale; however, the surface of the non-continuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B sample is still intact. After immersion for 216 hours, the continuously grown AlN/Si/SiN/AlSiN/AlN/Al-AZ31B sample has begun to corrode severely, the surface structure of the coating has been destroyed, black corrosion products are generated on the surface, and the coating has basically lost its ability to protect the substrate; while the non-continuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B sample is still intact. After immersion for 360 hours, the discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B sample is still intact, with a smooth surface, complete structure, and no visible corrosion spots, which reveals that the discontinuously grown AlN/Si/SiN/AlSiN/ AlN/ Al-AZ31B sample has super corrosion resistance.

以上均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。The above are all preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Therefore, any equivalent changes made based on the structure, shape, and principle of the present invention should be included in the protection scope of the present invention.

Claims (9)

Translated fromChinese
1.一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,包括在基底表面依次沉积Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤,还包括在沉积所述第一AlN层和所述AlSiN层的步骤之前,进行晶体生长调控处理的步骤;1. A method for preparing an AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, characterized in that it comprises the steps of sequentially depositing an Al layer, a first AlN layer, an AlSiN layer, a SiN layer, a Si layer and a second AlN layer on a substrate surface, and also comprises the step of performing a crystal growth control treatment before the step of depositing the first AlN layer and the AlSiN layer;其中,沉积所述第一AlN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的所述Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种;和,The step of crystal growth regulation treatment before depositing the first AlN layer comprises at least one of exposing the Al layer deposited on the substrate in an oxygen-containing atmosphere or bombarding the Al layer with oxygen ions in an oxygen-containing atmosphere; and沉积所述AlSiN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的AlN/Al层在含氧气氛中进行暴露处理或在含氧气氛中进行氧离子轰击处理中的至少一种;The step of crystal growth regulation treatment before depositing the AlSiN layer comprises at least one of exposing the AlN/Al layer deposited on the substrate in an oxygen-containing atmosphere or bombarding it with oxygen ions in an oxygen-containing atmosphere;所述晶体生长调控处理的温度为室温至300℃,所述晶体生长调控处理使得所述第一AlN层和Al层之间为非连续柱状生长;和,所述AlSiN层和第一AlN层之间为非连续柱状生长。The temperature of the crystal growth regulation treatment is room temperature to 300° C., and the crystal growth regulation treatment enables non-continuous columnar growth between the first AlN layer and the Al layer; and non-continuous columnar growth between the AlSiN layer and the first AlN layer.2.根据权利要求1所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,沉积Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤采用真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延镀膜中的至少一种。2. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 1 is characterized in that the steps of depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer adopt at least one of vacuum evaporation, sputtering coating, arc plasma coating, ion plating and molecular beam epitaxy coating.3.根据权利要求1或2所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,沉积所述第一AlN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的Al层在大气气氛中进行暴露处理;和,3. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 1 or 2, characterized in that the step of crystal growth regulation treatment before depositing the first AlN layer comprises exposing the Al layer deposited on the substrate to an atmospheric atmosphere; and,沉积所述AlSiN层之前的晶体生长调控处理的步骤,包括将所述基底上沉积的AlN/Al层在大气气氛中进行暴露处理。The step of crystal growth regulation treatment before depositing the AlSiN layer comprises exposing the AlN/Al layer deposited on the substrate to an atmospheric atmosphere.4.根据权利要求1或2所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,沉积所述Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层的步骤采用磁控溅射镀膜。4. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 1 or 2 is characterized in that the steps of depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer are deposited by magnetron sputtering.5.根据权利要求4所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,沉积所述Al层、第一AlN层、AlSiN层、SiN层、Si层以及第二AlN层包括以下步骤:5. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 4, characterized in that depositing the Al layer, the first AlN layer, the AlSiN layer, the SiN layer, the Si layer and the second AlN layer comprises the following steps:(1) 将抛光后的基底置于磁控溅射镀膜机的溅射腔室中,抽真空后,在氩气氛围下进行离子轰击刻蚀;(1) placing the polished substrate in a sputtering chamber of a magnetron sputtering coating machine, evacuating the chamber, and then performing ion bombardment etching in an argon atmosphere;(2) 在氩气氛围下开启Al靶直流电源,在所述基底表面沉积Al层;(2) turning on a direct current power supply of an Al target in an argon atmosphere to deposit an Al layer on the surface of the substrate;(3) 将沉积的Al层进行晶体生长调控处理,在大气气氛中进行暴露处理5min以上;(3) subjecting the deposited Al layer to a crystal growth control treatment and exposing it to an atmospheric atmosphere for more than 5 minutes;(4) 在氩气和氮气的混合氛围下开启Al靶电源,在所述Al层的表面沉积第一AlN层;(4) turning on an Al target power supply in a mixed atmosphere of argon and nitrogen to deposit a first AlN layer on the surface of the Al layer;(5) 将沉积的第一AlN层进行晶体生长调控处理,在大气气氛中进行暴露处理5min以上;(5) subjecting the deposited first AlN layer to a crystal growth control treatment and exposing it to an atmospheric atmosphere for more than 5 minutes;(6)在氩气和氮气的混合氛围下同时开启Al靶、Si靶电源,在所述第一AlN层的表面沉积AlSiN层;(6) turning on the power supplies of the Al target and the Si target simultaneously in a mixed atmosphere of argon and nitrogen to deposit an AlSiN layer on the surface of the first AlN layer;(7)在氩气和氮气的混合氛围下开启Si靶电源,在所述AlSiN层的表面沉积SiN层;(7) turning on the Si target power supply in a mixed atmosphere of argon and nitrogen to deposit a SiN layer on the surface of the AlSiN layer;(8)在氩气氛围下开启Si靶电源,在所述SiN层的表面沉积Si层;(8) turning on the Si target power supply in an argon atmosphere to deposit a Si layer on the surface of the SiN layer;(9)在氩气和氮气的混合氛围下开启Al靶电源,在所述Si层的表面沉积第二AlN层。(9) In a mixed atmosphere of argon and nitrogen, an Al target power supply is turned on to deposit a second AlN layer on the surface of the Si layer.6.根据权利要求1或2所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,经过晶体生长调控处理,沉积的所述AlN/Al层包括AlN(100)、(101)、(102)和(112)的晶面衍射峰;和,6. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 1 or 2, characterized in that, after the crystal growth regulation treatment, the deposited AlN/Al layer comprises crystal plane diffraction peaks of AlN (100), (101), (102) and (112); and,经过晶体生长调控处理,沉积的AlSiN/AlN/Al层包括AlN(100)和(110)的晶面衍射峰。After the crystal growth control treatment, the deposited AlSiN/AlN/Al layer includes AlN (100) and (110) crystal plane diffraction peaks.7.根据权利要求1或2所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法,其特征在于,经过晶体生长调控处理,沉积的所述AlN/Al层中AlN(101)晶面的平均晶粒尺寸为14.6nm;和,7. The method for preparing the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 1 or 2, characterized in that, after the crystal growth regulation treatment, the average grain size of the AlN (101) crystal plane in the deposited AlN/Al layer is 14.6 nm; and,经过晶体生长调控处理,沉积的所述AlSiN/AlN/Al层中AlN(100)晶面的平均晶粒尺寸为12.5nm。After the crystal growth regulation treatment, the average grain size of the AlN (100) crystal plane in the deposited AlSiN/AlN/Al layer is 12.5 nm.8.一种AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层,由权利要求1~7中任一项所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层的制备方法得到。8. An AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating, obtained by the preparation method of the AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to any one of claims 1 to 7.9.根据权利要求8所述的AlN/Si/SiN/AlSiN/AlN/Al多层梯度结构涂层,其特征在于,所述Al层的厚度为0.3-1.5μm,所述第一AlN层的厚度为0.3-1.5μm,所述AlSiN层的厚度为0.3-1.5μm,所述SiN层的厚度为0.1-0.6μm,所述Si层的厚度为0.1-0.6μm,所述第二AlN层的厚度为0.1-0.6μm。9. The AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating according to claim 8, characterized in that the thickness of the Al layer is 0.3-1.5μm, the thickness of the first AlN layer is 0.3-1.5μm, the thickness of the AlSiN layer is 0.3-1.5μm, the thickness of the SiN layer is 0.1-0.6μm, the thickness of the Si layer is 0.1-0.6μm, and the thickness of the second AlN layer is 0.1-0.6μm.
CN202310411961.0A2023-04-172023-04-17Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coatingActiveCN116426875B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202310411961.0ACN116426875B (en)2023-04-172023-04-17Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202310411961.0ACN116426875B (en)2023-04-172023-04-17Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating

Publications (2)

Publication NumberPublication Date
CN116426875A CN116426875A (en)2023-07-14
CN116426875Btrue CN116426875B (en)2024-10-25

Family

ID=87092345

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202310411961.0AActiveCN116426875B (en)2023-04-172023-04-17Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating

Country Status (1)

CountryLink
CN (1)CN116426875B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN119743972A (en)*2024-12-252025-04-01深圳平湖实验室Semiconductor device, manufacturing method thereof, chip and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113151794A (en)*2021-03-302021-07-23西南大学Magnesium alloy surface hardening wear-resistant anticorrosion color coating and preparation process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6162512A (en)*1996-04-192000-12-19Korea Institute Of Science And TechnologyProcess for modifying surfaces of nitride, and nitride having surfaces modified thereby
JP2012096931A (en)*2010-10-292012-05-24Shin-Etsu Chemical Co LtdCorrosion-resistant member coated with aluminum nitride, and method for producing the same
DE102013102221B4 (en)*2013-03-062014-11-13Schott Ag Scratch-resistant glass article and method for producing scratch-resistant surfaces of glass articles
CN115725945B (en)*2022-11-152025-01-24大连芯材薄膜技术有限公司 Method and application of in-situ growth of ultra-thin aluminum oxide protective layer on the surface of wurtzite aluminum nitride-based film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113151794A (en)*2021-03-302021-07-23西南大学Magnesium alloy surface hardening wear-resistant anticorrosion color coating and preparation process thereof

Also Published As

Publication numberPublication date
CN116426875A (en)2023-07-14

Similar Documents

PublicationPublication DateTitle
CN109504940B (en) AlCrN/AlCrSiNiN coating with periodic nano-multilayer structure and its preparation method and application
CN111441025B (en)Corrosion-resistant high-entropy alloy film, preparation method and application thereof in seawater environment
CN108677144B (en) A kind of method for preparing aluminum-nitrogen co-doped diamond-like carbon composite film
CN102534493B (en) A kind of V-Al-N hard coating of nanocomposite structure and preparation method thereof
CN104141109B (en)Method for in-situ synthesis of composite TiC-DLC coating on surface of titanium
CN106835037A (en)A kind of high rigidity, multicomponent nitride coatings of high elastic modulus and preparation method thereof
CN114717516B (en)Strongly-combined high corrosion-resistant TiAl/Ti2Preparation method of AlC coating
CN105908126A (en)High Al content AlTiN composite coating and preparation method thereof
CN116426875B (en)Preparation method of AlN/Si/SiN/AlSiN/AlN/Al multilayer gradient structure coating and coating
CN112553580B (en) A kind of diboride composite coating and its preparation method and application
CN111647862B (en) A kind of tantalum-based anti-corrosion protective composite coating and its preparation method and application
CN113088904A (en)Metal Cr coating with nano multilevel structure and preparation method thereof
CN109023265A (en)CrN/CrNiN nano laminated coating and preparation method thereof, nano laminated coating and the preparation method and application thereof
CN112941463B (en)Nano multilayer oxynitride corrosion-resistant protective coating and preparation method and application thereof
WO2025025682A1 (en)Composite protective coating and preparation method therefor
CN115522169B (en)Composite deposition method of oxide hard coating and coated cutter
CN114941122B (en)High-hardness TiTaCrMoNbNx high-entropy alloy film for medical instrument and preparation method thereof
CN118186341A (en)Accident fault-tolerant Cr/CrTa nano multi-layer coating and preparation method thereof
CN115058688B (en)Composite lubricating film and preparation method and application thereof
CN110512181A (en) A kind of nanocrystalline Al-Zr alloy thin film and preparation method thereof
CN114015981B (en) A kind of rare earth doped anti-erosion protective coating and preparation method thereof
CN115961252A (en) A kind of corrosion-resistant amorphous alloy multilayer film and its preparation method
CN105970170B (en)The method of hafnium/silicon nitride conduction and anti-corrosion multilayered structure coating is prepared on magnesium alloy
CN110607500A (en) A kind of TaN coating and its preparation method and application
CN115747604B (en) A Mo-based high-entropy alloy and its application

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp