






技术领域technical field
本公开涉及多系统交互控制技术,尤其涉及一种多系统交互控制方法、装5置、电子设备及存储介质。The present disclosure relates to a multi-system interactive control technology, and in particular to a multi-system interactive control method, device, electronic equipment, and storage medium.
背景技术Background technique
目前,自动驾驶技术日臻成熟,现实中,由于自动驾驶仍存在等待政府开放及法律上的可能纠纷等原因,尚处于实验阶段。除了路段上的人为控制的实At present, autonomous driving technology is becoming more and more mature. In reality, autonomous driving is still in the experimental stage due to reasons such as waiting for the government to open up and possible legal disputes. In addition to the human-controlled practice on the road section
验外,还存在着各自自动驾驶的模拟仿真系统,即通过仿真平台和自动驾驶平0台来模拟车辆在环境中的运行状况。但目前的仿真系统中,仿真物理模型运行速度取决于硬件算力和系统负载,结果不能精确复现,也不能适应真实计算硬件在环的仿真;而且,仿真的流畅度受自动驾驶算力的约束,仿真体验效果较差。In addition to the test, there are also simulation systems for their own autonomous driving, that is, the operating conditions of the vehicle in the environment are simulated through the simulation platform and the automatic driving platform. However, in the current simulation system, the running speed of the simulation physical model depends on the hardware computing power and system load, and the results cannot be accurately reproduced, nor can it adapt to the simulation of real computing hardware in the loop; moreover, the fluency of the simulation is affected by the computing power of autonomous driving. Constraints, the simulation experience effect is poor.
发明内容Contents of the invention
5本公开提供了一种多系统交互控制方法、装置、电子设备及存储介质,以至少解决现有技术中存在的以上技术问题。5. The present disclosure provides a multi-system interactive control method, device, electronic equipment, and storage medium, so as to at least solve the above technical problems existing in the prior art.
根据本公开的第一方面,提供了一种多系统交互控制方法,所述多系统被配置有共同的时钟源,所述方法包括:According to a first aspect of the present disclosure, a multi-system interactive control method is provided, the multi-systems are configured with a common clock source, the method includes:
确定多系统中各系统响应于相同事件节点的处理频率;Determine the processing frequency of each system in multiple systems in response to the same event node;
0根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理;Distributing a clock trigger signal corresponding to the processing frequency of each system according to the processing frequency of each system in the multi-system, and each system in the multi-system performs data processing with its own clock trigger signal;
确定各系统的数据处理不同步的情况下,触发所述多系统中的各系统调整为数据处理同步。When it is determined that the data processing of the systems is not synchronized, each system in the multi-system is triggered to adjust to data processing synchronization.
在所述多系统中的各系统调整为数据处理同步后,所述方法还包括:After each system in the multi-system is adjusted to synchronize data processing, the method further includes:
接收所述多系统中各系统基于各自的时钟触发信号触发的数据处理结果;receiving data processing results triggered by each system in the multi-system based on their respective clock trigger signals;
响应于相同事件节点的触发时刻,将接收的所述多系统中各系统的对应于所述触发时刻的数据处理结果进行融合。In response to the trigger moment of the same event node, the received data processing results corresponding to the trigger moment of each system in the multiple systems are fused.
在一些可实施方式中,所述方法还包括:In some possible embodiments, the method also includes:
等比例调整所述多系统中各系统分配的时钟触发信号的频率,获取设定相同事件节点或设定时刻的超前或滞后的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行超前或滞后的仿真。Adjusting the frequency of the clock trigger signal distributed by each system in the multi-system in equal proportions, obtaining the data processing results of setting the same event node or setting time ahead or lagging behind, and merging the obtained data processing results of each system, Run lead or lag simulations.
在一些可实施方式中,所述方法还包括:In some possible embodiments, the method also includes:
控制向所述多系统中各系统输出的时钟触发信号的中断,获取中断时刻对应的相同事件节点的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行中断仿真。Controlling the interruption of the clock trigger signal output to each system in the multi-system, obtaining the data processing result of the same event node corresponding to the interruption time, merging the obtained data processing results of each system, and performing interruption simulation.
在一些可实施方式中,所述为所述多系统中各系统分配与各系统的处理频率相对应的时钟触发信号,包括:In some possible implementation manners, the allocating a clock trigger signal corresponding to the processing frequency of each system for each system in the multi-system includes:
根据所述多系统中各系统的算力,确定所述多系统中各系统响应于相同事件节点的计算步长,基于所述计算步长确定所述多系统中各系统的处理频率,为所述多系统中各系统分配与各系统的处理频率相对应的时钟触发信号。According to the computing power of each system in the multi-system, determine the calculation step size of each system in the multi-system in response to the same event node, and determine the processing frequency of each system in the multi-system based on the calculation step size. Each system in the above multi-system distributes a clock trigger signal corresponding to the processing frequency of each system.
在一些可实施方式中,响应于多系统中系统的数据处理不同步,根据不同步系统的算力,调整所述时钟源向不同步系统输出的时钟触发信号,触发不同步系统调整为与其他系统数据处理同步。In some possible implementations, in response to the out-of-sync data processing of the systems in the multi-system, the clock trigger signal output by the clock source to the out-of-sync system is adjusted according to the computing power of the out-of-sync system, and the out-of-sync system is triggered to adjust to be synchronized with other System data processing synchronization.
在一些可实施方式中,所述方法还包括:In some possible embodiments, the method also includes:
将融合后的数据处理结果向所述多系统中的设定的系统发送。Send the fused data processing result to the set system in the multi-system.
在一些可实施方式中,所述多系统中至少包括自动驾驶仿真平台、真实环境的模拟平台。In some possible implementation manners, the multi-system at least includes an automatic driving simulation platform and a real environment simulation platform.
根据本公开的第二方面,提供了一种多系统交互控制装置,包括:According to a second aspect of the present disclosure, a multi-system interaction control device is provided, including:
配置单元,用于为所述多系统配置共同的时钟源;a configuration unit, configured to configure a common clock source for the multiple systems;
确定单元,用于确定多系统中各系统响应于相同事件节点的处理频率;a determining unit, configured to determine the processing frequency of each system in the multi-system in response to the same event node;
分配单元,用于根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理;An allocation unit, configured to allocate a clock trigger signal corresponding to the processing frequency of each system according to the processing frequency of each system in the multi-system, and each system in the multi-system performs data processing with its own clock trigger signal;
触发单元,用于确定各系统的数据处理不同步的情况下,触发所述多系统中的各系统调整为数据处理同步。The triggering unit is configured to trigger each system in the multi-system to adjust to data processing synchronization when it is determined that the data processing of each system is not synchronized.
在一些可实施方式中,所述装置还包括:In some possible embodiments, the device also includes:
接收单元,用于接收所述多系统中各系统基于各自的时钟触发信号触发的数据处理结果;a receiving unit, configured to receive data processing results triggered by each system in the multi-system based on their respective clock trigger signals;
融合单元,用于响应于相同事件节点的触发时刻,将接收的所述多系统中各系统的对应于所述触发时刻的数据处理结果进行融合。The fusion unit is configured to, in response to the trigger time of the same event node, fuse the received data processing results corresponding to the trigger time of each system in the multiple systems.
在一些可实施方式中,所述装置还包括:In some possible embodiments, the device also includes:
调整单元,用于等比例调整所述多系统中各系统分配的时钟触发信号的频率;an adjustment unit, configured to adjust the frequency of the clock trigger signal distributed by each system in the multi-system in equal proportion;
所述融合单元,还用于获取中断时刻对应的相同事件节点的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行中断仿真。The fusion unit is further configured to obtain the data processing results of the same event node corresponding to the interruption time, and fuse the obtained data processing results of each system to perform interruption simulation.
