Movatterモバイル変換


[0]ホーム

URL:


CN116232542A - SPMA protocol optimization method and system based on no-rate coding - Google Patents

SPMA protocol optimization method and system based on no-rate coding
Download PDF

Info

Publication number
CN116232542A
CN116232542ACN202211665381.6ACN202211665381ACN116232542ACN 116232542 ACN116232542 ACN 116232542ACN 202211665381 ACN202211665381 ACN 202211665381ACN 116232542 ACN116232542 ACN 116232542A
Authority
CN
China
Prior art keywords
module
sequence
frame
data
encoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211665381.6A
Other languages
Chinese (zh)
Inventor
郑至傲
江波
高明柯
逄涛
徐宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 32 Research Institute
Original Assignee
CETC 32 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 32 Research InstitutefiledCriticalCETC 32 Research Institute
Priority to CN202211665381.6ApriorityCriticalpatent/CN116232542A/en
Publication of CN116232542ApublicationCriticalpatent/CN116232542A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明提供了一种基于无速率编码的SPMA协议优化方法及系统,包括编码步骤:针对MAC帧的帧头和载荷进行编码,得到帧头序列和载荷序列;译码步骤:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列;传输步骤:接收所述数据并在MAC层模块中进行传输。本发明能够有效实现基于SPMA协议的抗干扰MAC机制。使用无速率编码中的Spinal编码,此时MAC帧变成了多个分片,每个分片具有单独的帧头,在传输过程中可能有部分分片会受到干扰攻击,但接收方只需要成功接收到一定数量的分片即可正确译码,以抵抗通信过程中的干扰攻击。

Figure 202211665381

The present invention provides a SPMA protocol optimization method and system based on rateless encoding, including an encoding step: encoding the frame header and load of a MAC frame to obtain a frame header sequence and a load sequence; a decoding step: respectively encoding the frame The header sequence and payload sequence are decoded to determine whether to restore the original frame data, if so, return ACK to stop sending the sequence; if not, return NAK to resend the sequence; transmission steps: receive the data and perform in the MAC layer module transmission. The invention can effectively realize the anti-jamming MAC mechanism based on the SPMA protocol. Using Spinal encoding in rateless encoding, the MAC frame becomes multiple fragments at this time, and each fragment has a separate frame header. During transmission, some fragments may be subject to interference attacks, but the receiver only needs to Successfully receiving a certain number of fragments can be correctly decoded to resist interference attacks in the communication process.

Figure 202211665381

Description

Translated fromChinese
基于无速率编码的SPMA协议优化方法及系统SPMA protocol optimization method and system based on rateless coding

技术领域technical field

本发明涉及通信技术领域,具体地,涉及一种基于无速率编码的SPMA协议优化方法及系统。尤其涉及一种基于无速率编码的编译码方法。The present invention relates to the field of communication technology, in particular to a rateless encoding-based SPMA protocol optimization method and system. In particular, it relates to a coding and decoding method based on rateless coding.

背景技术Background technique

无速率编码又被称为即喷泉码,是由Michael Luby、John Byers等人提出的一种前向纠错码。此编码的发送方进行随机编码,由原本的k个初始分组产生任意数目的编码分组。发送方只需不断发送数据包,接收方只需收到(1+)k个编码分组的任意子集,就可以大概率通过译码成功恢复全部初始分组。理想的无速率码在有效速率低于信道容量时即可正确译码,且计算量适中,保证通信传输的可靠性和有效性。Rateless coding, also known as fountain code, is a forward error correction code proposed by Michael Luby, John Byers and others. The sender of this encoding performs random encoding, and generates any number of encoded packets from the original k initial packets. The sender only needs to send data packets continuously, and the receiver only needs to receive any subset of (1+)k coded packets, and can successfully recover all the original packets through decoding with a high probability. The ideal rateless code can be correctly decoded when the effective rate is lower than the channel capacity, and the calculation amount is moderate, so as to ensure the reliability and effectiveness of communication transmission.

在无人机自组网中,MAC层属于较底层的协议,它控制节点如何接入信道之中、数据和控制消息的收发。传统的MAC协议能够解决来自于节点间内部的干扰冲突,但面对来自外部的固定持续的干扰机、随机跳变的干扰等等则无法奏效。干扰机常常发射干扰信号,令传输信道始终处于被占用或者让收发端持续处于相互等待状态。而对于更加智能的干扰方式来说,往往能够捕捉到信号发射的规律。在此情况下干扰信号与发射信号占用的时隙甚至跳变规律都是一致的,这些智能化的干扰严重影响通信质量。In the UAV Ad Hoc Network, the MAC layer is a lower-level protocol, which controls how nodes access the channel, and sends and receives data and control messages. The traditional MAC protocol can solve the internal interference conflicts between nodes, but it cannot be effective in the face of external fixed and continuous jammers, random hopping interference, and so on. The jammer often transmits jamming signals, so that the transmission channel is always occupied or keeps the transceiver end in a state of mutual waiting. For more intelligent interference methods, it is often possible to capture the law of signal transmission. In this case, the time slots occupied by the interference signal and the transmitted signal and even the hopping rules are consistent, and these intelligent interferences seriously affect the communication quality.

论文IEEE802.11b物理层在软件无线电平台上的研究与实现公开了一种通过对软件无线电的体系结构及IEEE802.11b物理层的关键技术的研究,设计了一套实现IEEE802.11b物理层协议的系统方案,包括网络结构、系统构建、软硬件实现框架等。根据设计方案,最终采用GNU Radio和USRP2实现了一个无线局域网传输系统,其中包括无线信号发射和接收模块、帧的生成、信号的调制解调、时钟恢复、CRC(循环冗余校验码)等,该系统包含以下特点:1、工作于2.4GHz;2、信号处理模块化;3、通过软件编程的方式完成对信号的各种操作;4、动态检测信号频谱图。最后,对实现的无线通信系统进行了功能测试,系统成功的实现了IEEE802.11b物理层数据的发送与接收。The paper Research and Realization of IEEE802.11b Physical Layer on Software Radio Platform discloses a research on the architecture of software radio and the key technology of IEEE802.11b physical layer, and designs a set of IEEE802.11b physical layer protocol. System scheme, including network structure, system construction, software and hardware implementation framework, etc. According to the design plan, a wireless local area network transmission system is finally realized by using GNU Radio and USRP2, including wireless signal transmitting and receiving modules, frame generation, signal modulation and demodulation, clock recovery, CRC (cyclic redundancy check code), etc. , The system includes the following features: 1. Work at 2.4GHz; 2. Modular signal processing; 3. Complete various operations on signals through software programming; 4. Dynamically detect signal spectrum. Finally, the functional test of the realized wireless communication system is carried out, and the system successfully realizes the sending and receiving of IEEE802.11b physical layer data.

专利文献CN110602712A公开了一种频点切换抗干扰无线局域网通信方法及系统,包括一个抗干扰接入点和多个抗干扰终端,所述抗干扰接入点和抗干扰终端均基于IEEE802.11软件无线电平台GRT系统开发,其中,所述方法包括:所述抗干扰接入点对可选用的信道进行频谱感知,选取干扰较少的信道,生成备选信道列表;所述备选信道列表包括多个频点;所述抗干扰接入点从所述备选信道列表中随机选择一个目标频点,以固定的频率向所述目标频点对应的信道发送信标帧,并侦听关联请求;所述信标帧中包括所述备选信道列表;所述抗干扰终端从当前可用信道列表中选择一个信道,判断该信道上是否包含有来自所述抗干扰接入点的信标帧;若该信道上包含有来自所述抗干扰接入点的信标帧,所述抗干扰终端从该信标帧中提取时间戳TS和所述备选信道列表;当所述抗干扰终端内的同步标记为0时,所述抗干扰终端根据所述时间戳TS,将自身的信道计时器与所述抗干扰接入点的信道计时器同步,并向所述抗干扰接入点发送关联请求,同时将所述同步标记设置为1,把自身存储的所述当前可用信道列表更新为所述备选信道列表;所述抗干扰接入点接收到所述抗干扰终端发送的关联请求时,利用所述目标频点对应的信道与所述抗干扰终端通信;当所述信道计时器达到预设的频道停留时间Tc时,所述抗干扰终端根据所述备选信道列表上的频点顺序,将所述目标频点切换至所述备选信道列表上的下一个频点,并利用切换后的频点对应的信道与所述抗干扰接入点通信。Patent document CN110602712A discloses a frequency point switching anti-interference wireless LAN communication method and system, including an anti-interference access point and a plurality of anti-interference terminals, the anti-interference access point and anti-interference terminals are based on IEEE802.11 software The development of the radio platform GRT system, wherein the method includes: the anti-interference access point performs spectrum sensing on available channels, selects a channel with less interference, and generates a list of candidate channels; the list of candidate channels includes multiple frequency points; the anti-jamming access point randomly selects a target frequency point from the candidate channel list, sends a beacon frame to a channel corresponding to the target frequency point at a fixed frequency, and listens to an association request; The beacon frame includes the candidate channel list; the anti-jamming terminal selects a channel from the currently available channel list, and judges whether the channel contains a beacon frame from the anti-jamming access point; if The channel contains a beacon frame from the anti-jamming access point, and the anti-jamming terminal extracts the time stamp TS and the candidate channel list from the beacon frame; when the synchronization in the anti-jamming terminal When the mark is 0, the anti-jamming terminal synchronizes its own channel timer with the channel timer of the anti-jamming access point according to the time stamp TS, and sends an association request to the anti-jamming access point, At the same time, the synchronization flag is set to 1, and the currently available channel list stored by itself is updated to the candidate channel list; when the anti-jamming access point receives the association request sent by the anti-jamming terminal, it uses The channel corresponding to the target frequency point communicates with the anti-jamming terminal; when the channel timer reaches the preset channel dwell time Tc, the anti-jamming terminal, according to the sequence of frequency points on the candidate channel list, Switching the target frequency point to the next frequency point on the candidate channel list, and using the channel corresponding to the switched frequency point to communicate with the anti-interference access point.

但是其协议的抗干扰特性和鲁棒性还有提高的空间。But there is still room for improvement in the anti-jamming characteristics and robustness of the protocol.

