





技术领域technical field
本发明涉及仓库管理技术领域,具体为一种基于知识图谱的仓库安全多源物联数据预警方法。The invention relates to the technical field of warehouse management, in particular to a knowledge map-based early warning method for warehouse security multi-source IoT data.
背景技术Background technique
仓储是电力行业物料供应系统的主要部分,担负着物料的贮存和供应,电力物资仓库的管理工作是物流发展的关键工作,它保障着物流工作的顺利运行,同时也引导着物流工作发展的创新方向,在仓库管理中工作人员要确保正确掌握工作流程,对所管理的具体物料状况了如指掌,做到仓储数据正确,收发反映及时快捷,这就是提升效率的基石,保证整体物流的流通性。Warehousing is the main part of the material supply system in the power industry, responsible for the storage and supply of materials, the management of power material warehouses is the key work of logistics development, it ensures the smooth operation of logistics work, and also guides the innovation of logistics work development In terms of direction, in warehouse management, the staff must ensure that they have a correct grasp of the work process and the status of the specific materials under management, so that the storage data is correct, and the sending and receiving feedback is timely and fast. This is the cornerstone of improving efficiency and ensuring the circulation of the overall logistics.
做好物资仓库安全管理工作,保管物资品质良好、管理措施安全有效、是企业提升物流效益的重要基础,是确保电力企业效益的关键手段,所以做好库区安全管理工作,及时发现和消除了各种重大安全隐患,避免重特大的安全事故,保障了库房人、财、物的安全,也是电力企业物资库房安全管理工作的一个要求。Doing a good job in the safety management of material warehouses, good quality of storage materials, and safe and effective management measures are an important basis for enterprises to improve logistics efficiency and a key means to ensure the efficiency of power companies. Therefore, do a good job in the safety management of warehouse areas to detect and eliminate All kinds of major safety hazards, avoiding major safety accidents, and ensuring the safety of people, property, and materials in the warehouse are also a requirement for the safety management of power enterprise material warehouses.
目前物资仓库内安全类产品多,包含门禁、消防烟感、环境监测、能源消耗值、消防栓水压、安防和视频监控等,各系统间不兼容,仓储相关安全数据碎片化,导致误报率较高,提升了不同类型设备失效率,安全预警准确率较低。At present, there are many safety products in the material warehouse, including access control, fire smoke detection, environmental monitoring, energy consumption value, fire hydrant water pressure, security and video monitoring, etc. The systems are not compatible, and the security data related to storage are fragmented, resulting in false alarms The rate is high, which increases the failure rate of different types of equipment, and the accuracy rate of safety warning is low.
发明内容Contents of the invention
(一)解决的技术问题(1) Solved technical problems
针对现有技术的不足,本发明提供了一种基于知识图谱的仓库安全多源物联数据预警方法,解决了各系统间不兼容,仓储相关安全数据碎片化,导致误报率较高,安全预警准确率较低的问题。Aiming at the deficiencies of the existing technology, the present invention provides a warehouse security multi-source IoT data early warning method based on the knowledge map, which solves the incompatibility among various systems and the fragmentation of warehouse-related security data, which leads to a high rate of false positives, and the safety The problem of low early warning accuracy.
(二)技术方案(2) Technical solutions
为实现以上目的,本发明通过以下技术方案予以实现:一种基于知识图谱的仓库安全多源物联数据预警方法,具体包括以下步骤:In order to achieve the above purpose, the present invention is realized through the following technical solutions: a warehouse security multi-source IoT data early warning method based on knowledge graph, specifically including the following steps:
S1、通过数据采集单元中的烟感探测器检测烟雾的浓度,噪音质量检测器对仓库内噪音的音量大小进行检测,红外传感器检测仓库内人体的存在以及活动,PM2.5传感器对仓库内的空气质量进行检测,温湿度传感器对仓库内的温度以及湿度进行实时监测,电量监测模块对仓库内的用电情况进行监测,入侵探测器对非法进入仓库的情况进行监测,消防栓水压监测模块对消防栓水压进行检测,环境监测模块用于从开源气象平台获取当地实时温度值,监控摄像模块用于对仓库内的实景进行实时监控;S1. The smoke detector in the data acquisition unit detects the concentration of smoke, the noise quality detector detects the volume of noise in the warehouse, the infrared sensor detects the existence and activities of the human body in the warehouse, and the PM2.5 sensor detects the noise in the warehouse The air quality is detected, the temperature and humidity sensor monitors the temperature and humidity in the warehouse in real time, the power monitoring module monitors the electricity consumption in the warehouse, the intrusion detector monitors the situation of illegal entry into the warehouse, and the fire hydrant water pressure monitoring module The water pressure of the fire hydrant is detected, the environmental monitoring module is used to obtain the local real-time temperature value from the open source weather platform, and the monitoring camera module is used to monitor the real scene in the warehouse in real time;
S2、数据采集单元中采集的数据传输至数据分析单元中,通过分类模块对采集数据进行分类,通过数据预处理模块对分类后的数据进行标准化以及特征选择,处理后的数据上传至中央控制系统,中央控制系统上传至比较模块;S2. The data collected in the data acquisition unit is transmitted to the data analysis unit, the collected data is classified through the classification module, the classified data is standardized and feature selected through the data preprocessing module, and the processed data is uploaded to the central control system , the central control system uploads to the comparison module;
S3、知识库中通过设备录入模块将仓库内的安全类设备进行采集录入,阈值储存模块将安全设备的报警阈值进行录入储存,数据关联模块用于综合关联两种及以上物联预警值,然后训练集用于将关联的仓库安全设备预警值在不同场景下进行训练,确定设备关联信息,建立预警逻辑模块;S3. In the knowledge base, the safety equipment in the warehouse is collected and entered through the equipment entry module. The threshold value storage module records and stores the alarm threshold of the safety equipment. The data association module is used to comprehensively associate two or more IoT warning values, and then The training set is used to train the associated warehouse safety equipment early warning values in different scenarios, determine equipment related information, and establish early warning logic modules;
S4、比较模块将步骤S2中数据分析单元处理后的采集数据与知识库中储存的阈值进行对比,当有数据不在阈值范围内时,通过预警逻辑模块进行关联分析,再发出预警信息;S4. The comparison module compares the collected data processed by the data analysis unit in step S2 with the threshold stored in the knowledge base. When any data is not within the threshold range, the early warning logic module performs correlation analysis, and then sends out early warning information;
S5、步骤S4中发出预警信息后,中央控制系统控制报警模块进行现场的声光报警,同时通过无线通讯模块能够将报警信息发送至仓管第一责任人、管理者以及监管者的移动终端上,且通过仓库AR能够实现仓库关联的多源物联数据以AR的形式显示,让库管人员同步查看设备安全信息。S5. After the early warning information is issued in step S4, the central control system controls the alarm module to perform on-site sound and light alarm, and at the same time, the wireless communication module can send the alarm information to the mobile terminal of the first person in charge of warehouse management, managers and supervisors , and through the warehouse AR, the multi-source IoT data associated with the warehouse can be displayed in the form of AR, allowing warehouse managers to view equipment security information synchronously.
优选的,所述步骤S4中发出的预警信息根据程度分为一般告警、严重告警和紧急告警。Preferably, the warning information issued in step S4 is classified into general warning, serious warning and emergency warning according to the degree.
优选的,所述步骤S5中仓库AR通过建模单元进行建立,建模单元中通过激光扫描模块对仓库进行扫描,三维VR模型根据扫描结果进行建立,通过实景摄影VR模块对仓库内的实景进行拍摄,搭建实景VR。Preferably, in the step S5, the warehouse AR is established by the modeling unit, the warehouse is scanned by the laser scanning module in the modeling unit, the three-dimensional VR model is established according to the scanning result, and the real scene in the warehouse is scanned by the real scene photography VR module. Shooting and building real scene VR.