在一些可实施方式中,所述装置还包括:In some possible embodiments, the device also includes:
控制单元,用于控制向所述多系统中各系统输出的时钟触发信号的中断;a control unit, configured to control the interruption of the clock trigger signal output to each system in the multi-system;
所述融合单元,还用于获取中断时刻对应的相同事件节点的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行中断仿真。The fusion unit is further configured to obtain the data processing results of the same event node corresponding to the interruption time, and fuse the obtained data processing results of each system to perform interruption simulation.
在一些可实施方式中,所述分配单元,还用于:In some possible embodiments, the allocation unit is also used for:
根据所述多系统中各系统的算力,确定所述多系统中各系统响应于相同事件节点的计算步长,基于所述计算步长确定所述多系统中各系统的处理频率,为所述多系统中各系统分配与各系统的处理频率相对应的时钟触发信号。According to the computing power of each system in the multi-system, determine the calculation step size of each system in the multi-system in response to the same event node, and determine the processing frequency of each system in the multi-system based on the calculation step size. Each system in the above multi-system distributes a clock trigger signal corresponding to the processing frequency of each system.
在一些可实施方式中,所述分配单元,还用于:In some possible embodiments, the allocation unit is also used for:
响应于多系统中系统的数据处理不同步,根据不同步系统的算力,调整所述时钟源向不同步系统输出的时钟触发信号,触发不同步系统调整为与其他系统数据处理同步。In response to asynchronous data processing of the systems in the multi-system, adjust the clock trigger signal output by the clock source to the asynchronous system according to the computing power of the asynchronous system, triggering the asynchronous system to adjust to be synchronized with the data processing of other systems.
在一些可实施方式中,所述装置还包括:In some possible embodiments, the device also includes:
发送单元,用于将融合后的数据处理结果向所述多系统中的设定的系统发送。The sending unit is configured to send the fused data processing result to the set system in the multi-system.
在一些可实施方式中,所述多系统中至少包括自动驾驶仿真平台、真实环境的模拟平台。In some possible implementation manners, the multi-system at least includes an automatic driving simulation platform and a real environment simulation platform.
根据本公开的第三方面,提供了一种电子设备,包括:According to a third aspect of the present disclosure, an electronic device is provided, including:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开所述的多系统交互控制方法的步骤。The memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the multi-system interactive control method described in the present disclosure. step.
根据本公开的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使计算机执行本公开所述的多系统交互控制方法的步骤。According to a fourth aspect of the present disclosure, there is provided a non-transitory computer-readable storage medium storing computer instructions, the computer instructions are used to make a computer execute the steps of the multi-system interactive control method described in the present disclosure.
本公开的多系统交互控制方法、装置、设备及存储介质,通过为多系统配置共同的时钟源,并以相同事件节点的触发时刻对应的各系统的数据结果进行融合,作为仿真数据进行输出。由于本公开设置了比各系统的处理频率更高的共用时钟源,可以为各系统设置与其处理频率匹配的时钟信号,各系统各自按照自身的处理频率进行处理,确定各系统的数据处理不同步的情况下,向多触发各系统调整为数据处理同步;并在需要融合数据时,将所获取的设定时刻对应的各系统处理数据进行融合,作为输出数据进行输出。本公开能保证各系统之间的数据处理上的同步,以此可以对任何时刻的场景进行仿真,也支持对过去的时间段和未来的时间段的相应场景进行仿真。本公开结合仿真中各系统的算力,通过触发信号控制各系统的计算步长,实现精度和速度的平衡,可实现与真实物理世界一致的时间感,也能够通过控制信号源频率实现自动驾驶和仿真等比例的加、减速;也可以通过控制信号源通断实现自动驾驶整体进入断点,支持可复现的调试。The multi-system interactive control method, device, equipment and storage medium of the present disclosure configure a common clock source for multiple systems, and use the data results of each system corresponding to the trigger time of the same event node to fuse and output as simulation data. Since this disclosure sets a common clock source higher than the processing frequency of each system, a clock signal matching its processing frequency can be set for each system, each system performs processing according to its own processing frequency, and it is determined that the data processing of each system is not synchronized In the case of multi-triggering, each system is adjusted to synchronize data processing; and when fusion data is required, the acquired processing data of each system corresponding to the set time is fused and output as output data. The present disclosure can ensure the synchronization of data processing among the various systems, so as to simulate the scene at any time, and also support the simulation of corresponding scenes in the past time period and the future time period. This disclosure combines the computing power of each system in the simulation, and controls the calculation step size of each system through trigger signals to achieve a balance between accuracy and speed, and can achieve a sense of time consistent with the real physical world, and can also realize automatic driving by controlling the frequency of signal sources Acceleration and deceleration in the same proportion as the simulation; it is also possible to control the on-off of the signal source to realize the overall breakpoint of the automatic driving, and support reproducible debugging.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.
附图说明Description of drawings
通过参考附图阅读下文的详细描述,本公开示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施方式,其中:The above and other objects, features and advantages of exemplary embodiments of the present disclosure will become readily understood by reading the following detailed description with reference to the accompanying drawings. In the drawings, several embodiments of the present disclosure are shown by way of illustration and not limitation, in which:
在附图中,相同或对应的标号表示相同或对应的部分。In the drawings, the same or corresponding reference numerals denote the same or corresponding parts.
图1示出了本公开实施例的多系统交互控制方法的实现流程示意图一;FIG. 1 shows a first schematic flow diagram of a multi-system interactive control method according to an embodiment of the present disclosure;
图2示出了本公开实施例的多系统交互控制方法的实现流程示意图一;FIG. 2 shows a first schematic flow diagram of the realization of the multi-system interactive control method according to the embodiment of the present disclosure;
图3示出了本公开实施例的多系统交互控制方法的实现流程示意图二;FIG. 3 shows a second schematic diagram of the realization flow of the multi-system interactive control method according to the embodiment of the present disclosure;
图4示出了本公开实施例的多系统交互控制方法的实现流程示意图三;FIG. 4 shows a third schematic diagram of the realization flow of the multi-system interactive control method according to the embodiment of the present disclosure;
图5示出了本公开实施例的多系统交互控制方法的实现示意图;FIG. 5 shows a schematic diagram of an implementation of a multi-system interaction control method according to an embodiment of the present disclosure;
图6示出了本公开实施例的多系统交互控制装置的组成结构示意图;FIG. 6 shows a schematic diagram of the composition and structure of a multi-system interactive control device according to an embodiment of the present disclosure;
图7示出了本公开实施例一种电子设备的组成结构示意图。FIG. 7 shows a schematic diagram of the composition and structure of an electronic device according to an embodiment of the present disclosure.
具体实施方式Detailed ways
为使本公开的目的、特征、优点能够更加的明显和易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而非全部实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the purpose, features, and advantages of the present disclosure more obvious and understandable, the technical solutions in the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present disclosure. Obviously, the described The embodiments are only some of the embodiments of the present disclosure, but not all of them. Based on the embodiments in the present disclosure, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present disclosure.
图1示出了本公开实施例的多系统交互控制方法的实现流程示意图一,如图1所示,本公开实施例的多系统交互控制方法包括以下处理步骤:Fig. 1 shows a first schematic diagram of the implementation flow of the multi-system interactive control method of the embodiment of the present disclosure. As shown in Fig. 1, the multi-system interactive control method of the embodiment of the present disclosure includes the following processing steps:
步骤101,确定多系统中各系统响应于相同事件节点的处理频率。
本公开实施例中,为所述多系统中的各个系统配置共同的时钟源。即通过设置共同时钟源,分配与各系统的处理频率相对应的时钟触发信号,使各个系以各自的时钟触发信号进行数据处理,并在相应的响应节点将处理数据的结果向中心处理模块发送。In the embodiment of the present disclosure, a common clock source is configured for each system in the multiple systems. That is, by setting a common clock source and distributing a clock trigger signal corresponding to the processing frequency of each system, each system can process data with its own clock trigger signal, and send the result of processing data to the central processing module at the corresponding response node .
通过共同的时钟源,可以为所述多系统中的各个系统设置与各系统的数据处理频率相适应的处理频率。Through a common clock source, a processing frequency suitable for each system's data processing frequency can be set for each of the multiple systems.
本公开实施例中,作为一种示例,所述多系统可以包括自动驾驶仿真系统,如可以是以Carla为代表的仿真平台,以及以ROS/ROS2为代表的自动驾驶平台协同进行自动驾驶仿真系统。也可以是包括服务平台和众多接入终端的网游系统等。即本公开实施例的技术方案,可以适用于需要多个处理系统所处理的数据结果进行融合的实时处理系统。In the embodiment of the present disclosure, as an example, the multi-system may include an automatic driving simulation system, such as a simulation platform represented by Carla, and an automatic driving platform represented by ROS/ROS2 to cooperate in an automatic driving simulation system . It can also be an online game system including a service platform and many access terminals. That is, the technical solutions of the embodiments of the present disclosure can be applied to real-time processing systems that require fusion of data results processed by multiple processing systems.
步骤102,根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理。
本公开实施例中,当设置完共同的时钟源后,将该共同的时钟源作为多系统中各系统的数据处理的时钟触发信号。In the embodiment of the present disclosure, after the common clock source is set, the common clock source is used as a clock trigger signal for data processing of each system in the multi-system.
作为一种示例,可以将各系统响应于相同事件节点的处理频率设置为各个系统的自身的最大处理频率,或者,将各系统响应于相同事件节点的处理频率设置为各个系统的最大处理频率0.5倍、0.4倍、0.2倍、0.1倍等。As an example, the processing frequency of each system in response to the same event node can be set as the maximum processing frequency of each system, or the processing frequency of each system in response to the same event node can be set as the maximum processing frequency of each system 0.5 times, 0.4 times, 0.2 times, 0.1 times, etc.
步骤103,确定各系统的数据处理不同步的情况下,触发所述多系统中的各系统调整为数据处理同步。
本公开实施例中,当确定各系统的数据处理不同步的情况下,可以以多系统中的某个或某些系统为数据处理的同步标准,将其他系统的数据处理进度同步到相应的标准系统,实现整个系统的同步。作为一种实现方式,可以基于标准系统的数据处理进度,直接向其他待同步的系统发送同步指令,使其他系统同步到标准系统的数据处理进度。或者,作为一种实现方式,可以向多系统中的核心系统如后台处理系统发送同步指令,由该后台处理系统向其他待同步的系统发送同步指令,使其他系统的数据处理进度与后台处理系统同步。或者,作为一种实现方式,可以向待同步的系统发送同步指令,使其与核心系统如后台处理系统主动发起数据处理进度的同步,使多系统中各系统之间的数据处理保持同步。In the embodiment of the present disclosure, when it is determined that the data processing of each system is not synchronized, one or some systems in the multi-system can be used as the synchronization standard for data processing, and the data processing progress of other systems can be synchronized to the corresponding standard system to achieve synchronization of the entire system. As an implementation, based on the data processing progress of the standard system, a synchronization command can be directly sent to other systems to be synchronized, so that other systems can synchronize to the data processing progress of the standard system. Or, as an implementation method, a synchronization command can be sent to the core system in the multi-system, such as the background processing system, and the background processing system sends a synchronization command to other systems to be synchronized, so that the data processing progress of other systems can be synchronized with the background processing system. Synchronize. Or, as an implementation, a synchronization command can be sent to the system to be synchronized, so that it can actively initiate the synchronization of the data processing progress with the core system such as the background processing system, so that the data processing among the systems in the multi-system can be kept in sync.
本公开实施例中,当确定各系统的数据处理不同步的情况下,还可以重新确定该不同步系统的算力,并根据该不同步系统的算力,调整所述时钟源向不同步系统输出的时钟触发信号,触发不同步系统调整为与其他系统数据处理同步。这里的触发数据处理的同步,可以由时钟源触发完成,也可以由其他系统触发完整,或者在该不同的系统与其他人员一系统之间完成同步,这里的任意一系统为之前的同步系统。In the embodiment of the present disclosure, when it is determined that the data processing of each system is not synchronized, the computing power of the asynchronous system can also be re-determined, and according to the computing power of the asynchronous system, the clock source can be adjusted to the asynchronous system. The output clock trigger signal triggers the adjustment of the asynchronous system to be synchronized with other system data processing. The synchronization of triggering data processing here can be completed by triggering by a clock source or by other systems, or the synchronization can be completed between the different systems and other personnel-systems, any one of the systems here is the previous synchronization system.
图2示出了本公开实施例的多系统交互控制方法的实现流程示意图二,如图2所示,本公开实施例的多系统交互控制方法包括以下处理步骤:FIG. 2 shows a second schematic diagram of the implementation flow of the multi-system interactive control method of the embodiment of the present disclosure. As shown in FIG. 2 , the multi-system interactive control method of the embodiment of the present disclosure includes the following processing steps:
步骤201,确定多系统中各系统响应于相同事件节点的处理频率。
本公开实施例中,为所述多系统中的各个系统配置共同的时钟源。即通过设置共同时钟源,分配与各系统的处理频率相对应的时钟触发信号,使各个系以各自的时钟触发信号进行数据处理,并在相应的响应节点将处理数据的结果向中心处理模块发送。In the embodiment of the present disclosure, a common clock source is configured for each system in the multiple systems. That is, by setting a common clock source and distributing a clock trigger signal corresponding to the processing frequency of each system, each system can process data with its own clock trigger signal, and send the result of processing data to the central processing module at the corresponding response node .
通过共同的时钟源,可以为所述多系统中的各个系统设置与各系统的数据处理频率相适应的处理频率。Through a common clock source, a processing frequency suitable for each system's data processing frequency can be set for each of the multiple systems.
本公开实施例中,作为一种示例,所述多系统可以包括自动驾驶仿真系统,如可以是以Carla为代表的仿真平台,以及以ROS/ROS2为代表的自动驾驶平台协同进行自动驾驶仿真系统。也可以是包括服务平台和众多接入终端的网游系统等。即本公开实施例的技术方案,可以适用于需要多个处理系统所处理的数据结果进行融合的实时处理系统。In the embodiment of the present disclosure, as an example, the multi-system may include an automatic driving simulation system, such as a simulation platform represented by Carla, and an automatic driving platform represented by ROS/ROS2 to cooperate in an automatic driving simulation system . It can also be an online game system including a service platform and many access terminals. That is, the technical solutions of the embodiments of the present disclosure can be applied to real-time processing systems that require fusion of data results processed by multiple processing systems.
步骤202,根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理。
本公开实施例中,当设置完共同的时钟源后,将该共同的时钟源作为多系统中各系统的数据处理的时钟触发信号。In the embodiment of the present disclosure, after the common clock source is set, the common clock source is used as a clock trigger signal for data processing of each system in the multi-system.
作为一种示例,可以将各系统响应于相同事件节点的处理频率设置为各个系统的自身的最大处理频率,或者,将各系统响应于相同事件节点的处理频率设置为各个系统的最大处理频率0.5倍、0.4倍、0.2倍、0.1倍等。As an example, the processing frequency of each system in response to the same event node can be set as the maximum processing frequency of each system, or the processing frequency of each system in response to the same event node can be set as the maximum processing frequency of each system 0.5 times, 0.4 times, 0.2 times, 0.1 times, etc.
步骤203,确定各系统的数据处理不同步的情况下,触发所述多系统中的各系统调整为数据处理同步。
本公开实施例中,当确定各系统的数据处理不同步的情况下,可以以多系统中的某个或某些系统为数据处理的同步标准,将其他系统的数据处理进度同步到相应的标准系统,实现整个系统的同步。作为一种实现方式,可以基于标准系统的数据处理进度,直接向其他待同步的系统发送同步指令,使其他系统同步到标准系统的数据处理进度。或者,作为一种实现方式,可以向多系统中的核心系统如后台处理系统发送同步指令,由该后台处理系统向其他待同步的系统发送同步指令,使其他系统的数据处理进度与后台处理系统同步。或者,作为一种实现方式,可以向待同步的系统发送同步指令,使其与核心系统如后台处理系统主动发起数据处理进度的同步,使多系统中各系统之间的数据处理保持同步。In the embodiment of the present disclosure, when it is determined that the data processing of each system is not synchronized, one or some systems in the multi-system can be used as the synchronization standard for data processing, and the data processing progress of other systems can be synchronized to the corresponding standard system to achieve synchronization of the entire system. As an implementation, based on the data processing progress of the standard system, a synchronization command can be directly sent to other systems to be synchronized, so that other systems can synchronize to the data processing progress of the standard system. Or, as an implementation method, a synchronization command can be sent to the core system in the multi-system, such as the background processing system, and the background processing system sends a synchronization command to other systems to be synchronized, so that the data processing progress of other systems can be synchronized with the background processing system. Synchronize. Or, as an implementation, a synchronization command can be sent to the system to be synchronized, so that it can actively initiate the synchronization of the data processing progress with the core system such as the background processing system, so that the data processing among the systems in the multi-system can be kept in sync.
本公开实施例中,当确定各系统的数据处理不同步的情况下,还可以重新确定该不同步系统的算力,并根据该不同步系统的算力,调整所述时钟源向不同步系统输出的时钟触发信号,触发不同步系统调整为与其他系统数据处理同步。这里的触发数据处理的同步,可以由时钟源触发完成,也可以由其他系统触发完整,或者在该不同的系统与其他人员一系统之间完成同步,这里的任意一系统为之前的同步系统。In the embodiment of the present disclosure, when it is determined that the data processing of each system is not synchronized, the computing power of the asynchronous system can also be re-determined, and according to the computing power of the asynchronous system, the clock source can be adjusted to the asynchronous system. The output clock trigger signal triggers the adjustment of the asynchronous system to be synchronized with other system data processing. The synchronization of triggering data processing here can be completed by triggering by a clock source or by other systems, or the synchronization can be completed between the different systems and other personnel-systems, any one of the systems here is the previous synchronization system.
步骤204,接收所述多系统中各系统基于各自的时钟触发信号触发的数据处理结果。
本公开实施例中,在所述多系统中各系统基于各自的时钟触发信号触发而生成相应的数据处理结果后,将处理数据的结果向数据中心处理模块发送,以便数据中心处理模块响应于模拟指令,将多系统中各系统发送的数据处理结果进行融合,以生成仿真数据,向相应的输出接口输出。In the embodiment of the present disclosure, after each system in the multi-system generates a corresponding data processing result based on its own clock trigger signal, the data processing result is sent to the data center processing module, so that the data center processing module responds to the simulation Instructions are used to fuse the data processing results sent by each system in the multi-system to generate simulation data and output it to the corresponding output interface.
步骤205,响应于相同事件节点的触发时刻,将接收的所述多系统中各系统的对应于所述触发时刻的数据处理结果进行融合。
本公开实施例中,根据需要进行各系统的数据处理结果的融合,这里的融合可以基于仿真周期而触发的处理数据的结果的仿真融合,也可以是响应于外部的融合指令,进行处理数据的结果的仿真融合。作为一种示例当多系统为Carla和ROS系统的情况下,可以基于Carla返回的真实物理世界景象,以及ROS系统返回的驾驶舱的模拟场景,将驾驶舱中的场景及现实时间中的景象进行融合,作为驾驶模拟的输出,可以实现自动驾驶的仿真,提升用户体验。In the embodiments of the present disclosure, the data processing results of each system are fused as needed. The fusion here can be the simulation fusion of the data processing results triggered based on the simulation cycle, or the data processing in response to an external fusion command. Simulation Fusion of Results. As an example, when the multi-system is the Carla and ROS system, based on the real physical world scene returned by Carla and the simulated scene of the cockpit returned by the ROS system, the scene in the cockpit and the scene in real time can be compared. Fusion, as the output of driving simulation, can realize automatic driving simulation and improve user experience.
本公开实施例中,可以将融合后的数据处理结果向所述多系统中的设定的系统发送,使设定的系统输出融合后的数据处理结果,这里融合后的数据处理结果可以是仿真图像或仿真视频等。In the embodiment of the present disclosure, the fused data processing result can be sent to the set system in the multi-system, so that the set system can output the fused data processing result, where the fused data processing result can be a simulation image or simulated video etc.
本公开实施例中,相同事件可以是融合时刻的到来,或是融合指令的到来等事件。In the embodiment of the present disclosure, the same event may be an event such as the arrival of a fusion moment, or the arrival of a fusion instruction.
图3示出了本公开实施例的多系统交互控制方法的实现流程示意图三,如图3所示,本公开实施例的多系统交互控制方法包括以下处理步骤:FIG. 3 shows a third schematic diagram of the implementation flow of the multi-system interactive control method of the embodiment of the present disclosure. As shown in FIG. 3 , the multi-system interactive control method of the embodiment of the present disclosure includes the following processing steps:
步骤301,确定多系统中各系统响应于相同事件节点的处理频率。
本公开实施例中,为所述多系统中的各个系统配置共同的时钟源。即通过设置共同时钟源,分配与各系统的处理频率相对应的时钟触发信号,使各个系以各自的时钟触发信号进行数据处理,并在相应的响应节点将处理数据的结果向中心处理模块发送。In the embodiment of the present disclosure, a common clock source is configured for each system in the multiple systems. That is, by setting a common clock source and distributing a clock trigger signal corresponding to the processing frequency of each system, each system can process data with its own clock trigger signal, and send the result of processing data to the central processing module at the corresponding response node .
通过共同的时钟源,可以为所述多系统中的各个系统设置与各系统的数据处理频率相适应的处理频率。Through a common clock source, a processing frequency suitable for each system's data processing frequency can be set for each of the multiple systems.
步骤302,等比例调整所述多系统中各系统分配的时钟触发信号的频率。
本公开实施例中,为所述多系统中的各个系统配置共同的时钟源。即通过设置共同时钟源,分配与各系统的处理频率相对应的时钟触发信号,使各个系以各自的时钟触发信号进行数据处理,并在相应的响应节点将处理数据的结果向中心处理模块发送。In the embodiment of the present disclosure, a common clock source is configured for each system in the multiple systems. That is, by setting a common clock source and distributing a clock trigger signal corresponding to the processing frequency of each system, each system can process data with its own clock trigger signal, and send the result of processing data to the central processing module at the corresponding response node .
通过共同的时钟源,将各系统响应于相同事件节点的处理频率设置为各个系统的最大处理频率0.5倍、0.4倍、0.2倍、0.1倍等,实现等比例调整各系统响应于相同事件节点的处理频率。Through a common clock source, the processing frequency of each system in response to the same event node is set to 0.5 times, 0.4 times, 0.2 times, 0.1 times, etc. processing frequency.
本公开实施例中,作为一种示例,所述多系统可以包括自动驾驶仿真系统,如可以是以Carla为代表的仿真平台,以及以ROS/ROS2为代表的自动驾驶平台协同进行自动驾驶仿真系统。也可以是包括服务平台和众多接入终端的网游系统等。即本公开实施例的技术方案,可以适用于需要多个处理系统所处理的数据结果进行融合的实时处理系统。In the embodiment of the present disclosure, as an example, the multi-system may include an automatic driving simulation system, such as a simulation platform represented by Carla, and an automatic driving platform represented by ROS/ROS2 to cooperate in an automatic driving simulation system . It can also be an online game system including a service platform and many access terminals. That is, the technical solutions of the embodiments of the present disclosure can be applied to real-time processing systems that require fusion of data results processed by multiple processing systems.
步骤303,获取设定相同事件节点或设定时刻的超前或滞后的数据处理结果。
本公开实施例中,在等比例调整所述多系统中各系统分配的时钟触发信号的频率后,可以通过将各系统分配的时钟触发信号的频率调快或调慢,可以实现融合仿真数据的超前或滞后的仿真。即通过对各系统的处理频率进行调整,可以实现所模拟的驾驶舱的车速行驶状态超前或滞后的模拟场景,即可以根据仿真需要进行超前或滞后的行驶场景仿真。In the embodiment of the present disclosure, after the frequency of the clock trigger signal allocated by each system in the multi-system is adjusted proportionally, the frequency of the clock trigger signal allocated by each system can be adjusted faster or slower, so that the fusion of simulation data can be realized. Lead or lag simulation. That is, by adjusting the processing frequency of each system, it is possible to realize the simulation scene where the simulated driving state of the cockpit is leading or lagging behind, that is, the driving scene simulation of leading or lagging can be carried out according to the simulation needs.
作为一种示例,将各系统响应于相同事件节点的处理频率设置为各个系统的最大处理频率0.5倍、0.4倍、0.2倍、0.1倍等,使多系统中各系统的仿真数据超前或滞后于驾驶舱的车速行驶过程对应的模拟场景,实现对自动驾驶的驾乘仿真。As an example, the processing frequency of each system in response to the same event node is set to 0.5 times, 0.4 times, 0.2 times, 0.1 times the maximum processing frequency of each system, so that the simulation data of each system in the multi-system is ahead or lags behind The simulation scene corresponding to the speed driving process of the cockpit realizes the driving simulation of automatic driving.
步骤304,将所获取的各系统的数据处理结果进行融合,进行超前或滞后的仿真。In
本公开实施例中,在所述多系统中各系统基于各自的时钟触发信号触发而生成相应的数据处理结果后,将处理数据的结果向数据中心处理模块发送,以便数据中心处理模块响应于模拟指令,将多系统中各系统发送的数据处理结果进行融合,以生成仿真数据,向相应的输出接口输出。In the embodiment of the present disclosure, after each system in the multi-system generates a corresponding data processing result based on its own clock trigger signal, the data processing result is sent to the data center processing module, so that the data center processing module responds to the simulation Instructions are used to fuse the data processing results sent by each system in the multi-system to generate simulation data and output it to the corresponding output interface.
本公开实施例中,根据需要进行各系统的数据处理结果的融合,这里的融合可以基于仿真周期而触发的处理数据的结果的仿真融合,例如,可以在接收到处理频率最小的系统发送的数据处理结果后,即进行数据处理结果的融合,并输出相应的融合仿真图像,实现对自动驾乘的仿真。In the embodiment of the present disclosure, the data processing results of each system are fused according to the needs. The fusion here can be based on the simulation fusion of the data processing results triggered by the simulation cycle. For example, the data sent by the system with the smallest processing frequency can be received. After processing the results, the data processing results are fused, and the corresponding fused simulation images are output to realize the simulation of automatic driving.
本公开实施例中,可以将融合后的数据处理结果向所述多系统中的设定的系统发送,使设定的系统输出融合后的数据处理结果,这里融合后的数据处理结果可以是仿真图像或仿真视频等。In the embodiment of the present disclosure, the fused data processing result can be sent to the set system in the multi-system, so that the set system can output the fused data processing result, where the fused data processing result can be a simulation image or simulated video etc.
图4示出了本公开实施例的多系统交互控制方法的实现流程示意图四,如图4所示,本公开实施例的多系统交互控制方法包括以下处理步骤:FIG. 4 shows a fourth schematic diagram of the implementation flow of the multi-system interactive control method of the embodiment of the present disclosure. As shown in FIG. 4 , the multi-system interactive control method of the embodiment of the present disclosure includes the following processing steps:
步骤401,确定多系统中各系统响应于相同事件节点的处理频率。
本公开实施例中,为所述多系统中的各个系统配置共同的时钟源。即通过设置共同时钟源,分配与各系统的处理频率相对应的时钟触发信号,使各个系以各自的时钟触发信号进行数据处理,并在相应的响应节点将处理数据的结果向中心处理模块发送。In the embodiment of the present disclosure, a common clock source is configured for each system in the multiple systems. That is, by setting a common clock source and distributing a clock trigger signal corresponding to the processing frequency of each system, each system can process data with its own clock trigger signal, and send the result of processing data to the central processing module at the corresponding response node .
通过共同的时钟源,可以为所述多系统中的各个系统设置与各系统的数据处理频率相适应的处理频率。Through a common clock source, a processing frequency suitable for each system's data processing frequency can be set for each of the multiple systems.
本公开实施例中,作为一种示例,所述多系统可以包括自动驾驶仿真系统,如可以是以Carla为代表的仿真平台,以及以ROS/ROS2为代表的自动驾驶平台协同进行自动驾驶仿真系统。也可以是包括服务平台和众多接入终端的网游系统等。即本公开实施例的技术方案,可以适用于需要多个处理系统所处理的数据结果进行融合的实时处理系统。In the embodiment of the present disclosure, as an example, the multi-system may include an automatic driving simulation system, such as a simulation platform represented by Carla, and an automatic driving platform represented by ROS/ROS2 to cooperate in an automatic driving simulation system . It can also be an online game system including a service platform and many access terminals. That is, the technical solutions of the embodiments of the present disclosure can be applied to real-time processing systems that require fusion of data results processed by multiple processing systems.
步骤402,根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理。
本公开实施例中,当设置完共同的时钟源后,将该共同的时钟源作为多系统中各系统的数据处理的时钟触发信号。具体地,需要根据所述多系统中各系统的算力,确定所述多系统中各系统响应于相同事件节点的计算步长,基于所述计算步长确定所述多系统中各系统的处理频率,为所述多系统中各系统分配与各系统的处理频率相对应的时钟触发信号。作为一种示例,根据可以根据各系统响应于相同的仿真指令,确定各系统处理自身数据并将其数据处理结果发送至中心处理模块的计算步长,确定各系统的处理频率。需要将多系统中所有的系统处理其相应数据的响应步长均确定后,再根据设置各系统的处理数据步长,为各个系统统筹设置其自身的处理频率。作为一种示例,若系统1的处理步长为20ms、系统2的处理步长为10ms,可以将各系统响应于相同事件节点的处理频率设置为1s/20ms等,当然,作为一种示例,也可以设置1s/40ms、1s/60ms或1s/80ms等。即为各系统所设置的处理频率需要满足处理速度最慢的系统,以实现在进行数据融合时,保证各系统均能对数据处理完毕。当然,有可以根据各系统的处理步长,为其设置适用于自身处理步长的处理频率。若系统1的处理步长为10ms、系统2的处理步长为5ms,可以将系统1响应于相同事件节点的处理频率设置为1s/10ms、将系统2响应于相同事件节点的处理频率设置为1s/5ms等。In the embodiment of the present disclosure, after the common clock source is set, the common clock source is used as a clock trigger signal for data processing of each system in the multi-system. Specifically, according to the computing power of each system in the multi-system, it is necessary to determine the calculation step size of each system in the multi-system in response to the same event node, and determine the processing of each system in the multi-system based on the calculation step size Frequency, for allocating a clock trigger signal corresponding to the processing frequency of each system to each system in the multi-system. As an example, the processing frequency of each system can be determined according to the calculation step size at which each system can process its own data and send its data processing result to the central processing module according to the response of each system to the same simulation instruction. It is necessary to determine the response steps of all systems in the multi-system to process their corresponding data, and then set their own processing frequency for each system according to the data processing steps of each system. As an example, if the processing step of system 1 is 20ms and the processing step of system 2 is 10ms, the processing frequency of each system in response to the same event node can be set to 1s/20ms, etc. Of course, as an example, You can also set 1s/40ms, 1s/60ms or 1s/80ms, etc. That is, the processing frequency set for each system needs to satisfy the system with the slowest processing speed, so as to ensure that each system can complete the data processing during data fusion. Of course, it is possible to set a processing frequency suitable for its own processing step according to the processing step of each system. If the processing step of system 1 is 10ms and the processing step of system 2 is 5ms, the processing frequency of system 1 in response to the same event node can be set to 1s/10ms, and the processing frequency of system 2 in response to the same event node can be set as 1s/5ms etc.
步骤403,控制向所述多系统中各系统输出的时钟触发信号的中断,获取中断时刻对应的相同事件节点的数据处理结果。Step 403: Control the interruption of the clock trigger signal output to each system in the multi-system, and obtain the data processing result of the same event node corresponding to the interruption time.
本公开实施例中,在所述多系统中各系统基于各自的时钟触发信号触发而生成相应的数据处理结果后,将处理数据的结果向数据中心处理模块发送,以便数据中心处理模块响应于模拟指令,将多系统中各系统发送的数据处理结果进行融合,以生成仿真数据,向相应的输出接口输出。In the embodiment of the present disclosure, after each system in the multi-system generates a corresponding data processing result based on its own clock trigger signal, the data processing result is sent to the data center processing module, so that the data center processing module responds to the simulation Instructions are used to fuse the data processing results sent by each system in the multi-system to generate simulation data and output it to the corresponding output interface.
当接收到时钟触发信号的中断后,获取中断对应的时刻所接收的各系统的数据处理结果,以作为中断仿真结果。When the interrupt of the clock trigger signal is received, the received data processing results of each system at the time corresponding to the interrupt are obtained as the interrupt simulation result.
本公开实施例支持对某任意时刻的仿真结果的输出,当需要输出某时刻的仿真结果时,可以向各系统发送中断指令,各系统响应于中断指令,将当前的数据处理结果向中心处理模块发送,使中心处理模块基于中断时刻对应的数据处理结果进行融合,生成相应中断时刻的仿真图像。The embodiment of the present disclosure supports the output of simulation results at any time. When the simulation results at a certain time need to be output, an interrupt command can be sent to each system. Each system responds to the interrupt command and sends the current data processing result to the central processing module. Sending, so that the central processing module performs fusion based on the data processing results corresponding to the interruption time, and generates a simulation image corresponding to the interruption time.
步骤404,将所获取的各系统的数据处理结果进行融合,进行中断仿真。
本公开实施例中,根据各系统的中断时刻的数据处理结果进行融合,得到相应的仿真图像。In the embodiment of the present disclosure, fusion is performed according to the data processing results at the interruption time of each system to obtain a corresponding simulation image.
以下结合具体示例,进一步阐明本公开实施例的技术方案的本质。The essence of the technical solutions of the embodiments of the present disclosure will be further clarified below in conjunction with specific examples.
针对目前的仿真系统,例如以Carla为代表的仿真平台,以及以ROS/ROS2为代表的自动驾驶平台协同进行自动驾驶仿真系统中,由于各系统均采用自身的时钟信号,这会导致自动驾驶仿真系统支持两种主要的仿真模式,即异步模式和同步模式,其中,异步模式:仿真平台和自动驾驶平台异步运行,仿真计算机算力决定仿真速度;同步模式:仿真平台和自动驾驶平台同步运行,自动驾驶平台输出数据(一般采用车辆控制数据)频率决定仿真速度。这样,若采用异步模式,仿真平台中的仿真物理模型运行速度取决于硬件算力和系统负载,导致仿真结果不能精确复现,也不能适应真实计算硬件在环的仿真。同步模式中,仿真是否流畅,却决于仿真平台中的仿真物理模型是否能充分迭代计算,受制于自动驾驶平台中的算法和计算算力的约束。而本公开实施例通过设置频率更高的共同时钟源,使其作为多系统中各系统的时钟触发信号,通过该共同的时钟源对多系统中的各系统进行时钟信号触发,用高频的定时消息作为触发信号源,分频、分路授予仿真平台中的仿真物理模型和自动驾驶平台,通过控制信号源以精准控制整个自动驾驶仿真的节奏,并实现完全可复现的精确调试。For the current simulation system, such as the simulation platform represented by Carla, and the automatic driving platform represented by ROS/ROS2, in the automatic driving simulation system, since each system uses its own clock signal, this will lead to automatic driving simulation The system supports two main simulation modes, namely asynchronous mode and synchronous mode. Among them, asynchronous mode: the simulation platform and the automatic driving platform run asynchronously, and the computing power of the simulation computer determines the simulation speed; synchronous mode: the simulation platform and the automatic driving platform run synchronously. The output data (generally using vehicle control data) frequency of the automatic driving platform determines the simulation speed. In this way, if the asynchronous mode is adopted, the running speed of the simulation physical model in the simulation platform depends on the hardware computing power and system load, resulting in that the simulation results cannot be accurately reproduced, and it cannot be adapted to the simulation of real computing hardware in the loop. In the synchronous mode, whether the simulation is smooth or not depends on whether the simulation physical model in the simulation platform can be fully iteratively calculated, and is subject to the constraints of the algorithm and computing power in the autonomous driving platform. However, in the embodiment of the present disclosure, a common clock source with a higher frequency is set as the clock trigger signal of each system in the multi-system, and the clock signal of each system in the multi-system is triggered by the common clock source, and the high-frequency The timing message is used as the trigger signal source, and the frequency division and branching are given to the simulation physical model in the simulation platform and the automatic driving platform. By controlling the signal source, the rhythm of the entire automatic driving simulation can be precisely controlled, and fully reproducible and accurate debugging can be realized.
图5示出了本公开实施例的多系统交互控制方法的实现示意图,如图5所示,本公开实施例的多系统交互控制的实现方式,其中,源为高频软件时钟源,可以运行在任意计算机上,如可以运行在自动驾驶平台或仿真平台本身,用定时消息的形式发送;分表示软件分频器,如可以用计数方式实现对高频时钟源进行分频,提供给自动驾驶平台或仿真平台中的场景物理模型;本公开实施例通过软件方式实现前述时钟源及分频信号的配置,可以根据需要设置各系统的时钟触发信号的频率,以此来对系统的仿真结果进行控制,如支持对前述实施例中的超前或滞后仿真结果的输出,并可以通过中断指令实现对中断时刻的仿真结果的获取等。因此,本公开实施例的技术方案可以灵活配置时钟源开关和分频器频点,实现了对仿真结果的精准控制,且能够按用户需求进行多方式的仿真。Figure 5 shows a schematic diagram of the implementation of the multi-system interactive control method of the embodiment of the disclosure. As shown in Figure 5, the implementation of the multi-system interactive control of the embodiment of the disclosure, wherein the source is a high-frequency software clock source, which can run On any computer, if it can run on the autopilot platform or the simulation platform itself, it will be sent in the form of a timing message; divide means a software frequency divider, such as counting can be used to divide the frequency of the high-frequency clock source and provide it to the autopilot The physical model of the scene in the platform or simulation platform; the embodiment of the present disclosure implements the configuration of the aforementioned clock source and frequency division signal through software, and can set the frequency of the clock trigger signal of each system according to the needs, so as to carry out the simulation results of the system The control, for example, supports the output of the leading or lagging simulation results in the foregoing embodiments, and can realize the acquisition of the simulation results at the time of interruption through the interruption instruction. Therefore, the technical solutions of the embodiments of the present disclosure can flexibly configure the clock source switch and the frequency point of the frequency divider, realize precise control of simulation results, and perform multi-mode simulation according to user requirements.