发明内容Contents of the invention

针对现有技术中的缺陷,本发明的目的是提供一种基于无速率编码的SPMA协议优化方法及系统。Aiming at the defects in the prior art, the object of the present invention is to provide a method and system for optimizing the SPMA protocol based on rateless coding.

根据本发明提供的一种基于无速率编码的SPMA协议优化方法,包括:A kind of SPMA protocol optimization method based on rateless coding provided by the present invention comprises:

编码步骤:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列;Encoding step: encode the frame header and payload of the MAC frame respectively to obtain the frame header sequence and payload sequence;

译码步骤:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列;Decoding step: decode the frame header sequence and load sequence respectively, and judge whether to restore the original frame data, if so, return ACK to stop sending the sequence; if not, return NAK to resend the sequence;

传输步骤:接收所述数据并在MAC层模块中进行传输。Transmission step: receiving the data and transmitting it in the MAC layer module.

优选地,所述针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码;Preferably, the separate encoding of the frame header and the payload of the MAC frame includes performing convolutional encoding on the frame header and rateless encoding on the payload;

所述卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制;The convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then interleaving the codewords after the convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence;

所述无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。The rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is obtained as The random seed goes into a pseudo-random number generator, which produces a number of encoded symbols.

优选地,所述译码处理包括如下子步骤:Preferably, the decoding process includes the following sub-steps:

步骤S2.1:通过BPSK解调对帧头序列进行软判决;Step S2.1: Perform soft decision on the frame header sequence through BPSK demodulation;

步骤S2.2:对软判决后的序列去交织,并进入软输入Viterbi译码器进行卷积译码;Step S2.2: Deinterleave the sequence after the soft decision, and enter the soft input Viterbi decoder for convolutional decoding;

步骤S2.3:通过扰码器将译码后的输出比特恢复至原始帧数据;Step S2.3: restore the decoded output bits to the original frame data through a scrambler;

步骤S2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发步骤S2.5;若否,则返回ACK停止发送序列;Step S2.4: Perform CRC calculation on the restored original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger step S2.5; if not, Then return ACK to stop sending sequence;

步骤S2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Step S2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.

优选地,所述扰码器和编码步骤中的扰码器是相同的。Preferably, the scrambler and the scrambler in the encoding step are the same.

优选地,所述MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块;Preferably, the MAC layer module includes an encapsulation and framing module, a virtual listening module, a queue management module, a counter module, an automatic sending/receiving module and a decapsulation module;

所述封装成帧模块接收到应用层发送的数据之后封装成为帧格式;After the encapsulation and framing module receives the data sent by the application layer, it is encapsulated into a frame format;

所述虚拟侦听和RTS/CTS模块完成信道接入;The virtual listening and RTS/CTS modules complete channel access;

所述队列管理模块管理发送数据和接收数据的缓冲队列;The queue management module manages buffer queues for sending data and receiving data;

所述计数器模块生成最大传输次数,提供系统终止条件;The counter module generates the maximum number of transmissions and provides a system termination condition;

所述自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。The automatic sender/receiver is an event type loop module, and events include receiving ACK, exceeding the maximum number of transmissions and receiving NAK.

根据本发明提供的一种基于无速率编码的SPMA协议优化系统,包括:A kind of SPMA protocol optimization system based on rateless coding provided by the present invention comprises:

编码模块:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列;Encoding module: Encode the frame header and payload of the MAC frame separately to obtain the frame header sequence and payload sequence;

译码模块:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列;Decoding module: decode the frame header sequence and load sequence respectively, and judge whether to restore the original frame data, if so, return ACK to stop sending sequence; if not, return NAK to resend sequence;

传输模块:接收所述数据并在MAC层模块中进行传输。Transmission module: receive the data and transmit it in the MAC layer module.

优选地,所述针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码;Preferably, the separate encoding of the frame header and the payload of the MAC frame includes performing convolutional encoding on the frame header and rateless encoding on the payload;

所述卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制;The convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then interleaving the codewords after the convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence;

所述无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。The rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is obtained as The random seed goes into a pseudo-random number generator, which produces a number of encoded symbols.

优选地,所述译码处理包括如下子模块:Preferably, the decoding process includes the following submodules:

模块M2.1:通过BPSK解调对帧头序列进行软判决;Module M2.1: soft decision on the frame header sequence through BPSK demodulation;

模块M2.2:对软判决后的序列去交织,并进入软输入Viterbi译码器进行卷积译码;Module M2.2: Deinterleave the soft-decision sequence and enter the soft-input Viterbi decoder for convolutional decoding;

模块M2.3:通过扰码器将译码后的输出比特恢复至原始帧数据;Module M2.3: restore the decoded output bits to the original frame data through the scrambler;

模块M2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发模块M2.5;若否,则返回ACK停止发送序列;Module M2.4: Perform CRC calculation on the recovered original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger module M2.5; if not, Then return ACK to stop sending sequence;

模块M2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Module M2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.

优选地,所述扰码器和编码模块中的扰码器是相同的。Preferably, the scrambler and the scrambler in the encoding module are the same.

优选地,所述MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块;Preferably, the MAC layer module includes an encapsulation and framing module, a virtual listening module, a queue management module, a counter module, an automatic sending/receiving module and a decapsulation module;

所述封装成帧模块接收到应用层发送的数据之后封装成为帧格式;After the encapsulation and framing module receives the data sent by the application layer, it is encapsulated into a frame format;

所述虚拟侦听和RTS/CTS模块完成信道接入;The virtual listening and RTS/CTS modules complete channel access;

所述队列管理模块管理发送数据和接收数据的缓冲队列;The queue management module manages buffer queues for sending data and receiving data;

所述计数器模块生成最大传输次数,提供系统终止条件;The counter module generates the maximum number of transmissions and provides a system termination condition;

所述自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。The automatic sender/receiver is an event type loop module, and events include receiving ACK, exceeding the maximum number of transmissions and receiving NAK.

与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明能够有效实现基于SPMA协议的抗干扰MAC机制。使用无速率编码中的Spinal编码,此时MAC帧变成了多个分片,每个分片具有单独的帧头,在传输过程中可能有部分分片会受到干扰攻击,但接收方只需要成功接收到一定数量的分片即可正确译码,以抵抗通信过程中的干扰攻击。1. The present invention can effectively implement the anti-interference MAC mechanism based on the SPMA protocol. Using Spinal encoding in rateless encoding, the MAC frame becomes multiple fragments at this time, and each fragment has a separate frame header. During transmission, some fragments may be subject to interference attacks, but the receiver only needs to Successfully receiving a certain number of fragments can be correctly decoded to resist interference attacks in the communication process.

2、本发明对于MAC帧头和载荷采用不同的编码方式。帧头由于其的重要性,所以采用纠错性较强的1/2码率卷积编码,载荷部分为了防止干扰,则采用了无速率编码Spinal码进行分片发送,提高了SPMA协议的抗干扰特性和鲁棒性。2. The present invention adopts different encoding methods for the MAC frame header and payload. Because of its importance, the frame header adopts 1/2 code rate convolution coding with strong error correction performance. In order to prevent interference, the payload part adopts no-rate coding Spinal code for fragmentation transmission, which improves the anti-corrosion of SPMA protocol. Disturbance characteristics and robustness.

附图说明Description of drawings

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:

图1为本发明中编码的工作流程示意图。Fig. 1 is a schematic diagram of the coding workflow in the present invention.

图2为本发明中译码的工作流程示意图。FIG. 2 is a schematic diagram of the decoding workflow in the present invention.

图3为本发明中MAC模块的组成框图。FIG. 3 is a block diagram of a MAC module in the present invention.

图4为本发明中协议实现逻辑示意图。Fig. 4 is a logical schematic diagram of protocol implementation in the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.

本发明中ACK,Acknowledge character为确认字符,NAK,NegativeAcknowledgment是定应答或者非应答的缩写,BPSK,Binary Phase Shift Keying是二进制相移键控。In the present invention, ACK and Acknowledge character are confirmation characters, NAK and NegativeAcknowledgment are abbreviations of positive response or non-response, and BPSK and Binary Phase Shift Keying are binary phase shift keying.

实施例一Embodiment one

根据本发明提供的一种基于无速率编码的SPMA协议优化方法,如图1至图3所示,包括:A kind of SPMA protocol optimization method based on rateless coding provided by the present invention, as shown in Figure 1 to Figure 3, comprises:

编码步骤:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列。Coding step: encoding the frame header and payload of the MAC frame respectively to obtain a frame header sequence and a payload sequence.

具体地,如图1所示,针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码。卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制。无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。当MAC层要求再产生一遍编码符号时,重复一次以上过程。Specifically, as shown in FIG. 1 , separately encoding the frame header and the payload of the MAC frame includes performing convolutional coding on the frame header part and rateless coding on the payload part. Convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then interleaving the codeword after convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence. Rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is used as a random seed after a hash function Enter the pseudo-random number generator to generate multiple encoded symbols. When the MAC layer requires to generate coded symbols again, the above process is repeated once.

其中,帧头部分首先进行加扰,使得数据更加随机,提升卷积编码的性能。对通过卷积编码后的码字进行交织,降低了相邻码字的相关性。Among them, the frame header part is first scrambled to make the data more random and improve the performance of convolutional coding. The interleaving is performed on codewords after convolutional coding, which reduces the correlation of adjacent codewords.

译码步骤:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列。如图2所示,译码处理包括如下子步骤:Decoding step: decode the frame header sequence and payload sequence respectively, and judge whether to restore the original frame data, if so, return ACK to stop sending sequence; if not, return NAK to resend sequence. As shown in Figure 2, the decoding process includes the following sub-steps:

步骤S2.1:通过BPSK解调对帧头序列进行软判决。Step S2.1: Perform soft decision on the frame header sequence through BPSK demodulation.

步骤S2.2:对软判决后的序列去交织,使得序列恢复到原本的位置。并进入软输入Viterbi译码器进行卷积译码。Step S2.2: Deinterleave the sequence after the soft decision, so that the sequence is restored to its original position. And enter the soft input Viterbi decoder for convolution decoding.

步骤S2.3:通过扰码器将译码后的输出比特恢复至原始帧数据。扰码器和编码步骤中的扰码器是相同的。Step S2.3: restore the decoded output bits to the original frame data through the scrambler. The scrambler is the same as the scrambler in the encoding step.

步骤S2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发步骤S2.5;若否,则返回ACK停止发送序列。Step S2.4: Perform CRC calculation on the restored original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger step S2.5; if not, Then return ACK to stop sending the sequence.

步骤S2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Step S2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.

传输步骤:接收所述数据并在MAC层模块中进行传输。其中,MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块。具体地,封装成帧模块接收到应用层发送的数据之后封装成为帧格式。虚拟侦听和RTS/CTS模块完成信道接入。队列管理模块管理发送数据和接收数据的缓冲队列。计数器模块生成最大传输次数,提供系统终止条件。自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。Transmission step: receiving the data and transmitting it in the MAC layer module. Among them, the MAC layer module includes an encapsulation and framing module, a virtual listening module, a queue management module, a counter module, an automatic sending/receiving module and a decapsulating module. Specifically, the encapsulation and framing module encapsulates the data sent by the application layer into a frame format after receiving it. Virtual listening and RTS/CTS modules complete channel access. The queue management module manages the buffer queues for sending data and receiving data. The counter block generates the maximum number of transfers and provides a system termination condition. Automatic sender/receiver is an event type loop module, events include received ACK, exceeded the maximum number of transmissions and received NAK.

本发明旨在针对MAC帧头和载荷采用不同的编码方式,确保抗干扰机制的鲁棒性。使用无速率编码中的Spinal编码,将SPMA协议中的MAC帧分片传输,以抵抗传输过程中的干扰。在通信环境中存在干扰时,设计并实现抗干扰的MAC机制。The present invention aims at adopting different encoding modes for the MAC frame header and load, so as to ensure the robustness of the anti-interference mechanism. Using the Spinal coding in the rateless coding, the MAC frame in the SPMA protocol is transmitted in fragments to resist interference during transmission. When there is interference in the communication environment, design and implement an anti-interference MAC mechanism.

进一步地,结合附图4对本发明具体描述说明如下:Further, in conjunction with accompanying drawing 4, the present invention is specifically described as follows:

如果信道检测为空,则发送节点开始发送帧分片,每一遍发送n/k个分片,若一遍后接收方收到足够多的分片能成功译码,则返回ACK确认帧,请求停止发送该帧的分片,发送下一帧。若无法译码,则返回NAK否认帧请求发送该帧的下一遍。其中n表示输入消息的大小,k表示分片的长度,具体如下:If the channel detection is empty, the sending node starts to send frame fragments, and sends n/k fragments each time. If the receiver receives enough fragments to successfully decode after one pass, it returns an ACK confirmation frame and requests to stop Send a fragment of this frame, send the next frame. If it cannot be decoded, then return NAK to deny the frame request to send the next pass of the frame. Among them, n represents the size of the input message, and k represents the length of the fragment, as follows:

首先,获取数据,判断信道检测是否为空,若否就继续侦听,本实施例假设此时信道检测为空,则此时发送RTS(Request To Send,请求发送)并确认是否收到CTS(Clear ToSend,清除发送)。如果没有收到,则进行指数退避,即节点间发生数据冲突后,等待一定时间后重传。First, obtain the data, judge whether the channel detection is empty, if not, continue to listen, the present embodiment assumes that the channel detection is empty at this time, then send RTS (Request To Send, request to send) and confirm whether to receive the CTS ( Clear ToSend, Clear ToSend). If it is not received, perform exponential backoff, that is, after a data conflict occurs between nodes, wait for a certain period of time before retransmitting.

然后,如果确认收到,则进行MAC帧的编码,分别对帧头部分和载荷部分进行编码,并发送分片,判断当前是否超过最大传输次数,若超过了就停止发送,没有超过进行帧头维特比译码。Then, if it is confirmed to be received, encode the MAC frame, encode the frame header part and the payload part respectively, and send the fragments, and judge whether the current maximum number of transmissions is exceeded. If it exceeds, stop sending. If it does not exceed the frame header Viterbi decoding.

接着,对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,不一致的话返回NAK重新发送片;若是,则说明帧头已正确译码。Then, perform CRC calculation on the restored original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If not, return NAK and resend the slice; correctly decoded.

再接着,接收分片并进行Spinal译码,判断是否可以恢复原始帧数据,若是则返回ACK分片停止发送;若否,则返回NAK否认帧请求发送该帧的下一遍。Then, receive the fragment and perform Spinal decoding to judge whether the original frame data can be restored, and if so, return ACK fragment to stop sending; if not, return NAK to deny the frame and request to send the next time of the frame.

实施例二Embodiment two

本发明还提供了一种基于无速率编码的SPMA协议优化系统,本领域技术人员可以通过执行所述基于无速率编码的SPMA协议优化方法的步骤流程实现所述基于无速率编码的SPMA协议优化系统,即可以将所述基于无速率编码的SPMA协议优化方法理解为所述基于无速率编码的SPMA协议优化系统的优选实施方式。The present invention also provides a kind of SPMA protocol optimization system based on rateless coding, and those skilled in the art can realize described SPMA protocol optimization system based on rateless coding by performing the step flow of the SPMA protocol optimization method based on rateless coding , that is, the rateless coding-based SPMA protocol optimization method can be understood as a preferred implementation of the rateless coding-based SPMA protocol optimization system.

根据本发明提供的一种基于无速率编码的SPMA协议优化系统,包括:A kind of SPMA protocol optimization system based on rateless coding provided by the present invention comprises:

编码模块:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列。所述针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码。所述卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制。所述无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。Encoding module: Encode the frame header and payload of the MAC frame separately to obtain the frame header sequence and payload sequence. The separate encoding of the frame header and the payload of the MAC frame includes performing convolutional encoding on the frame header and rateless encoding on the payload. The convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then performing interleaving on the codeword after convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence. The rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is obtained as The random seed goes into a pseudo-random number generator, which produces a number of encoded symbols.

译码模块:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列。所述译码处理包括如下子模块:Decoding module: decode the frame header sequence and load sequence respectively, judge whether to restore the original frame data, if so, return ACK to stop sending sequence; if not, return NAK to resend sequence. The decoding process includes the following submodules:

模块M2.1:通过BPSK解调对帧头序列进行软判决。模块M2.2:对软判决后的序列去交织,并进入软输入Viterbi译码器进行卷积译码。模块M2.3:通过扰码器将译码后的输出比特恢复至原始帧数据。所述扰码器和编码模块中的扰码器是相同的。模块M2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发模块M2.5;若否,则返回ACK停止发送序列。模块M2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Module M2.1: Perform soft decision on the frame header sequence through BPSK demodulation. Module M2.2: Deinterleave the sequence after the soft decision, and enter the soft input Viterbi decoder for convolutional decoding. Module M2.3: restore the decoded output bits to the original frame data through a scrambler. The scrambler is the same as the scrambler in the encoding module. Module M2.4: Perform CRC calculation on the recovered original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger module M2.5; if not, Then return ACK to stop sending the sequence. Module M2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.

传输模块:接收所述数据并在MAC层模块中进行传输。所述MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块;所述封装成帧模块接收到应用层发送的数据之后封装成为帧格式;所述虚拟侦听和RTS/CTS模块完成信道接入;所述队列管理模块管理发送数据和接收数据的缓冲队列;所述计数器模块生成最大传输次数,提供系统终止条件;所述自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。Transmission module: receive the data and transmit it in the MAC layer module. The MAC layer module includes an encapsulation framing module, a virtual listening module, a queue management module, a counter module, an automatic sending/receiving module and a decapsulation module; the encapsulation and framing module encapsulates into a frame format after receiving the data sent by the application layer ; The virtual listening and RTS/CTS module completes channel access; The queue management module manages the buffer queues for sending data and receiving data; The counter module generates the maximum number of transmissions and provides system termination conditions; The automatic sending/ The receiver is an event type loop module, events include received ACK, exceeded the maximum number of transmissions and received NAK.

本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system, device and each module thereof provided by the present invention in a purely computer-readable program code mode, the system, device and each module thereof provided by the present invention can be completely programmed by logically programming the method steps. The same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a hardware component, and the modules included in it for realizing various programs can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program realizing a method or a structure within a hardware component.

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.

Claims (10)

Translated fromChinese
1.一种基于无速率编码的SPMA协议优化方法,其特征在于,包括:1. a kind of SPMA protocol optimization method based on rateless coding, it is characterized in that, comprising:编码步骤:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列;Encoding step: encode the frame header and payload of the MAC frame respectively to obtain the frame header sequence and payload sequence;译码步骤:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列;Decoding step: decode the frame header sequence and load sequence respectively, and judge whether to restore the original frame data, if so, return ACK to stop sending the sequence; if not, return NAK to resend the sequence;传输步骤:接收所述数据并在MAC层模块中进行传输。Transmission step: receiving the data and transmitting it in the MAC layer module.2.根据权利要求1所述的基于无速率编码的SPMA协议优化方法,其特征在于,所述针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码;2. the SPMA protocol optimization method based on rateless coding according to claim 1, is characterized in that, described frame header and load encoding respectively for MAC frame comprise that frame header part is carried out convolution coding and payload part is carried out rateless coding;所述卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制;The convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then interleaving the codewords after the convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence;所述无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。The rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is obtained as The random seed goes into a pseudo-random number generator, which produces a number of encoded symbols.3.根据权利要求1所述的基于无速率编码的SPMA协议优化方法,其特征在于,所述译码处理包括如下子步骤:3. the SPMA protocol optimization method based on rateless coding according to claim 1, is characterized in that, described decoding process comprises following sub-steps:步骤S2.1:通过BPSK解调对帧头序列进行软判决;Step S2.1: Perform soft decision on the frame header sequence through BPSK demodulation;步骤S2.2:对软判决后的序列去交织,并进入软输入Viterbi译码器进行卷积译码;Step S2.2: Deinterleave the sequence after the soft decision, and enter the soft input Viterbi decoder for convolutional decoding;步骤S2.3:通过扰码器将译码后的输出比特恢复至原始帧数据;Step S2.3: restore the decoded output bits to the original frame data through a scrambler;步骤S2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发步骤S2.5;若否,则返回ACK停止发送序列;Step S2.4: Perform CRC calculation on the restored original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger step S2.5; if not, Then return ACK to stop sending sequence;步骤S2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Step S2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.4.根据权利要求3所述的基于无速率编码的SPMA协议优化方法,其特征在于,所述扰码器和编码步骤中的扰码器是相同的。4. the SPMA protocol optimization method based on rateless coding according to claim 3, is characterized in that, the scrambler in described scrambler and coding step is identical.5.根据权利要求1所述的基于无速率编码的SPMA协议优化方法,其特征在于,所述MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块;5. the SPMA protocol optimization method based on rateless coding according to claim 1, is characterized in that, described MAC layer module comprises encapsulating framing module, virtual listener module, queue management module, counter module, automatic sending/receiving machine and decapsulation module;所述封装成帧模块接收到应用层发送的数据之后封装成为帧格式;After the encapsulation and framing module receives the data sent by the application layer, it is encapsulated into a frame format;所述虚拟侦听和RTS/CTS模块完成信道接入;The virtual listening and RTS/CTS modules complete channel access;所述队列管理模块管理发送数据和接收数据的缓冲队列;The queue management module manages buffer queues for sending data and receiving data;所述计数器模块生成最大传输次数,提供系统终止条件;The counter module generates the maximum number of transmissions and provides a system termination condition;所述自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。The automatic sender/receiver is an event type loop module, and events include receiving ACK, exceeding the maximum number of transmissions and receiving NAK.6.一种基于无速率编码的SPMA协议优化系统,其特征在于,包括:6. a kind of SPMA protocol optimization system based on rateless coding, it is characterized in that, comprising:编码模块:针对MAC帧的帧头和载荷分别编码,得到帧头序列和载荷序列;Encoding module: Encode the frame header and payload of the MAC frame separately to obtain the frame header sequence and payload sequence;译码模块:分别对所述帧头序列和载荷序列进行译码处理,判断是否恢复原始帧数据,若是,则返回ACK停止发送序列;若否,则返回NAK重新发送序列;Decoding module: decode the frame header sequence and load sequence respectively, and judge whether to restore the original frame data, if so, return ACK to stop sending sequence; if not, return NAK to resend sequence;传输模块:接收所述数据并在MAC层模块中进行传输。Transmission module: receive the data and transmit it in the MAC layer module.7.根据权利要求6所述的基于无速率编码的SPMA协议优化系统,其特征在于,所述针对MAC帧的帧头和载荷分别编码包括对帧头部分进行卷积编码和载荷部分进行无速率编码;7. the SPMA protocol optimization system based on rateless coding according to claim 6, is characterized in that, described frame header and load encoding respectively for MAC frame comprise that frame header part is carried out convolution coding and payload part is carried out rateless coding;所述卷积编码包括进行加扰后通过一个码率1/2的卷积编码器,然后对通过卷积编码后的码字进行交织,最后对交织过的比特序列进行BPSK调制;The convolutional encoding includes passing through a convolutional encoder with a code rate of 1/2 after scrambling, then interleaving the codewords after the convolutional encoding, and finally performing BPSK modulation on the interleaved bit sequence;所述无速率编码包括进行加扰后,将载荷序列送入Spinal编码器,所述Spinal编码器生成一个初始化状态,再将数据分为多个消息块,每个消息块经过哈希函数后作为随机种子进入伪随机数生成器,产生多个编码符号。The rateless encoding includes sending the load sequence into the Spinal encoder after scrambling, and the Spinal encoder generates an initialization state, and then divides the data into multiple message blocks, and each message block is obtained as The random seed goes into a pseudo-random number generator, which produces a number of encoded symbols.8.根据权利要求6所述的基于无速率编码的SPMA协议优化系统,其特征在于,所述译码处理包括如下子模块:8. the SPMA protocol optimization system based on rateless coding according to claim 6, is characterized in that, described decoding process comprises following submodule:模块M2.1:通过BPSK解调对帧头序列进行软判决;Module M2.1: soft decision on the frame header sequence through BPSK demodulation;模块M2.2:对软判决后的序列去交织,并进入软输入Viterbi译码器进行卷积译码;Module M2.2: Deinterleave the soft-decision sequence and enter the soft-input Viterbi decoder for convolutional decoding;模块M2.3:通过扰码器将译码后的输出比特恢复至原始帧数据;Module M2.3: restore the decoded output bits to the original frame data through the scrambler;模块M2.4:对恢复的原始帧数据进行CRC运算,并将运算结果与帧头内的CRC校验字段比对,判断比对内容是否一致,若是,则触发模块M2.5;若否,则返回ACK停止发送序列;Module M2.4: Perform CRC calculation on the recovered original frame data, and compare the calculation result with the CRC check field in the frame header to determine whether the comparison content is consistent. If yes, trigger module M2.5; if not, Then return ACK to stop sending sequence;模块M2.5:将载荷序列送入Spinal译码器进行译码,并通过扰码器将译码后的输出比特恢复至原始帧数据。Module M2.5: Send the payload sequence to the Spinal decoder for decoding, and restore the decoded output bits to the original frame data through the scrambler.9.根据权利要求8所述的基于无速率编码的SPMA协议优化系统,其特征在于,所述扰码器和编码模块中的扰码器是相同的。9. The SPMA protocol optimization system based on rateless coding according to claim 8, characterized in that, the scrambler in the scrambler and the encoding module is identical.10.根据权利要求6所述的基于无速率编码的SPMA协议优化系统,其特征在于,所述MAC层模块包括封装成帧模块、虚拟侦听模块、队列管理模块、计数器模块、自动发送/接收机和解封装模块;10. the SPMA protocol optimization system based on rateless coding according to claim 6, is characterized in that, described MAC layer module comprises encapsulating framing module, virtual listener module, queue management module, counter module, automatic sending/receiving machine and decapsulation module;所述封装成帧模块接收到应用层发送的数据之后封装成为帧格式;After the encapsulation and framing module receives the data sent by the application layer, it is encapsulated into a frame format;所述虚拟侦听和RTS/CTS模块完成信道接入;The virtual listening and RTS/CTS modules complete channel access;所述队列管理模块管理发送数据和接收数据的缓冲队列;The queue management module manages buffer queues for sending data and receiving data;所述计数器模块生成最大传输次数,提供系统终止条件;The counter module generates the maximum number of transmissions and provides a system termination condition;所述自动发送/接收机是个事件类型循环模块,事件包括收到ACK,超过最大传输次数和收到NAK。The automatic sender/receiver is an event type loop module, and events include receiving ACK, exceeding the maximum number of transmissions and receiving NAK.
CN202211665381.6A2022-12-232022-12-23SPMA protocol optimization method and system based on no-rate codingPendingCN116232542A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202211665381.6ACN116232542A (en)2022-12-232022-12-23SPMA protocol optimization method and system based on no-rate coding

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202211665381.6ACN116232542A (en)2022-12-232022-12-23SPMA protocol optimization method and system based on no-rate coding

Publications (1)

Publication NumberPublication Date
CN116232542Atrue CN116232542A (en)2023-06-06

Family

ID=86588192

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202211665381.6APendingCN116232542A (en)2022-12-232022-12-23SPMA protocol optimization method and system based on no-rate coding

Country Status (1)

CountryLink
CN (1)CN116232542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN119729866A (en)*2024-12-242025-03-28中南大学Data flow analysis, parallel acquisition and storage method in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103701562A (en)*2013-12-102014-04-02桂林电子科技大学Error control protocol in free space optical communication system
CN108513319A (en)*2017-02-282018-09-07华为技术有限公司 Data transmission method and device in wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103701562A (en)*2013-12-102014-04-02桂林电子科技大学Error control protocol in free space optical communication system
CN108513319A (en)*2017-02-282018-09-07华为技术有限公司 Data transmission method and device in wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高向强;刘荣科;刘保国;边红秀;胡应梦;: "一种面向卫星通信的无速率Spinal码通信系统设计", 移动通信, no. 05, 15 May 2019 (2019-05-15), pages 40 - 44*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN119729866A (en)*2024-12-242025-03-28中南大学Data flow analysis, parallel acquisition and storage method in wireless communication system

Similar Documents

PublicationPublication DateTitle
US6977888B1 (en)Hybrid ARQ for packet data transmission
ES2550222T3 (en) Quality of service control for a hybrid ARQ transmission device with a control channel and a data channel for packet data transmission
US8745470B2 (en)Method and system for data transmission in a data network
CN109889308B (en)Hybrid automatic repeat request method for joint polarization coding and decoding in Internet of things
CN103312442A (en)Method and device for transmitting data based on finite-length circular buffer rate matching
JP2022516802A (en) Data retransmission over wireless network
US20050073978A1 (en)Apparatus and method for receiving data through channels in mobile communication system
WO2003007530A2 (en)Method of transmitting data packets
He et al.Reliable cross-technology communication with physical-layer acknowledgement
Dong et al.CARE: Corruption-aware retransmission with adaptive coding for the low-power wireless
CN116232542A (en)SPMA protocol optimization method and system based on no-rate coding
JP2010537506A (en) Apparatus and method for transmitting undecodable packets
US9203441B2 (en)Partial packet recovery in wireless networks
Wang et al.A new HARQ scheme for 5G systems via interleaved superposition retransmission
CN1599308A (en)Method for transmitting data including an error control mechanism designated for unreliable networks and error resilience applications
CN116347510A (en) A Joint Coding Method Based on Physical Layer Cross-Technology Communication
Valenti et al.Custom coding, adaptive rate control, and distributed detection for bluetooth
JP4012543B2 (en) Wireless LAN error control
He et al.I 2 C: Joint Intra-Packet and Inter-Packet Coding for Reliable Cross-Technology Communication
Uchoa et al.Novel hybrid ARQ scheme using LDPC codes and partial retransmissions
Li et al.The truncated transmission of spinal codes with imperfect feedback in block-fading channel
GidlundAn approach for using adaptive error control schemes in wireless LAN with CSMA/CA MAC protocol
Ding et al.Throughput analysis of a hybrid error control with early-stop ARQ scheme for wireless ATM
Nagarajan et al.Analysis of Early-Stop ARQ Protocol with Concatenated
Tian et al.On the Max2-Min network coding for wireless data broadcasting

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp