发明内容
为解决相关技术问题,本公开申请实施例提出一种半导体结构及其制造方法、晶体管及其制造方法。
本公开实施例提供了一种半导体结构,用于形成栅极氧化层,所述半导体结构包括:
金属氧化物层,所述金属氧化物层的材料的介电常数大于预设值,所述金属氧化物层具有相对设置的第一表面和第二表面;
硅酸盐层,所述硅酸盐层覆盖所述第一表面和/或第二表面,所述硅酸盐层具有与所述金属氧化物层相同的金属元素,所述硅酸盐层中硅的含量沿第一方向逐渐增加,所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。
上述方案中,所述金属氧化物层的材料包括氧化铪或氧化锆。
上述方案中,所述硅酸盐层包括连续的硅酸盐层,所述连续的硅酸盐层中硅的含量沿第一方向逐渐增加;
或者,
所述硅酸盐层包括多个堆叠的子硅酸盐层,所述多个堆叠的子硅酸盐层中硅的含量沿第一方向逐渐增加。
上述方案中,所述硅酸盐层包括第一硅酸盐层和第二硅酸盐层,所述第一硅酸盐层覆盖所述第一表面,所述第二硅酸盐层覆盖所述第二表面,所述第一硅酸盐层中硅的含量和所述第二硅酸盐层中硅的含量均沿所述第一方向逐渐增加。
本公开实施例还提供了一种晶体管,包括:
衬底;
位于所述衬底中的源极和漏极;
位于所述源极和漏极之间的栅极氧化层;所述栅极氧化层包括如本公开实施例提供的所述的半导体结构;
位于所述栅极氧化层上的栅极。
上述方案中,所述栅极氧化层还包括位于所述衬底和所述半导体结构之间的氧化硅层。
本公开实施例又提供了一种半导体结构的制造方法,所述半导体结构用于形成栅极氧化层,所述制造方法包括:
形成金属氧化物层;所述金属氧化物层的材料的介电常数大于预设值;所述金属氧化物层具有相对设置的第一表面和第二表面;
在所述第一表面和/或第二表面上形成硅酸盐层,所述硅酸盐层具有与所述金属氧化物层相同的金属元素;所述硅酸盐层中硅的含量沿第一方向逐渐增大;所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。
上述方案中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
采用随时间具有梯度变化的沉积参数,在所述第一表面和/或第二表面上形成硅的含量沿第一方向存在梯度变化的硅酸盐层。
上述方案中,所述沉积参数至少包括以下至少之一:
沉积反应气体中硅源的比例;
沉积反应气体中硅源的通入速率。
上述方案中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
形成连续的硅酸盐层,所述连续的硅酸盐层中硅的含量沿第一方向逐渐增加;
或者,
形成具有多个堆叠的子硅酸盐层,所述多个堆叠的子硅酸盐层中硅的含量沿第一方向逐渐增加。
上述方案中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料;
对沉积的用于形成硅酸盐层的材料进行退火处理,得到所述硅酸盐层。
上述方案中,所述在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料,包括:
通过原子层沉积、化学气相沉或者分子束外延,在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料。
上述方案中,在进行退火的过程中,采用的温度范围为:500℃~900℃。
上述方案中,在进行退火的过程中,采用的压力范围为:1.2Pa~1.4Pa。
本公开实施例还提供了一种晶体管的制造方法,包括:
提供衬底;
在所述衬底中形成源极和漏极;
在所述源极和漏极之间形成栅极氧化层;所述栅极氧化层采用如本公开实施例提供的半导体结构的制造方法形成;
在所述栅极氧化层上形成栅极。
上述方案中,所述栅极氧化层还包括:氧化硅层;所述在所述源极和漏极之间形成栅极氧化层,包括:
在所述衬底和所述半导体结构之间形成氧化硅层;
在所述氧化硅层上形成所述半导体结构,得到所述栅极氧化层。
本公开实施例提供了一种半导体结构及其制造方法、晶体管及其制造方法。其中,所述半导体结构用于形成栅极氧化层,所述半导体结构包括:金属氧化物层;所述金属氧化物层的材料的介电常数大于预设值;所述金属氧化物层具有相对设置的第一表面和第二表面;硅酸盐层;所述硅酸盐层覆盖所述第一表面和/或第二表面;所述硅酸盐层具有与所述金属氧化物层相同的金属元素;所述硅酸盐层中硅的含量沿第一方向逐渐增加;所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。本公开实施例中,将渐变硅组分的金属基硅酸盐设置在具有高介电常数的金属氧化物的某一侧,或两个相对的侧,其中,每一侧的金属基硅酸盐中硅的含量均是随着距所述金属氧化物层的距离的增加而增大。可以理解的是,增大硅含量的金属基硅酸盐在直接与硅接触时形成的金属基硅氧键在高温下具备更好的稳定性,因此在可能与硅接触的界面引入硅组分更高的金属基的硅酸盐;而硅组分过高会减小介电常数,从而增大等效氧化层厚度,这对于高K器件的进一步优化以及尺寸收缩都是极为不利的,因此通过组分渐变的金属基的硅酸盐的引入,既能保证接触表层有更为稳定的金属基硅氧键,又能兼顾减小因硅的引入带来的器件性能的退化。
具体实施方式
下面将参照附图更详细地描述本公开公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开公开的范围完整的传达给本领域的技术人员。
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。
应当明白,空间关系术语例如“在……下”、“在……下面”、“下面的”、“在……之下”、“在……之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在……下面”和“在……下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。
在半导体器件的制造领域中,随着尺寸不断缩小,介电层不断减薄。以氧化硅作为介电层带来了不可忽略的栅极漏电,因此在器件介电层制备过程中引入了高介电常数(高K)材料。随着研究的深入,一些高K材料,如氧化铪(HfO2),因宽的带隙和遇硅(Si)界面较高的稳定性等优势成为较优的候选材料。但是随着对介电层制备过程的进一步研究,高K材料的引入带来了一些新的挑战。
在本公开的各实施例中,将渐变硅组分的金属基硅酸盐设置在具有高介电常数的金属氧化物的某一侧,或两个相对的侧,其中,每一侧的金属基硅酸盐中硅的含量均是随着距所述金属氧化物层的距离的增加而增大。可以理解的是,金属氧化物的设置,可以使得减小介质层的等效氧化层厚度(EOT,Equivalent Oxide Thickness);同时,增大硅含量的金属基硅酸盐在直接与硅接触的时形成的金属基硅氧键在高温下具备更好的稳定性,因此在可能与硅接触的界面引入硅组分更高的金属基的硅酸盐;而硅组分过高会减小介电常数,从而增大EOT,因此通过组分渐变的金属基的硅酸盐的引入,既能保证接触表层有更为稳定的金属基硅氧键,又能兼顾减小因硅的引入带来的EOT的增大。
本公开实施例提供一种半导体结构的制造方法,图1为本公开实施例提供的一种半导体结构的制造方法的实现流程示意图。如图1所示,所述半导体结构用于形成栅极氧化层,所述半导体结构的制造方法包括:
步骤101:形成金属氧化物层;所述金属氧化物层的材料的介电常数大于预设值;所述金属氧化物层具有相对设置的第一表面和第二表面;
步骤102:在所述第一表面和/或第二表面上形成硅酸盐层,所述硅酸盐层具有与所述金属氧化物层相同的金属元素;所述硅酸盐层中硅的含量沿第一方向逐渐增大;所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。
应当理解,图1中所示的操作并非排他的,也可以在所示操作中的任何操作之前、之后或之间执行其他操作。步骤101和步骤102之间没有明确的先后执行顺序,实际应用中,可以根据需要进行执行顺序的调整,甚至步骤101和步骤102可以穿插执行。
需要说明的是,所述半导体结构是将被用于后续制程以形成栅极氧化层或者栅极介电层。
其中,在步骤101中,所述预设值大于3.9,也就是说,本公开实施例中所述金属氧化物层的材料的介电常数较高。在一些实施例中,所述金属氧化物层的材料包括氧化铪或氧化锆(ZrO2)。
这里,所述第一表面和所述第二表面为金属氧化物层相对设置的两个表面。实际应用中,所述第一表面和所述第二表面中一个表面(下表面)靠近衬底,例如,硅衬底,另一个表面(上表面)靠近栅极,如多晶硅栅极或者金属栅极。在后面的实施例中,为了表达的清楚性、简洁性将第一表面定义为所述金属氧化物层的下表面,将第二表面定义为所述金属氧化物的上表面。
在步骤102中,所述硅酸盐层包括金属基硅酸盐层,并且该金属基与步骤101中金属氧化物层中的金属元素相同。
示例性地,所述金属氧化物层的材料为氧化铪,则所述硅酸盐层的材料为铪基硅酸盐(HfSiOx);或者,所述金属氧化物层的材料为氧化锆,则所述硅酸盐层的材料为锆基硅酸盐(ZrSiOx)。
这里,对于所述金属氧化物,无论是上表面还是下表面,所述第一方向均由所述金属氧化物层指向远离所述金属氧化物层的方向。
图2a-图2c为本公开实施例提供的几种金属氧化物层和硅酸盐层之间的结构关系示意图。
示例性地,如图2a所示,所述硅酸盐层202覆盖所述金属氧化物层201的下表面,并且所述硅酸盐层中硅的含量沿图2a中箭头所指的方向逐渐增大。可以理解的是,实际应用中,需要先形成所述硅酸盐层202,再在所述硅酸层202上形成所述金属氧化物层201。
示例性地,如图2b所示,所述硅酸盐层202覆盖所述金属氧化物层201的上表面,并且所述硅酸盐层中硅的含量沿图2b中箭头所指的方向逐渐增大。可以理解的是,实际应用中,需要先形成所述金属氧化物层201,再在所述金属氧化物层201上形成所述硅酸盐层202。
示例性地,如图2c所示,所述硅酸盐层包括第一硅酸盐层202-1和第二硅酸盐层202-2;其中,所述第一硅酸盐层202-1覆盖所述金属氧化物层201的下表面,所述第二硅酸盐层202-2覆盖所述金属氧化物层的上表面,并且第一硅酸盐层202-1和第二硅酸盐层202-2中硅的含量均沿图2c中相应箭头所指的方向逐渐增大。可以理解的是,实际应用中,需要先形成所述第一硅酸盐层202-1,然后在所述第一硅酸盐层202-1上形成金属氧化物层201,再在所述金属氧化物层201上形成所述第二硅酸盐层202-2。
需要说明的是,所述硅酸盐层202相对于所述金属氧化物层201的设置可以根据实际应用中金属氧化物层201是否靠近易被氧化的衬底材料而定。也就是说,当所述硅酸盐层202靠近易被氧化的衬底材料时,需要引入渐变硅组分的金属基硅酸盐层。
在一些实施例中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
采用随时间具有梯度变化的沉积参数,在所述第一表面和/或第二表面上形成硅的含量沿第一方向存在梯度变化的硅酸盐层。
其中,在一些实施例中,所述沉积参数至少包括以下至少之一:
沉积反应气体中硅源的比例;
沉积反应气体中硅源的通入速率。
也就是说,实际应用中,可以通过控制沉积反应气体中硅源的比例或者控制沉积反应气体中硅源的通入速率等来形成渐变组分的硅酸盐层。以图2c中示出的硅酸盐层为例,可以通过控制沉积反应气体中硅源的比例越来越小或者控制沉积反应气体中硅源的通入速率越来越小,使得沉积反应不充分,来形成所述硅酸盐层的硅组分小的部分;可以通过控制沉积反应气体中硅源的比例越来越大或者控制沉积反应气体中硅源的通入速率越来越大,使得沉积反应充分,来形成所述硅酸盐层的硅组分大的部分。
在一些实施例中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
形成连续的硅酸盐层,所述连续的硅酸盐层中硅的含量沿第一方向逐渐增加;
或者,
形成具有多个堆叠的子硅酸盐层,所述多个堆叠的子硅酸盐层中硅的含量沿第一方向逐渐增加。
实际应用中,所述硅酸盐层可以是具有连续渐变的硅含量的硅酸盐层,也可以是由多个子硅酸盐层形成的具有间隔渐变的硅含量的硅酸盐层。
在一些实施例中,所述在所述第一表面和/或第二表面上形成硅酸盐层,包括:
在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料;
对沉积的用于形成硅酸盐层的材料进行退火处理,得到所述硅酸盐层。
这里,需要说明的是,实际应用中,当形成的所述硅酸盐层为连续的硅酸盐层时,所述退火处理为整个栅极氧化层形成之后的退火处理;当形成的所述硅酸盐层为具有多个堆叠的子硅酸盐层时,所述退火处理为在形成每个子硅酸盐层后的退火处理。
实际应用中,在一些实施例中,所述在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料,包括:
通过原子层沉积(ALD,Atomic Layer Deposition)、化学气相沉(CVD,ChemicalVapour Deposition)或者分子束外延(MBE,Molecular Beam Epitaxy),在所述第一表面和/或第二表面上沉积用于形成硅酸盐层的材料。在一些实施例中,在进行退火的过程中,采用的温度范围为:500℃~900℃。
在一些实施例中,在进行退火的过程中,采用的压力范围为:1.2Pa~1.4Pa。在此温度、压力范围内进行退火,可以充分激活栅极氧化层中的硅酸盐层。
示例性地,在硅衬底上,利用ALD等工艺通过逐周期(cycle-by-cycle)沉积的方式,进行高K介电层的制备,以能够保证形成均匀致密的薄膜。且可以以较快的生长速率如,0.1nm/周期进行沉积。在这个过程中,控制反应炉管内的反应温度、硅源的通入速率,炉内的气压等要素,控制硅的通入;并利用快速退火炉,对样品进行快速退火(RTA):在退炉管内真空度1.3Pa左右的条件下,在600℃,800℃温度下完成快速退火,能够保证形成均匀致密的硅酸盐层。
本公开实施例提供了一种半导体结构的制造方法,所述半导体结构用于形成栅极氧化层,所述半导体结构的制造方法包括:形成金属氧化物层;所述金属氧化物层的材料的介电常数大于预设值;所述金属氧化物层具有相对设置的第一表面和第二表面;在所述第一表面和/或第二表面上形成硅酸盐层,所述硅酸盐层具有与所述金属氧化物层相同的金属元素;所述硅酸盐层中硅的含量沿第一方向逐渐增大;所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。本公开实施例中,将渐变硅组分的金属基硅酸盐设置在具有高介电常数的金属氧化物的某一侧,或两个相对的侧,其中,每一侧的金属基硅酸盐中硅的含量均是随着距所述金属氧化物层的距离的增加而增大。可以理解的是,增大硅含量的金属基硅酸盐在直接与硅接触时形成的金属基硅氧键在高温下具备更好的稳定性,因此在可能与硅接触的界面引入硅组分更高的金属基的硅酸盐;而硅组分过高会减小介电常数,从而增大等效氧化层厚度,这对于高K器件的进一步优化以及尺寸收缩都是极为不利的,因此通过组分渐变的金属基的硅酸盐的引入,既能保证接触表层有更为稳定的金属基硅氧键,又能兼顾减小因硅的引入带来的器件性能的退化。
基于上述半导体结构的制造方法,本公开实施例还提供一种晶体管的制造方法,如图3所示,所述晶体管的制造方法包括:
步骤301:提供衬底;
步骤302:在所述衬底中形成源极和漏极;
步骤303:在所述源极和漏极之间形成栅极氧化层;所述栅极氧化层采用本公开实施例提供的所述的半导体结构的制造方法形成;
步骤304:在所述栅极氧化层上形成栅极。
实际应用中,所述栅极的材料包括多晶硅和/或金属材料,在一些实施例中所述金属材料可以包括但不限于氮化钛(TiN)或氮化钽(TaN)等。
其中,在一些实施例中,所述栅极氧化层还包括:氧化硅层;所述在所述源极和漏极之间形成栅极氧化层,包括:
在所述衬底和所述半导体结构之间形成氧化硅层;
在所述氧化硅层上形成所述半导体结构,得到所述栅极氧化层。
图4为本公开实施例提供的一种晶体管的结构示意图。结合图4对所述晶体管的制造过程进行说明。
这里,实际应用中,所述衬底的材料包括但不限于硅。可以采用离子注入在所述衬底中形成源极和漏极。还可以分别在源极和漏极旁进行口袋掺杂(halo implant)或轻掺杂漏区(LDD)掺杂,形成口袋掺杂区及轻掺杂区。之后采用本公开实施例提供的所述的半导体结构的制造方法形成栅极氧化层,图4中仅示出了硅酸盐层包括第一硅酸盐层和第二硅酸盐层,且所述第一硅酸盐层覆盖所述金属氧化物层的下表面,所述第二硅酸盐层覆盖所述金属氧化物层的上表面的情况。在有关研发中,为了与高K介电层更相适应,已用金属栅极来替代多晶硅栅极,基于此,可以在所述栅极氧化层上形成金属栅极。在一些实施例中,所述栅极可以包括多晶硅和/或金属材料。还可以在金属栅极的两侧形成保护的侧墙。
基于上述半导体结构的制造方法,本公开实施例还提供一种半导体结构,用于形成栅极氧化层,所述半导体结构包括:
金属氧化物层,所述金属氧化物层的材料的介电常数大于预设值,所述金属氧化物层具有相对设置的第一表面和第二表面;
硅酸盐层,所述硅酸盐层覆盖所述第一表面和/或第二表面,所述硅酸盐层具有与所述金属氧化物层相同的金属元素,所述硅酸盐层中硅的含量沿第一方向逐渐增加,所述第一方向由所述金属氧化物层指向远离所述金属氧化物层的方向。
其中,在一些实施例中,所述金属氧化物层的材料包括氧化铪或氧化锆。
在一些实施例中,所述硅酸盐层包括连续的硅酸盐层,所述连续的硅酸盐层中硅的含量沿第一方向逐渐增加;
或者,
所述硅酸盐层包括多个堆叠的子硅酸盐层,所述多个堆叠的子硅酸盐层中硅的含量沿第一方向逐渐增加。
在一些实施例中,所述硅酸盐层包括第一硅酸盐层和第二硅酸盐层,所述第一硅酸盐层覆盖所述第一表面,所述第二硅酸盐层覆盖所述第二表面,所述第一硅酸盐层中硅的含量和所述第二硅酸盐层中硅的含量均沿所述第一方向逐渐增加。
在一些实施例中,所述第一硅酸盐层和第二硅酸盐层均可以包括铪(锆)酸盐。
可以理解的是,渐变组分的铪(锆)基硅酸盐/氧化铪(锆)/渐变组分的铪(锆)基硅酸盐的介电层有利于降低界面氧化硅(低K材料)的形成,同时提高铪(锆)基硅酸盐(高K材料)的高温热稳定性。
由于铪(锆)基的硅酸盐在直接与硅接触的时候展现出更好的电学性能和更高的热稳定性,形成的Hf(Zr)-Si-O键在高温下具备更好的稳定性,在与Si接触界面引入Si组分更高的Hf基的硅酸盐;Si组分过高会影响介电层的相对介电常数,从而增大EOT,对于高K器件的进一步优化已经尺寸收缩都是极为不利的;通过组分渐变的铪(锆)基的硅酸盐的引入,既能保证接触表层有更为稳定的Hf(Zr)-Si-O,同时层状生长控制Si组分,以减小因为Si的引入带来的器件性能的退化。
本公开实施例提出一种利用渐变硅组分的铪(锆)基硅酸盐/氧化铪(锆)/渐变硅组分的铪(锆)基硅酸盐的高K介电层,通过在高K介电层材料生长过程中,控制硅基源的摄入,形成组分渐变的硅酸盐层,调节氧化铪(锆)的厚度可以进一步去调节高K介电层的性能。
基于上述半导体结构的,本公开实施例还提供一种晶体管,包括:
衬底;
位于所述衬底中的源极和漏极;
位于所述源极和漏极之间的栅极氧化层;所述栅极氧化层包括本公开实施例提供的所述的半导体结构;
位于所述栅极氧化层上的栅极。
实际应用中,所述栅极的材料包括多晶硅和/或金属材料,在一些实施例中所述金属材料可以包括但不限于氮化钛(TiN)或氮化钽(TaN)等。其中,在一些实施例中,所述栅极氧化层还包括位于所述衬底和所述半导体结构之间的氧化硅层。
需要说明的是,本公开实施例提出了新的高K介电层的结构和制造方式,可以用于形成基于高K介电层的CMOS。
应理解,说明书中提到的“一些实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一些实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
本公开所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。