本发明还公开了一种基于知识图谱的仓库安全多源物联数据预警方法的系统,包括中央控制系统,所述中央控制系统通过无线与数据采集单元实现双向连接,所述数据采集单元的输出端与数据分析单元的输入端电性连接,所述数据分析单元的输出端与中央控制系统的输入端电性连接,所述中央控制系统通过无线与知识库实现双向连接,所述知识库的输出端与比较模块的输入端电性连接,所述比较模块通过无线与中央控制系统实现双向连接,所述中央控制系统通过无线与无线通讯模块实现双向连接,所述无线通讯模块通过无线与移动终端实现双向连接,所述中央控制系统通过无线与报警模块实现双向连接,所述中央控制系统通过无线与建模单元实现双向连接,所述中央控制系统通过无线与仓库AR实现双向连接。The present invention also discloses a system based on a knowledge graph-based warehouse safety multi-source IOT data early warning system, including a central control system, the central control system realizes two-way connection with the data acquisition unit through wireless, and the output of the data acquisition unit The terminal is electrically connected to the input terminal of the data analysis unit, and the output terminal of the data analysis unit is electrically connected to the input terminal of the central control system. The central control system realizes two-way connection with the knowledge base through wireless, and the knowledge base The output terminal is electrically connected to the input terminal of the comparison module. The comparison module realizes two-way connection with the central control system through wireless. The central control system realizes two-way connection through wireless with the wireless communication module. The terminal realizes two-way connection, the central control system realizes two-way connection with the alarm module through wireless, the two-way connection between the central control system and the modeling unit through wireless, and the two-way connection between the central control system and the warehouse AR through wireless.
优选的,所述数据采集单元包括烟感探测器、噪音质量检测器、红外传感器、PM2.5传感器、温湿度传感器、电量监测模块、入侵探测器、消防栓水压监测模块、环境监测模块和监控摄像模块。Preferably, the data acquisition unit includes a smoke detector, a noise quality detector, an infrared sensor, a PM2.5 sensor, a temperature and humidity sensor, a power monitoring module, an intrusion detector, a fire hydrant water pressure monitoring module, an environmental monitoring module and Surveillance camera module.
优选的,所述数据分析单元包括分类模块和数据预处理模块。Preferably, the data analysis unit includes a classification module and a data preprocessing module.
优选的,所述知识库包括设备录入模块、阈值储存模块、训练集、数据关联模块和预警逻辑模块。Preferably, the knowledge base includes an equipment entry module, a threshold value storage module, a training set, a data association module and an early warning logic module.
优选的,所述建模单元包括激光扫描模块、三维VR模型和实景摄影VR模块。Preferably, the modeling unit includes a laser scanning module, a three-dimensional VR model and a real-scene photography VR module.
(三)有益效果(3) Beneficial effects
本发明提供了一种基于知识图谱的仓库安全多源物联数据预警方法。具备以下有益效果:The invention provides a warehouse security multi-source IoT data early warning method based on knowledge graph. Has the following beneficial effects:
(1)、该基于知识图谱的仓库安全多源物联数据预警方法,通过数据采集单元对仓库安全设备的数据进行实时采集,知识库中将仓库安全设备预警值在不同场景下进行关联挖掘,综合关联两种及以上物联预警值,建立预警逻辑模块,数据采集单元采集的数据通过比较模块与预警阈值进行对比,然后根据预警逻辑模块进行关联分析,再发出预警信息,降低误报率,降低不同类型设备失效率,提升安全预警准确率。(1) The warehouse safety multi-source IOT data early warning method based on the knowledge graph, collects the data of the warehouse safety equipment in real time through the data acquisition unit, and associates the warning value of the warehouse safety equipment in different scenarios in the knowledge base. Comprehensively correlate two or more IOT early warning values, and establish an early warning logic module. The data collected by the data acquisition unit is compared with the early warning threshold by the comparison module, and then the correlation analysis is carried out according to the early warning logic module, and then the early warning information is issued to reduce the false alarm rate. Reduce the failure rate of different types of equipment and improve the accuracy of safety warnings.
(2)、该基于知识图谱的仓库安全多源物联数据预警方法,预警信息通过声光报警模块进行现场报警的同时,通过无线通讯模块能够发送至仓管第一责任人、管理者以及监管者的移动终端上,且通过仓库AR能够实现仓库关联的多源物联数据以AR的形式显示,能让库管人员同步查看,实现数据可视化以及无人值守安全预警同步推送。(2) In this warehouse safety multi-source IoT data early warning method based on knowledge graph, the early warning information can be sent to the first person in charge of warehouse management, managers and supervisors through the wireless communication module while performing on-site alarms through the sound and light alarm module. The multi-source IoT data associated with the warehouse can be displayed in the form of AR through the warehouse AR, which allows warehouse managers to view it synchronously, realize data visualization and push unattended security warnings synchronously.
附图说明Description of drawings
图1为本发明系统的流程图;Fig. 1 is the flowchart of the system of the present invention;
图2为本发明系统的结构原理框图;Fig. 2 is the structural principle block diagram of the system of the present invention;
图3为本发明数据采集单元的结构原理框图;Fig. 3 is the structural principle block diagram of data acquisition unit of the present invention;
图4为本发明数据分析单元的结构原理框图;Fig. 4 is the block diagram of the structural principle of the data analysis unit of the present invention;
图5为本发明知识库的结构原理框图;Fig. 5 is the structural principle block diagram of knowledge base of the present invention;
图6为本发明建模单元的结构原理框图。Fig. 6 is a structural principle block diagram of the modeling unit of the present invention.
图中:1中央控制系统、2数据采集单元、21烟感探测器、22噪音质量检测器、23红外传感器、24PM2.5传感器、25温湿度传感器、26电量监测模块、27入侵探测器、28消防栓水压监测模块、29环境监测模块、210监控摄像模块、3数据分析单元、31分类模块、32数据预处理模块、4知识库、41设备录入模块、42阈值储存模块、43训练集、44数据关联模块、45预警逻辑模块、5比较模块、6无线通讯模块、7移动终端、8报警模块、9建模单元、91激光扫描模块、92三维VR模型、93实景摄影VR模块、10仓库AR。In the figure: 1 central control system, 2 data acquisition unit, 21 smoke detector, 22 noise quality detector, 23 infrared sensor, 24 PM2.5 sensor, 25 temperature and humidity sensor, 26 power monitoring module, 27 intrusion detector, 28 Fire hydrant water pressure monitoring module, 29 environmental monitoring module, 210 monitoring camera module, 3 data analysis unit, 31 classification module, 32 data preprocessing module, 4 knowledge base, 41 equipment input module, 42 threshold value storage module, 43 training set, 44 data association module, 45 early warning logic module, 5 comparison module, 6 wireless communication module, 7 mobile terminal, 8 alarm module, 9 modeling unit, 91 laser scanning module, 92 3D VR model, 93 real scene photography VR module, 10 warehouse AR.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
请参阅图1-6,本发明实施例提供三种技术方案:一种基于知识图谱的仓库安全多源物联数据预警方法,具体包括以下实施例Please refer to Figures 1-6, the embodiment of the present invention provides three technical solutions: a warehouse security multi-source IoT data early warning method based on knowledge graph, specifically including the following embodiments
实施例1Example 1
S1、通过数据采集单元2中的烟感探测器21检测烟雾的浓度,噪音质量检测器22对仓库内噪音的音量大小进行检测,红外传感器23检测仓库内人体的存在以及活动,PM2.5传感器24对仓库内的空气质量进行检测,温湿度传感器25对仓库内的温度以及湿度进行实时监测,电量监测模块26对仓库内的用电情况进行监测,入侵探测器27对非法进入仓库的情况进行监测,消防栓水压监测模块28对消防栓水压进行检测,环境监测模块29用于从开源气象平台获取当地实时温度值,监控摄像模块210用于对仓库内的实景进行实时监控,通过数据采集单元2将仓储相关安全数据进行物联采集;S1. Detect the concentration of smoke through the smoke detector 21 in the
S2、数据采集单元2中采集的数据传输至数据分析单元3中,通过分类模块31对采集数据进行分类,通过数据预处理模块32对分类后的数据进行标准化以及特征选择,处理后的数据上传至中央控制系统1,中央控制系统1上传至比较模块5;S2, the data collected in the
S3、知识库4中通过设备录入模块41将仓库内的安全类设备进行采集录入,阈值储存模块42将安全设备的报警阈值进行录入储存,数据关联模块44用于综合关联两种及以上物联预警值,如检测温湿度时,关联环境监测模块29采集的数据等不同的组合情况,然后训练集43用于将关联的仓库安全设备预警值在不同场景下进行训练,确定设备关联信息,建立预警逻辑模块45;S3. In the
S4、比较模块5将步骤S2中数据分析单元3处理后的采集数据与知识库4中储存的阈值进行对比,当有数据不在阈值范围内时,通过预警逻辑模块45进行关联分析,再发出预警信息;S4. The
S5、步骤S4中发出预警信息后,中央控制系统1控制报警模块8进行现场的声光报警,同时通过无线通讯模块6能够将报警信息发送至仓管第一责任人、管理者以及监管者的移动终端7上,且通过仓库AR10能够实现仓库关联的多源物联数据以AR的形式显示,让库管人员同步查看设备安全信息,实现数据可视化以及无人值守安全预警同步推送。S5, after the early warning information is issued in step S4, the central control system 1 controls the alarm module 8 to perform an on-site sound and light alarm, and at the same time, the wireless communication module 6 can send the alarm information to the first person in charge of warehouse management, the manager and the supervisor. On the mobile terminal 7, and through the warehouse AR10, the multi-source IoT data associated with the warehouse can be displayed in the form of AR, allowing warehouse managers to view equipment security information synchronously, realizing data visualization and synchronous push of unattended safety warnings.
实施例2Example 2
S1、通过数据采集单元2中的烟感探测器21检测烟雾的浓度,噪音质量检测器22对仓库内噪音的音量大小进行检测,红外传感器23检测仓库内人体的存在以及活动,PM2.5传感器24对仓库内的空气质量进行检测,温湿度传感器25对仓库内的温度以及湿度进行实时监测,电量监测模块26对仓库内的用电情况进行监测,入侵探测器27对非法进入仓库的情况进行监测,消防栓水压监测模块28对消防栓水压进行检测,环境监测模块29用于从开源气象平台获取当地实时温度值,监控摄像模块210用于对仓库内的实景进行实时监控,通过数据采集单元2将仓储相关安全数据进行物联采集;S1. Detect the concentration of smoke through the smoke detector 21 in the
S2、数据采集单元2中采集的数据传输至数据分析单元3中,通过分类模块31对采集数据进行分类,通过数据预处理模块32对分类后的数据进行标准化以及特征选择,处理后的数据上传至中央控制系统1,中央控制系统1上传至比较模块5;S2, the data collected in the
S3、知识库4中通过设备录入模块41将仓库内的安全类设备进行采集录入,阈值储存模块42将安全设备的报警阈值进行录入储存,数据关联模块44用于综合关联两种及以上物联预警值,如检测温湿度时,关联环境监测模块29采集的数据等不同的组合情况,然后训练集43用于将关联的仓库安全设备预警值在不同场景下进行训练,确定设备关联信息,建立预警逻辑模块45;S3. In the
S4、比较模块5将步骤S2中数据分析单元3处理后的采集数据与知识库4中储存的阈值进行对比,当有数据不在阈值范围内时,通过预警逻辑模块45进行关联分析,再发出预警信息;S4. The
S5、步骤S4中发出预警信息后,中央控制系统1控制报警模块8进行现场的声光报警,同时通过无线通讯模块6能够将报警信息发送至仓管第一责任人、管理者以及监管者的移动终端7上,且通过仓库AR10能够实现仓库关联的多源物联数据以AR的形式显示,让库管人员同步查看设备安全信息,实现数据可视化以及无人值守安全预警同步推送。S5, after the early warning information is issued in step S4, the central control system 1 controls the alarm module 8 to perform an on-site sound and light alarm, and at the same time, the wireless communication module 6 can send the alarm information to the first person in charge of warehouse management, the manager and the supervisor. On the mobile terminal 7, and through the warehouse AR10, the multi-source IoT data associated with the warehouse can be displayed in the form of AR, allowing warehouse managers to view equipment security information synchronously, realizing data visualization and synchronous push of unattended safety warnings.
本发明实施例中,步骤S4中发出的预警信息根据程度分为一般告警、严重告警和紧急告警。In the embodiment of the present invention, the warning information issued in step S4 is divided into general warning, serious warning and emergency warning according to the degree.
实施例3Example 3
S1、通过数据采集单元2中的烟感探测器21检测烟雾的浓度,噪音质量检测器22对仓库内噪音的音量大小进行检测,红外传感器23检测仓库内人体的存在以及活动,PM2.5传感器24对仓库内的空气质量进行检测,温湿度传感器25对仓库内的温度以及湿度进行实时监测,电量监测模块26对仓库内的用电情况进行监测,入侵探测器27对非法进入仓库的情况进行监测,消防栓水压监测模块28对消防栓水压进行检测,环境监测模块29用于从开源气象平台获取当地实时温度值,监控摄像模块210用于对仓库内的实景进行实时监控,通过数据采集单元2将仓储相关安全数据进行物联采集;S1. Detect the concentration of smoke through the smoke detector 21 in the
S2、数据采集单元2中采集的数据传输至数据分析单元3中,通过分类模块31对采集数据进行分类,通过数据预处理模块32对分类后的数据进行标准化以及特征选择,处理后的数据上传至中央控制系统1,中央控制系统1上传至比较模块5;S2, the data collected in the
S3、知识库4中通过设备录入模块41将仓库内的安全类设备进行采集录入,阈值储存模块42将安全设备的报警阈值进行录入储存,数据关联模块44用于综合关联两种及以上物联预警值,如检测温湿度时,关联环境监测模块29采集的数据等不同的组合情况,然后训练集43用于将关联的仓库安全设备预警值在不同场景下进行训练,确定设备关联信息,建立预警逻辑模块45;S3. In the
S4、比较模块5将步骤S2中数据分析单元3处理后的采集数据与知识库4中储存的阈值进行对比,当有数据不在阈值范围内时,通过预警逻辑模块45进行关联分析,再发出预警信息;S4. The
S5、步骤S4中发出预警信息后,中央控制系统1控制报警模块8进行现场的声光报警,同时通过无线通讯模块6能够将报警信息发送至仓管第一责任人、管理者以及监管者的移动终端7上,且通过仓库AR10能够实现仓库关联的多源物联数据以AR的形式显示,让库管人员同步查看设备安全信息,实现数据可视化以及无人值守安全预警同步推送。S5, after the early warning information is issued in step S4, the central control system 1 controls the alarm module 8 to perform an on-site sound and light alarm, and at the same time, the wireless communication module 6 can send the alarm information to the first person in charge of warehouse management, the manager and the supervisor. On the mobile terminal 7, and through the warehouse AR10, the multi-source IoT data associated with the warehouse can be displayed in the form of AR, allowing warehouse managers to view equipment security information synchronously, realizing data visualization and synchronous push of unattended safety warnings.
本发明实施例中,步骤S4中发出的预警信息根据程度分为一般告警、严重告警和紧急告警。In the embodiment of the present invention, the warning information issued in step S4 is divided into general warning, serious warning and emergency warning according to the degree.
本发明实施例中,步骤S5中仓库AR10通过建模单元9进行建立,建模单元9中通过激光扫描模块91对仓库进行扫描,三维VR模型92根据扫描结果进行建立,通过实景摄影VR模块93对仓库内的实景进行拍摄,搭建实景VR,便于通过仓库AR10实现数据可视化。In the embodiment of the present invention, in step S5, the warehouse AR10 is established by the
本发明还公开了一种基于知识图谱的仓库安全多源物联数据预警方法的系统,包括中央控制系统1,中央控制系统1通过无线与数据采集单元2实现双向连接,数据采集单元2的输出端与数据分析单元3的输入端电性连接,数据分析单元3的输出端与中央控制系统1的输入端电性连接,中央控制系统1通过无线与知识库4实现双向连接,知识库4的输出端与比较模块5的输入端电性连接,比较模块5通过无线与中央控制系统1实现双向连接,中央控制系统1通过无线与无线通讯模块6实现双向连接,无线通讯模块6通过无线与移动终端7实现双向连接,中央控制系统1通过无线与报警模块8实现双向连接,中央控制系统1通过无线与建模单元9实现双向连接,中央控制系统1通过无线与仓库AR10实现双向连接。The present invention also discloses a system of warehouse safety multi-source IoT data early warning system based on knowledge graph, including central control system 1, which realizes two-way connection with
本发明实施例中,数据采集单元2包括烟感探测器21、噪音质量检测器22、红外传感器23、PM2.5传感器24、温湿度传感器25、电量监测模块26、入侵探测器27、消防栓水压监测模块28、环境监测模块29和监控摄像模块210。In the embodiment of the present invention, the
本发明实施例中,数据分析单元3包括分类模块31和数据预处理模块32。In the embodiment of the present invention, the
本发明实施例中,知识库4包括设备录入模块41、阈值储存模块42、训练集43、数据关联模块44和预警逻辑模块45。In the embodiment of the present invention, the
本发明实施例中,建模单元9包括激光扫描模块91、三维VR模型92和实景摄影VR模块93。In the embodiment of the present invention, the
同时本说明书中未作详细描述的内容均属于本领域技术人员公知的现有技术。At the same time, the content not described in detail in this specification belongs to the prior art known to those skilled in the art.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310243553.9ACN116246445A (en) | 2023-03-14 | 2023-03-14 | A warehouse security multi-source IoT data early warning method based on knowledge graph |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310243553.9ACN116246445A (en) | 2023-03-14 | 2023-03-14 | A warehouse security multi-source IoT data early warning method based on knowledge graph |
| Publication Number | Publication Date |
|---|---|
| CN116246445Atrue CN116246445A (en) | 2023-06-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310243553.9APendingCN116246445A (en) | 2023-03-14 | 2023-03-14 | A warehouse security multi-source IoT data early warning method based on knowledge graph |
| Country | Link |
|---|---|
| CN (1) | CN116246445A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117952523A (en)* | 2024-03-27 | 2024-04-30 | 成都思越智能装备股份有限公司 | Method, device, equipment and storage medium for monitoring and early warning of trolley of stereoscopic warehouse |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104239437A (en)* | 2014-08-28 | 2014-12-24 | 国家电网公司 | An intelligent alarm analysis method for power grid dispatching |
| CN107392519A (en)* | 2017-06-07 | 2017-11-24 | 海航创新科技研究有限公司 | Processing method, device and the logistics system of logistics system |
| CN108039020A (en)* | 2018-01-10 | 2018-05-15 | 安徽鼎信科技集团有限公司 | A kind of warehouse safety monitoring alarming system |
| CN108846990A (en)* | 2018-07-06 | 2018-11-20 | 合肥迪鑫信息科技有限公司 | A kind of Internet of Things security system for warehouse |
| CN109147263A (en)* | 2018-09-05 | 2019-01-04 | 广州巨枫科技有限公司 | Warehouse intelligent monitor system based on Internet of Things |
| CN114153839A (en)* | 2021-10-29 | 2022-03-08 | 杭州未名信科科技有限公司 | Integration method, device, equipment and storage medium of multi-source heterogeneous data |
| CN114338746A (en)* | 2021-12-30 | 2022-04-12 | 以萨技术股份有限公司 | Analysis early warning method and system for data collection of Internet of things equipment |
| CN218037795U (en)* | 2022-06-16 | 2022-12-13 | 上海摩稳电子科技有限公司 | Intelligent environment monitoring control system for unattended archive office |
| CN115759648A (en)* | 2022-11-16 | 2023-03-07 | 江苏倍斯库智能科技有限公司 | Automatic logistics warehousing system and management method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104239437A (en)* | 2014-08-28 | 2014-12-24 | 国家电网公司 | An intelligent alarm analysis method for power grid dispatching |
| CN107392519A (en)* | 2017-06-07 | 2017-11-24 | 海航创新科技研究有限公司 | Processing method, device and the logistics system of logistics system |
| CN108039020A (en)* | 2018-01-10 | 2018-05-15 | 安徽鼎信科技集团有限公司 | A kind of warehouse safety monitoring alarming system |
| CN108846990A (en)* | 2018-07-06 | 2018-11-20 | 合肥迪鑫信息科技有限公司 | A kind of Internet of Things security system for warehouse |
| CN109147263A (en)* | 2018-09-05 | 2019-01-04 | 广州巨枫科技有限公司 | Warehouse intelligent monitor system based on Internet of Things |
| CN114153839A (en)* | 2021-10-29 | 2022-03-08 | 杭州未名信科科技有限公司 | Integration method, device, equipment and storage medium of multi-source heterogeneous data |
| CN114338746A (en)* | 2021-12-30 | 2022-04-12 | 以萨技术股份有限公司 | Analysis early warning method and system for data collection of Internet of things equipment |
| CN218037795U (en)* | 2022-06-16 | 2022-12-13 | 上海摩稳电子科技有限公司 | Intelligent environment monitoring control system for unattended archive office |
| CN115759648A (en)* | 2022-11-16 | 2023-03-07 | 江苏倍斯库智能科技有限公司 | Automatic logistics warehousing system and management method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117952523A (en)* | 2024-03-27 | 2024-04-30 | 成都思越智能装备股份有限公司 | Method, device, equipment and storage medium for monitoring and early warning of trolley of stereoscopic warehouse |
| Publication | Publication Date | Title |
|---|---|---|
| CN103268680B (en) | A kind of family intelligent monitoring burglary-resisting system | |
| CN111080994B (en) | An intelligent security system based on the Internet of Things | |
| CN112072798B (en) | An intelligent substation fire auxiliary control integrated monitoring system and monitoring method | |
| CN104079874B (en) | A kind of security protection integral system and method based on technology of Internet of things | |
| WO2020181851A1 (en) | Zigbee wireless network-based warehouse monitoring system | |
| CN114973140A (en) | Method and system for intrusion detection of personnel in dangerous areas based on machine vision | |
| CN116129490A (en) | A monitoring device and monitoring method for behavior recognition in complex environments | |
| CN110996067A (en) | Personnel safety real-time intelligent video monitoring system under high-risk operation environment based on deep learning | |
| CN103578240A (en) | Security and protection service network based on Internet of Things | |
| CN113536440B (en) | Data processing method based on BIM operation and maintenance management system | |
| CN115019463B (en) | Water supervision system based on artificial intelligence technology | |
| CN111770315A (en) | Intelligent chemical site video online monitoring system | |
| CN116246445A (en) | A warehouse security multi-source IoT data early warning method based on knowledge graph | |
| CN115984067A (en) | Fire monitoring and early warning system for key region of urban underground space | |
| CN116486503A (en) | Rapid inspection method and system for comprehensive pipe rack | |
| CN112070191A (en) | Workshop management and control system | |
| CN112102583A (en) | Intelligent building system based on big data | |
| CN105089699A (en) | Wearable hidden danger recorder used on subway tunnel construction site and working method of wearable hidden danger recorder | |
| CN115346303A (en) | Visual campus management system based on internet of things node and GIS | |
| CN113674498A (en) | Fire monitoring system based on computer control | |
| CN119011785A (en) | Video monitoring system and method based on Internet of things | |
| CN118807152A (en) | A charging pile fire protection system and method based on Internet of Things technology | |
| CN113065416A (en) | Leakage monitoring device, method and medium integrated in substation video monitoring device | |
| CN117676086A (en) | A power transmission channel alarm system and method based on image recognition | |
| CN115862258B (en) | Fire monitoring and disposing system, method, equipment and storage medium |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20230609 | |
| WD01 | Invention patent application deemed withdrawn after publication |