本公开实施例通过设置为各系统设置共用时钟源,可以为各系统设置与其处理频率匹配的时钟信号,各系统各自按照自身的处理频率进行处理,并在需要融合数据时,将所获取的设定时刻对应的各系统处理数据进行融合,作为输出数据进行输出。本公开能对任何时刻的场景进行仿真,能对过去的时间段和未来的时间段的相应场景进行仿真。本公开结合仿真中各系统的算力,通过触发信号控制各系统的计算步长,实现精度和速度的平衡,可实现与真实物理世界一致的时间感,也能够通过控制信号源频率实现自动驾驶和仿真等比例的加、减速;也可以通过控制信号源通断实现自动驾驶整体进入断点,支持可复现的调试。In the embodiment of the present disclosure, by setting a common clock source for each system, a clock signal matching its processing frequency can be set for each system, and each system performs processing according to its own processing frequency, and when data fusion is required, the obtained set The data processed by each system corresponding to the timing are fused and output as output data. The present disclosure can simulate the scene at any time, and can simulate the corresponding scene in the past time period and the future time period. This disclosure combines the computing power of each system in the simulation, and controls the calculation step size of each system through trigger signals to achieve a balance between accuracy and speed, and can achieve a sense of time consistent with the real physical world, and can also realize automatic driving by controlling the frequency of signal sources Acceleration and deceleration in the same proportion as the simulation; it is also possible to control the on-off of the signal source to realize the overall breakpoint of the automatic driving, and support reproducible debugging.
图6示出了本公开实施例的多系统交互控制装置的组成结构示意图,如图6所示,本公开实施例的多系统交互控制装置包括:Fig. 6 shows a schematic diagram of the composition and structure of the multi-system interactive control device of the embodiment of the present disclosure. As shown in Fig. 6, the multi-system interactive control device of the embodiment of the present disclosure includes:
配置单元60,用于为所述多系统配置共同的时钟源;A configuration unit 60, configured to configure a common clock source for the multiple systems;
确定单元61,用于确定多系统中各系统响应于相同事件节点的处理频率;A determining unit 61, configured to determine the processing frequency of each system in the multi-system in response to the same event node;
分配单元62,用于根据所述多系统中各系统的处理频率,分配与各系统的处理频率相对应的时钟触发信号,所述多系统中各系统以各自的时钟触发信号进行数据处理;An allocating unit 62, configured to allocate a clock trigger signal corresponding to the processing frequency of each system according to the processing frequency of each system in the multi-system, and each system in the multi-system performs data processing with its own clock trigger signal;
触发单元63,用于确定各系统的数据处理不同步的情况下,触发所述多系统中的各系统调整为数据处理同步。The triggering unit 63 is configured to trigger each system in the multiple systems to adjust to data processing synchronization when it is determined that the data processing of each system is not synchronized.
作为一种实现方式,如图6所示,本公开实施例的多系统交互控制装置还包括:As an implementation manner, as shown in FIG. 6, the multi-system interactive control device in the embodiment of the present disclosure further includes:
接收单元64,用于接收所述多系统中各系统基于各自的时钟触发信号触发的数据处理结果;A receiving unit 64, configured to receive data processing results triggered by each system in the multi-system based on their respective clock trigger signals;
融合单元65,用于响应于相同事件节点的触发时刻,将接收的所述多系统中各系统的对应于所述触发时刻的数据处理结果进行融合。The fusion unit 65 is configured to, in response to the trigger time of the same event node, fuse the received data processing results corresponding to the trigger time of each system in the multiple systems.
作为一种实现方式,在前述图6所示的多系统交互控制装置的基础上,本公开实施例的多系统交互控制装置还包括:As an implementation, on the basis of the aforementioned multi-system interaction control device shown in FIG. 6 , the multi-system interaction control device in the embodiment of the present disclosure further includes:
调整单元(图6中未示出),用于等比例调整所述多系统中各系统分配的时钟触发信号的频率;An adjustment unit (not shown in FIG. 6 ), configured to adjust in proportion the frequency of the clock trigger signal distributed by each system in the multi-system;
所述融合单元65,还用于获取中断时刻对应的相同事件节点的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行中断仿真。The fusion unit 65 is further configured to obtain the data processing results of the same event node corresponding to the interruption time, and fuse the obtained data processing results of each system to perform interruption simulation.
作为一种实现方式,在前述图6所示的多系统交互控制装置的基础上,本公开实施例的多系统交互控制装置还包括:As an implementation, on the basis of the aforementioned multi-system interaction control device shown in FIG. 6 , the multi-system interaction control device in the embodiment of the present disclosure further includes:
控制单元(图6中未示出),用于控制向所述多系统中各系统输出的时钟触发信号的中断;a control unit (not shown in FIG. 6 ), configured to control the interruption of the clock trigger signal output to each system in the multi-system;
所述融合单元65,还用于获取中断时刻对应的相同事件节点的数据处理结果,将所获取的各系统的数据处理结果进行融合,进行中断仿真。The fusion unit 65 is further configured to obtain the data processing results of the same event node corresponding to the interruption time, and fuse the obtained data processing results of each system to perform interruption simulation.
在一些可实施方式中,所述分配单元62,还用于:In some possible implementation manners, the allocating unit 62 is also used for:
根据所述多系统中各系统的算力,确定所述多系统中各系统响应于相同事件节点的计算步长,基于所述计算步长确定所述多系统中各系统的处理频率,为所述多系统中各系统分配与各系统的处理频率相对应的时钟触发信号。According to the computing power of each system in the multi-system, determine the calculation step size of each system in the multi-system in response to the same event node, and determine the processing frequency of each system in the multi-system based on the calculation step size. Each system in the above multi-system distributes a clock trigger signal corresponding to the processing frequency of each system.
在一些可实施方式中,所述分配单元62,还用于:In some possible implementation manners, the allocating unit 62 is also used for:
响应于多系统中系统的数据处理不同步,根据不同步系统的算力,调整所述时钟源向不同步系统输出的时钟触发信号,触发不同步系统调整为与其他系统数据处理同步。In response to asynchronous data processing of the systems in the multi-system, adjust the clock trigger signal output by the clock source to the asynchronous system according to the computing power of the asynchronous system, and trigger the asynchronous system to adjust to be synchronized with the data processing of other systems.
作为一种实现方式,在前述图6所示的多系统交互控制装置的基础上,本公开实施例的多系统交互控制装置还包括:As an implementation, on the basis of the aforementioned multi-system interaction control device shown in FIG. 6 , the multi-system interaction control device in the embodiment of the present disclosure further includes:
发送单元(图6中未示出),用于将融合后的数据处理结果向所述多系统中的设定的系统发送。A sending unit (not shown in FIG. 6 ), configured to send the fused data processing result to the set system in the multi-system.
在一些可实施方式中,所述多系统中至少包括自动驾驶仿真平台、真实环境的模拟平台。In some possible implementation manners, the multi-system at least includes an automatic driving simulation platform and a real environment simulation platform.
在示例性实施例中,配置单元60、确定单元61、分配单元62、触发单元63、接收单元64、融合单元65、调整单元、控制单元、发送单元等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable LogicDevice)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现。In an exemplary embodiment, the configuration unit 60, the determination unit 61, the allocation unit 62, the trigger unit 63, the receiving unit 64, the fusion unit 65, the adjustment unit, the control unit, the sending unit, etc. may be controlled by one or more central processing units ( CPU, Central Processing Unit), Graphics Processing Unit (GPU, Graphics Processing Unit), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable LogicDevice), field-programmable gate array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or others Electronic components are implemented.
关于上述实施例中的装置,其中各个模块及单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。With regard to the apparatus in the above embodiments, the specific manner in which each module and unit executes operations has been described in detail in the embodiments related to the method, and will not be described in detail here.
根据本公开的实施例,本公开还记载了一种电子设备和一种可读存储介质。According to the embodiment of the present disclosure, the present disclosure also records an electronic device and a readable storage medium.
图7示出了可以用来实施本公开的实施例的示例电子设备800的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG. 7 shows a schematic block diagram of an example
如图7所示,设备800包括计算单元801,其可以根据存储在只读存储器(ROM)802中的计算机程序或者从存储单元808加载到随机访问存储器(RAM)803中的计算机程序,来执行各种适当的动作和处理。在RAM 803中,还可存储设备800操作所需的各种程序和数据。计算单元801、ROM 802以及RAM 803通过总线804彼此相连。输入/输出(I/O)接口805也连接至总线804。As shown in FIG. 7, the
设备800中的多个部件连接至I/O接口805,包括:输入单元806,例如键盘、鼠标等;输出单元807,例如各种类型的显示器、扬声器等;存储单元808,例如磁盘、光盘等;以及通信单元809,例如网卡、调制解调器、无线通信收发机等。通信单元809允许设备800通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in the
计算单元801可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元801的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元801执行上文所描述的各个方法和处理,例如多系统交互控制方法。例如,在一些实施例中,多系统交互控制方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元808。在一些实施例中,计算机程序的部分或者全部可以经由ROM 802和/或通信单元809而被载入和/或安装到设备800上。当计算机程序加载到RAM 803并由计算单元801执行时,可以执行上文描述的多系统交互控制方法的一个或多个步骤。备选地,在其他实施例中,计算单元801可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行多系统交互控制方法的步骤。The
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein may be implemented in digital electronic circuitry, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), system-on-chips ( SOC), Complex Programmable Logic Device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented. The program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide for interaction with the user, the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system may include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, a server of a distributed system, or a server combined with a blockchain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present disclosure, "plurality" means two or more, unless otherwise specifically defined.
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the present disclosure, but the scope of protection of the present disclosure is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope of the present disclosure. should fall within the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be determined by the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211548475.5ACN116300557A (en) | 2022-12-05 | 2022-12-05 | Multisystem interaction control method and device, electronic equipment and storage medium |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211548475.5ACN116300557A (en) | 2022-12-05 | 2022-12-05 | Multisystem interaction control method and device, electronic equipment and storage medium |
| Publication Number | Publication Date |
|---|---|
| CN116300557Atrue CN116300557A (en) | 2023-06-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211548475.5APendingCN116300557A (en) | 2022-12-05 | 2022-12-05 | Multisystem interaction control method and device, electronic equipment and storage medium |
| Country | Link |
|---|---|
| CN (1) | CN116300557A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1420654A (en)* | 2001-11-21 | 2003-05-28 | 日本电气株式会社 | Digital signal processing method and data processor |
| CN1494691A (en)* | 2001-03-01 | 2004-05-05 | 印芬龙科技股份有限公司 | Method and system for conducting digital real-time data processing |
| WO2007011203A1 (en)* | 2005-07-22 | 2007-01-25 | Stichting Astron | Scalable control interface for large-scale signal processing systems. |
| US20170039125A1 (en)* | 2015-08-03 | 2017-02-09 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | System of implementing deterministic real-time, distributed and synchronized for control applications, test and measurement |
| CN110690894A (en)* | 2019-09-20 | 2020-01-14 | 上海励驰半导体有限公司 | Clock failure safety protection method and circuit |
| CN111684373A (en)* | 2018-02-07 | 2020-09-18 | 三菱电机株式会社 | Input/output control unit, programmable logic controller and inspection system |
| CN111783279A (en)* | 2020-06-08 | 2020-10-16 | 中国电力科学研究院有限公司 | System co-simulation method, device, electronic device and readable storage medium |
| CN113453053A (en)* | 2021-06-25 | 2021-09-28 | 杭州海康威视数字技术股份有限公司 | Distributed video synchronous display system, video synchronous display method and storage medium |
| CN113687316A (en)* | 2020-05-17 | 2021-11-23 | 是德科技股份有限公司 | Time synchronization and latency compensation for simulating test systems |
| CN114118831A (en)* | 2021-11-24 | 2022-03-01 | 平顶山天安煤业股份有限公司 | Power transmission line management system based on digital twins |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1494691A (en)* | 2001-03-01 | 2004-05-05 | 印芬龙科技股份有限公司 | Method and system for conducting digital real-time data processing |
| CN1420654A (en)* | 2001-11-21 | 2003-05-28 | 日本电气株式会社 | Digital signal processing method and data processor |
| WO2007011203A1 (en)* | 2005-07-22 | 2007-01-25 | Stichting Astron | Scalable control interface for large-scale signal processing systems. |
| US20170039125A1 (en)* | 2015-08-03 | 2017-02-09 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | System of implementing deterministic real-time, distributed and synchronized for control applications, test and measurement |
| CN111684373A (en)* | 2018-02-07 | 2020-09-18 | 三菱电机株式会社 | Input/output control unit, programmable logic controller and inspection system |
| CN110690894A (en)* | 2019-09-20 | 2020-01-14 | 上海励驰半导体有限公司 | Clock failure safety protection method and circuit |
| CN113687316A (en)* | 2020-05-17 | 2021-11-23 | 是德科技股份有限公司 | Time synchronization and latency compensation for simulating test systems |
| CN111783279A (en)* | 2020-06-08 | 2020-10-16 | 中国电力科学研究院有限公司 | System co-simulation method, device, electronic device and readable storage medium |
| CN113453053A (en)* | 2021-06-25 | 2021-09-28 | 杭州海康威视数字技术股份有限公司 | Distributed video synchronous display system, video synchronous display method and storage medium |
| CN114118831A (en)* | 2021-11-24 | 2022-03-01 | 平顶山天安煤业股份有限公司 | Power transmission line management system based on digital twins |
| Title |
|---|
| 克里斯托弗·索扎斯基: "电力电子控制电路中的数字信号处理技术", vol. 2, 30 June 2021, 北京:机械工业出版社, pages: 152 - 153* |
| 邓鹏飞: "计算机技术在图像处理中的应用", 计算机光盘软件与应用, vol. 15, no. 16, 20 September 2012 (2012-09-20), pages 76* |
| Publication | Publication Date | Title |
|---|---|---|
| JP7454529B2 (en) | Distributed model training device and method, electronic device, storage medium, and computer program | |
| EP4160440A1 (en) | Federated computing processing method and apparatus, electronic device, and storage medium | |
| WO2019105377A1 (en) | Service processing method and apparatus, and storage medium | |
| KR20210051604A (en) | Distributed Deep Learning System and Its Operation Method | |
| KR20220047731A (en) | Method and apparatus for controlling focus on interface, electronic device and storage medium | |
| CN115482325B (en) | Picture rendering method, device, system, equipment and medium | |
| CN112925652A (en) | Application resource deployment method, device, electronic equipment and medium | |
| CN113230661A (en) | Data synchronization method and device, computer readable medium and electronic equipment | |
| CN115759232A (en) | Multitask parallel processing method, device, equipment and medium of deep learning framework | |
| CN113193947A (en) | Method, apparatus, medium, and program product for implementing distributed global ordering | |
| US20230083831A1 (en) | Method and apparatus for adjusting virtual face model, electronic device and storage medium | |
| KR20220083988A (en) | Method, device, electronic equipment and storage medium for synchronization of verification code | |
| CN113360689B (en) | Image retrieval system, method, related device and computer program product | |
| CN116300557A (en) | Multisystem interaction control method and device, electronic equipment and storage medium | |
| CN114339074A (en) | Explanatory video generation method, device, computer equipment and storage medium | |
| CN117710527B (en) | Image processing method, device and product based on artificial intelligence large model | |
| CN115599438A (en) | Method, device, equipment and medium for constructing application program publishing package | |
| CN115757120A (en) | Pressure testing method and device, electronic equipment and readable storage medium | |
| CN115861495A (en) | Virtual object driving method and electronic equipment | |
| CN115618965A (en) | Federated learning method, device, equipment and medium based on edge computing | |
| CN114791289A (en) | Geographic fence synchronization method and device, electronic equipment and storage medium | |
| CN114915516A (en) | Communication method and device | |
| CN113033475A (en) | Target object tracking method, related device and computer program product | |
| CN117113942B (en) | Model synchronization method and device, electronic equipment and storage medium | |
| CN113934493B (en) | Keyboard communication method, device, equipment, system and medium based on cloud service |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |