Movatterモバイル変換


[0]ホーム

URL:


CN116225424A - General model effect display method, device, equipment and storage medium - Google Patents

General model effect display method, device, equipment and storage medium
Download PDF

Info

Publication number
CN116225424A
CN116225424ACN202310185117.0ACN202310185117ACN116225424ACN 116225424 ACN116225424 ACN 116225424ACN 202310185117 ACN202310185117 ACN 202310185117ACN 116225424 ACN116225424 ACN 116225424A
Authority
CN
China
Prior art keywords
model
interface
effect display
model effect
category
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310185117.0A
Other languages
Chinese (zh)
Other versions
CN116225424B (en
Inventor
闫光远
代久龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co LtdfiledCriticalBeijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202310185117.0ApriorityCriticalpatent/CN116225424B/en
Publication of CN116225424ApublicationCriticalpatent/CN116225424A/en
Application grantedgrantedCritical
Publication of CN116225424BpublicationCriticalpatent/CN116225424B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The disclosure provides a general model effect display method, device, equipment and storage medium, relates to the technical field of computers, and particularly relates to the technical field of artificial intelligence. The implementation scheme is as follows: firstly, creating a model effect display service for displaying model effects in an interface of a client, and then acquiring interface parameters of a plurality of classes of artificial intelligent AI models so as to call the corresponding AI models through the interface parameters of the AI models in the subsequent steps; further, aiming at the AI model of each category, configuring the model effect display service according to the interface parameters of the AI model so as to obtain a target model effect display service corresponding to the AI model of each category; and displaying the model effect of the AI model of the corresponding category in the interface of the client based on the content to be identified input by the user through the target model effect display service.

Description

Translated fromChinese
通用的模型效果展示方法、装置、设备及存储介质General model effect display method, device, equipment and storage medium

技术领域technical field

本公开涉及计算机技术领域,尤其涉及人工智能技术领域,具体涉及一种通用的模型效果展示方法、装置、设备及存储介质。The present disclosure relates to the field of computer technology, in particular to the field of artificial intelligence technology, and in particular to a general model effect display method, device, equipment and storage medium.

背景技术Background technique

随着人工智能(Artificial Intelligence,AI)技术的快速发展,AI模型的产品种类、数量也不断丰富和增长。海量的AI模型,需要通过推广、售卖,才能落地到具体的人工智能应用场景中,最终发挥AI模型的价值。而AI模型的推广、售卖,需要通过可视化的展示效果,来直观地展现AI模型的功能和优势。With the rapid development of artificial intelligence (AI) technology, the product types and quantities of AI models are constantly enriched and increased. A large number of AI models need to be promoted and sold before they can be implemented in specific artificial intelligence application scenarios and finally exert the value of AI models. The promotion and sales of AI models need to show the functions and advantages of AI models intuitively through visual display effects.

发明内容Contents of the invention

本公开提供了一种通用的模型效果展示方法、装置、设备及存储介质。The present disclosure provides a general model effect display method, device, equipment and storage medium.

根据本公开的第一方面,提供了一种通用的模型效果展示方法,包括:创建模型效果展示服务,模型效果展示服务用于在客户端的界面中展示模型效果;获取多个类别的人工智能AI模型的接口参数,AI模型的接口参数用于调用AI模型;针对每个类别的AI模型,根据AI模型的接口参数,对模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务;其中,目标模型效果展示服务用于基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。According to the first aspect of the present disclosure, a general model effect display method is provided, including: creating a model effect display service, which is used to display model effects in the client interface; obtaining multiple categories of artificial intelligence AI The interface parameters of the model, the interface parameters of the AI model are used to call the AI model; for each category of AI model, according to the interface parameters of the AI model, configure the model effect display service to obtain the corresponding target of each category of AI model Model effect display service; wherein, the target model effect display service is used to display the model effect of the corresponding category of AI model in the interface of the client based on the content to be recognized input by the user.

根据本公开的第二方面,提供了一种通用的模型效果展示装置,包括:创建单元,用于创建模型效果展示服务,模型效果展示服务用于在客户端的界面中展示模型效果;获取单元,用于获取多个类别的人工智能AI模型的接口参数,AI模型的接口参数用于调用AI模型;处理单元,用于针对每个类别的AI模型,根据AI模型的接口参数,对模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务;其中,目标模型效果展示服务用于基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。According to the second aspect of the present disclosure, there is provided a general model effect display device, including: a creation unit, used to create a model effect display service, and the model effect display service is used to display the model effect in the interface of the client; an acquisition unit, It is used to obtain the interface parameters of multiple categories of artificial intelligence AI models, and the interface parameters of the AI models are used to call the AI models; the processing unit is used to display the model effect according to the interface parameters of the AI models for each category of AI models The service is configured to obtain the target model effect display service corresponding to each category of AI model; wherein, the target model effect display service is used to display the model effect of the corresponding category of AI model in the client interface based on the content to be recognized input by the user .

根据本公开的第三方面,提供了一种电子设备,包括:According to a third aspect of the present disclosure, an electronic device is provided, including:

至少一个处理器;以及at least one processor; and

与至少一个处理器通信连接的存储器;其中,memory communicatively coupled to at least one processor; wherein,

存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行第一方面中的任一项方法。The memory stores instructions executable by at least one processor, and the instructions are executed by at least one processor, so that the at least one processor can perform any one method in the first aspect.

根据本公开的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,包括:According to a fourth aspect of the present disclosure, there is provided a non-transitory computer-readable storage medium storing computer instructions, including:

计算机指令用于使计算机执行第一方面中的任一项方法。Computer instructions for causing a computer to perform any one of the methods in the first aspect.

根据本公开的第五方面,提供了一种计算机程序产品,包括:According to a fifth aspect of the present disclosure, there is provided a computer program product comprising:

计算机程序,计算机程序在被处理器执行第一方面中的任一项方法。A computer program, the computer program executes any one of the methods in the first aspect by a processor.

根据本公开的技术解决了开发不同类别AI模型对应的前端展示界面,开发工作量大、开发效率低、人力成本较高的问题。According to the technology of the present disclosure, the development of front-end display interfaces corresponding to different types of AI models has solved the problems of heavy development workload, low development efficiency, and high labor cost.

应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.

附图说明Description of drawings

附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution, and do not constitute a limitation to the present disclosure. in:

图1是本公开实施例提供的一种通用的模型效果展示方法的流程示意图;FIG. 1 is a schematic flowchart of a general model effect display method provided by an embodiment of the present disclosure;

图2是本公开实施例提供的一种客户端的界面展示实例图;FIG. 2 is an example diagram showing an interface of a client provided by an embodiment of the present disclosure;

图3是本公开实施例提供的另一种客户端的界面展示实例图;FIG. 3 is an example diagram of an interface display of another client provided by an embodiment of the present disclosure;

图4是本公开实施例提供的另一种通用的模型效果展示方法的流程示意图;Fig. 4 is a schematic flowchart of another general model effect display method provided by an embodiment of the present disclosure;

图5是本公开实施例提供的又一种通用的模型效果展示方法的流程示意图;FIG. 5 is a schematic flowchart of another general model effect display method provided by an embodiment of the present disclosure;

图6是本公开实施例提供的又一种通用的模型效果展示方法的流程示意图;FIG. 6 is a schematic flowchart of another general model effect display method provided by an embodiment of the present disclosure;

图7是本公开实施例提供的一种通用的模型效果展示方法对应的实现逻辑示意图;FIG. 7 is a schematic diagram of implementation logic corresponding to a general model effect display method provided by an embodiment of the present disclosure;

图8是本公开实施例提供的一种通用的模型效果展示装置的结构示意图;Fig. 8 is a schematic structural diagram of a general model effect display device provided by an embodiment of the present disclosure;

图9是本公开实施例提供的一种通用的模型效果展示方法的电子设备的框图。FIG. 9 is a block diagram of an electronic device for a general model effect display method provided by an embodiment of the present disclosure.

具体实施方式Detailed ways

以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present disclosure are described below in conjunction with the accompanying drawings, which include various details of the embodiments of the present disclosure to facilitate understanding, and they should be regarded as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the disclosure. Also, descriptions of well-known functions and constructions are omitted in the following description for clarity and conciseness.

本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。In the technical solution of this disclosure, the collection, storage, use, processing, transmission, provision, and disclosure of user personal information involved are all in compliance with relevant laws and regulations, and do not violate public order and good customs.

在对本公开实施例的通用的模型效果展示方法进行详细介绍之前,先对本公开实施例的应用场景进行介绍。Before the general model effect display method of the embodiment of the present disclosure is introduced in detail, the application scenarios of the embodiment of the present disclosure will be introduced first.

首先,对本公开实施例的应用场景进行介绍。First, the application scenarios of the embodiments of the present disclosure are introduced.

AI模型需要通过推广、售卖,才能落地到具体的人工智能应用场景中,最终发挥AI模型的价值。而AI模型的推广、售卖,需要通过可视化的展示效果,来直观地展现AI模型的功能和效果。The AI model needs to be promoted and sold before it can be implemented in specific artificial intelligence application scenarios and finally exert the value of the AI model. The promotion and sales of AI models need to show the functions and effects of AI models intuitively through visual display effects.

由于AI模型种类繁多,具体包括有文本识别模型、语音识别模型、视频识别模型等多种类别,并且不同类别的AI模型的服务接口请求体、返回体格式不统一,其中的动态参数名称、数量、展现方式不一致。这就导致无法用一套前端展示界面,展现各种类别AI模型的效果。Due to the wide variety of AI models, including text recognition models, speech recognition models, video recognition models, etc., and the service interface request body and return body format of different types of AI models are not uniform, the dynamic parameter names, quantities , The display method is inconsistent. This makes it impossible to use a set of front-end display interfaces to show the effects of various types of AI models.

现有的AI模型识别结果的展现方案,是根据不同类别的AI模型,分别进行定制化开发工作,来适配AI模型的个性化接口,最终开发得到每个类别AI模型对应的可视化的展示界面,完成模型效果的展现。具体的需要针对每个类别AI模型的接口对应的个性化特征进行配置,才能开发得到每个类别AI模型对应的可视化的展示界面。The existing AI model recognition result display scheme is to carry out customized development work according to different types of AI models to adapt to the personalized interface of the AI model, and finally develop a visual display interface corresponding to each type of AI model , to complete the display of the model effect. Specifically, it is necessary to configure the personalized features corresponding to the interface of each category of AI model in order to develop a visual display interface corresponding to each category of AI model.

其中,AI模型的接口对应的个性化特征(本公开实施例中称为接口参数)包括有:模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数等。Among them, the personalized features corresponding to the interface of the AI model (referred to as interface parameters in the embodiments of the present disclosure) include: model interface request address, authentication information, request body format type, return body format type, request body template, return body template, request body dynamic parameters, return body dynamic parameters, etc.

由于现有方案需要针对具体的每个类别AI模型,进行接口适配工作的开发,这就导致开发工作量大,人力成本较高。并且,现有方案不仅要进行定制化开发工作,还需要进行测试、验证、部署,耗时较长,导致模型效果展现功能上线缓慢,效率较低。另外,如果AI模型进行迭代升级,接口参数发生变动,会直接在前端展示界面报错,无法正常展现AI模型的识别结果,方案不灵活、适配性较差。Since the existing solution needs to develop the interface adaptation work for each specific category of AI model, this leads to a large amount of development work and high labor costs. Moreover, the existing solutions not only need to carry out customized development work, but also need to carry out testing, verification, and deployment, which takes a long time, resulting in slow launch of the model effect display function and low efficiency. In addition, if the AI model is iteratively upgraded and the interface parameters change, an error will be displayed directly on the front-end interface, and the recognition results of the AI model cannot be displayed normally. The solution is not flexible and adaptable.

为了解决上述问题,本公开实施例提供一种通用的模型效果展示方法,应用于展示不同类别的AI模型的模型效果的应用场景中。在该方法中,首先创建用于在客户端的界面中展示模型效果的模型效果展示服务,然后获取多个类别的AI模型的接口参数,以在后续步骤中通过AI模型的接口参数调用对应的AI模型;进一步的,针对每个类别的AI模型,根据AI模型的接口参数,对模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务;从而通过目标模型效果展示服务,基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。In order to solve the above problems, the embodiments of the present disclosure provide a general model effect display method, which is applied to an application scenario of displaying model effects of different types of AI models. In this method, first create a model effect display service for displaying model effects in the client interface, and then obtain the interface parameters of multiple categories of AI models, so as to call the corresponding AI through the interface parameters of the AI models in subsequent steps model; further, for each category of AI model, configure the model effect display service according to the interface parameters of the AI model, so as to obtain the target model effect display service corresponding to each category of AI model; thus, through the target model effect display The service displays the model effect of the AI model of the corresponding category in the interface of the client based on the content to be recognized input by the user.

可以理解的是,本公开可以基于多个类别的AI模型的接口参数配置预先创建的模型效果展示服务,得到每个类别的AI模型对应的目标模型效果展示服务,以通过每个类别的AI模型对应的目标模型效果展示服务,基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。从而当用户在客户端的界面中输入待识别内容时,可以通过对应类别的AI模型对应的目标模型效果展示服务展示模型效果。通过上述方法,针对不同类别的AI模型,可以基于不同类别的AI模型的接口参数配置预先创建的模型效果展示服务,生成每个类别的AI模型对应的目标模型效果展示服务。而无需根据不同的AI模型,分别进行定制化开发工作,来适配每个类别AI模型的个性化服务接口,以开发得到每个AI模型对应的专属前端展示界面。从而可以提高开发得到不同类别的AI模型对应的专属模型效果展示服务的效率,降低开发工作量。It can be understood that the present disclosure can configure the pre-created model effect display service based on the interface parameters of multiple categories of AI models, and obtain the target model effect display service corresponding to each category of AI model, so as to pass each category of AI model The corresponding target model effect display service displays the model effect of the corresponding category of AI model in the client interface based on the content to be recognized input by the user. Therefore, when the user inputs the content to be recognized in the interface of the client, the model effect can be displayed through the target model effect display service corresponding to the AI model of the corresponding category. Through the above method, for different types of AI models, pre-created model effect display services can be configured based on the interface parameters of different types of AI models, and target model effect display services corresponding to each type of AI model can be generated. It is not necessary to carry out customized development work according to different AI models to adapt the personalized service interface of each category of AI model, so as to develop the exclusive front-end display interface corresponding to each AI model. In this way, the efficiency of developing exclusive model effect display services corresponding to different types of AI models can be improved, and the development workload can be reduced.

本公开提供的通用的模型效果展示方法的执行主体可以为通用的模型效果展示装置,该执行装置可以为服务器。该执行装置还可以为该服务器的中央处理器(CentralProcessing Unit,CPU),或者该服务器中的用于生成目标模型效果展示服务的处理模块。本公开实施例中以服务器执行通用的模型效果展示方法为例,说明本公开实施例提供的通用的模型效果展示方法。The execution subject of the general model effect display method provided in the present disclosure may be a general model effect display device, and the execution device may be a server. The executing device may also be a central processing unit (Central Processing Unit, CPU) of the server, or a processing module in the server for generating the target model effect display service. In the embodiment of the present disclosure, the general model effect display method provided by the embodiment of the present disclosure is described by taking the server executing the general model effect display method as an example.

需要说明的是,本公开实施例对服务器不作限定。本公开实施例中的服务器可以是独立的物理服务器,或者是多个物理服务器构成的服务器集群或者分布式文件系统,或者是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络、以及大数据或者人工智能平台等基本云计算服务的云服务器中的至少一种,本公开实施例对此不加以限定。另外,本公开实施例中的客户端可以安装在电子设备中,该电子设备可以是平板电脑、手机、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本等设备,本公开实施例对该电子设备的具体形态不作特殊限制。It should be noted that, the embodiment of the present disclosure does not limit the server. The server in the embodiment of the present disclosure can be an independent physical server, or a server cluster or a distributed file system composed of multiple physical servers, or provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services At least one of cloud servers for basic cloud computing services such as cloud communication, middleware service, domain name service, security service, content distribution network, and big data or artificial intelligence platform, which is not limited in the embodiments of the present disclosure. In addition, the client in the embodiment of the present disclosure can be installed in an electronic device, and the electronic device can be a tablet computer, a mobile phone, a desktop, a laptop, a handheld computer, a notebook computer, an ultra-mobile personal computer (ultra-mobile personal computer) , UMPC), netbook and other devices, the embodiment of the present disclosure does not make special restrictions on the specific form of the electronic device.

本公开实施例提供的通用的模型效果展示方法,具体包括两个阶段:第一个阶段为配置各类别AI模型对应目标模型效果展示服务的阶段;第二个阶段为展示AI模型效果的阶段。以下通过这两个阶段对本实施例提供的方案进行介绍。The general model effect display method provided by the embodiments of the present disclosure specifically includes two stages: the first stage is the stage of configuring various types of AI models corresponding to the target model effect display service; the second stage is the stage of displaying the AI model effect. The solution provided by this embodiment will be introduced below through these two stages.

如图1所示,为本公开实施例提供的一种通用的模型效果展示方法,具体包括配置各类别AI模型对应目标模型效果展示服务的阶段,即对应上述第一个阶段,该方法可以包括:As shown in Figure 1, a general model effect display method provided by the embodiment of the present disclosure specifically includes the stage of configuring each category of AI model corresponding to the target model effect display service, that is, corresponding to the first stage above, the method may include :

S101、创建模型效果展示服务。S101. Create a model effect display service.

其中,模型效果展示服务用于在客户端的界面中展示模型效果。Wherein, the model effect display service is used to display the model effect in the interface of the client.

本公开实施例中,当需要开发多个类别的AI模型对应的目标模型效果展示服务(或称为专属模型效果展示服务)时,可以预先创建一个通用的模型效果展示服务,以基于多个类别的AI模型中的每个类别的AI模型的接口参数,对预先创建的通用的模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务。In the embodiment of the present disclosure, when it is necessary to develop a target model effect display service corresponding to multiple categories of AI models (or called a dedicated model effect display service), a general model effect display service can be created in advance to The interface parameters of each category of AI model in the AI model, and configure the pre-created general model effect display service to obtain the target model effect display service corresponding to each category of AI model.

可选的,通用的模型效果展示服务为预先构建的基础服务。Optionally, the general model effect display service is a pre-built basic service.

可以理解,预先创建的模型效果展示服务为一个通用服务,开发人员可以通过进一步的配置一些专属参数,得到一个专属模型效果展示服务,从而提高开发效率,降低开发工作量。It can be understood that the pre-created model effect display service is a general service. Developers can further configure some dedicated parameters to obtain a dedicated model effect display service, thereby improving development efficiency and reducing development workload.

S102、获取多个类别的AI模型的接口参数。S102. Acquire interface parameters of multiple categories of AI models.

其中,AI模型的接口参数用于调用AI模型。Among them, the interface parameters of the AI model are used to call the AI model.

在一种可能的实现方式中,可以从存储有多个类别的AI模型的电子设备中,直接获取每个类别的AI模型对应的接口参数,其中,存储不同类别AI模型的接口参数的电子设备可以相同,也可以不同。在另一种可能得实现方式中,也可以在本地预先保存多个类别的AI模型对应的接口参数。本公开对AI模型对应的接口参数的获取方式不做具体限定。In a possible implementation, the interface parameters corresponding to the AI models of each category can be directly obtained from the electronic equipment storing multiple categories of AI models, wherein the electronic equipment storing the interface parameters of different categories of AI models Can be the same or different. In another possible implementation manner, interface parameters corresponding to multiple categories of AI models may also be pre-stored locally. The present disclosure does not specifically limit the manner of obtaining the interface parameters corresponding to the AI model.

可选的,多个类别的AI模型可以包括:图像识别模型、文本识别模型、语音识别模型等,每个类别的AI模型可以包括有多个不同的模型。Optionally, multiple categories of AI models may include: image recognition models, text recognition models, speech recognition models, etc., and each category of AI models may include multiple different models.

在一种可能的实现方式中,接口参数包括以下至少一项:模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数。In a possible implementation, the interface parameters include at least one of the following: model interface request address, authentication information, request body format type, return body format type, request body template, return body template, request body dynamic parameters and Returns the body dynamic parameters.

其中,模型接口请求地址用于调用对应的AI模型,鉴权认证信息用于对基于目标模型效果展示服务生成的请求消息进行鉴权认证;请求体格式类型、请求体模板、请求体动态参数用于生成请求消息;返回体格式类型、返回体模板、返回体动态参数用于从响应消息中确定出待识别内容对应的识别结果。Among them, the model interface request address is used to call the corresponding AI model, and the authentication information is used to authenticate the request message generated based on the target model effect display service; the request body format type, request body template, and request body dynamic parameters are used to It is used to generate a request message; the format type of the return body, the template of the return body, and the dynamic parameters of the return body are used to determine the recognition result corresponding to the content to be recognized from the response message.

S103、针对每个类别的AI模型,根据AI模型的接口参数,对模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务。S103. For each type of AI model, configure the model effect display service according to the interface parameters of the AI model, so as to obtain the target model effect display service corresponding to each type of AI model.

其中,目标模型效果展示服务用于基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。Wherein, the target model effect display service is used to display the model effect of the AI model of the corresponding category in the interface of the client based on the content to be recognized input by the user.

在一种可能的实现方式中,在得到每个类别的AI模型对应的目标模型效果展示服务之后,还可以将每个类别的AI模型对应的目标模型效果展示服务进行发布上线,从而用户可以使用所需的目标模型效果展示服务,以通过所需的目标模型效果展示服务查看对应AI模型的模型效果。In a possible implementation, after obtaining the target model effect display service corresponding to each category of AI model, the target model effect display service corresponding to each category of AI model can also be released online, so that users can use The required target model effect display service is used to view the model effect of the corresponding AI model through the required target model effect display service.

其中,展示不同类别的AI模型的模型效果的界面(即上述客户的界面)可以是不同的。Wherein, the interfaces for displaying model effects of different types of AI models (that is, the interfaces for the above-mentioned customers) may be different.

示例性的,如图2所示,为文本识别模型对应的客户端展示界面,在文本识别模型对应的客户端展示界面中包括:文本输入区域、识别结果显示区域、发起识别请求按钮、格式类型、上限字符数等信息。Exemplarily, as shown in Figure 2, it is the client display interface corresponding to the text recognition model, and the client display interface corresponding to the text recognition model includes: a text input area, a recognition result display area, a button for initiating a recognition request, and a format type , the maximum number of characters and other information.

又示例性的,如图3所示,为图像识别模型对应的客户端展示界面,在图像识别模型对应的客户端展示界面中包括:图像输入区域、识别结果显示区域、发起识别请求按钮(开始分析控件)、图像地址输入区域等信息。Also exemplary, as shown in FIG. 3 , it is the client display interface corresponding to the image recognition model. The client display interface corresponding to the image recognition model includes: an image input area, a recognition result display area, and a button for initiating a recognition request (start Analysis control), image address input area and other information.

在一种可能的实现方式中,在显示任一类别的AI模型对应的客户端展示界面之前,可以显示模型类别选择界面,用户可以在模型类别选择界面中选择所需类别的AI模型,从而触发显示对应的界面(例如显示图2所示的界面或图3所示的界面)。In a possible implementation, before displaying the client display interface corresponding to any category of AI model, the model category selection interface can be displayed, and the user can select the desired category of AI model in the model category selection interface, thereby triggering A corresponding interface is displayed (for example, the interface shown in FIG. 2 or the interface shown in FIG. 3 is displayed).

如图4所示,为本公开实施例提供的另一种通用的模型效果展示方法,具体包括配置各类别AI模型对应目标模型效果展示服务的阶段,即对应上述第一个阶段,该方法可以包括:As shown in Figure 4, another general model effect display method provided by the embodiment of the present disclosure specifically includes the stage of configuring each type of AI model corresponding to the target model effect display service, that is, corresponding to the first stage above, this method can include:

S401、创建模型效果展示服务。S401. Create a model effect display service.

S402、获取多个类别的AI模型的接口参数。S402. Acquire interface parameters of multiple categories of AI models.

需要说明的是,S401的具体描述与S101的具体描述相同,S402中的具体描述与S102相同,此处不在赘述。It should be noted that, the specific description of S401 is the same as that of S101, the specific description of S402 is the same as that of S102, and will not be repeated here.

S403、针对每个类别的AI模型,获取AI模型的接口参数的配置信息。S403. For each type of AI model, acquire configuration information of interface parameters of the AI model.

S404、将接口参数的配置信息配置到模型效果展示服务中,以获得每个类别的AI模型对应的目标模型效果展示服务。S404. Configure the configuration information of the interface parameters in the model effect display service, so as to obtain the target model effect display service corresponding to each category of AI model.

可选的,运维人员可以在模型效果展示服务的配置界面中选择或输入不同类别的AI模型对应的接口参数,以便服务器获得这些接口参数,并根据获得的接口参数获取对应的配置信息,从而使得服务器将对应的接口参数的配置信息配置到模型效果展示服务中。Optionally, operation and maintenance personnel can select or input interface parameters corresponding to different types of AI models in the configuration interface of the model effect display service, so that the server can obtain these interface parameters and obtain corresponding configuration information according to the obtained interface parameters, thereby The server configures the configuration information of the corresponding interface parameters into the model effect display service.

例如,模型效果展示服务可以理解为是一段代码(例如称为代码1),配置信息也可以理解为是一段代码(例如称为代码2,该代码2中包括接口参数),当运维人员在模型效果展示服务的配置界面中选择或输入AI模型对应的接口参数之后,服务器便可获得对应的接口参数,并基于获得的接口参数获取该接口参数的配置信息,并将其配置到模型效果展示服务中。其中,将配置信息配置到模型效果展示服务可以理解为:服务器将代码2(或代码2中的接口参数)嵌套(或修改)至代码1的对应参数中,以建立这两个代码的关系。For example, the model effect display service can be understood as a piece of code (for example, code 1), and configuration information can also be understood as a piece of code (for example, code 2, which includes interface parameters). After selecting or entering the interface parameters corresponding to the AI model in the configuration interface of the model effect display service, the server can obtain the corresponding interface parameters, and obtain the configuration information of the interface parameters based on the obtained interface parameters, and configure them in the model effect display in service. Among them, configuring the configuration information to the model effect display service can be understood as: the server nests (or modifies) Code 2 (or the interface parameters in Code 2) into the corresponding parameters in Code 1 to establish the relationship between the two codes .

具体的,针对不同类别的AI模型,运维人员可以在确定需要配置的模型类别(例如文本识别模型或图像识别模型)之后,即可确定对应的客户端显示界面的样式,进一步的在模型效果展示服务的配置界面中配置对应的接口参数的配置信息。Specifically, for different types of AI models, the operation and maintenance personnel can determine the style of the corresponding client display interface after determining the type of model that needs to be configured (such as a text recognition model or an image recognition model), and further improve the effect of the model. Displays the configuration information of the corresponding interface parameters configured in the configuration interface of the service.

具体的,运维人员可以在模型效果展示服务的配置界面中对应区域输入AI模型对应的接口请求地址。之后,服务器可以获得该接口请求地址,并基于获得的接口请求地址,获取该接口请求地址的配置信息。服务器可以将AI模型对应的接口请求地址的配置信息配置到模型效果展示服务中。Specifically, the operation and maintenance personnel can input the interface request address corresponding to the AI model in the corresponding area of the configuration interface of the model effect display service. Afterwards, the server may obtain the interface request address, and obtain configuration information of the interface request address based on the obtained interface request address. The server can configure the configuration information of the interface request address corresponding to the AI model into the model effect display service.

需要说明的是,AI模型对应的接口请求地址用于调用AI模型,AI模型对应的接口请求地址可以为存储有AI模型的服务器的地址;也可以为本地存储AI模型的存储地址。It should be noted that the interface request address corresponding to the AI model is used to call the AI model, and the interface request address corresponding to the AI model can be the address of the server storing the AI model, or the storage address of the local storage of the AI model.

示例性的,AI模型对应的接口请求地址,可以为一个链接(例如http://***.*.*.*:****/v1/modle/ocr)。运维人员可以在模型效果展示服务的配置界面中对应区域输入http://***.*.*.*:****/v1/modle/ocr。之后,服务器可以获得该接口请求地址:http://***.*.*.*:****/v1/modle/ocr,基于获得的接口请求地址,服务器可以获取其配置信息。服务器可以将获取的接口请求地址的配置信息配置到模型效果展示服务中。Exemplarily, the interface request address corresponding to the AI model may be a link (eg http://***.*.*.*:****/v1/modle/ocr). Operation and maintenance personnel can enter http://***.*.*.*:****/v1/modle/ocr in the corresponding area on the configuration interface of the model effect display service. After that, the server can obtain the interface request address: http://***.*.*.*:****/v1/modle/ocr, based on the obtained interface request address, the server can obtain its configuration information. The server may configure the obtained configuration information of the interface request address into the model effect display service.

其中,当将AI模型对应的接口请求地址的配置信息配置到预先创建的模型效果展示服务中得到目标模型效果展示服务之后,基于目标模型效果展示服务中的该接口请求地址的配置信息便可实现AI模型的调用。Among them, after configuring the configuration information of the interface request address corresponding to the AI model into the pre-created model effect display service to obtain the target model effect display service, the configuration information of the interface request address in the target model effect display service can be realized. AI model call.

具体的,运维人员还可以在模型效果展示服务的配置界面中对应区域输入AI模型对应的鉴权认证信息。服务器可以获得该鉴权认证信息。基于获得的鉴权认证信息,服务器可以获取该鉴权认证信息的配置信息。之后,服务器可以将AI模型对应的鉴权认证信息的配置信息配置到模型效果展示服务中。Specifically, the operation and maintenance personnel can also enter the authentication information corresponding to the AI model in the corresponding area of the configuration interface of the model effect display service. The server can obtain the authentication information. Based on the obtained authentication information, the server may acquire configuration information of the authentication information. Afterwards, the server can configure the configuration information of the authentication information corresponding to the AI model into the model effect display service.

其中,AI模型对应的鉴权认证信息可以从AI模型获取到,鉴权认证信息用于保障AI模型调用的安全性。Among them, the authentication and authentication information corresponding to the AI model can be obtained from the AI model, and the authentication and authentication information is used to ensure the security of calling the AI model.

在一种可能的实现方式中,每个AI模型可以预先设置一个专属的鉴权认证信息。In a possible implementation manner, each AI model may preset a dedicated authentication information.

示例性的,AI模型对应的鉴权认证信息可以为验证码信息。Exemplarily, the authentication information corresponding to the AI model may be verification code information.

鉴权认证信息的配置信息用于在请求调用AI模型的请求消息(还可以称为调用请求)中添加该鉴权认证信息。作为一种示例,鉴权认证信息的配置信息可以用于在生成请求消息时,在请求消息中,如在请求消息的请求头中增加Authorization字段,并在该字段中填充鉴权认证信息(如验证码信息)。从而在基于目标模型效果展示服务调用AI模型时,需要在该鉴权认证信息认证通过后,才能够成功调用AI模型,从而保障AI模型的接口安全性。The configuration information of the authentication information is used to add the authentication information in the request message (also referred to as an invocation request) for invoking the AI model. As an example, the configuration information of the authentication information can be used to add the Authorization field in the request message when generating the request message, such as adding the Authorization field in the request header of the request message, and fill the authentication information in this field (such as verification code information). Therefore, when calling the AI model based on the target model effect display service, the AI model can only be successfully called after the authentication information is authenticated, so as to ensure the interface security of the AI model.

也就是说,当请求消息的请求头中包括的鉴权认证信息正确时,才允许目标模型效果展示服务调用AI模型;当请求消息的请求头中包括的鉴权认证信息不正确、或者请求消息的请求头中不包括的鉴权认证信息时,不允许目标模型效果展示服务调用AI模型。That is to say, when the authentication information included in the request header of the request message is correct, the target model effect is allowed to display the service call AI model; when the authentication information included in the request header of the request message is incorrect, or the request message When the authentication information is not included in the request header, the target model effect display service is not allowed to call the AI model.

具体的,运维人员还可以在模型效果展示服务的配置界面中对应区域配置请求体格式类型和返回体格式类型。之后,服务器可以获得该请求体格式类型和返回体格式类型,并基于获得的请求体格式类型和返回体格式类型,获取对应的配置信息。服务器可以将请求体格式类型和返回体格式类型的配置信息配置到模型效果展示服务中。后续,运维人员可根据请求体格式类型和返回体格式类型配置对应的请求体模板和返回体模板。Specifically, the operation and maintenance personnel can also configure the format type of the request body and the format type of the return body corresponding to the region in the configuration interface of the model effect display service. Afterwards, the server may obtain the request body format type and the return body format type, and obtain corresponding configuration information based on the obtained request body format type and the return body format type. The server can configure the configuration information of the request body format type and the return body format type into the model effect display service. Subsequently, the operation and maintenance personnel can configure the corresponding request body template and return body template according to the request body format type and return body format type.

其中,请求体格式类型和返回体格式类型一致,格式类型为以下任一项:JSON、Text、XML。Wherein, the request body format type is consistent with the return body format type, and the format type is any of the following: JSON, Text, XML.

示例性的,在模型效果展示服务的配置界面中,可以在下拉选项中选择JSON、Text、XML等多种格式类型中的任一种格式类型,以实现请求体格式类型和返回体格式类型的配置。Exemplarily, in the configuration interface of the model effect display service, any format type among JSON, Text, XML and other format types can be selected in the drop-down option to realize the request body format type and the return body format type configuration.

在一种可能的实现方式中,请求体格式类型可以根据待识别内容确定,返回体格式类型可以根据请求体格式类型确定,如两者保持一致。In a possible implementation manner, the format type of the request body may be determined according to the content to be recognized, and the format type of the return body may be determined according to the format type of the request body, if both are consistent.

运维人员还可以根据请求体格式类型和返回体格式类型配置请求体模板和返回体模板。请求体模板与请求体格式类型一致,返回体模板与返回体格式类型一致。The operation and maintenance personnel can also configure the request body template and the return body template according to the request body format type and the return body format type. The request body template is consistent with the request body format type, and the return body template is consistent with the return body format type.

示例性的,以格式类型为JSON为例,运维人员配置的请求体模板可以为:Exemplarily, taking the format type as JSON as an example, the request body template configured by the operation and maintenance personnel can be:

Figure BDA0004104111530000101
Figure BDA0004104111530000101

又示例性的,以格式类型为JSON为例,配置的返回体模板可以为:As another example, taking the format type as JSON as an example, the configured return body template can be:

Figure BDA0004104111530000102
Figure BDA0004104111530000102

在运维人员配置了请求体模板之后,服务器可以获得该请求体模板,并基于获得的请求体模板,获取该请求体模板的配置信息。服务器可以将AI模型对应的请求体模板的配置信息配置到模型效果展示服务中。类似的,在运维人员配置了返回体模板之后,服务器可以获得该返回体模板,并基于获得的返回体模板,获取该返回体模板的配置信息。服务器可以将AI模型对应的返回体模板的配置信息配置到模型效果展示服务中。After the operation and maintenance personnel configure the request body template, the server can obtain the request body template, and obtain configuration information of the request body template based on the obtained request body template. The server can configure the configuration information of the request body template corresponding to the AI model into the model effect display service. Similarly, after the operation and maintenance personnel configure the return body template, the server can obtain the return body template, and obtain configuration information of the return body template based on the obtained return body template. The server can configure the configuration information of the return body template corresponding to the AI model into the model effect display service.

具体的,运维人员还可以在模型效果展示服务的配置界面中对应区域配置请求体动态参数和返回体动态参数。其中,请求体动态参数用于将待识别内容填充到请求体模板中,返回体动态参数用于基于返回体模板,从响应消息中确定待识别内容对应的识别结果。Specifically, the operation and maintenance personnel can also configure the dynamic parameters of the request body and the dynamic parameters of the return body in the corresponding area in the configuration interface of the model effect display service. Among them, the dynamic parameters of the request body are used to fill the content to be recognized into the request body template, and the dynamic parameters of the return body are used to determine the recognition result corresponding to the content to be recognized from the response message based on the return body template.

在运维人员配置了请求体动态参数之后,服务器可以获得该请求体动态参数,并基于获得的请求体动态参数,获取该请求体动态参数的配置信息。服务器可以将AI模型对应的请求体动态参数的配置信息配置到模型效果展示服务中。类似的,在运维人员配置了返回体动态参数之后,服务器可以获得该返回体动态参数,并基于获得的返回体动态参数,获取该返回体动态参数的配置信息。服务器可以将AI模型对应的返回体动态参数的配置信息配置到模型效果展示服务中。其中,请求体动态参数的配置信息用于指示请求体的多层嵌套关系,返回体动态参数的配置信息用于指示返回体的多层嵌套关系。After the operation and maintenance personnel configure the dynamic parameters of the request body, the server can obtain the dynamic parameters of the request body, and obtain configuration information of the dynamic parameters of the request body based on the obtained dynamic parameters of the request body. The server can configure the configuration information of the dynamic parameters of the request body corresponding to the AI model into the model effect display service. Similarly, after the operation and maintenance personnel configure the dynamic parameters of the returned body, the server can obtain the dynamic parameters of the returned body, and obtain configuration information of the dynamic parameters of the returned body based on the obtained dynamic parameters of the returned body. The server can configure the configuration information of the dynamic parameters of the returned body corresponding to the AI model into the model effect display service. The configuration information of the dynamic parameters of the request body is used to indicate the multi-layer nesting relationship of the request body, and the configuration information of the dynamic parameters of the return body is used to indicate the multi-layer nesting relationship of the return body.

其中,请求体动态参数可以是指在AI模型对应的客户端的界面中,输入项的某个字段(或多个字段),比如在上述示例的请求体模板中的name字段中需要填充的字段,这个字段(或多个字段)需要用户在客户端的界面中手动输入。返回体动态参数可以是指AI模型对应的客户端的界面中,显示的识别结果的字段,比如,图2或图3所示的界面中,右侧的某个字段或多个字段。这些识别结果包括在返回体对应的字段中,如上述示例的返回体模板中的shortName字段。Among them, the dynamic parameter of the request body can refer to a certain field (or multiple fields) of the input item in the interface of the client corresponding to the AI model, such as the field that needs to be filled in the name field in the request body template of the above example, This field (or fields) needs to be manually entered by the user in the client interface. The dynamic parameter of the returned body may refer to the field of the recognition result displayed in the interface of the client corresponding to the AI model, for example, in the interface shown in FIG. 2 or FIG. 3 , a certain field or multiple fields on the right side. These recognition results are included in the corresponding fields of the return body, such as the shortName field in the return body template in the above example.

示例性的,以请求体动态参数为请求体模板中的name字段需要填充的字段为例,该请求体动态参数可以是在AI模型对应的客户端的界面中输入的文本内容。配置请求体动态参数这个字段,可以通过“requestBody.name”的方式来配置。即该请求动态参数的配置信息可以为requestBody.name,该配置信息指示对应请求体的多层嵌套关系,具体的为requestBody中的name字段。这样用户在客户端的界面手动输入文字后,基于配置在目标模型效果展示服务的该配置信息,可将用户手动输入的文字填充到请求体模板中,作为name字段的值,并在调用对应的AI模型时,携带这个值。Exemplarily, taking the dynamic parameter of the request body as the field that needs to be filled in the name field in the request body template as an example, the dynamic parameter of the request body may be the text content entered in the interface of the client corresponding to the AI model. Configure the field of request body dynamic parameters, which can be configured through "requestBody.name". That is, the configuration information of the dynamic parameter of the request may be requestBody.name, which indicates the multi-layer nesting relationship of the corresponding request body, specifically the name field in the requestBody. In this way, after the user manually enters text on the client interface, based on the configuration information configured in the target model effect display service, the text manually entered by the user can be filled into the request body template as the value of the name field, and the corresponding AI will be called Model, carry this value.

例如,当用户在客户端界面中输入的文字为“*****健康科技有限公司”时,则基于配置在目标模型效果展示服务的该配置信息requestBody.name,服务器可以将该文字嵌套在请求体模板中的“name”字段中以获得对应请求体,如得到的请求体如下所示:For example, when the text entered by the user on the client interface is "*****Health Technology Co., Ltd.", based on the configuration information requestBody.name configured in the target model effect display service, the server can nest the text Obtain the corresponding request body in the "name" field in the request body template, such as the obtained request body is as follows:

Figure BDA0004104111530000121
Figure BDA0004104111530000121

又示例性的,配置返回体动态参数这个字段,可以用“result.name:企业简称”的方式来配置,即该返回体动态参数的配置信息可以为result.shortname:企业简称,该配置信息指示对应的返回体的多层嵌套关系,具体为:result中的shortname字段。其中冒号后面的文字,表示这个字段在客户端的界面中展示的内容。As another example, configuring the field of the dynamic parameter of the return body can be configured in the form of "result.name: short name of the company", that is, the configuration information of the dynamic parameter of the return body can be result.shortname: short name of the company, and the configuration information indicates The corresponding multi-level nesting relationship of the returned body, specifically: the shortname field in the result. The text after the colon indicates the content of this field displayed in the client interface.

在本公开实施例中,在对模型效果展示服务进行配置时,可以根据任一类别的AI模型的接口参数的配置信息,对模型效果展示服务进行配置,从而可以得到任一类别的AI模型对应的目标模型效果展示服务。即在模型效果展示服务中配置不同类别的AI模型的接口参数的配置信息,可以得到不同类别的AI模型对应的目标模型效果展示服务。从而可以对预先创建的模型效果展示服务进行个性化参数配置,得到所需的目标模型效果展示服务,提高了构建模型效果展示服务的效率。In the embodiment of the present disclosure, when configuring the model effect display service, the model effect display service can be configured according to the configuration information of the interface parameters of any type of AI model, so that the corresponding AI model of any type can be obtained. The target model effect display service. That is, by configuring the interface parameter configuration information of different types of AI models in the model effect display service, the target model effect display service corresponding to different types of AI models can be obtained. Therefore, personalized parameter configuration can be performed on the pre-created model effect display service to obtain the required target model effect display service, which improves the efficiency of constructing the model effect display service.

如图5所示,为本公开实施例提供的一种通用的模型效果展示方法,具体包括展示AI模型效果的阶段,即对应上述第二阶段,该方法可以包括:As shown in Figure 5, a general model effect display method provided by the embodiment of the present disclosure specifically includes the stage of displaying the AI model effect, that is, corresponding to the second stage above, the method may include:

S501、获取用户在客户端的第一界面中输入的待识别内容。S501. Obtain the content to be recognized input by the user on the first interface of the client.

其中,第一界面与第一类别的AI模型对应,第一类别的AI模型包括在多个类别的AI模型中。如,第一界面可以为图2或图3所示的界面。Wherein, the first interface corresponds to the first type of AI model, and the first type of AI model is included in multiple types of AI models. For example, the first interface may be the interface shown in FIG. 2 or FIG. 3 .

可选的,客户端的第一界面中可以包括以下至少一项显示内容:待识别内容输入区域、识别结果显示区域、发起识别请求按钮等。Optionally, the first interface of the client may include at least one of the following display contents: an input area for content to be identified, an area for displaying identification results, a button for initiating an identification request, and the like.

可选的,上述待识别内容可以为以下任一项:文本内容、图像内容、语音内容等。具体的文本内容可以为在输入框中直接输入的字符串,图像内容可以为直接在输入框中输入的图片,或者可以为图像的链接(存储地址)等,语音内容可以为直接在输入框中输入的语音,或者可以为语音的链接(存储地址)等。Optionally, the content to be identified may be any of the following: text content, image content, voice content, and the like. The specific text content can be a character string directly input in the input box, the image content can be a picture directly input in the input box, or it can be a link (storage address) of the image, etc., and the voice content can be directly input in the input box The input voice, or it may be a voice link (storage address) and the like.

不同类别待识别内容基于对应类别的AI模型获得识别结果,展示不同类别的AI模型的客户端的界面可以不同。Different types of content to be recognized obtain recognition results based on corresponding types of AI models, and the interfaces of clients displaying different types of AI models may be different.

在一种可能的实现方式中,在将每个类别的AI模型对应的目标模型效果展示服务进行发布上线之后,用户可以使用任一类别的AI模型对应的目标模型效果展示服务来获得该类别AI模型的展示效果。如,用户可以在该类别的AI模型对应的客户端的界面,如称为第一界面中输入待识别内容。在用户在第一界面中输入待识别内容后,如用户在第一界面中输入待识别内容,并对发起识别请求按钮进行触发之后,便可以从客户端的第一界面中获取用户输入的待识别内容,以进行后续的处理。In a possible implementation, after the target model effect display service corresponding to each category of AI model is released and launched, users can use the target model effect display service corresponding to any category of AI model to obtain the category AI The display effect of the model. For example, the user can input the content to be recognized in the interface of the client corresponding to the AI model of this category, such as the first interface. After the user enters the content to be recognized in the first interface, such as the user enters the content to be recognized in the first interface, and triggers the initiate recognition request button, the user input can be obtained from the first interface of the client. content for further processing.

在一种可能的实现方式中,在获取到待识别内容之后,需要进一步的将待识别内容转换为第一类别的AI模型可读的语言形式(例如机器语言)。In a possible implementation manner, after the content to be recognized is acquired, it is necessary to further convert the content to be recognized into a language form (such as machine language) readable by the AI model of the first category.

S502、基于第一类别的AI模型对应的目标模型效果展示服务,将待识别内容输入第一类别的AI模型,以获得待识别内容对应的识别结果,并展示在客户端的第一界面中。S502. Based on the target model effect display service corresponding to the first type of AI model, input the content to be recognized into the first type of AI model to obtain a recognition result corresponding to the content to be recognized, and display it on the first interface of the client.

在一种可能的实现方式中,可以基于第一类别的AI模型对应的目标模型效果展示服务调用第一类别的AI模型,以通过第一类别的AI模型识别并分析待识别内容,得到待识别内容对应的识别结果。In a possible implementation, based on the target model effect display service corresponding to the first type of AI model, the first type of AI model can be called by the first type of AI model to identify and analyze the content to be identified through the first type of AI model to obtain the The recognition result corresponding to the content.

在一种可能的实现方式中,在得到待识别内容对应的识别结果之后,可以通过第一类别的AI模型对应的目标模型效果展示服务,将待识别内容对应的识别结果发送至客户端的第一界面中并显示,以向用户展示第一类别的AI模型对待识别内容的识别结果,从而用户可以通过客户端界面查看第一类别的AI模型的模型效果。In a possible implementation, after obtaining the recognition result corresponding to the content to be recognized, the recognition result corresponding to the content to be recognized can be sent to the client's first and displayed in the interface, so as to show the user the recognition result of the first category AI model of the content to be recognized, so that the user can check the model effect of the first category AI model through the client interface.

可以理解,在对预先创建的模型效果展示服务进行配置得到目标模型效果展示服务并发布上线之后,用户可以在客户端的界面中输入待识别内容,并通过点击发起识别请求按钮,触发目标模型效果展示服务调用对应的AI模型,识别并分析待识别内容,得到待识别内容对应的识别结果,然后在客户端的界面中展示识别结果,以展示对应AI模型的模型效果。It can be understood that after the pre-created model effect display service is configured to obtain the target model effect display service and released online, the user can input the content to be recognized in the client interface, and trigger the target model effect display by clicking the initiate recognition request button The service invokes the corresponding AI model, identifies and analyzes the content to be recognized, obtains the recognition result corresponding to the content to be recognized, and then displays the recognition result on the client interface to show the model effect of the corresponding AI model.

在本公开实施例中,在用户使用目标模型效果展示服务时,可以获取到用户在与第一类别的AI模型对应的客户端的第一界面中输入的待识别内容,并基于第一类别的AI模型对应的目标模型效果展示服务,将待识别内容输入第一类别的AI模型,以获得待识别内容对应的识别结果,并展示在客户端的第一界面中。当用户使用不同类别的AI模型对应的客户端中的界面时,可以将用户输入的待识别内容输入到界面对应的AI模型中,得到对应的识别结果。从而可以提高展示模型效果的效率。In the embodiment of the present disclosure, when the user uses the target model effect display service, the content to be recognized input by the user in the first interface of the client corresponding to the first type of AI model can be obtained, and based on the first type of AI model The target model effect display service corresponding to the model, input the content to be recognized into the AI model of the first category to obtain the recognition result corresponding to the content to be recognized, and display it on the first interface of the client. When the user uses the interface in the client corresponding to different types of AI models, the content to be recognized input by the user may be input into the AI model corresponding to the interface to obtain a corresponding recognition result. Thereby, the efficiency of displaying the effect of the model can be improved.

如图6所示,为本公开实施例提供的另一种通用的模型效果展示方法,具体包括展示AI模型效果的阶段,即对应上述第二个阶段,该方法可以包括:As shown in Figure 6, another general model effect display method provided by the embodiment of the present disclosure specifically includes the stage of displaying the AI model effect, that is, corresponding to the second stage above, the method may include:

S601、获取用户在客户端的第一界面中输入的待识别内容。S601. Obtain the content to be recognized input by the user on the first interface of the client.

需要说明的是,S601的具体描述与S501相同,此处不在赘述。It should be noted that the specific description of S601 is the same as that of S501 and will not be repeated here.

S602、基于请求体格式类型的配置信息、请求体模板的配置信息、请求体动态参数的配置信息,生成请求消息。S602. Generate a request message based on the configuration information of the request body format type, the configuration information of the request body template, and the configuration information of the request body dynamic parameters.

其中,请求消息中包括待识别内容和鉴权认证信息。Wherein, the request message includes the content to be identified and authentication information.

在一种可能的实现方式中,当获取到客户端的第一界面中输入的待识别内容之后,可以根据请求体格式类型的配置信息、请求体模板的配置信息和请求体动态参数的配置信息,将待识别内容嵌套至对应的请求体模板中,从而生成对应的请求体,或称为请求消息。In a possible implementation, after obtaining the content to be recognized input in the first interface of the client, according to the configuration information of the request body format type, the configuration information of the request body template, and the configuration information of the request body dynamic parameters, Nest the content to be identified into the corresponding request body template to generate the corresponding request body, or request message.

可选的,在生成对应的请求消息之后,目标模型效果展示服务可以通过请求消息请求调用对应类别的AI模型。Optionally, after generating the corresponding request message, the target model effect display service may request to call the AI model of the corresponding category through the request message.

S603、基于鉴权认证信息对请求消息进行鉴权。S603. Authenticate the request message based on the authentication information.

在一种可能的实现方式中,由于请求消息的请求头中添加了对应的鉴权认证信息(具体描述可参见S404中的对应内容),因此可以判断请求消息中携带的鉴权认证信息与AI模型的鉴权认证信息是否一致,以对请求消息进行鉴权,确定访问的合法性。In a possible implementation, since the corresponding authentication information is added to the request header of the request message (for specific description, please refer to the corresponding content in S404), it can be judged that the authentication information carried in the request message is different from the AI Check whether the authentication information of the model is consistent, so as to authenticate the request message and determine the legitimacy of the access.

可选的,当请求消息的请求头中包括的鉴权认证信息通过鉴权时,才允许调用AI模型,否则不允许调用AI模型。Optionally, the AI model is allowed to be called only when the authentication information included in the request header of the request message passes the authentication, otherwise the AI model is not allowed to be called.

S604、在鉴权成功后,基于请求消息和模型接口请求地址的配置信息调用第一类别的AI模型,以将待识别内容输入第一类别的AI模型。S604. After the authentication is successful, invoke the first type of AI model based on the request message and the configuration information of the model interface request address, so as to input the content to be recognized into the first type of AI model.

在一种可能的实现方式中,可以基于模型接口请求地址的配置信息访问第一类别的AI模型,以将请求消息通过模型接口请求地址转发至第一类别的AI模型。In a possible implementation manner, the AI model of the first category may be accessed based on the configuration information of the model interface request address, so as to forward the request message to the AI model of the first category through the model interface request address.

在一种可能的实现方式中,在将请求消息通过模型接口请求地址转发至第一类别的AI模型之后,第一类别的AI模型可以获取请求消息中携带的待识别内容,并对待识别内容进行识别分析处理,得到对应的识别结果。In a possible implementation, after forwarding the request message to the AI model of the first category through the model interface request address, the AI model of the first category can obtain the content to be identified carried in the request message, and perform Recognition, analysis and processing to obtain corresponding recognition results.

在一种可能的实现方式中,在第一类别的AI模型得到待识别内容对应的识别结果之后,可以将识别结果携带在响应消息中,返回给目标模型效果展示服务的服务器。In a possible implementation, after the AI model of the first category obtains the recognition result corresponding to the content to be recognized, the recognition result may be carried in a response message and returned to the server of the target model effect display service.

S605、获取第一类别的AI模型返回的响应消息。S605. Obtain a response message returned by the AI model of the first category.

其中,响应消息包括待识别内容对应的识别结果。Wherein, the response message includes a recognition result corresponding to the content to be recognized.

S606、基于返回体格式类型的配置信息、返回体模板的配置信息、返回体动态参数的配置信息,从响应消息中确定出待识别内容对应的识别结果,并展示在客户端的第一界面中。S606. Determine the recognition result corresponding to the content to be recognized from the response message based on the configuration information of the format type of the returned body, the configuration information of the template of the returned body, and the configuration information of the dynamic parameter of the returned body, and display it on the first interface of the client.

在一种可能的实现方式中,目标模型效果展示服务的服务器接收第一类别的AI模型返回的携带识别结果的响应消息,并基于返回体格式类型的配置信息、返回体模板的配置信息、返回体动态参数的配置信息,从响应消息(也可以称为返回体)中确定出待识别内容对应的识别结果,从而将识别结果展示在客户端的第一界面中。In a possible implementation, the server of the target model effect display service receives the response message carrying the recognition result returned by the AI model of the first category, and based on the configuration information of the returned body format type, the configuration information of the returned body template, the returned The configuration information of the dynamic parameters of the body, and determine the recognition result corresponding to the content to be recognized from the response message (also called the returned body), so as to display the recognition result on the first interface of the client.

在本公开实施例中,当获取到客户端的第一界面中输入的待识别内容之后,可以基于预先配置的请求体格式类型的配置信息、请求体模板的配置信息、请求体动态参数的配置信息,生成携带待识别内容和鉴权认证信息的请求消息,并基于鉴权认证信息对请求消息进行鉴权;以在鉴权成功后,基于请求消息和模型接口请求地址的配置信息调用第一类别的AI模型,从而将待识别内容输入第一类别的AI模型。从而通过第一类别的AI模型对待识别内容进行识别分析,得到对应的识别结果,并接收第一类别的AI模型返回的携带识别结果的响应消息。进一步的可以基于返回体格式类型的配置信息、返回体模板的配置信息、返回体动态参数的配置信息,从响应消息中确定出待识别内容对应的识别结果。上述方法可以根据用户输入的待识别内容的界面,确定需要调用的AI模型,从而可以提高生成待识别内容对应的识别结果的效率。In the embodiment of the present disclosure, after obtaining the content to be recognized input in the first interface of the client, it can be based on the configuration information of the pre-configured request body format type, configuration information of the request body template, and configuration information of the request body dynamic parameters. , generate a request message carrying the content to be identified and authentication information, and authenticate the request message based on the authentication information; after the authentication is successful, call the first category based on the configuration information of the request message and the model interface request address AI model, so that the content to be identified is input into the AI model of the first category. Therefore, the AI model of the first category is used to identify and analyze the content to be identified, obtain the corresponding identification result, and receive the response message carrying the identification result returned by the AI model of the first category. Further, the recognition result corresponding to the content to be recognized can be determined from the response message based on the configuration information of the format type of the returned body, the configuration information of the template of the returned body, and the configuration information of the dynamic parameters of the returned body. The above method can determine the AI model that needs to be invoked according to the interface of the content to be recognized input by the user, thereby improving the efficiency of generating the recognition result corresponding to the content to be recognized.

示例性的,如图7所示,为本公开实施例提供的一种通用的模型效果展示方法对应的实现逻辑示意图,在创建了模型效果展示服务之后,首先需要确定当前需要配置的模型类别,从而基于待配置的模型类别确定客户端的展示界面的展示效果,并通过页面效果配置模块生成对应的前端样式代码(不同类别AI模型对应的前端样式代码不同,界面效果不同)。进一步的,获取任一类别的AI模型的接口参数(即个性化接口参数,包括模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数等),并根据任一类别的AI模型的接口参数的配置信息配置预先创建的模型效果展示服务。具体的,在预先创建的模型效果展示服务中配置接口参数的配置信息之后,服务器可以通过后台配置模块中的接口请求配置模块和结果解析配置模块生成模型接口请求代码,从而得到任一类别的AI模型对应的目标模型效果展示服务。Exemplarily, as shown in FIG. 7 , it is a schematic diagram of an implementation logic corresponding to a general model effect display method provided by an embodiment of the present disclosure. After creating a model effect display service, it is first necessary to determine the model category that needs to be configured currently. Therefore, based on the model category to be configured, the display effect of the display interface of the client is determined, and the corresponding front-end style code is generated through the page effect configuration module (the front-end style code corresponding to different types of AI models is different, and the interface effect is different). Further, obtain the interface parameters of any type of AI model (that is, personalized interface parameters, including model interface request address, authentication information, request body format type, return body format type, request body template, return body template, request Body dynamic parameters and return body dynamic parameters, etc.), and configure the pre-created model effect display service according to the configuration information of the interface parameters of any type of AI model. Specifically, after configuring the configuration information of the interface parameters in the pre-created model effect display service, the server can generate model interface request codes through the interface request configuration module and the result analysis configuration module in the background configuration module, so as to obtain any type of AI The target model effect display service corresponding to the model.

进一步的,当用户需要通过目标模型效果展示服务查看AI模型对待识别内容的识别结果时,用户可以在客户端的界面中输入待识别内容,从而服务器可以通过客户端的界面(即前端样式代码)获取待识别内容,并向目标模型效果展示服务(模型接口请求代码)发起请求,从而基于任一类别的AI模型对应的目标模型效果展示服务,基于请求体格式类型的配置信息、请求体模板的配置信息、请求体动态参数的配置信息,生成请求消息。在通过鉴权认证信息对请求消息进行鉴权成功之后,通过模型接口请求地址的配置信息向AI模型发起调用请求,以将待识别内容输入到AI模型中。AI模型基于待识别内容生成对应的识别结果并向目标模型效果展示服务(模型接口请求代码)返回包括识别结果的响应消息,目标模型效果展示服务基于返回体格式类型的配置信息、返回体模板的配置信息、返回体动态参数的配置信息,再将识别结果从响应消息中解析出来,并发送给前端显示代码,以展示在客户端的界面中供用户查看。Further, when the user needs to view the recognition result of the content to be recognized by the AI model through the target model effect display service, the user can input the content to be recognized in the client interface, so that the server can obtain the to-be-recognized content through the client interface (that is, the front-end style code). Identify the content and initiate a request to the target model effect display service (model interface request code), so as to display the service based on the target model effect corresponding to any type of AI model, based on the configuration information of the request body format type and the configuration information of the request body template , The configuration information of the dynamic parameters of the request body, and generate a request message. After the request message is successfully authenticated through the authentication information, a call request is initiated to the AI model through the configuration information of the model interface request address, so as to input the content to be recognized into the AI model. The AI model generates corresponding recognition results based on the content to be recognized and returns a response message including the recognition results to the target model effect display service (model interface request code). Configuration information, the configuration information of the dynamic parameters of the return body, and then the recognition result is parsed from the response message, and sent to the front-end display code to be displayed on the client interface for users to view.

本公开通过接口请求消息的灵活配置,以及对AI模型请求体、返回体动态参数的分层标记,实现了客户端界面灵活调用各种AI模型的接口,并展现出AI模型的识别结果。这种基于配置、标记的AI模型效果展示方式,节省大量因AI模型接口差异,导致的定制化开发工作,并且极大的缩短了AI模型效果展示服务的上线时间。通过本方法可以满足对不同类别模型的效果展示需求,无需重复开发定制,有效降低模型可视化展示的开发成本。在需要展示大量模型效果的需求场景下,能够提升模型效果展示的发布速度,提升客户的满意度。并且,当模型迭代、变更时,可以直接通过修改配置参数信息进行模型接口的适配,更加灵活高效。Through the flexible configuration of the interface request message and the layered marking of the dynamic parameters of the AI model request body and return body, the disclosure realizes the flexible calling of various AI model interfaces on the client interface, and displays the recognition results of the AI models. This method of displaying AI model effects based on configuration and marking saves a lot of customized development work caused by differences in AI model interfaces, and greatly shortens the launch time of AI model effect display services. This method can meet the effect display requirements for different types of models, without repeated development and customization, and effectively reduces the development cost of model visual display. In the demand scenario where a large number of model effects need to be displayed, it can increase the release speed of model effect display and improve customer satisfaction. Moreover, when the model is iterated and changed, the model interface can be adapted directly by modifying the configuration parameter information, which is more flexible and efficient.

基于上述技术方案,本公开可以基于多个类别的人工智能AI模型的接口参数配置预先创建的模型效果展示服务,得到每个类别的AI模型对应的目标模型效果展示服务,以通过每个类别的AI模型对应的目标模型效果展示服务,基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。从而当用户在客户端的界面中输入待识别内容时,可以通过对应类别的AI模型对应的目标模型效果展示服务展示模型效果。通过上述方法,针对不同类别的AI模型,可以基于不同类别的AI模型的接口参数配置预先创建的模型效果展示服务,生成每个类别的AI模型对应的目标模型效果展示服务。而无需根据不同的AI模型,分别进行定制化开发工作,来适配每个AI模型的个性化服务接口,以开发得到每个AI模型对应的专属前端展示界面,才能展示每个AI模型的模型效果。从而可以提高开发得到不同类别的AI模型对应的专属模型效果展示服务的效率,降低开发工作量。Based on the above technical solution, this disclosure can configure the pre-created model effect display service based on the interface parameters of multiple categories of artificial intelligence AI models, and obtain the target model effect display service corresponding to each category of AI model, so as to pass each category The target model effect display service corresponding to the AI model displays the model effect of the corresponding category of AI model in the client interface based on the content to be recognized input by the user. Therefore, when the user inputs the content to be recognized in the interface of the client, the model effect can be displayed through the target model effect display service corresponding to the AI model of the corresponding category. Through the above method, for different types of AI models, pre-created model effect display services can be configured based on the interface parameters of different types of AI models, and target model effect display services corresponding to each type of AI model can be generated. It is not necessary to carry out customized development work according to different AI models to adapt the personalized service interface of each AI model, so as to develop the exclusive front-end display interface corresponding to each AI model, in order to display the model of each AI model Effect. In this way, the efficiency of developing exclusive model effect display services corresponding to different types of AI models can be improved, and the development workload can be reduced.

上述主要从计算机设备的角度对本公开实施例提供的方案进行了介绍。可以理解的是,计算机设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本公开所公开的实施例描述的各示例的通用的模型效果展示方法步骤,本公开能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。The foregoing mainly introduces the solutions provided by the embodiments of the present disclosure from the perspective of computer equipment. It can be understood that, in order to realize the above-mentioned functions, the computer device includes hardware structures and/or software modules corresponding to each function. Those skilled in the art should easily realize that the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software in combination with the general model effect demonstration method steps of the examples described in the embodiments disclosed in the present disclosure. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementation should not be considered beyond the scope of the present disclosure.

本公开实施例可以根据上述方法示例对通用的模型效果展示方式进行功能模块或者功能单元的划分,例如,可以对应各个功能划分各个功能模块或者功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块或者功能单元的形式实现。其中,本公开实施例中对模块或者单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。The embodiments of the present disclosure can divide the general model effect display method into functional modules or functional units according to the above method examples. For example, each functional module or functional unit can be divided corresponding to each function, or two or more functions can be divided into integrated in one processing module. The above-mentioned integrated modules can be implemented not only in the form of hardware, but also in the form of software function modules or functional units. Wherein, the division of modules or units in the embodiments of the present disclosure is schematic, and is only a logical function division, and there may be another division manner in actual implementation.

如图8所示,为本公开实施例提供的一种通用的模型效果展示装置的结构示意图。通用的模型效果展示装置可以包括:创建单元801、获取单元802和处理单元803。As shown in FIG. 8 , it is a schematic structural diagram of a general model effect display device provided by an embodiment of the present disclosure. A general model effect display device may include: acreation unit 801 , anacquisition unit 802 and aprocessing unit 803 .

创建单元801,用于创建模型效果展示服务,模型效果展示服务用于在客户端的界面中展示模型效果;获取单元802,用于获取多个类别的人工智能AI模型的接口参数,AI模型的接口参数用于调用AI模型;处理单元803,用于针对每个类别的AI模型,根据AI模型的接口参数,对模型效果展示服务进行配置,以获得每个类别的AI模型对应的目标模型效果展示服务;其中,目标模型效果展示服务用于基于用户输入的待识别内容在客户端的界面中展示对应类别的AI模型的模型效果。Thecreation unit 801 is used to create a model effect display service, and the model effect display service is used to display the model effect in the interface of the client; theacquisition unit 802 is used to obtain the interface parameters of multiple categories of artificial intelligence AI models, the interface of the AI model The parameters are used to call the AI model; theprocessing unit 803 is configured to configure the model effect display service for each category of AI model according to the interface parameters of the AI model, so as to obtain the target model effect display corresponding to each category of AI model service; wherein, the target model effect display service is used to display the model effect of the corresponding category of AI model in the interface of the client based on the content to be recognized input by the user.

