









技术领域technical field
本发明涉及减振结构的技术领域,尤其涉及一种基于能带折叠的声子晶体夹芯梁结构。The invention relates to the technical field of vibration damping structures, in particular to a phononic crystal sandwich beam structure based on energy band folding.
背景技术Background technique
在建筑工程领域中,抑制有害振动和噪声是亟待解决的问题。目前对于抑制振动与噪声的研究方法有四种,分别是主动控制技术、被动控制技术、半主动控制技术及混合控制技术。主动控制技术需要外部能源,整个系统的能耗较大,且复杂成本高可靠性差;被动控制技术局限在于其对低频减振的效果不理想,不能灵活调整频率范围等,尤其是对于大面积板壳结构而言;半主动控制作为复合系统依然存在稳定性和成本问题,并不成熟。综上,不断研究新的减振降噪方法仍然是领域内的热点。In the field of construction engineering, suppressing harmful vibration and noise is an urgent problem to be solved. At present, there are four research methods for suppressing vibration and noise, which are active control technology, passive control technology, semi-active control technology and hybrid control technology. Active control technology requires external energy, the energy consumption of the whole system is large, and the complexity is high and the reliability is poor; the limitation of passive control technology is that its effect on low-frequency vibration reduction is not ideal, and the frequency range cannot be flexibly adjusted, especially for large-area panels. As far as the shell structure is concerned, semi-active control still has stability and cost problems as a composite system, and it is not yet mature. In summary, continuous research on new vibration and noise reduction methods is still a hot spot in the field.
声学超材料作为超材料在弹性力学范畴的分支具有的低频带隙的力学特性为减振降噪提供了新思路,成为减振降噪领域的研究前沿。声子晶体成为众多学者的研究对象,弹性波在声子晶体中传播时,受其内部周期结构的作用,形成特殊的色散关系曲线,将色散关系曲线之间的频率范围称为带隙或禁带。当弹性波作用在声子晶体结构中时,其内部的基体正常传递,但是散射体使入射的弹性波在周期性边界上来回反射,这些散射会互相干涉导致自我加强或相互抵消,如果波长恰好和散射体尺寸相等,就会出现完全抵消的情况,所以周期结构就会在任何方向上完全抑制某些频率的弹性波产生声学绝对带隙,这种散射特性被称为布拉格散射机理。后续又提出了局域共振型声子晶体,带隙的产生机理为局域共振机理,即当某些特定频率的弹性波在引起散射体的局域共振效应的同时与基体中的长波发生耦合,就会抑制弹性波在声子晶体中继续传播,从而形成局域共振型带隙。As a branch of metamaterials in the field of elastic mechanics, acoustic metamaterials have low-frequency bandgap mechanical properties that provide new ideas for vibration and noise reduction, and have become the research frontier in the field of vibration and noise reduction. Phononic crystals have become the research object of many scholars. When elastic waves propagate in phononic crystals, they are affected by its internal periodic structure to form a special dispersion relationship curve. The frequency range between the dispersion relationship curves is called the band gap or forbidden bring. When elastic waves act in a phononic crystal structure, the matrix inside it passes normally, but the scatterers cause the incident elastic waves to reflect back and forth on periodic boundaries, and these scatterings interfere with each other leading to self-reinforcement or mutual cancellation, if the wavelength is just right If it is equal to the size of the scatterer, there will be a complete cancellation, so the periodic structure will completely suppress the elastic waves of certain frequencies in any direction to produce an acoustic absolute band gap. This scattering characteristic is called the Bragg scattering mechanism. Later, a local resonance type phononic crystal was proposed. The mechanism of the band gap is the local resonance mechanism, that is, when the elastic waves of certain specific frequencies cause the local resonance effect of the scatterer, they are coupled with the long waves in the matrix. , it will suppress the elastic wave from continuing to propagate in the phononic crystal, thus forming a local resonance band gap.
当前研究获得的声子晶体结构的能带带隙频段大多处于中高频频段,尚难以满足实际工程需求。Most of the energy bandgap frequency bands of the phononic crystal structures obtained in the current research are in the middle and high frequency bands, which are still difficult to meet the actual engineering needs.
发明内容Contents of the invention
本发明提供一种基于能带折叠的声子晶体夹芯梁结构,用以解决现有技术中的声子晶体结构的带隙频段处于中高频频段的缺陷,实现在一维空间方向上进行低频振动抑制。The present invention provides a phononic crystal sandwich beam structure based on energy band folding, which is used to solve the defect that the band gap frequency band of the phononic crystal structure in the prior art is in the middle and high frequency band, and realize low frequency in the one-dimensional space direction. Vibration suppression.
本发明提供一种基于能带折叠的声子晶体夹芯梁结构,包括:The present invention provides a phononic crystal sandwich beam structure based on energy band folding, including:
第一基础梁;first foundation beam;
第二基础梁,其与所述第一基础梁并排设置;a second foundation beam arranged side by side with said first foundation beam;
夹芯层,其固定连接于第一基础梁与第二基础梁之间,且包括至少两个夹芯单体,所述夹芯单体为对称结构;各夹芯单体依次排列形成循环体,同一循环体的各所述夹芯单体的形状或尺寸不同;Sandwich layer, which is fixedly connected between the first foundation beam and the second foundation beam, and includes at least two sandwich monomers, the sandwich monomers have a symmetrical structure; each sandwich monomer is arranged in sequence to form a circulation body , the shape or size of each sandwich monomer of the same circulation body is different;
所述循环体至少设置有两个,各所述循环体依次排列在所述第一基础梁和所述第二基础梁之间。There are at least two circulation bodies, and each circulation body is sequentially arranged between the first foundation beam and the second foundation beam.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述夹芯单体包括两个拼接件,两个所述拼接件沿着第一方向连接形成连接点,两个所述拼接件关于所述连接点对称。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the sandwich unit includes two splices, the two splices are connected along the first direction to form a connection point, and the two splices The splice is symmetrical about the connection point.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述拼接件包括支撑杆,所述支撑杆连接于所述第一基础梁或所述第二基础梁。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the splice includes a support rod, and the support rod is connected to the first base beam or the second base beam.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,同一所述循环体的所述夹芯单体的支撑杆的直径、数量或形状不同。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the support rods of the sandwich cells of the same circulation body are different in diameter, number or shape.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述夹芯单体的两个所述拼接件设有互相对应的拼接部,两个所述拼接件通过所述拼接部连接形成所述夹芯单体。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the two splicing pieces of the sandwich monomer are provided with splicing parts corresponding to each other, and the two splicing pieces pass through the The splicing parts are connected to form the sandwich unit.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述夹芯单体为对称的多面体,同一所述循环体的所述夹芯单体的棱数或尺寸不等。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the sandwich monomers are symmetrical polyhedrons, and the number of edges or sizes of the sandwich monomers in the same circulation body are not equal .
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述夹芯单体包括上翼、下翼和立板,所述上翼和所述下翼设置在所述立板的两侧;所述上翼连接于所述第一基础梁,所述下翼连接于所述第二基础梁;同一所述循环体的所述夹芯单体的立板的厚度不等。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the sandwich unit includes an upper wing, a lower wing and a vertical plate, and the upper wing and the lower wing are arranged on the vertical Both sides of the plate; the upper wing is connected to the first foundation beam, and the lower wing is connected to the second foundation beam; the thickness of the vertical plate of the sandwich monomer of the same circulation body is not equal .
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,所述第一基础梁包括至少两个第一连接板,相邻的两个第一连接板连接形成所述第一基础梁;所述第二基础梁包括至少两个第二连接板,相邻的两个第二连接板连接形成所述第二基础梁;所述夹芯单体连接于所述第一连接板和所述第二连接板之间。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, the first foundation beam includes at least two first connecting plates, and two adjacent first connecting plates are connected to form the first The foundation beam; the second foundation beam includes at least two second connection plates, and two adjacent second connection plates are connected to form the second foundation beam; the sandwich unit is connected to the first connection plate and between the second connecting plate.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,一个所述夹芯单体对应一个所述第一连接板和一个所述第二连接板。According to a phononic crystal sandwich beam structure based on energy band folding provided by the present invention, one sandwich cell corresponds to one first connecting plate and one second connecting plate.
根据本发明提供的一种基于能带折叠的声子晶体夹芯梁结构,还包括连接件,所述连接件固定设置在所述夹芯层上;所述第一基础梁和所述第二基础梁设有固定槽,所述连接件内嵌于所述固定槽上。According to the present invention, a phononic crystal sandwich beam structure based on energy band folding further includes a connecting piece fixed on the sandwich layer; the first base beam and the second The foundation beam is provided with a fixing groove, and the connecting piece is embedded in the fixing groove.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
该基于能带折叠的声子晶体夹芯梁结构通过同一循环体的各所述夹芯单体的形状或尺寸不同,各所述循环体依次排列在所述第一基础梁和所述第二基础梁之间,通过拓扑设计打破结构的空间对称性来打开折叠的狄拉克点,可以产生新的带隙,使结构的整体带隙变宽且向低频移动,满足低频宽带的应用要求,实现不同的振动抑制效果和低频宽带减振效果;该基于能带折叠的声子晶体夹芯梁结构包括至少两个夹芯单体,同一循环体的各所述夹芯单体的形状或尺寸不同,通过不同形状或尺寸的夹芯单体,组成循环体,以实现不同的减振与噪声抑制效果。In the phononic crystal sandwich beam structure based on energy band folding, the shape or size of each sandwich unit of the same circulation body is different, and each circulation body is arranged in sequence between the first foundation beam and the second foundation beam. Between the foundation beams, the folded Dirac point can be opened by breaking the spatial symmetry of the structure through topology design, which can generate a new band gap, widen the overall band gap of the structure and move to low frequency, meet the application requirements of low frequency broadband, and realize Different vibration suppression effects and low-frequency broadband vibration reduction effects; the phononic crystal sandwich beam structure based on energy band folding includes at least two sandwich monomers, and the shapes or sizes of the sandwich monomers in the same circulation body are different , the circulating body is composed of sandwich monomers of different shapes or sizes to achieve different effects of vibration reduction and noise suppression.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the present invention or the technical solution in the prior art more clearly, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description are the present invention For some embodiments of the invention, those skilled in the art can also obtain other drawings based on these drawings without creative effort.
图1是本发明实施例提供的基于能带折叠的声子晶体夹芯梁结构的立体结构示意图;Fig. 1 is a three-dimensional structural schematic diagram of a phononic crystal sandwich beam structure based on energy band folding provided by an embodiment of the present invention;
图2是图1中A的结构放大图;Fig. 2 is the enlarged structure diagram of A in Fig. 1;
图3是本发明实施例提供的基于能带折叠的声子晶体夹芯梁结构的夹芯单体的爆炸图;Fig. 3 is an exploded view of a sandwich monomer based on a band-folded phononic crystal sandwich beam structure provided by an embodiment of the present invention;
图4是本发明实施例一提供的基于能带折叠的声子晶体夹芯梁结构振动带隙与传统夹芯梁振动带隙对比图;Fig. 4 is a comparison diagram of the vibration bandgap of the phononic crystal sandwich beam structure based on energy band folding provided by Embodiment 1 of the present invention and the vibration bandgap of the traditional sandwich beam;
图5是本发明实施例二提供的基于能带折叠的声子晶体夹芯梁结构振动带隙与传统夹芯梁振动带隙对比图;Fig. 5 is a comparison diagram of the vibration bandgap of the phononic crystal sandwich beam structure based on energy band folding provided by the second embodiment of the present invention and the vibration bandgap of the traditional sandwich beam;
图6是本发明实施例三提供的基于能带折叠的声子晶体夹芯梁结构振动带隙与传统夹芯梁振动带隙对比图;Fig. 6 is a comparison diagram of the vibration band gap of the phononic crystal sandwich beam structure based on energy band folding provided by the third embodiment of the present invention and the vibration band gap of the traditional sandwich beam;
图7是本发明实施例四提供的基于能带折叠的声子晶体夹芯梁结构的结构示意图;Fig. 7 is a schematic structural diagram of a phononic crystal sandwich beam structure based on energy band folding provided by Embodiment 4 of the present invention;
图8是本发明实施例四提供的基于能带折叠的声子晶体夹芯梁结构振动带隙与传统夹芯梁振动带隙对比图;Fig. 8 is a comparison diagram of the vibration bandgap of the phononic crystal sandwich beam structure based on energy band folding provided by Embodiment 4 of the present invention and the vibration bandgap of the traditional sandwich beam;
图9是本发明实施例五提供的基于能带折叠的声子晶体夹芯梁结构的结构示意图;9 is a schematic structural diagram of a phononic crystal sandwich beam structure based on energy band folding provided by Embodiment 5 of the present invention;
图10是本发明实施例五提供的基于能带折叠的声子晶体夹芯梁结构振动带隙与传统夹芯梁振动带隙对比图。Fig. 10 is a comparison diagram of the vibration bandgap of the phononic crystal sandwich beam structure based on energy band folding provided by Embodiment 5 of the present invention and the vibration bandgap of a traditional sandwich beam.
附图标记:Reference signs:
10、第一基础梁;11、第一连接板;111、连接凸起;10. The first foundation beam; 11. The first connecting plate; 111. The connecting protrusion;
20、第二基础梁;21、第二连接板;211、连接凹陷;20. The second foundation beam; 21. The second connection plate; 211. The connection depression;
30、夹芯层;31、循环体;30. Sandwich layer; 31. Circulation body;
40(40’,40’’)、夹芯单体;41、第一拼接件;411、第一拼装部;42、第二拼接件;421、第二拼接部;43、支撑杆;40 (40', 40''), sandwich monomer; 41, the first splicing part; 411, the first assembling part; 42, the second splicing part; 421, the second splicing part; 43, the support rod;
50、连接件。50. Connectors.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the present invention. Obviously, the described embodiments are part of the embodiments of the present invention , but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
根据本发明的其中一个实施例,如图1所示,提供了一种基于能带折叠的声子晶体夹芯梁结构,包括第一基础梁10、第二基础梁20和夹芯层30;第二基础梁20与所述第一基础梁10并排设置;夹芯层30固定连接于第一基础梁10与第二基础梁20之间,第一基础梁10和第二基础梁20承受由弯矩引起的面内正应力和面内剪切应力,夹芯层30主要承受由第一基础梁10和第二基础梁20传来的横向剪切应力,夹芯层30起到稳定,防止局部屈服的作用,提高比刚度和比强度。According to one embodiment of the present invention, as shown in FIG. 1 , a phononic crystal sandwich beam structure based on energy band folding is provided, including a
如图1至2所示,夹芯层30包括至少两个夹芯单体40,所述夹芯单体40为对称结构;各夹芯单体40依次线性排列,形成一个循环体31,同一循环体31的各所述夹芯单体40的形状或尺寸不同;所述循环体31至少设置有两个,各所述循环体31依次排列在所述第一基础梁10和所述第二基础梁20之间;本实施例通过循环体31的周期性排列,以及循环体31内的夹芯单体40的形状或尺寸等参数的变化,实现不同的振动抑制效果;在本实施例中,夹芯层30的夹芯单体40起到承受由第一基础梁10和第二基础梁20传来的横向剪切应力的作用;在其他实施例中,夹芯层30也可以设置其他支撑结构,以承受横向剪切应力,夹芯单体40起到降频减振作用。As shown in Figures 1 to 2, the
该基于能带折叠的声子晶体夹芯梁结构通过同一循环体31的各所述夹芯单体40的形状或尺寸不同,各所述循环体31依次排列在所述第一基础梁10和所述第二基础梁20之间,通过拓扑设计打破结构的空间对称性来打开折叠的狄拉克点,可以产生新的带隙,使结构的整体带隙变宽且向低频移动,满足低频宽带的应用要求,实现不同的振动抑制效果和低频宽带减振效果;该基于能带折叠的声子晶体夹芯梁结构包括至少两个夹芯单体40,同一循环体31的各所述夹芯单体40的形状或尺寸不同,通过不同形状或尺寸的夹芯单体40,组成循环体31,以实现不同的减振与噪声抑制效果。The phononic crystal sandwich beam structure based on energy band folding has different shapes or sizes of the
进一步的,所述循环体31设置有至少六个,通过多个循环体31的周期线性排列,以致能带折叠形成了狄拉克点,成功将狄拉克点打开形成了新的低频带隙。Further, there are at least six
优选的,如图3所示,所述第一基础梁10包括至少两个第一连接板11,相邻的两个第一连接板11连接形成所述第一基础梁10;所述第二基础梁20包括至少两个第二连接板21,相邻的两个第二连接板21连接形成所述第二基础梁20;组装简单,将第一基础梁10拆分为多个第一连接板11,将第二基础梁20拆分为多个第二连接板21,便于搬运;所述夹芯单体40连接于所述第一连接板11和所述第二连接板21之间。Preferably, as shown in FIG. 3, the
优选的,一个所述夹芯单体40对应一个所述第一连接板11和一个所述第二连接板21,即一个第一连接板11和一个第二连接板21连接一个夹芯单体40;具体的,第一连接板11和第二连接板21之间形成固定空间,所述夹芯单体40连接于所述固定空间;安装时,将第一连接板11和第二连接板21连接在夹芯单体40的两端,再通过将各个第一连接板11连接起来,将各个第二连接板21连接起来,组装成夹芯梁结构;所述第一连接板11的一侧设有连接凸起111,另一侧设有连接凹陷211,所述第一连接板11的连接凸起111与相邻的第一连接板11的连接凹陷211卡接,使得各第一连接板11线性连接形成第一基础梁10;为了增加连接的稳定性,所述第一连接板11设置有两个连接凸起111和两个连接凹陷211;在其他实施例中,第一连接板11的连接凸起111和连接凹陷211的数量可以根据需求设置,本发明对此不作特别限制;第二连接板21的两侧同样设置有连接凸起111和连接凹陷211,以使得各第二连接板21线性连接形成第二基础梁20,在此不再赘述。Preferably, one
实施例一Embodiment one
实施例一的基于能带折叠的声子晶体夹芯梁结构,还包括若干个连接件50,所述连接件50固定设置在所述夹芯层30上,连接件50用于夹芯层30与第一基础梁10的连接以及夹芯层30与第二基础梁20的连接;所述第一基础梁10和所述第二基础梁20设有固定槽,所述连接件50内嵌于所述固定槽上,便于安装,同时防止连接件50滑动;具体的,连接件50上设有第一连接孔,第一基础梁10和第二基础梁20上分别设有第二连接孔,本实施例还包括若干个连接螺丝,将连接件50放置于第一基础梁10的固定槽,连接螺丝穿过连接件50的第一连接孔和第一基础梁10的第二连接孔,以致第一基础梁10与夹芯层30连接;将连接件50放置于第二基础梁20的固定槽,连接螺丝穿过连接件50的第一连接孔和第二基础梁20的第二连接孔,以致第二基础梁20与夹芯层30连接,实现快速安装;本发明的基于能带折叠的声子晶体夹芯梁结构结构简单,加工方便,易于安装,可按实际需求进行拼装即更换不同振动特性的夹芯层30;一般的,一个夹芯单体40对应四个连接件50,以保证夹芯单体40连接的稳定性。The phononic crystal sandwich beam structure based on energy band folding in Embodiment 1 also includes several connectors 50 fixedly arranged on the sandwich layer 30, and the connectors 50 are used for the sandwich layer 30 The connection with the first foundation beam 10 and the connection between the sandwich layer 30 and the second foundation beam 20; the first foundation beam 10 and the second foundation beam 20 are provided with fixing grooves, and the connector 50 is embedded in The fixing groove is convenient for installation while preventing the connecting piece 50 from sliding; specifically, the connecting piece 50 is provided with a first connecting hole, and the first foundation beam 10 and the second foundation beam 20 are respectively provided with a second connection hole, This embodiment also includes several connecting screws, the connecting piece 50 is placed in the fixing groove of the first foundation beam 10, and the connecting screw passes through the first connecting hole of the connecting piece 50 and the second connecting hole of the first foundation beam 10, so that The first base beam 10 is connected to the sandwich layer 30; the connector 50 is placed in the fixing groove of the second base beam 20, and the connecting screw passes through the first connection hole of the connector 50 and the second connection hole of the second base beam 20 , so that the second foundation beam 20 is connected to the sandwich layer 30 to realize rapid installation; the structure of the phononic crystal sandwich beam based on energy band folding of the present invention is simple, easy to process, easy to install, and can be assembled or replaced according to actual needs Sandwich layers 30 with different vibration characteristics; generally, one sandwich unit 40 corresponds to four connecting pieces 50 to ensure the stability of the connection of the sandwich unit 40 .
优选的,所述夹芯单体40包括两个拼接件,为第一拼接件41和第二拼接件42,两个所述拼接件沿着第一方向连接形成连接点,两个所述拼接件关于所述连接点对称,以保证夹芯梁结构的平衡,从而顺利打开狄拉克点;所述第一方向,即自所述第一基础梁10到所述第二基础梁20的方向;此处的对称,为所述夹芯单体40在第一方向的对称。Preferably, the
优选的,第一拼接件41上设有第一拼接面,第二拼接件42上设有第二拼接面,第一拼接面和第二拼接面皆为平面,有利于第一拼接件41和第二拼接件42的吻合;所述夹芯单体40的两个所述拼接件设有互相对应的拼接部,即第一拼接面上设有第一拼装部411,第二拼接面上设有第二拼接部421,所述第一拼接部和所述第二拼接部421连接,使得所述第一拼接件41和所述第二拼接件42连接形成所述夹芯单体40,易于安装拆卸;具体的,第一拼接部为凸柱,第二拼接部421为与第一拼接部对应的凹槽,通过凸柱和凹槽的配合,实现第一拼接件41和第二拼接件42的组装和拆卸,结构简单,操作方便;在其他实施例中,第一拼接件41和第二拼接件42可以通过螺丝或插销配合的方式组装固定,为了方便加工,夹芯单体40也可以一体成型,本发明的实施例不限定所述夹芯单体40的组装方式。Preferably, the
所述拼接件包括支撑杆43,所述支撑杆43连接于所述第一基础梁10或所述第二基础梁20;同一所述循环体31的所述夹芯单体40的支撑杆43的直径、数量或形状不同,通过循环体31的周期性排列,以及循环体31内的所述夹芯单体40的支撑杆43的直径、数量或形状等参数的变化,实现不同的振动抑制效果;具体的,本实施例的第一拼接件41和第二拼接件42分别采用四个支撑杆43,四个支撑杆43的一端连接形成所述连接点,另一端与连接件50固定连接,本实施例的循环体31设置有十个,十个循环体31线性排列,一个循环体31具有两个夹芯单体40,其中一个夹芯单体40的支撑杆43的直径为十毫米,另一个夹芯单体40的支撑杆43的直径为六毫米,通过循环体31的不同夹芯单体40的支撑杆43的直径不同,从而打开狄拉克点,形成了新的低频带隙;设置对比例1作为对照,对比例1为传统的夹芯梁,采用与本实施例相似的结构,设置十个循环体,一个循环体内设置两个夹芯单体,两个夹芯单体的支撑杆同样为直径六毫米,图4的左图为对比例1的振动带隙,图4的右图为本实施例的振动带隙图,由图4可以得出,本实施例的振动带隙增加,实现低频减振的效果。The splicing piece includes a support rod 43, the support rod 43 is connected to the first foundation beam 10 or the second foundation beam 20; different diameters, numbers or shapes, through the periodic arrangement of the circulation body 31, and the change of parameters such as the diameter, number or shape of the support rods 43 of the sandwich unit 40 in the circulation body 31, different vibration suppression can be achieved Effect; Specifically, the first splicing piece 41 and the second splicing piece 42 of this embodiment respectively use four support rods 43, one end of the four support rods 43 is connected to form the connection point, and the other end is fixedly connected to the connector 50 , the circulation body 31 of present embodiment is provided with ten, and ten circulation bodies 31 are arranged linearly, and one circulation body 31 has two sandwich monomers 40, and the diameter of the support rod 43 of wherein a sandwich monomer 40 is ten millimeters , the diameter of the support rod 43 of another sandwich cell 40 is six millimeters, the diameters of the support rod 43 of different sandwich cells 40 passing through the circulation body 31 are different, thereby opening the Dirac point and forming a new low-frequency band gap Set comparative example 1 as contrast, comparative example 1 is a traditional sandwich beam, adopts a structure similar to this embodiment, ten circulation bodies are set, two sandwich monomers are set in one circulation body, and two sandwich monomers The supporting rods are also six millimeters in diameter. The left figure of Fig. 4 is the vibration bandgap of Comparative Example 1, and the right figure of Fig. 4 is the vibration bandgap figure of this embodiment. It can be drawn from Fig. 4 that the vibration of this embodiment The band gap is increased to achieve the effect of low frequency vibration reduction.
实施例二Embodiment two
与实施例一不同的是,本实施例的循环体31具有三个夹芯单体40,三个夹芯单体40的支撑杆43的直径分别为十毫米、八毫米和六毫米,设置对比例2作为对照,对比例2为传统的夹芯梁,对比例2采用与本实施例相似的结构,设置十个循环体,一个循环体内设置三个夹芯单体,三个夹芯单体的支撑杆同样为直径十毫米,图5的左图为对比例2的振动带隙,图5的右图为本实施例的振动带隙图,由图5可以得出,本实施例的振动带隙增加,实现低频减振的效果。Different from Embodiment 1, the circulating
实施例三Embodiment Three
与实施例一不同的是,本实施例的循环体31具有四个夹芯单体40,四个夹芯单体40的支撑杆43的直径分别为十毫米、八毫米、六毫米和四毫米,设置对比例3作为对照,对比例3为传统的夹芯梁,采用与本实施例相似的结构,设置十个循环体,一个循环体内设置四个夹芯单体,四个夹芯单体的支撑杆同样为直径十毫米,图6的左图为对比例3的振动带隙,图6的右图为本实施例的振动带隙图,由图6可以得出,本实施例的振动带隙增加,实现低频减振的效果。Different from Embodiment 1, the circulating
一定范围内,一个循环体31内的夹芯单体40数量越多,打开的狄拉克点越多,形成的带隙越多,本发明实施例不限定循环体31的数量以及一个循环体31包含的夹芯单体40的数量;在其他实施例中,夹芯单体40也可以设置直杆和曲杆交替设置或不同曲度的曲杆交替设置,以产生新的带隙,使夹芯梁结构的整体带隙变宽且向低频移动;本发明实施例不限定支撑杆43的数量、直径以及形状。Within a certain range, the more the number of
通过设置不同的直径或形状的支撑杆43的夹芯单体40,实现不同的振动抑制效果,以起到降频减振的作用;本实施例的各零件能够通过铸造、线切割或车刀等机械加工方法制备,结构简单,加工方便,安装快速;可按实际需求进行拼装即更换不同振动特性的芯层、自定义长度,具备灵活性。By arranging the
实施例四Embodiment four
与实施例一不同的是,如图7所示,本实施例的所述夹芯单体40’为对称的多面体,同一所述循环体31的所述夹芯单体40’的棱数或尺寸不等,在本实施例中,循环体31具有两个夹芯单体40’,一个循环体31中的其中一个夹芯单体40’为横截面为四边形的棱柱,即六面体;另一个夹芯单体40’为横截面为六边形的棱柱,即八面体,从而打开狄拉克点,实现降频减振的效果;设置对比例4作为对照,对比例4为传统的夹芯梁,采用与本实施例相似的结构,设置十个循环体,一个循环体内设置两个夹芯单体,两个夹芯单体为横截面为六边形的棱柱,图8的左图为对比例4的振动带隙,图8的右图为本实施例的振动带隙图,由图8可以得出,本实施例的振动带隙增加,实现低频减振的效果。The difference from Embodiment 1 is that, as shown in FIG. 7 , the
在其他实施例中,循环体31中的夹芯单体40’也可以是横截面为五边形、七边形或八边形,且同一个循环体31中的两个夹芯单体40’的横截面的边数不等,亦可实现本发明的目的;本发明实施例不限定夹芯单体40’的边数。In other embodiments, the sandwich unit 40' in the
在其他实施例中,同一个循环体31的不同夹芯单体40’横截面边数相等且横截面面积不等,即同个循环体31的不同夹芯单体40’的尺寸不同,亦可对弹性波的抑制效果产生影响,实现减振与噪声抑制效果。In other embodiments, different sandwich monomers 40' of the
实施例五Embodiment five
与实施例一不同的是,如图9所示,本实施例的所述夹芯单体40’’包括上翼、下翼和立板,所述上翼和所述下翼设置在所述立板的两侧;所述上翼通过连接件50连接于所述第一基础梁10,所述下翼通过连接件50连接于所述第二基础梁20;同一所述循环体31的所述夹芯单体40’’的立板的厚度不等,通过立板的薄厚交替变化,对弹性波的抑制效果产生影响,实现减振与噪声抑制效果;设置对比例5作为对照,对比例5为传统的夹芯梁,采用与本实施例相似的结构,设置十个循环体,一个循环体内设置两个夹芯单体,两个夹芯单体包括上翼、下翼和立板,所述上翼和所述下翼设置在所述立板的两侧;同一所述循环体的所述夹芯单体的立板的厚度相等,图10的左图为对比例5的振动带隙,图10的右图为本实施例的振动带隙图,由图10可以得出,本实施例的振动带隙增加,实现低频减振的效果。Different from Embodiment 1, as shown in FIG. 9 , the sandwich unit 40 ″ of this embodiment includes an upper wing, a lower wing and a vertical plate, and the upper wing and the lower wing are arranged on the The two sides of the vertical plate; the upper wing is connected to the first foundation beam 10 through the connecting piece 50, and the lower wing is connected to the second foundation beam 20 through the connecting piece 50; all the circulation bodies 31 of the same The thickness of the vertical plate of the above-mentioned sandwich monomer 40'' is not equal, and the thickness of the vertical plate changes alternately, which affects the suppression effect of elastic waves, and realizes the effects of vibration reduction and noise suppression; comparative example 5 is set as a comparison, comparative example 5 is a traditional sandwich beam, which adopts a structure similar to that of this embodiment, and ten circulation bodies are arranged, and two sandwich monomers are arranged in one circulation body, and the two sandwich monomers include an upper wing, a lower wing and a vertical plate, The upper wing and the lower wing are arranged on both sides of the vertical plate; the thickness of the vertical plate of the sandwich monomer of the same circulation body is equal, and the left figure of Fig. 10 is the vibrating belt of comparative example 5 The right figure of Fig. 10 is the vibration bandgap diagram of this embodiment. It can be concluded from Fig. 10 that the vibration bandgap of this embodiment is increased to achieve the effect of low-frequency vibration reduction.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310412206.4ACN116145847A (en) | 2023-04-18 | 2023-04-18 | Phonon crystal sandwich beam structure based on energy band folding |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310412206.4ACN116145847A (en) | 2023-04-18 | 2023-04-18 | Phonon crystal sandwich beam structure based on energy band folding |
| Publication Number | Publication Date |
|---|---|
| CN116145847Atrue CN116145847A (en) | 2023-05-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310412206.4APendingCN116145847A (en) | 2023-04-18 | 2023-04-18 | Phonon crystal sandwich beam structure based on energy band folding |
| Country | Link |
|---|---|
| CN (1) | CN116145847A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006023195A2 (en)* | 2004-07-23 | 2006-03-02 | The Regents Of The University Of California | Metamaterials |
| CN102810761A (en)* | 2012-07-31 | 2012-12-05 | 深圳光启创新技术有限公司 | Sandwich metamaterial, manufacturing method thereof, and manufacturing method of sandwich metamaterial radome |
| US9172147B1 (en)* | 2013-02-20 | 2015-10-27 | The Boeing Company | Ultra wide band antenna element |
| US20190242110A1 (en)* | 2016-10-07 | 2019-08-08 | Georgia Tech Research Corporation | Tensegrity Structures And Methods of Constructing Tensegrity Structures |
| CN110594331A (en)* | 2019-09-19 | 2019-12-20 | 哈尔滨工程大学 | A Hierarchical Periodic Structure Metamaterial Beam Suitable for Multi-band Vibration Reduction |
| CN113074203A (en)* | 2021-03-15 | 2021-07-06 | 天津大学 | Vibration isolation device based on two-dimensional elastic wave metamaterial and particle collision damping |
| US20210216683A1 (en)* | 2020-01-03 | 2021-07-15 | The Research Foundation For The State University Of New York | Periodic Cellular Structure Based Design for Additive Manufacturing Approach for Light Weighting and Optimizing Strong Functional Parts |
| CN113982183A (en)* | 2021-10-26 | 2022-01-28 | 北京建筑大学 | A vibration-damping metamaterial lattice sandwich beam with adjustable band gap frequency |
| CN114575275A (en)* | 2022-03-02 | 2022-06-03 | 广州大学 | Composite phononic crystal noise reduction window |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006023195A2 (en)* | 2004-07-23 | 2006-03-02 | The Regents Of The University Of California | Metamaterials |
| CN102810761A (en)* | 2012-07-31 | 2012-12-05 | 深圳光启创新技术有限公司 | Sandwich metamaterial, manufacturing method thereof, and manufacturing method of sandwich metamaterial radome |
| US9172147B1 (en)* | 2013-02-20 | 2015-10-27 | The Boeing Company | Ultra wide band antenna element |
| US20190242110A1 (en)* | 2016-10-07 | 2019-08-08 | Georgia Tech Research Corporation | Tensegrity Structures And Methods of Constructing Tensegrity Structures |
| CN110594331A (en)* | 2019-09-19 | 2019-12-20 | 哈尔滨工程大学 | A Hierarchical Periodic Structure Metamaterial Beam Suitable for Multi-band Vibration Reduction |
| US20210216683A1 (en)* | 2020-01-03 | 2021-07-15 | The Research Foundation For The State University Of New York | Periodic Cellular Structure Based Design for Additive Manufacturing Approach for Light Weighting and Optimizing Strong Functional Parts |
| CN113074203A (en)* | 2021-03-15 | 2021-07-06 | 天津大学 | Vibration isolation device based on two-dimensional elastic wave metamaterial and particle collision damping |
| CN113982183A (en)* | 2021-10-26 | 2022-01-28 | 北京建筑大学 | A vibration-damping metamaterial lattice sandwich beam with adjustable band gap frequency |
| CN114575275A (en)* | 2022-03-02 | 2022-06-03 | 广州大学 | Composite phononic crystal noise reduction window |
| Title |
|---|
| DEWEN YU等: "Topological interface state formation in an hourglass lattice sandwich meta-structure", 《INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES》, vol. 246, pages 3* |
| 姜超君;向阳;张波;郭宁;何鹏;: "二维声子晶体带隙特性分析与应用研究", 噪声与振动控制, no. 04* |
| Publication | Publication Date | Title |
|---|---|---|
| CN112596154B (en) | Novel topological photonic crystal structure and optical waveguide | |
| CN112324827B (en) | Double-layer pyramid type light vibration reduction metamaterial lattice structure | |
| WO2017041283A1 (en) | Acoustic metamaterial basic structure unit and composite structure thereof, and configuration method | |
| CN112687254B (en) | A microperforated corrugated-honeycomb metamaterial plate structure with improved sound insulation and absorption performance | |
| CN112581928B (en) | Acoustic black hole periodic sandwich beam structure for noise reduction | |
| CN112687251B (en) | Band gap adjustable auxetic phonon crystal, application and vibration damper | |
| CN111237365A (en) | Structure with simultaneous expansion-compression expansion property, lattice material and lattice cylindrical shell | |
| Sampaio et al. | Lightweight decorated membranes as an aesthetic solution for sound insulation panels | |
| CN117515093A (en) | Multifunctional negative poisson ratio cell and honeycomb structure based on mode conversion | |
| CN116145847A (en) | Phonon crystal sandwich beam structure based on energy band folding | |
| CN119687131A (en) | Three-way corrugated honeycomb sound insulation vibration isolator and design method thereof | |
| CN118088607A (en) | Spring type lattice sandwich structure for bearing vibration isolation curved beam and preparation method thereof | |
| Ma et al. | Pure solid acoustic metasurface with coating adapter | |
| CN117216932B (en) | Method and system for designing punching elastic super-structure | |
| CN116623866B (en) | Topological interlocking blocks, soundproof walls and assembly methods | |
| CN205845511U (en) | A Defect State Structural Acoustic Metamaterial Panel | |
| CN217361121U (en) | Nonlinear structural unit and low-frequency broadband noise reduction metamaterial structure | |
| CN117028464A (en) | Negative poisson ratio honeycomb metamaterial | |
| CN111186178A (en) | A honeycomb panel structure with planar multi-directional isotropic honeycomb sandwich | |
| CN219101942U (en) | Low-frequency broadband multidirectional vibration reduction and isolation and multidimensional bearing enhancement integrated super structure and device | |
| CN114658782B (en) | Bidirectional buffering energy-absorbing metamaterial with enhanced performance | |
| CN114203146B (en) | A metasurface model that enables asymmetric propagation of sound waves | |
| CN214491909U (en) | Phonon crystal sound insulation glass | |
| CN209344144U (en) | A battery module and its end plate assembly | |
| CN223140374U (en) | Piezoelectric phonon crystal beam based on DNA structure |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20230523 | |
| RJ01 | Rejection of invention patent application after publication |