





技术领域technical field
本发明涉及龋病检测技术领域,具体涉及高精度、低成本检测颌面龋的一种基于光测法与视觉分析的龋病检测装置。The invention relates to the technical field of caries detection, in particular to a caries detection device based on photometry and visual analysis for detecting maxillofacial caries with high precision and low cost.
背景技术Background technique
龋病检测仪是一种在口腔门诊治疗中用以检测判断患者是否存在龋病的装置。如口腔门诊中常用的龋病检测仪有口腔颌面专用X线机、医用CT机、口腔颌面锥形束CT机等传统影像学检查设备。但由于我国人口基数大,患龋病率较高,对龋病检测装置的普及性与实用性提出了更高的要求。例如,居民口腔健康自检需要小型化龋病检测仪;非专业人员进行龋病检测需要龋病检测仪具有智能化诊断龋病的功能;特殊人群需要龋病检测仪具有无辐射的工作方式。Caries detector is a device used to detect and judge whether patients have caries in outpatient dental treatment. For example, caries detection instruments commonly used in dental clinics include traditional imaging inspection equipment such as oral and maxillofacial X-ray machines, medical CT machines, and oral and maxillofacial cone-beam CT machines. However, due to the large population base in my country and the high rate of dental caries, higher requirements are placed on the popularity and practicability of dental caries detection devices. For example, residents' oral health self-examination requires a miniaturized caries detector; non-professional caries detection requires a caries detector with the function of intelligent caries diagnosis; special populations need a caries detector with a radiation-free working method.
传统龋病检测仪器可通过射线照射与扫描,实现对患者牙齿的透视成像与三维重建,可直观精确地显示牙齿内部特征与疾病,但由于其工作方式,仍存在诸多问题:1.传统龋病检测仪器主要通过检测牙齿几何特征以进行诊断,但由于龋病初期时颌面仅有局部颜色改变,传统检测仪器较难进行有效的诊断,从而使患者错过最佳治疗时间;2.传统龋病检测仪设备庞大且昂贵,且检测结果需要专业人员进行分析,无法实现家用居民自检,随着就诊人数的显著提高与居民日常口腔健康检查需求的增长,传统龋病检测方式逐渐无法满足现有检测需求;3.传统医学影像学检查方式采用X光成像,存在电离辐射的风险,辐射剂量虽然较低,但仍会引发部分患者的忧虑,特别是儿童和孕妇人群。Traditional caries detection instruments can realize perspective imaging and three-dimensional reconstruction of patients' teeth through ray irradiation and scanning, and can intuitively and accurately display the internal characteristics and diseases of teeth. However, due to their working methods, there are still many problems: 1. Traditional caries The detection instrument mainly detects the geometric features of the teeth for diagnosis, but because the maxillofacial color changes only in the early stage of caries, it is difficult for traditional detection instruments to make an effective diagnosis, so that patients miss the best time for treatment; 2. Traditional caries The detection equipment is huge and expensive, and the detection results need to be analyzed by professionals, so it is impossible to realize the self-examination of household residents. With the significant increase in the number of visits to the doctor and the increase in the demand for daily oral health examinations of residents, the traditional dental caries detection method is gradually unable to meet the existing 3. The traditional medical imaging examination method uses X-ray imaging, which has the risk of ionizing radiation. Although the radiation dose is low, it still causes some patients to worry, especially children and pregnant women.
对此,国内外诸多学者曾提出以下解决方案:利用太赫兹扫描成像系统对龋坏牙齿进行扫描并成像龋坏组织;使用光学相干断层成像技术以准确识别病变组织;通过荧光分析法对龋病进行成像并获取牙齿龋损程度的可视化结果等。以上方法均具有高分辨率、无辐射、可视化等优势,但依旧存在下述问题:1.设备庞大且成本较高,仪器的应用与推广受到较多限制;2.检测设备使用需要较高专业程度,且反馈结果多呈专业表格或数据堆叠,需专业人士分析,无法满足普通居民的日常口腔健康检查需求。In this regard, many scholars at home and abroad have proposed the following solutions: use terahertz scanning imaging system to scan carious teeth and image carious tissue; use optical coherence tomography technology to accurately identify lesion tissue; Imaging and obtaining visualization of the extent of tooth decay and more. The above methods all have the advantages of high resolution, no radiation, and visualization, but there are still the following problems: 1. The equipment is huge and costly, and the application and promotion of the instrument are more restricted; 2. The use of detection equipment requires high professionalism and the feedback results are mostly in the form of professional forms or data stacks, which require professional analysis and cannot meet the daily oral health examination needs of ordinary residents.
发明内容Contents of the invention
为了克服上不述现有技术的不足,本发明旨在提供一种基于光测法与视觉分析的龋病检测装置,检测装置共含有三个平台相当于三个模块,分别为结构光扫描模块、视觉识别模块、光切法粗糙度检测模块,通过多源数据协同处理可建立牙面轮廓及参数模型,结合大数据机器学习与人工智能分析可对扫描所得多源数据模型进行分析诊断,判断扫描牙面是否发生龋坏并对龋坏位置进行定位。In order to overcome the deficiencies of the prior art mentioned above, the present invention aims to provide a dental caries detection device based on photometry and visual analysis. The detection device contains three platforms equivalent to three modules, which are structured light scanning modules. , visual recognition module, and optical section roughness detection module. Through multi-source data collaborative processing, the tooth surface profile and parameter model can be established. Combined with big data machine learning and artificial intelligence analysis, the multi-source data model obtained by scanning can be analyzed, diagnosed, and judged. Scan the tooth surface for caries and locate the caries position.
为了达到上述目的,本发明的技术方案为:In order to achieve the above object, technical scheme of the present invention is:
一种基于光测法与视觉分析的龋病检测装置,包括关于光源带1对称布置且光轴相交的第一微距摄像机2、第二微距摄像机3,且三者均与第一转动平台5固定连接;A dental caries detection device based on photometry and visual analysis, including a
两个补光灯7分布在第三微距摄像机8两侧且三者均固定于第二转动平台10上;Two
线激光发生器12、显微摄像机13固定在第三转动平台15两侧;The
第一转动平台5、第二转动平台10、第三转动平台15分别与固定在检测基座17上的第一转动铰支座4、第二转动铰支座9、第三转动铰支座14对应铰接;The first rotary platform 5, the second
第一转动平台5、第二转动平台10、第三转动平台15分别连接固定于检测基座17上的第一伺服电机6、第二伺服电机11、第三伺服电机16;The first rotary platform 5, the second
检测基座17通过滑动轨道18和杆体26与握柄21连接,并通过第四伺服电机19控制检测基座17滑动位置;杆体26顶部设置保护罩20;The
握柄21和杆体26均内置导线,且与信号处理系统22通过信号线25进行电信号互通;显示屏23与信号处理系统22通过电信号互通;信号处理系统22接电源24。Both the
所述第一微距摄像机2、第二微距摄像机3、第三微距摄像机8焦距均小于等于张口度的一半,且可实现自动变焦。The focal lengths of the
所述第四伺服电机19为直线伺服电机。The
所述保护装置材料为高透光率、高硬度材料。The material of the protective device is a material with high light transmittance and high hardness.
所述握柄21底部握持区表面为柔性材料。The surface of the gripping area at the bottom of the
所述杆体26结构部分采用清洁无毒材料,包括复合树脂、玻璃。The structural part of the
所述信号处理系统22内置牙体表面三维点云计算、深度学习软件;通过牙体表面三维点云计算确定微距摄像机与目标牙面的相对位置,以对牙面进行高精度识别与扫描。The
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
1、本发明设置了三个转动平台,平台上分别为结构光扫描模块、视觉识别模块、光切法粗糙度检测模块,即通过利用光测法与视觉分析,减少了电离辐射风险,扩大了原龋病检测方法的适用人群范围,特别是儿童与孕妇,减少了病情的延误,使患者得以有效及时的治疗。1. The present invention sets up three rotating platforms, on which are respectively a structured light scanning module, a visual recognition module, and an optical section method roughness detection module, that is, by using photometry and visual analysis, the risk of ionizing radiation is reduced, and the The original caries detection method is applicable to the crowd, especially children and pregnant women, which reduces the delay of the disease and enables patients to be treated effectively and timely.
所述结构光扫描模块包含定向布置光带源与相交双目模型布置的第一微距摄像机与第二微距摄像机,通过光源带对颌面进行照射,微距摄像头识别光带,信息处理模块对光带信号进行分析,从而获取高精度的牙体各牙面的三维结构模型。视觉识别模块包含一个第三微距摄像机,通过补光灯对颌面进行照射,第三微距摄像机进行图片捕获,信息处理模块对像素进行分析,从而获取高精度的牙体各牙面的图像颜色数据,通过像素级提取和数据分析可有效直观识别牙体表面的微小色泽变化。光切法检测模块通过线激光器发出垂直光带照射于目标牙表面,反射光线通过透镜后在显微摄像机表面成像,自动滑动支架在伺服电机的控制下进行小幅度全向定速移动,以形成扫描结构,显微摄像机通过频闪将捕获到的连续的光条信号传输给信号处理中心,信号处理中心处理得到牙面粗糙度分布。The structured light scanning module includes a first macro camera and a second macro camera arranged in a directionally arranged light band source and an intersecting binocular model, and irradiates the maxillofacial surface through the light source band, the macro camera recognizes the light band, and the information processing module Analyze the light band signal to obtain a high-precision three-dimensional structure model of each tooth surface of the tooth. The visual recognition module includes a third macro camera, which irradiates the maxillofacial surface through the supplementary light, and the third macro camera captures pictures, and the information processing module analyzes the pixels to obtain high-precision images of each tooth surface of the tooth body Color data, through pixel-level extraction and data analysis, can effectively and intuitively identify small color changes on the tooth surface. The optical section method detection module emits a vertical light band through the line laser to irradiate the surface of the target tooth, and the reflected light passes through the lens and forms an image on the surface of the microscopic camera. The automatic sliding bracket moves at a small omnidirectional constant speed under the control of the servo motor to form Scanning the structure, the microscopic camera transmits the captured continuous light strip signal to the signal processing center through strobe, and the signal processing center processes and obtains the tooth surface roughness distribution.
2、检测结果通过显示屏23以直观文字显示龋病所在牙位、具体牙面、龋损深度等,无需专业人员进行分析判断,可实现家用居民自检,便于龋病的早期发现与防治。2. The detection result displays the tooth position, specific tooth surface, caries depth, etc. through the
3、装置主体部分结构简单,所需设备体积小、成本低,在提高结果精确度、促进结果直观化的同时,克服了X线等医学影像学设备庞大、操作复杂的问题,促进了仪器的应用与推广,满足了普通居民日常口腔健康检查需求,实现家用自检,同时也改善医院影像学仪器供不应求的现状。3. The structure of the main part of the device is simple, the required equipment is small in size and low in cost. While improving the accuracy of the results and promoting the visualization of the results, it overcomes the problems of large X-ray and other medical imaging equipment and complicated operations, and promotes the development of the instrument. The application and promotion have met the needs of ordinary residents for daily oral health examinations, realized self-examination at home, and improved the current situation that the supply of imaging equipment in hospitals is in short supply.
附图说明Description of drawings
图1是本发明的一个实施例的结构示意图。Fig. 1 is a structural schematic diagram of an embodiment of the present invention.
图2是本发明的一个实施例的的工作端的正视示意图。Fig. 2 is a schematic front view of the working end of an embodiment of the present invention.
图3是本发明的一个实施例的右侧视示意图。Figure 3 is a schematic right side view of an embodiment of the present invention.
图4是本发明的一个实施例的左侧视示意图。Figure 4 is a schematic left side view of an embodiment of the present invention.
图5是本发明的结构光模块的纵剖面示意图。Fig. 5 is a schematic longitudinal sectional view of the structured light module of the present invention.
图6是本发明的基于光测法与视觉分析实现龋坏检测、定位与严重程度分析功能的流程图。Fig. 6 is a flow chart of realizing caries detection, location and severity analysis functions based on photometry and visual analysis in the present invention.
具体实施方式Detailed ways
为便于对本发明实施例的理解,以下结合附图和实施例对本发明作进一步的解释。In order to facilitate the understanding of the embodiments of the present invention, the present invention will be further explained below in conjunction with the drawings and embodiments.
为了更好地了解,如图1-5所示,基于光测法与视觉分析的龋病检测装置包括:For a better understanding, as shown in Figure 1-5, caries detection devices based on photometry and visual analysis include:
参照图1、图2、图3,一种基于光测法与视觉分析的龋病检测装置,包括关于光源带1对称布置且光轴相交的第一微距摄像机2、第二微距摄像机3,且三者均与第一转动平台5固定连接;所述光带源1可投射条纹光栅于目标牙面,且光带源具有一定光照功率,以满足常规光照条件下的使用。Referring to Fig. 1, Fig. 2 and Fig. 3, a caries detection device based on photometry and visual analysis includes a
所述第一微距摄像机2、第二微距摄像机3、第三微距摄像机8的焦距均小于等于张口度的一半,且可实现自动变焦,以便实现对牙体高分辨率图像捕获。The focal lengths of the first
所述第一微距摄像机2、第二微距摄像机3左右光轴相交,保证其在检测区域范围内能够捕获最大范围的条纹光栅。The left and right optical axes of the first
两个补光灯7分布在第三微距摄像机8两侧且三者均固定于第二转动平台10上;线激光发生器12、显微摄像机13固定在第三转动平台15两侧;所述补光灯7可投射柔和白光于目标牙面,以防光线颜色对牙面颜色数据处理的干扰。Two
所述线激光器12可投射单条光带于被测牙齿表面;所述显微摄像机13通过频闪连续采集反射光条,通过内置导线陆续传递给信号处理系统22。The
第一转动平台5、第二转动平台10、第三转动平台15分别与固定在检测基座17上的第一转动铰支座4、第二转动铰支座9、第三转动铰支座14对应铰接。The first rotary platform 5, the
第一转动平台5、第二转动平台10、第三转动平台15分别连接固定于检测基座17上的第一伺服电机6、第二伺服电机11、第三伺服电机16;第一转动平台5、第二转动平台10、第三转动平台15均包含转动轴,第一伺服电机、第二伺服电机、第三伺服电机通过分别所连接的转动轴控制角度,实现对第一转动平台5、第二转动平台10、第三转动平台15的控制,以调整测量装置角度。The first rotary platform 5, the
参照图4、图5,检测基座17通过滑动轨道18和杆体26与握柄21连接,并通过第四伺服电机19控制检测基座17滑动位置;杆体26顶部连接保护罩20,保护罩20能够拆卸。4 and 5, the
握柄21和杆体26均内置导线,且与信号处理系统22通过信号线25进行电信号互通;显示屏23与信号处理系统22通过电信号互通;信号处理系统22接电源24。Both the
所述第四伺服电机19为直线伺服电机,可控制检测基座17在滑动轨道18内直线运动。The
所述保护装置材料为高透光率、高硬度材料,可保证在使用中不易产生划痕。The protective device material is a material with high light transmittance and high hardness, which can ensure that scratches are not easily generated during use.
所述握柄21底部握持区表面为柔性材料,可提升握持舒适度。The surface of the grip area at the bottom of the
所述杆体26结构部分采用清洁无毒材料,包括复合树脂、玻璃,可在口腔内使用。The structural part of the
所述信号处理系统22内置牙体表面三维点云计算、深度学习软件;通过牙体表面三维点云计算,确定微距摄像机与目标牙面的相对位置,以对牙面进行高精度识别与扫描。具体为:待微距摄像机自动对焦,视野之内目标牙面清晰后,同时拍摄数组目标牙面龋损部位图片后,利用函数得到龋损与摄像机的距离数值,再对其进行线性回归分析,排除离群值,最后求取有效数据的平均值即为龋损与摄像机的距离;深度学习通过大数据深度学习龋病图像并掌握龋病特点,通过多源数据联合处理,提取检测牙面的几何曲面、颜色分布、粗糙度分布,通过对多源数据人工智能筛选判断,以实现准确判断目标牙面有无龋病。The
所述显示屏23具有高精度、高分辨率,原彩显示,以便于对数据、图像的显示。The
参照图6,本发明的工作原理为:With reference to Fig. 6, working principle of the present invention is:
三个平台相当于三个模块,包括结构光扫描模块、视觉识别模块和光切法粗糙度检测模块三个部分。结构光扫描模块通过定向布置光源带1对颌面进行照射,相交双目模型布置的第一微距摄像机2、第二微距摄像机3识别光带,信息处理系统22对光带信号进行分析;上述光源带1以及第一微距摄像机2、第二微距摄像机3所在的第一转动平台5可以在第一伺服电机6的控制下、转动第一转动铰支座4的支撑下进行转动,以调整结构光扫描测量装置角度,实现最大范围的获取高精度牙体各牙面的三维结构模型。Three platforms are equivalent to three modules, including three parts: structured light scanning module, visual recognition module and optical section roughness detection module. The structured light scanning module irradiates the maxillofacial surface through the directional arrangement of the
视觉识别模块通过左右两侧补光灯7对颌面进行白光照射,减少环境光线颜色对牙面颜色的干扰;第三微距摄像机8进行图片捕获,信息处理系统22对像素进行RGB三通道成分分析;上述补光灯7和第三微距摄像机8所在的第二转动平台10可以在第二伺服电机11的控制下、第二转动铰支座9的支撑下进行转动,以调整视觉识别装置角度,实现最大范围地获取牙体各牙面的异色程度分布状况。The visual recognition module irradiates the maxillofacial with white light through the
光切法粗糙度检测模块通过线激光发射器12发出单条垂直光带照射于目标牙表面,反射光线经过牙面反光后在显微摄像机13表面成像,显微摄像机13通过频闪连续采集反射光条信号,信息处理系统22对光条信号处理;上述线激光发射器12和显微摄像机13所在的第三转动平台15可以在第三伺服电机16的控制下、第三转动铰支座14的支撑下进行转动,以调整光切法粗糙度检测装置角度,实现最大范围地获取目标牙面粗糙度分布状况。The roughness detection module of the light section method emits a single vertical light band through the
如图1所示,上述三个模块的所在的第一转动平台、第二转动平台、第三转动平台可通过滑动轨道18以检测基座17为单位进行上下滑动,以微小的调整测量部位进行信号采集。As shown in Figure 1, the first rotating platform, the second rotating platform, and the third rotating platform where the above three modules are located can slide up and down with the
如图1-5所示,在使用时,工作端置于患者口中,工作端的结构光扫描系统、视觉识别系统和光切法检测系统分别发出光信号并进行接收,通过内置导线向信号处理系统22传递信号,其外侧设置有杆体26以及握柄21,该握柄握持区表面为乳胶材料,提升握持舒适度。信号处理装置22进而对信号处理分析得出检测结果并通过显示屏23进行显示。As shown in Figure 1-5, when in use, the working end is placed in the patient's mouth, and the structured light scanning system, visual recognition system, and optical section detection system at the working end respectively send out and receive optical signals, and transmit light signals to the
如图6所示,大数据机器学习龋齿样本,通过多源数据协同处理可以建立牙面参数模型数据曲面并标记龋齿样本训练特征,对龋齿样本进行处理,搭建机器学习诊断模型,掌握龋病特点并建立龋病模型;在上述基础之上,龋坏检测系统输出检测信号,结构光模块、视觉识别模块和光切检测模块分别发出特征光信号,对目标牙面进行轮廓扫描、图像采集和表面显微,以实现目标牙面的三维重建、像素分析以及粗糙表征,提取检测牙面的几何曲面、颜色分布、粗糙度分布,通过多源数据协同处理可以建立目标牙面轮廓及参数数据曲面,进而对曲面每个采样点的数据进行权重网络计算与人工智能分析,并与大数据机器学习所建立龋病模型对比,即可对所测牙面进行有效诊断,获得龋病所在的牙位、详细位置、龋损深度等龋坏信息。As shown in Figure 6, big data machine learning caries samples, through multi-source data collaborative processing, can establish tooth surface parameter model data surface and mark caries sample training features, process caries samples, build machine learning diagnosis model, and grasp caries characteristics And a caries model is established; on the basis of the above, the caries detection system outputs detection signals, and the structured light module, visual recognition module and optical section detection module respectively send out characteristic light signals to perform contour scanning, image acquisition and surface display on the target tooth surface. Micro, in order to realize the 3D reconstruction, pixel analysis and roughness characterization of the target tooth surface, extract and detect the geometric surface, color distribution, and roughness distribution of the tooth surface, and establish the target tooth surface profile and parameter data surface through multi-source data collaborative processing, and then Perform weight network calculation and artificial intelligence analysis on the data of each sampling point on the surface, and compare it with the caries model established by big data machine learning, so that the measured tooth surface can be effectively diagnosed, and the tooth position where the caries is located, and detailed information can be obtained. Caries information such as location and caries depth.
综上所述,本发明通过光带源投射线式结构光于目标牙面,通过滑动轨道与转动平台对所检测的牙面进行整体扫描,通过轮廓扫描与三维重建可获得所检测牙面三维轮廓曲面;通过补光灯投射白光于目标牙面,由第三微距摄像机对牙面进行视觉识别,通过滑动轨道与转动平台实现对牙面整体的拍摄,通过对识别像素进行RGB三通道成分分析,可将早期龋病的细微表面颜色变化通过视觉识别得到异色像素的比例进行表征,获得牙面异色程度的分布;通过光切法对牙面发射线光带,并配合滑动轨道与转动平台,可对牙面整体粗糙度进行显微识别,获取检测牙面的粗糙度分布;在获得牙面各项参数后,进行坐标统一转换,将摄像机坐标转化为世界坐标,再经由信息控制中心深度学习、数据处理后建立多源数据曲面,该曲面几何特征为结构光扫描结果,曲面曲率可表征龋洞大小与程度,且曲面各点含有牙面异色度、粗糙度特征,通过神经网络、机器学习建立含曲面曲率、异色度、粗糙度三因子的诊断权重网络,并建立诊断阈值。通过对曲面每个采样点的数据进行权重网络计算与人工智能分析,并与所建立阈值对比,即可对所测牙面进行有效诊断,并通过输出存在问题的采样点及其周边数据,可获得龋病所在牙位、详细位置、龋损深度,简单直观地显示龋病的基本情况,有效提升了龋病检测尤其是浅龋检测的精准度与可视化程度。其次,由于检测介质均为光线而非射线,避免了电离辐射所造成的心理和身体上的潜在危害,扩大了龋病检测装置的适用人群范围。In summary, the present invention projects linear structured light onto the target tooth surface through the light belt source, scans the detected tooth surface as a whole through the sliding track and the rotating platform, and obtains a three-dimensional image of the detected tooth surface through contour scanning and three-dimensional reconstruction. Contour curved surface; project white light on the target tooth surface through the supplementary light, visually identify the tooth surface with the third macro camera, realize the overall shooting of the tooth surface through the sliding track and the rotating platform, and perform RGB three-channel composition on the recognition pixels Analysis, the subtle surface color changes of early caries can be characterized by the proportion of heterochromatic pixels through visual recognition, and the distribution of the degree of heterochromia on the tooth surface can be obtained; the light band is emitted from the tooth surface by the optical section method, and the sliding track and Rotate the platform to microscopically identify the overall roughness of the tooth surface, and obtain the roughness distribution of the detected tooth surface; after obtaining various parameters of the tooth surface, perform a unified coordinate conversion, convert the camera coordinates into world coordinates, and then control the After the deep learning and data processing of the center, a multi-source data surface is established. The geometric characteristics of the surface are the results of structured light scanning. Network and machine learning establish a diagnostic weight network including three factors of surface curvature, heterochromaticity, and roughness, and establish a diagnostic threshold. By performing weight network calculation and artificial intelligence analysis on the data of each sampling point on the surface, and comparing with the established threshold, the measured tooth surface can be effectively diagnosed, and by outputting the problematic sampling point and its surrounding data, it can be used. Obtain the tooth position, detailed position, and caries depth of caries, and display the basic situation of caries simply and intuitively, effectively improving the accuracy and visualization of caries detection, especially shallow caries detection. Secondly, since the detection medium is all light rather than radiation, the potential psychological and physical harm caused by ionizing radiation is avoided, and the scope of applicable population of the dental caries detection device is expanded.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310151742.3ACN116138916B (en) | 2023-02-22 | 2023-02-22 | Caries detection device based on light measurement method and visual analysis |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310151742.3ACN116138916B (en) | 2023-02-22 | 2023-02-22 | Caries detection device based on light measurement method and visual analysis |
| Publication Number | Publication Date |
|---|---|
| CN116138916Atrue CN116138916A (en) | 2023-05-23 |
| CN116138916B CN116138916B (en) | 2025-09-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310151742.3AActiveCN116138916B (en) | 2023-02-22 | 2023-02-22 | Caries detection device based on light measurement method and visual analysis |
| Country | Link |
|---|---|
| CN (1) | CN116138916B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005168520A (en)* | 2003-12-05 | 2005-06-30 | Morita Mfg Co Ltd | Diagnostic camera |
| CN106606353A (en)* | 2017-03-03 | 2017-05-03 | 中国人民武装警察部队总医院 | Tooth self-examination system and self-examination method thereof |
| US20180028065A1 (en)* | 2016-07-27 | 2018-02-01 | Align Technology, Inc. | Methods for dental diagnostics |
| CN108460762A (en)* | 2018-03-16 | 2018-08-28 | 鲍志遥 | A kind of detection device and its method of quick detection saprodontia |
| WO2022234126A1 (en)* | 2021-05-06 | 2022-11-10 | Janssen Pharmaceutica Nv | Digital measurement stacks for characterizing diseases, measuring interventions, or determining outcomes |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005168520A (en)* | 2003-12-05 | 2005-06-30 | Morita Mfg Co Ltd | Diagnostic camera |
| US20180028065A1 (en)* | 2016-07-27 | 2018-02-01 | Align Technology, Inc. | Methods for dental diagnostics |
| CN106606353A (en)* | 2017-03-03 | 2017-05-03 | 中国人民武装警察部队总医院 | Tooth self-examination system and self-examination method thereof |
| CN108460762A (en)* | 2018-03-16 | 2018-08-28 | 鲍志遥 | A kind of detection device and its method of quick detection saprodontia |
| WO2022234126A1 (en)* | 2021-05-06 | 2022-11-10 | Janssen Pharmaceutica Nv | Digital measurement stacks for characterizing diseases, measuring interventions, or determining outcomes |
| Title |
|---|
| 张浩颖等: "龋齿的快速检测方法研究",龋齿的快速检测方法研究, vol. 43, no. 2, 13 February 2021 (2021-02-13), pages 89 - 94* |
| Publication number | Publication date |
|---|---|
| CN116138916B (en) | 2025-09-09 |
| Publication | Publication Date | Title |
|---|---|---|
| CN208942463U (en) | Intraoral scanning system and intraoral scanning device | |
| US12263063B2 (en) | Intraoral scanning apparatus | |
| US11185233B2 (en) | Methods and systems for imaging orthodontic aligners | |
| WO2011016508A1 (en) | Radiation imaging apparatus and imaging method using radiation | |
| CN104349710A (en) | Dental 3D Measuring Devices | |
| CN108742519A (en) | Machine vision three-dimensional reconstruction technique skin ulcer surface of a wound intelligent auxiliary diagnosis system | |
| CN103153167A (en) | Three-dimensional temporary storage optical color image capture device | |
| CN103040429A (en) | Optical image detection device for oral cavity and imaging method | |
| CN115553686A (en) | Double-mode imaging device and detection system for optical coherence tomography and endoscopy of digestive tract | |
| CN211674190U (en) | Three-dimensional face tongue diagnosis equipment | |
| CN116138916B (en) | Caries detection device based on light measurement method and visual analysis | |
| CN106073801A (en) | A kind of external cavum nasopharyngeum vena systemica blood oxygen saturation formation method and device | |
| CN216724529U (en) | Split type maxillofacial soft tissue and oral cavity three-dimensional imaging system | |
| CN207561890U (en) | For the scanning platform of upper limb lymphedema monitoring system | |
| Galantucci et al. | New 3D digitizer for human faces based on digital close range photogrammetry: Application to face symmetry analysis | |
| Itoda et al. | In vitro study of the criterion validity of measuring the distance between facial landmarks using a dental face scanner | |
| CN219000273U (en) | A mouth center point depth data detector capable of automatic positioning control | |
| TWI756996B (en) | Automatic bio-specimen inspection system and inspection method thereof as well as non-volatile computer readable storage media | |
| Guo et al. | Discrimination of dental caries and calculus using hyperspectral imaging and lightweight edge artificial intelligence | |
| Chen et al. | Dental caries location with line-structured light and integrated calibration method | |
| CN117918989A (en) | Oral cavity stopper treating agent treatment device | |
| Sun et al. | A photometric stereo approach for chronic wound measurement |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information | ||
| CB03 | Change of inventor or designer information | Inventor after:Wang Gang Inventor after:Gu Ziteng Inventor after:Liu Xianya Inventor after:Bi Jiyuan Inventor after:Zhao Jiayi Inventor after:Jia Yunfei Inventor after:Wang Zhuoyang Inventor after:Wu Chenxu Inventor after:Wu Wenxin Inventor before:Jia Yunfei Inventor before:Wang Gang Inventor before:Gu Ziteng Inventor before:Liu Xianya Inventor before:Bi Jiyuan Inventor before:Zhao Jiayi Inventor before:Wang Zhuoyang Inventor before:Wu Chenxu Inventor before:Wu Wenxin | |
| GR01 | Patent grant | ||
| GR01 | Patent grant |