可选的,展示不同类别的AI模型的模型效果的界面不同。Optionally, the interfaces for displaying model effects of different types of AI models are different.

可选的,获取单元802,还用于获取接口参数的配置信息;处理单元803,还用于将接口参数的配置信息配置到模型效果展示服务中。Optionally, the acquiringunit 802 is further configured to acquire configuration information of interface parameters; theprocessing unit 803 is further configured to configure the configuration information of interface parameters into the model effect display service.

可选的,获取单元802,还用于获取用户在客户端的第一界面中输入的待识别内容,第一界面与第一类别的AI模型对应,第一类别的AI模型包括在多个类别的AI模型中;处理单元803,还用于基于第一类别的AI模型对应的目标模型效果展示服务,将待识别内容输入第一类别的AI模型,以获得待识别内容对应的识别结果,并展示在客户端的第一界面中。Optionally, the acquiringunit 802 is also configured to acquire the content to be recognized input by the user in the first interface of the client, the first interface corresponds to the first category of AI models, and the first category of AI models includes multiple categories of AI models In the AI model; theprocessing unit 803 is also used to display the target model effect based on the first type of AI model, input the content to be recognized into the first type of AI model, to obtain the recognition result corresponding to the content to be recognized, and display In the first interface of the client.

可选的,接口参数包括以下至少一项:模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数。Optionally, the interface parameters include at least one of the following: model interface request address, authentication information, request body format type, return body format type, request body template, return body template, request body dynamic parameters, and return body dynamic parameters.

可选的,处理单元803,还用于基于请求体格式类型的配置信息、请求体模板的配置信息、请求体动态参数的配置信息,生成请求消息,请求消息中包括待识别内容和鉴权认证信息;处理单元803,还用于基于鉴权认证信息对请求消息进行鉴权;处理单元803,还用于在鉴权成功后,基于请求消息和模型接口请求地址的配置信息调用第一类别的AI模型,以将待识别内容输入第一类别的AI模型;获取单元802,还用于获取第一类别的AI模型返回的响应消息,响应消息包括待识别内容对应的识别结果;处理单元803,还用于基于返回体格式类型的配置信息、返回体模板的配置信息、返回体动态参数的配置信息,从响应消息中确定出待识别内容对应的识别结果。Optionally, theprocessing unit 803 is further configured to generate a request message based on the configuration information of the format type of the request body, the configuration information of the request body template, and the configuration information of the dynamic parameters of the request body, and the request message includes the content to be identified and the authentication authentication information; theprocessing unit 803 is also used to authenticate the request message based on the authentication information; theprocessing unit 803 is also used to call the first category based on the configuration information of the request message and the model interface request address after the authentication is successful The AI model is used to input the content to be recognized into the AI model of the first category; the obtainingunit 802 is also used to obtain the response message returned by the AI model of the first category, and the response message includes the recognition result corresponding to the content to be recognized; theprocessing unit 803, It is also used to determine the recognition result corresponding to the content to be recognized from the response message based on the configuration information of the format type of the returned body, the configuration information of the template of the returned body, and the configuration information of the dynamic parameters of the returned body.

根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to the embodiments of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.

图9示出了可以用来实施本公开的实施例的示例电子设备900的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG. 9 shows a schematic block diagram of an exampleelectronic device 900 that may be used to implement embodiments of the present disclosure. Electronic device is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular telephones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions, are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.

如图9所示,电子设备900包括计算单元901,其可以根据存储在只读存储器(ROM)902中的计算机程序或者从存储单元908加载到随机访问存储器(RAM)903中的计算机程序,来执行各种适当的动作和处理。在RAM 903中,还可存储电子设备900操作所需的各种程序和数据。计算单元901、ROM 902以及RAM903通过总线904彼此相连。输入/输出(I/O)接口905也连接至总线904。As shown in FIG. 9 , anelectronic device 900 includes acomputing unit 901, which can perform calculations according to a computer program stored in a read-only memory (ROM) 902 or a computer program loaded from astorage unit 908 into a random access memory (RAM) 903. Various appropriate actions and processes are performed. In theRAM 903, various programs and data necessary for the operation of theelectronic device 900 can also be stored. Thecomputing unit 901 ,ROM 902 , andRAM 903 are connected to each other through abus 904 . An input/output (I/O)interface 905 is also connected to thebus 904 .

电子设备900中的多个部件连接至I/O接口905,包括:输入单元906,例如键盘、鼠标等;输出单元907,例如各种类型的显示器、扬声器等;存储单元908,例如磁盘、光盘等;以及通信单元909,例如网卡、调制解调器、无线通信收发机等。通信单元909允许电子设备900通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in theelectronic device 900 are connected to the I/O interface 905, including: aninput unit 906, such as a keyboard, a mouse, etc.; anoutput unit 907, such as various types of displays, speakers, etc.; astorage unit 908, such as a magnetic disk, an optical disk etc.; and acommunication unit 909, such as a network card, a modem, a wireless communication transceiver, and the like. Thecommunication unit 909 allows theelectronic device 900 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.

计算单元901可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元901的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元901执行上文所描述的各个方法和处理,例如通用的模型效果展示方法。例如,在一些实施例中,通用的模型效果展示方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元908。在一些实施例中,计算机程序的部分或者全部可以经由ROM 902和/或通信单元909而被载入和/或安装到电子设备900上。当计算机程序加载到RAM 903并由计算单元901执行时,可以执行上文描述的通用的模型效果展示方法的一个或多个步骤。备选地,在其他实施例中,计算单元901可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行通用的模型效果展示方法。Thecomputing unit 901 may be various general-purpose and/or special-purpose processing components having processing and computing capabilities. Some examples of computingunits 901 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc. Thecalculation unit 901 executes various methods and processes described above, such as a general model effect display method. For example, in some embodiments, the general model effect presentation method may be implemented as a computer software program tangibly embodied in a machine-readable medium, such asstorage unit 908 . In some embodiments, part or all of the computer program may be loaded and/or installed on theelectronic device 900 via theROM 902 and/or thecommunication unit 909 . When the computer program is loaded into theRAM 903 and executed by thecomputing unit 901, one or more steps of the general model effect display method described above can be executed. Alternatively, in other embodiments, thecalculation unit 901 may be configured in any other appropriate way (for example, by means of firmware) to execute a general model effect presentation method.

本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), complex programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.

用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented. The program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.

在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide for interaction with the user, the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system may include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, a server of a distributed system, or a server combined with a blockchain.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The specific implementation manners described above do not limit the protection scope of the present disclosure. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present disclosure shall be included within the protection scope of the present disclosure.

Claims (15)

Translated fromChinese
1.一种通用的模型效果展示方法,包括:1. A general model effect display method, including:创建模型效果展示服务,所述模型效果展示服务用于在客户端的界面中展示模型效果;Create a model effect display service, the model effect display service is used to display the model effect in the interface of the client;获取多个类别的人工智能AI模型的接口参数,所述AI模型的接口参数用于调用所述AI模型;Obtaining interface parameters of artificial intelligence AI models of multiple categories, the interface parameters of the AI models are used to call the AI models;针对每个类别的AI模型,根据所述AI模型的接口参数,对所述模型效果展示服务进行配置,以获得所述每个类别的AI模型对应的目标模型效果展示服务;其中,所述目标模型效果展示服务用于基于用户输入的待识别内容在所述客户端的界面中展示对应类别的AI模型的模型效果。For each category of AI model, configure the model effect display service according to the interface parameters of the AI model, so as to obtain the target model effect display service corresponding to the AI model of each category; wherein, the target The model effect display service is used to display the model effect of the corresponding type of AI model in the interface of the client based on the content to be recognized input by the user.2.根据权利要求1所述的方法,其中,展示不同类别的AI模型的模型效果的界面不同。2. The method according to claim 1, wherein the interfaces for displaying model effects of different types of AI models are different.3.根据权利要求1或2所述的方法,其中,根据所述AI模型的接口参数,对所述模型效果展示服务进行配置,包括:3. The method according to claim 1 or 2, wherein, according to the interface parameters of the AI model, configuring the model effect display service includes:获取所述接口参数的配置信息;Obtain configuration information of the interface parameters;将所述接口参数的配置信息配置到所述模型效果展示服务中。Configuring the configuration information of the interface parameters into the model effect display service.4.根据权利要求2或3所述的方法,其中,所述方法还包括:4. The method according to claim 2 or 3, wherein the method further comprises:获取用户在所述客户端的第一界面中输入的待识别内容,所述第一界面与第一类别的AI模型对应,所述第一类别的AI模型包括在所述多个类别的AI模型中;Acquiring the content to be recognized input by the user in the first interface of the client, the first interface corresponding to the first category of AI models, the first category of AI models included in the plurality of categories of AI models ;基于所述第一类别的AI模型对应的目标模型效果展示服务,将所述待识别内容输入所述第一类别的AI模型,以获得所述待识别内容对应的识别结果,并展示在所述客户端的第一界面中。Based on the target model effect display service corresponding to the AI model of the first category, input the content to be recognized into the AI model of the first category to obtain the recognition result corresponding to the content to be recognized, and display it on the In the first interface of the client.5.根据权利要求1-4中任一项所述的方法,其中,所述接口参数包括以下至少一项:模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数。5. The method according to any one of claims 1-4, wherein the interface parameters include at least one of the following: model interface request address, authentication information, request body format type, return body format type, request body template, return body template, request body dynamic parameters and return body dynamic parameters.6.根据权利要求5所述的方法,其中,基于所述第一类别的AI模型对应的目标模型效果展示服务,将所述待识别内容输入所述第一类别的AI模型,以获得所述待识别内容对应的识别结果,包括:6. The method according to claim 5, wherein, based on the target model effect display service corresponding to the AI model of the first category, the content to be identified is input into the AI model of the first category to obtain the The recognition results corresponding to the content to be recognized, including:基于所述请求体格式类型的配置信息、所述请求体模板的配置信息、所述请求体动态参数的配置信息,生成请求消息,所述请求消息中包括所述待识别内容和所述鉴权认证信息;Generate a request message based on the configuration information of the request body format type, the configuration information of the request body template, and the configuration information of the request body dynamic parameters, and the request message includes the content to be identified and the authentication Certification Information;基于所述鉴权认证信息对所述请求消息进行鉴权;Authenticating the request message based on the authentication information;在鉴权成功后,基于所述请求消息和所述模型接口请求地址的配置信息调用所述第一类别的AI模型,以将所述待识别内容输入所述第一类别的AI模型;After the authentication is successful, based on the configuration information of the request message and the model interface request address, the AI model of the first category is invoked, so as to input the content to be recognized into the AI model of the first category;获取所述第一类别的AI模型返回的响应消息,所述响应消息包括所述待识别内容对应的识别结果;Obtain a response message returned by the AI model of the first category, where the response message includes a recognition result corresponding to the content to be recognized;基于所述返回体格式类型的配置信息、所述返回体模板的配置信息、所述返回体动态参数的配置信息,从所述响应消息中确定出所述待识别内容对应的识别结果。Based on the configuration information of the format type of the return body, the configuration information of the template of the return body, and the configuration information of the dynamic parameters of the return body, the recognition result corresponding to the content to be recognized is determined from the response message.7.一种通用的模型效果展示装置,包括:7. A general model effect display device, including:创建单元,用于创建模型效果展示服务,所述模型效果展示服务用于在客户端的界面中展示模型效果;The creation unit is used to create a model effect display service, and the model effect display service is used to display the model effect in the interface of the client;获取单元,用于获取多个类别的人工智能AI模型的接口参数,所述AI模型的接口参数用于调用所述AI模型;An acquisition unit, configured to acquire interface parameters of multiple categories of artificial intelligence AI models, where the interface parameters of the AI models are used to call the AI models;处理单元,用于针对每个类别的AI模型,根据所述AI模型的接口参数,对所述模型效果展示服务进行配置,以获得所述每个类别的AI模型对应的目标模型效果展示服务;其中,所述目标模型效果展示服务用于基于用户输入的待识别内容在所述客户端的界面中展示对应类别的AI模型的模型效果。The processing unit is configured to configure the model effect display service for each category of AI model according to the interface parameters of the AI model, so as to obtain the target model effect display service corresponding to the AI model of each category; Wherein, the target model effect display service is used to display the model effect of the corresponding type of AI model in the interface of the client based on the content to be recognized input by the user.8.根据权利要求7所述的通用的模型效果展示装置,其中,展示不同类别的AI模型的模型效果的界面不同。8. The universal model effect display device according to claim 7, wherein the interfaces for displaying model effects of different types of AI models are different.9.根据权利要求7或8所述的通用的模型效果展示装置,其中,9. The universal model effect display device according to claim 7 or 8, wherein,所述获取单元,还用于获取所述接口参数的配置信息;The acquiring unit is further configured to acquire configuration information of the interface parameters;所述处理单元,还用于将所述接口参数的配置信息配置到所述模型效果展示服务中。The processing unit is further configured to configure the configuration information of the interface parameters into the model effect display service.10.根据权利要求8或9所述的通用的模型效果展示装置,其中,10. The universal model effect display device according to claim 8 or 9, wherein,所述获取单元,还用于获取用户在所述客户端的第一界面中输入的待识别内容,所述第一界面与第一类别的AI模型对应,所述第一类别的AI模型包括在所述多个类别的AI模型中;The obtaining unit is further configured to obtain the content to be recognized input by the user in the first interface of the client, the first interface corresponds to the first type of AI model, and the first type of AI model is included in the Among the AI models of multiple categories mentioned above;所述处理单元,还用于基于所述第一类别的AI模型对应的目标模型效果展示服务,将所述待识别内容输入所述第一类别的AI模型,以获得所述待识别内容对应的识别结果,并展示在所述客户端的第一界面中。The processing unit is further configured to input the content to be identified into the AI model of the first type based on the target model effect display service corresponding to the AI model of the first category, so as to obtain the content corresponding to the content to be identified. The recognition result is displayed on the first interface of the client.11.根据权利要求7-10中任一项所述的通用的模型效果展示装置,其中,所述接口参数包括以下至少一项:模型接口请求地址、鉴权认证信息、请求体格式类型、返回体格式类型、请求体模板、返回体模板、请求体动态参数和返回体动态参数。11. The universal model effect display device according to any one of claims 7-10, wherein the interface parameters include at least one of the following: model interface request address, authentication information, request body format type, return Body format type, request body template, return body template, request body dynamic parameters and return body dynamic parameters.12.根据权利要求11所述的通用的模型效果展示装置,其中,12. The universal model effect display device according to claim 11, wherein,所述处理单元,还用于基于所述请求体格式类型的配置信息、所述请求体模板的配置信息、所述请求体动态参数的配置信息,生成请求消息,所述请求消息中包括所述待识别内容和所述鉴权认证信息;The processing unit is further configured to generate a request message based on the configuration information of the request body format type, the configuration information of the request body template, and the configuration information of the request body dynamic parameters, and the request message includes the The content to be identified and the authentication information;所述处理单元,还用于基于所述鉴权认证信息对所述请求消息进行鉴权;The processing unit is further configured to authenticate the request message based on the authentication information;所述处理单元,还用于在鉴权成功后,基于所述请求消息和所述模型接口请求地址的配置信息调用所述第一类别的AI模型,以将所述待识别内容输入所述第一类别的AI模型;The processing unit is further configured to call the AI model of the first category based on the configuration information of the request message and the model interface request address after the authentication is successful, so as to input the content to be recognized into the second A category of AI models;所述获取单元,还用于获取所述第一类别的AI模型返回的响应消息,所述响应消息包括所述待识别内容对应的识别结果;The obtaining unit is further configured to obtain a response message returned by the AI model of the first category, the response message including the recognition result corresponding to the content to be recognized;所述处理单元,还用于基于所述返回体格式类型的配置信息、所述返回体模板的配置信息、所述返回体动态参数的配置信息,从所述响应消息中确定出所述待识别内容对应的识别结果。The processing unit is further configured to determine, from the response message, the to-be-identified The recognition result corresponding to the content.13.一种电子设备,包括:13. An electronic device comprising:至少一个处理器;以及at least one processor; and与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-6中任一项所述的方法。The memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can perform any one of claims 1-6. Methods.14.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-6中任一项所述的方法。14. A non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the method according to any one of claims 1-6.15.一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-6中任一项所述的方法。15. A computer program product comprising a computer program which, when executed by a processor, implements the method according to any one of claims 1-6.
CN202310185117.0A2023-02-242023-02-24Universal model effect display method, device, equipment and storage mediumActiveCN116225424B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202310185117.0ACN116225424B (en)2023-02-242023-02-24Universal model effect display method, device, equipment and storage medium

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202310185117.0ACN116225424B (en)2023-02-242023-02-24Universal model effect display method, device, equipment and storage medium

Publications (2)

Publication NumberPublication Date
CN116225424Atrue CN116225424A (en)2023-06-06
CN116225424B CN116225424B (en)2025-08-19

Family

ID=86572755

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202310185117.0AActiveCN116225424B (en)2023-02-242023-02-24Universal model effect display method, device, equipment and storage medium

Country Status (1)

CountryLink
CN (1)CN116225424B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN117033959A (en)*2023-08-102023-11-10达观数据有限公司Intelligent auxiliary method, device, equipment and medium based on large-model AI service
CN119002980A (en)*2023-11-202024-11-22北京字跳网络技术有限公司Method, apparatus, device and storage medium for model configuration

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10282241B1 (en)*2017-07-192019-05-07Vinyl Development LLCData driven API conversion
CN111369011A (en)*2020-04-162020-07-03光际科技(上海)有限公司Method and device for applying machine learning model, computer equipment and storage medium
WO2021258986A1 (en)*2020-06-232021-12-30华为技术有限公司Data processing method and device
CN114327718A (en)*2021-12-272022-04-12北京百度网讯科技有限公司 Interface display method and device, device and medium
CN114492764A (en)*2022-02-212022-05-13深圳市商汤科技有限公司Artificial intelligence model testing method and device, electronic equipment and storage medium
CN114492448A (en)*2021-12-162022-05-13航天信息股份有限公司 A method and system for determining an intelligent semantic analysis model

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10282241B1 (en)*2017-07-192019-05-07Vinyl Development LLCData driven API conversion
CN111369011A (en)*2020-04-162020-07-03光际科技(上海)有限公司Method and device for applying machine learning model, computer equipment and storage medium
WO2021258986A1 (en)*2020-06-232021-12-30华为技术有限公司Data processing method and device
CN114492448A (en)*2021-12-162022-05-13航天信息股份有限公司 A method and system for determining an intelligent semantic analysis model
CN114327718A (en)*2021-12-272022-04-12北京百度网讯科技有限公司 Interface display method and device, device and medium
CN114492764A (en)*2022-02-212022-05-13深圳市商汤科技有限公司Artificial intelligence model testing method and device, electronic equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯金奎;张玉艳;万建成;李晓龙;: "一种支持模型驱动开发的Web用户界面建模方法", 计算机应用, no. 06, 10 June 2006 (2006-06-10)*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN117033959A (en)*2023-08-102023-11-10达观数据有限公司Intelligent auxiliary method, device, equipment and medium based on large-model AI service
CN119002980A (en)*2023-11-202024-11-22北京字跳网络技术有限公司Method, apparatus, device and storage medium for model configuration
WO2025108124A1 (en)*2023-11-202025-05-30北京字跳网络技术有限公司Method and apparatus for model configuration, device, and storage medium
CN119002980B (en)*2023-11-202025-06-13北京字跳网络技术有限公司 Method, device, equipment and storage medium for model configuration

Also Published As

Publication numberPublication date
CN116225424B (en)2025-08-19

Similar Documents

PublicationPublication DateTitle
US20210304075A1 (en)Batching techniques for handling unbalanced training data for a chatbot
CN115423070A (en)Directed acyclic graph-based framework for training models
US11989523B2 (en)Composite entity for rule driven acquisition of input data to chatbots
JP2024503517A (en) Multifactor modeling for natural language processing
WO2017162024A1 (en)Method of developing component and template using visual expression, storage medium, and apparatus
WO2023279963A1 (en)Neural network training method and apparatus, and computer device, storage medium and program
JP7692482B2 (en) Method and system for overprediction in neural networks
CN116225424A (en) General model effect display method, device, equipment and storage medium
US12112560B2 (en)Usage based resource utilization of training pool for chatbots
CN112487790B (en)Improved semantic resolvers including coarse semantic resolvers and fine semantic resolvers
US20240338306A1 (en)Automatic generation of test scenarios from specification files
JP2024540111A (en) Deep Learning Techniques for Extracting Embedded Data from Documents
CN108073429A (en)A kind of means of payment collocation method, device, equipment and storage medium
US20250094725A1 (en)Digital assistant using generative artificial intelligence
WO2023142451A1 (en)Workflow generation methods and apparatuses, and electronic device
CN118215920A (en)Wide and deep networks for language detection using hash embedding
CN115374063A (en)File processing method, device, equipment and storage medium
CN115033233A (en)Interface calling method and device, electronic equipment and storage medium
CN114676786A (en) Annotation template generation method, data annotation method and device
US12412043B2 (en)Rule-based techniques for extraction of question and answer pairs from data
CN117667038A (en) Code generation method, device, equipment and storage medium
CN113542429B (en)Platform residence processing method, device, equipment and medium
WO2023169193A1 (en)Method and device for generating smart contract
CN112560462B (en) Generation method, device, server and medium of event extraction service
CN113157360B (en) Methods, apparatus, equipment, media and products for processing APIs

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp