


技术领域technical field
本发明涉及电池储能技术领域,尤其涉及一种锂电池OCV-SOC曲线的重构方法及装置。The invention relates to the technical field of battery energy storage, in particular to a method and device for reconstructing OCV-SOC curves of lithium batteries.
背景技术Background technique
电池的SOC(State-of-Charge)表示荷电状态,SOC值是储能电站性能的一个重要参数,准确的SOC值可以显著提高电池的使用性能。OCV-SOC关系曲线主要是用于确定在不同的电芯开路电压(OCV,Open Circuit Voltage)下SOC的对应值。The SOC (State-of-Charge) of the battery indicates the state of charge. The SOC value is an important parameter for the performance of the energy storage power station. An accurate SOC value can significantly improve the performance of the battery. The OCV-SOC relationship curve is mainly used to determine the corresponding value of SOC under different cell open circuit voltage (OCV, Open Circuit Voltage).
OCV-SOC曲线会随着电池老化而产生变化,如果要获得变化后的OCV-SOC,通常采用开路电压试验的方式来获取,然而由于电池的极化效应,想要测量准确的开路电压值,需要电池长时间静止,但是对于储能电站中使用的锂电池来说,是无法满足这个测试条件的。The OCV-SOC curve will change as the battery ages. If you want to obtain the changed OCV-SOC, you usually use the open circuit voltage test to obtain it. However, due to the polarization effect of the battery, you want to measure the accurate open circuit voltage value. The battery needs to be static for a long time, but for the lithium battery used in the energy storage power station, this test condition cannot be met.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供一种锂电池OCV-SOC关系曲线的重构方法及装置。In order to solve the above technical problems, the present invention provides a method and device for reconstructing the OCV-SOC relationship curve of a lithium battery.
具体的,本发明的技术方案如下:Specifically, the technical scheme of the present invention is as follows:
一方面,本发明提供一种锂电池OCV-SOC关系曲线的重构方法,包括:On the one hand, the present invention provides a method for reconstructing the OCV-SOC relationship curve of a lithium battery, including:
根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到所述电芯电化学模型中的各个参数,所述参数包括所述电芯电化学模型正、负极的第一锂离子浓度;According to the actual working condition data of the battery cell, perform parameter identification on the preset electrochemical model of the battery cell to obtain various parameters in the electrochemical model of the battery cell, and the parameters include the positive and negative poles of the electrochemical model of the battery cell a first lithium ion concentration;
将所述第一锂离子浓度调整为所述电芯充电充满状态时的第二锂离子浓度,在预设的放电电流倍率下,根据所述电芯电化学模型的各个参数,对所述电芯的放电过程进行仿真;Adjusting the first lithium ion concentration to the second lithium ion concentration when the cell is fully charged, under a preset discharge current rate, according to each parameter of the cell electrochemical model, the cell The discharge process of the core is simulated;
当所述放电电流倍率为第一放电电流倍率时,计算所述电芯老化后的容量;When the discharge current rate is the first discharge current rate, calculate the capacity of the cell after aging;
当所述放电电流倍率为第二放电电流倍率时,获取所述电芯在第一放电时间内不同时刻的第一输出电压值;When the discharge current rate is the second discharge current rate, obtain the first output voltage value of the cell at different times within the first discharge time;
根据所述电芯老化后的容量、所述第二放电电流倍率以及所述第一输出电压,得到所述电芯的OCV-SOC关系曲线。An OCV-SOC relationship curve of the battery cell is obtained according to the aged capacity of the battery cell, the second discharge current rate and the first output voltage.
在一些实施方式中,所述的当放电电流倍率为第一放电电流倍率时,计算所述电芯老化后的容量,包括:In some embodiments, when the discharge current rate is the first discharge current rate, calculating the capacity of the cell after aging includes:
当所述放电电流倍率为第一放电电流倍率时,若所述电芯的第二输出电压达到所述电芯的放电截止电压,获取所述电芯的第二放电时间;When the discharge current rate is the first discharge current rate, if the second output voltage of the cell reaches the discharge cut-off voltage of the cell, obtain a second discharge time of the cell;
根据所述第一放电电流倍率和所述第一放电时间,计算所述电芯老化后的容量。Calculate the capacity of the cell after aging according to the first discharge current rate and the first discharge time.
在一些实施方式中,所述的根据所述电芯老化后的容量、所述第二放电电流倍率以及所述第一输出电压,得到电芯的OCV-SOC关系曲线,包括:In some embodiments, the OCV-SOC relationship curve of the battery is obtained according to the aging capacity of the battery, the second discharge current rate and the first output voltage, including:
根据所述电芯老化后的容量和所述第二放电电流倍率,计算所述电芯的第一放电时间;calculating the first discharge time of the battery cell according to the aging capacity of the battery cell and the second discharge current rate;
根据所述第一放电时间、所述第二放电电流倍率以及所述电芯老化后的容量,计算所述电芯在不同时刻的荷电状态值;所述荷电状态值与所述第一输出电压值一一对应;According to the first discharge time, the second discharge current rate and the aging capacity of the battery cell, calculate the state of charge value of the battery cell at different times; the state of charge value and the first One-to-one correspondence of output voltage values;
根据不同时刻的所述荷电状态值和所述第一输出电压值,重构所述电芯的OCV-SOC曲线。The OCV-SOC curve of the battery cell is reconstructed according to the state of charge value and the first output voltage value at different moments.
在一些实施方式中,所述的根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到所述电芯电化学模型中的各个参数,包括:In some embodiments, according to the actual working condition data of the battery cell, the parameter identification is performed on the preset electrochemical model of the battery cell to obtain various parameters in the electrochemical model of the battery cell, including:
获取电芯在不同工况下的数据,对所述不同工况下的数据进行数据清洗,得到所述电芯的实际工况数据集;Obtain the data of the battery cell under different working conditions, perform data cleaning on the data under the different working conditions, and obtain the actual working condition data set of the battery cell;
对所述预设的电芯电化学模型进行仿真,得到所述电芯电化学模型的仿真数据集;Simulating the preset battery electrochemical model to obtain a simulation data set of the battery electrochemical model;
根据所述实际工况数据集与所述仿真数据集,采用启发式算法,对所述电芯进行参数辨识,得到所述电芯电化学模型的各个参数。According to the actual working condition data set and the simulation data set, a heuristic algorithm is used to identify the parameters of the battery cell to obtain various parameters of the electrochemical model of the battery cell.
另一方面,本发明还提供一种锂电池OCV-SOC关系曲线的重构装置,包括:On the other hand, the present invention also provides a device for reconstructing the OCV-SOC relationship curve of a lithium battery, including:
辨识模块,用于根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到所述电芯电化学模型中的各个参数,所述参数包括所述电芯电化学模型正、负极的第一锂离子浓度;The identification module is used to perform parameter identification on the preset electrochemical model of the battery according to the actual working condition data of the battery, and obtain various parameters in the electrochemical model of the battery, and the parameters include the electrochemical model of the battery. The first lithium ion concentration of the positive and negative electrodes of the model;
仿真模块,用于将所述第一锂离子浓度调整为所述电芯充电充满状态时的第二锂离子浓度,在预设的放电电流倍率下,根据所述电芯电化学模型的各个参数,对所述电芯的放电过程进行仿真;The simulation module is used to adjust the first lithium ion concentration to the second lithium ion concentration when the cell is fully charged, and at a preset discharge current rate, according to each parameter of the electrochemical model of the cell , simulating the discharge process of the battery cell;
计算模块,用于当所述放电电流倍率为第一放电电流倍率时,计算所述电芯老化后的容量;A calculation module, configured to calculate the capacity of the cell after aging when the discharge current rate is the first discharge current rate;
获取模块,用于当所述放电电流倍率为第二放电电流倍率时,获取所述电芯在第一放电时间内不同时刻的第一输出电压值;An acquisition module, configured to acquire the first output voltage value of the cell at different times within the first discharge time when the discharge current rate is the second discharge current rate;
重构模块,用于根据所述电芯老化后的容量、所述第二放电电流倍率以及所述第一输出电压,得到所述电芯的OCV-SOC关系曲线。The reconstruction module is used to obtain the OCV-SOC relationship curve of the battery cell according to the aging capacity of the battery cell, the second discharge current rate and the first output voltage.
在一些实施方式中,所述计算模块,包括:第一获取单元,用于当所述放电电流倍率为第一放电电流倍率时,若所述电芯的第二输出电压达到所述电芯的放电截止电压,获取所述电芯的第二放电时间;第一计算单元,用于根据所述第一放电电流倍率和所述第二放电时间,计算所述电芯老化后的容量。In some embodiments, the calculation module includes: a first acquisition unit, configured to: when the discharge current rate is the first discharge current rate, if the second output voltage of the cell reaches the The discharge cut-off voltage is used to obtain the second discharge time of the battery cell; the first calculation unit is used to calculate the capacity of the battery cell after aging according to the first discharge current rate and the second discharge time.
在一些实施方式中,所述重构模块,包括:In some embodiments, the reconstruction module includes:
第二计算单元,用于根据所述电芯老化后的容量和所述第二放电电流倍率,计算所述电芯的第一放电时间;a second calculation unit, configured to calculate the first discharge time of the battery cell according to the aging capacity of the battery cell and the second discharge current rate;
所述第二计算单元还用于,根据所述第一放电时间、所述第二放电电流倍率以及所述电芯老化后的容量,计算所述电芯在不同时刻的荷电状态值;所述荷电状态值与所述第一输出电压值一一对应;The second calculation unit is also used to calculate the state of charge value of the battery at different times according to the first discharge time, the second discharge current rate and the aging capacity of the battery; The state of charge value is in one-to-one correspondence with the first output voltage value;
重构单元,用于根据不同时刻的所述荷电状态值和所述第一输出电压值,重构所述电芯的OCV-SOC曲线。The reconstruction unit is configured to reconstruct the OCV-SOC curve of the battery cell according to the state of charge value and the first output voltage value at different moments.
在一些实施方式中,所述辨识模块,包括:In some embodiments, the identification module includes:
第二获取单元,用于获取电芯在不同工况下的数据,对所述不同工况下的数据进行数据清洗,得到所述电芯的实际工况数据集;The second acquisition unit is used to acquire the data of the battery cell under different working conditions, perform data cleaning on the data under the different working conditions, and obtain the actual working condition data set of the battery cell;
仿真单元,用于对所述预设的电芯电化学模型进行仿真,得到所述电芯电化学模型的仿真数据集;A simulation unit, configured to simulate the preset electrochemical model of the battery cell to obtain a simulation data set of the electrochemical model of the battery cell;
辨识单元,用于根据所述实际工况数据集与所述仿真数据集,采用启发式算法,对所述电芯进行参数辨识,得到所述电芯电化学模型的各个参数。The identification unit is configured to use a heuristic algorithm to identify the parameters of the battery cell according to the actual working condition data set and the simulation data set, so as to obtain various parameters of the electrochemical model of the battery cell.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
(1)通过电芯的实际工况数据,对电芯电化学模型进行参数辨识,得到电芯相关的重要物理量。(1) Through the actual working condition data of the battery cell, the parameters of the electrochemical model of the battery cell are identified, and the important physical quantities related to the battery cell are obtained.
(2)对电化学模型正负极的锂离子浓度进行调整,模拟电芯充满电时的状态,根据参数辨识的结果,在不同条件下对电芯的放电过程进行仿真,根据仿真结果获取电芯的在放电过程中各个时刻的OCV值并计算电芯老化后的容量,通过该容量值和不同的放电电流倍率,计算得到与各个OCV对应的电芯SOC值。(2) Adjust the lithium ion concentration of the positive and negative electrodes of the electrochemical model to simulate the state of the battery cell when it is fully charged. The OCV value of the cell at each moment during the discharge process and calculate the capacity of the cell after aging. Through the capacity value and different discharge current ratios, the SOC value of the cell corresponding to each OCV is calculated.
附图说明Description of drawings
下面将以明确易懂的方式,结合附图说明优选实施方式,对本发明的上述特性、技术特征、优点及其实现方式予以进一步说明。In the following, preferred embodiments will be described in a clear and understandable manner with reference to the accompanying drawings, and the above-mentioned characteristics, technical features, advantages and implementation methods of the present invention will be further described.
图1是本发明的锂电池OCV-SOC关系曲线的重构方法的一个实施例的流程图;Fig. 1 is the flowchart of an embodiment of the reconstruction method of lithium battery OCV-SOC relationship curve of the present invention;
图2是本发明的锂电池OCV-SOC关系曲线的重构方法的另一个实施例的流程图;Fig. 2 is a flow chart of another embodiment of the reconstruction method of the lithium battery OCV-SOC relationship curve of the present invention;
图3是本发明的锂电池OCV-SOC关系曲线的重构装置的一个实施例的结构示意图。FIG. 3 is a schematic structural diagram of an embodiment of a device for reconstructing the OCV-SOC relationship curve of a lithium battery according to the present invention.
附图标号说明:Explanation of reference numbers:
辨识模块10,仿真模块20,计算模块30,获取模块40,重构模块50。An identification module 10 , a simulation module 20 , a calculation module 30 , an acquisition module 40 , and a reconstruction module 50 .
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其他实施例中也可以实现本申请。在其他情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, specific details such as specific system structures and technologies are presented for the purpose of illustration rather than limitation, so as to thoroughly understand the embodiments of the present application. However, it will be apparent to those skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其他特征、整体、步骤、操作、元素、组件和/或集合的存在或添加。It should be understood that when used in this specification and the appended claims, the term "comprising" indicates the presence of described features, integers, steps, operations, elements and/or components, but does not exclude the presence of one or more other features, The presence or addition of wholes, steps, operations, elements, components and/or assemblies.
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the specific implementation manners of the present invention will be described below with reference to the accompanying drawings. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention, and those skilled in the art can obtain other accompanying drawings based on these drawings and obtain other implementations.
为使图面简洁,各图中只示意性地表示出了与发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。In order to keep the drawings concise, each drawing only schematically shows the parts related to the invention, and they do not represent the actual structure of the product. In addition, to make the drawings concise and easy to understand, in some drawings, only one of the components having the same structure or function is schematically shown, or only one of them is marked. Herein, "a" not only means "only one", but also means "more than one".
另外,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the present application, the terms "first", "second" and the like are only used to distinguish descriptions, and cannot be understood as indicating or implying relative importance.
本发明的一个实施例,参考说明书附图1,一种锂电池OCV-SOC关系曲线的重构方法,包括步骤:In an embodiment of the present invention, referring to accompanying drawing 1 of the specification, a method for reconstructing the OCV-SOC relationship curve of a lithium battery includes steps:
S100根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到电芯电化学模型中的各个参数,参数包括电芯电化学模型正、负极的第一锂离子浓度。According to the actual working condition data of the battery cell, S100 performs parameter identification on the preset electrochemical model of the battery cell to obtain various parameters in the electrochemical model of the battery cell. The parameters include the first lithium ion concentration of the positive and negative electrodes of the electrochemical model of the battery cell .
具体的,由于电池的电化学模型参数较多,为了保证参数辨识的准确性以及参数集的泛化能力,需要从电站中获取电芯在实际工况下的满充满放数据。利用电芯的实际工况数据,辨识出电芯电化学模型中的各个参数。电化学模型包括但不限于P2D(准二维)模型、单粒子模型等。电芯电化学模型中需要辨识的参数通常包括固相电势、液相电势、正负极锂离子浓度、温度等几十个参数,其中,电化学模型正负极的锂离子浓度与电芯的荷电状态相关。Specifically, due to the large number of parameters in the electrochemical model of the battery, in order to ensure the accuracy of parameter identification and the generalization ability of the parameter set, it is necessary to obtain the full charge and discharge data of the battery cell under actual working conditions from the power station. Using the actual working condition data of the cell, each parameter in the electrochemical model of the cell is identified. Electrochemical models include, but are not limited to, P2D (quasi-two-dimensional) models, single-particle models, and the like. The parameters that need to be identified in the electrochemical model of the battery usually include dozens of parameters such as solid phase potential, liquid phase potential, positive and negative lithium ion concentrations, and temperature. Among them, the lithium ion concentration of the positive and negative electrodes of the electrochemical model is related to the Depends on state of charge.
S200将第一锂离子浓度调整为电芯充电充满状态时的第二锂离子浓度,在预设的放电电流倍率下,根据电芯电化学模型的各个参数,对电芯的放电过程进行仿真。S200 adjusts the first lithium ion concentration to the second lithium ion concentration when the cell is fully charged, and simulates the discharge process of the cell according to various parameters of the electrochemical model of the cell at a preset discharge current rate.
具体的,电化学模型正负极的锂离子浓度会随着电芯放电而逐渐变小,而步骤S100中辨识出的第一锂离子浓度是电池刚开始放电或刚开始充电时的浓度,此时的浓度值与电芯充电充满状态时的浓度不同。因此,需要对辨识得到的锂离子浓度进行调整。当正负极锂离子浓度调整为电芯充满状态时的浓度时,在预设的放电电流倍率下,根据电芯电化学模型的各个参数,对电芯的放电过程进行仿真模拟。Specifically, the lithium ion concentration of the positive and negative electrodes of the electrochemical model will gradually decrease as the battery discharges, and the first lithium ion concentration identified in step S100 is the concentration when the battery just starts to discharge or just starts to charge. The concentration value when the battery is fully charged is different from the concentration when the battery is fully charged. Therefore, it is necessary to adjust the identified lithium ion concentration. When the lithium ion concentration of the positive and negative electrodes is adjusted to the concentration when the battery is fully charged, the discharge process of the battery is simulated according to the parameters of the electrochemical model of the battery under the preset discharge current rate.
S300当放电电流倍率为第一放电电流倍率时,计算电芯老化后的容量。S300, when the discharge current rate is the first discharge current rate, calculate the capacity of the cell after aging.
S400当放电电流倍率为第二放电电流倍率时,获取电芯在第一放电时间内不同时刻的第一输出电压值。S400, when the discharge current rate is the second discharge current rate, acquire a first output voltage value of the battery cell at different moments within the first discharge time.
S500根据电芯老化后的容量、第二放电电流倍率以及第一输出电压值,得到电芯的OCV-SOC关系曲线。S500 obtains the OCV-SOC relationship curve of the battery cell according to the aging capacity of the battery cell, the second discharge current rate and the first output voltage value.
具体的,SOC(State-of-Charge,荷电状态),在数值上定义为当前的容量占电池标称容量的比值,SOC=100%时,为电池完全充满状态;SOC=0时,为电池完全放电状态。不同SOC下,对应的OCV不同,根据电芯老化后的容量、第二放电电流倍率以及第一输出电压,得到电芯的OCV-SOC对应关系曲线。Specifically, SOC (State-of-Charge, state of charge) is numerically defined as the ratio of the current capacity to the nominal capacity of the battery. When SOC=100%, the battery is fully charged; when SOC=0, it is The battery is fully discharged. Under different SOC, the corresponding OCV is different. According to the aging capacity of the battery cell, the second discharge current rate and the first output voltage, the OCV-SOC correspondence curve of the battery cell is obtained.
本实施例,首先对电芯电化学模型进行参数辨识,得到准确的电化学模型,根据辨识到的参数,在预设的放电电流倍率下,对电芯的放电进行仿真模拟。在不同的放电电流倍率下,分别计算电芯老化后的容量、获取电芯的输出电压值,从而得到出电芯的OCV-SOC关系曲线。通过参数辨识,仿真模拟出准确的电芯OCV-SOC曲线,而不需要通过实际测试来获取,有利于提高OCV-SOC曲线重构的效率。In this embodiment, firstly, the parameters of the electrochemical model of the battery cell are identified to obtain an accurate electrochemical model, and the discharge of the battery cell is simulated at a preset discharge current rate according to the identified parameters. Under different discharge current magnifications, calculate the aging capacity of the battery and obtain the output voltage value of the battery, so as to obtain the OCV-SOC relationship curve of the battery. Through parameter identification, the simulation simulates the accurate OCV-SOC curve of the battery cell, without the need to obtain it through actual testing, which is conducive to improving the efficiency of OCV-SOC curve reconstruction.
在一个实施例中,步骤S300包括:当放电电流倍率为第一放电电流倍率时,若电芯的第二输出电压达到电芯的放电截止电压,获取电芯的第二放电时间;根据第一放电电流倍率和第二放电时间,计算电芯老化后的容量。In one embodiment, step S300 includes: when the discharge current rate is the first discharge current rate, if the second output voltage of the cell reaches the discharge cut-off voltage of the cell, acquiring the second discharge time of the cell; according to the first The discharge current rate and the second discharge time are used to calculate the capacity of the cell after aging.
具体的,例如,将第一放电电流倍率设置为1C,1C表示电池一小时完全放电时的电流强度,比如标称为2200mA·h的电池在1C强度下放电1小时放电完成,其放电电流为2200mA。Specifically, for example, set the first discharge current rate to 1C, and 1C represents the current intensity when the battery is fully discharged for one hour. For example, a battery with a nominal value of 2200mA·h is discharged for one hour at 1C intensity, and its discharge current is 2200mA.
在1C电流下(或者按照电芯规格书中规定的电流倍率)通过电化学模型,对电芯的放电过程进行仿真。假设电芯的放电截止电压为2.5V,当电芯放电至输出电压为2.5V时,获取电芯的第二放电时间。Under 1C current (or according to the current rate specified in the battery specification), the discharge process of the battery is simulated through the electrochemical model. Assuming that the discharge cut-off voltage of the battery cell is 2.5V, when the battery cell is discharged to an output voltage of 2.5V, the second discharge time of the battery cell is obtained.
通过安时积分法,根据以下公式计算电芯老化后的容量:Through the ampere-hour integral method, calculate the capacity of the cell after aging according to the following formula:
Qaged=∫I1dt;Qaged = ∫ I1 dt;
其中,Qaged为电芯老化后的容量,I1为第一放电电流倍率下的电芯放电电流,t为第二放电时间。Among them, Qaged is the capacity of the cell after aging, I1 is the discharge current of the cell at the first discharge current rate, and t is the second discharge time.
本实施例,对电芯在第一电流倍率下的放电过程进行仿真,得到电芯老化后的容量。In this embodiment, the discharge process of the battery cell at the first current rate is simulated to obtain the capacity of the battery cell after aging.
在一个实施例中,参考说明书附图图2,一种锂电池OCV-SOC关系曲线的重构方法,包括:In one embodiment, referring to Fig. 2 of the accompanying drawing, a method for reconstructing the OCV-SOC relationship curve of a lithium battery includes:
S600根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到电芯电化学模型中的各个参数,参数包括电芯电化学模型正、负极的第一锂离子浓度。According to the actual working condition data of the battery cell, the S600 performs parameter identification on the preset electrochemical model of the battery cell to obtain various parameters in the electrochemical model of the battery cell. The parameters include the first lithium ion concentration of the positive and negative electrodes of the electrochemical model of the battery cell .
S610将第一锂离子浓度调整为电芯充电充满状态时的第二锂离子浓度,在预设的放电电流倍率下,根据电芯电化学模型的各个参数,对电芯的放电过程进行仿真。S610 adjusts the first lithium ion concentration to the second lithium ion concentration when the cell is fully charged, and simulates the discharge process of the cell according to various parameters of the electrochemical model of the cell at a preset discharge current rate.
S620当放电电流倍率为第一放电电流倍率时,若电芯的第二输出电压达到电芯的放电截止电压,获取电芯的第二放电时间。S620 When the discharge current rate is the first discharge current rate, if the second output voltage of the battery cell reaches the discharge cut-off voltage of the battery cell, acquire a second discharge time of the battery cell.
S630根据第一放电电流倍率和第二放电时间,计算电芯老化后的容量。S630 Calculate the capacity of the cell after aging according to the first discharge current rate and the second discharge time.
S640当放电电流倍率为第二放电电流倍率时,获取电芯在第一放电时间内不同时刻的第一输出电压值。S640 When the discharge current rate is the second discharge current rate, acquire the first output voltage value of the cell at different moments within the first discharge time.
S650根据电芯老化后的容量和第二放电电流倍率,计算电芯的第一放电时间。S650 calculates the first discharge time of the battery cell according to the aging capacity of the battery cell and the second discharge current rate.
具体的,第一放电时间通过以下公式计算:Specifically, the first discharge time is calculated by the following formula:
其中,tdischarge为第一放电时间,I2为第二放电电流倍率下的放电电流,Qaged为电芯老化后的容量。一般来说,第二放电电流倍率的范围小于等于1/20C。Among them, tdischarge is the first discharge time, I2 is the discharge current at the second discharge current rate, and Qaged is the capacity of the cell after aging. Generally, the range of the second discharge current rate is less than or equal to 1/20C.
S660根据第一放电时间、第二放电电流倍率以及电芯老化后的容量,计算电芯在不同时刻的荷电状态值;荷电状态值与第一输出电压值一一对应。S660 Calculate the state of charge values of the cells at different moments according to the first discharge time, the second discharge current rate and the capacity of the cells after aging; the state of charge values correspond to the first output voltage values one by one.
S670根据不同时刻的荷电状态值和第一输出电压值,重构电芯的OCV-SOC曲线。S670 Reconstruct the OCV-SOC curve of the battery cell according to the state of charge value and the first output voltage value at different moments.
具体的,将模型在tdischarge时间内各个时刻的输出电压值作为电芯的OCV(开路电压)值。通过以下公式计算电芯的SOC(荷电状态)值:Specifically, the output voltage value of the model at each moment in the tdischarge time is taken as the OCV (open circuit voltage) value of the battery cell. Calculate the SOC (state of charge) value of the battery cell by the following formula:
从而重构出电池的OCV-SOC关系曲线,其中t′为tdischarge时间内的任意时刻。In this way, the OCV-SOC relationship curve of the battery is reconstructed, where t' is any time within the tdischarge time.
本实施例,通过仿真获得电芯老化后的容量,并根据容量确定OCV仿真的时间,再通过小倍率放电仿真最终得到电芯的OCV-SOC关系曲线。In this embodiment, the aging capacity of the battery cell is obtained through simulation, and the OCV simulation time is determined according to the capacity, and then the OCV-SOC relationship curve of the battery cell is finally obtained through small-rate discharge simulation.
在一个实施例中,步骤S100包括:In one embodiment, step S100 includes:
S110获取电芯在不同工况下的数据,对不同工况下的数据进行数据清洗,得到电芯的实际工况数据集。S110 acquires the data of the battery cell under different working conditions, performs data cleaning on the data under different working conditions, and obtains the actual working condition data set of the battery cell.
具体的,当电芯在电站中实际工作时,很难得到恒流工况下从SOC=100%到SOC=0%的数据,因此在实际应用中,从电站中对电芯清洗出一个用于参数辨识的实际工况数据集,其中包括了电压、电流、温度等数据。Specifically, when the battery cell is actually working in the power station, it is difficult to obtain the data from SOC=100% to SOC=0% under the constant current condition. The actual working condition data set for parameter identification, including voltage, current, temperature and other data.
S120对预设的电芯电化学模型进行仿真,得到电芯电化学模型的各个仿真数据集。S120 simulating the preset electrochemical model of the battery cell to obtain various simulation data sets of the electrochemical model of the battery cell.
S130根据实际工况数据集与仿真数据集,采用启发式算法,对电芯进行参数辨识,得到电芯电化学模型的各个参数。S130 uses a heuristic algorithm to identify the parameters of the battery cell based on the actual working condition data set and the simulation data set, and obtains various parameters of the electrochemical model of the battery cell.
具体的,根据实际工况数据集中实际工况电压以及仿真数据集中模型的输出电压,建立均方电压差损失函数。根据该损失函数,利用启发式算法(粒子群算法、遗传算法等)得到电芯电化学模型的各个参数。进一步地,为了提高参数辨识的准确性和可靠性,可以增加容量变化率的限制,通过容量收敛系数来评估参数辨识的可靠性。当容量收敛系数满足阈值要求时,辨识出的参数较为准确;当容量收敛系数不满足阈值要求时,需要重新执行上述参数辨识的步骤,直到容量收敛系数满足要求。Specifically, according to the actual working condition voltage in the actual working condition data set and the output voltage of the model in the simulation data set, a mean square voltage difference loss function is established. According to the loss function, use the heuristic algorithm (particle swarm algorithm, genetic algorithm, etc.) to obtain the various parameters of the electrochemical model of the cell. Further, in order to improve the accuracy and reliability of parameter identification, the limit of capacity change rate can be increased, and the reliability of parameter identification can be evaluated by the capacity convergence coefficient. When the capacity convergence coefficient meets the threshold requirement, the identified parameters are more accurate; when the capacity convergence coefficient does not meet the threshold requirement, the above steps of parameter identification need to be performed again until the capacity convergence coefficient meets the requirement.
本实施例,对电芯的实际工况数据进行清洗,解决了实际电站中无法清洗出恒流满充满放数据的问题;通过实际工况数据集和模型仿真得到的仿真数据集,结合启发式算法,得到电芯电化学模型的各个参数;通过容量变化率限制,提高了参数的可靠性。本实施例中得到电化学模型的各个参数,可以用于上述任一方法实施例中对于OCV-SOC关系曲线的重构。In this embodiment, the actual working condition data of the battery cell is cleaned, which solves the problem that the constant current full-full discharge data cannot be cleaned in the actual power station; the simulation data set obtained through the actual working condition data set and model simulation, combined with the heuristic Algorithms are used to obtain the parameters of the electrochemical model of the cell; the reliability of the parameters is improved by limiting the capacity change rate. The parameters of the electrochemical model obtained in this embodiment can be used to reconstruct the OCV-SOC relationship curve in any of the above method embodiments.
本发明的一个实施例,参考说明书附图图3,一种锂电池OCV-SOC关系曲线的重构装置,包括辨识模块10、仿真模块20、计算模块30、获取模块40、重构模块50,其中:An embodiment of the present invention, with reference to Figure 3 of the accompanying drawings, a device for reconstructing the OCV-SOC relationship curve of a lithium battery, including an identification module 10, a simulation module 20, a calculation module 30, an acquisition module 40, and a reconstruction module 50, in:
辨识模块10,用于根据电芯的实际工况数据,对预设的电芯电化学模型进行参数辨识,得到电芯电化学模型中的各个参数,参数包括电芯电化学模型正、负极的第一锂离子浓度。The identification module 10 is used to identify the parameters of the preset electrochemical model of the battery according to the actual working condition data of the battery, and obtain various parameters in the electrochemical model of the battery. The parameters include the positive and negative poles of the electrochemical model of the battery first lithium ion concentration.
仿真模块20,用于将第一锂离子浓度调整为电芯充电充满状态时的第二锂离子浓度,在预设的放电电流倍率下,根据电芯电化学模型的各个参数,对电芯的放电过程进行仿真。The simulation module 20 is used to adjust the first lithium ion concentration to the second lithium ion concentration when the battery cell is fully charged. Under the preset discharge current rate, according to each parameter of the battery cell electrochemical model, the battery cell The discharge process is simulated.
计算模块30,用于当放电电流倍率为第一放电电流倍率时,计算电芯老化后的容量。The calculation module 30 is used to calculate the capacity of the cell after aging when the discharge current rate is the first discharge current rate.
获取模块40,用于当放电电流倍率为第二放电电流倍率时,获取电芯在第一放电时间内不同时刻的第一输出电压值。The acquiring module 40 is configured to acquire the first output voltage value of the battery cell at different moments within the first discharge time when the discharge current rate is the second discharge current rate.
重构模块50,用于根据电芯老化后的容量、第二放电电流倍率以及第一输出电压值,得到电芯的OCV-SOC关系曲线。The reconstruction module 50 is configured to obtain the OCV-SOC relationship curve of the battery cell according to the aging capacity of the battery cell, the second discharge current rate and the first output voltage value.
本实施例,通过电芯的实际工况数据,对电芯电化学模型进行参数辨识,得到电芯相关的重要物理量,并在不同电流倍率条件下,对电芯放电过程进行仿真模拟,重构出电芯的OCV-SOC曲线。In this embodiment, the parameters of the electrochemical model of the battery are identified based on the actual working condition data of the battery, and the important physical quantities related to the battery are obtained, and the discharge process of the battery is simulated and reconstructed under different current rate conditions. OCV-SOC curve of the battery.
在一个实施例中,计算模块30,包括:第一获取单元,用于当放电电流倍率为第一放电电流倍率时,若电芯的第二输出电压达到电芯的放电截止电压,获取电芯的第二放电时间;第一计算单元,用于根据第一放电电流倍率和第二放电时间,计算电芯老化后的容量。In one embodiment, the calculation module 30 includes: a first acquisition unit, configured to acquire the battery cell if the second output voltage of the cell reaches the discharge cut-off voltage of the cell when the discharge current rate is the first discharge current rate. The second discharge time; the first calculation unit is used to calculate the capacity of the cell after aging according to the first discharge current rate and the second discharge time.
本实施例,对电芯在第一电流倍率下的放电过程进行仿真,得到电芯老化后的容量。In this embodiment, the discharge process of the battery cell at the first current rate is simulated to obtain the capacity of the battery cell after aging.
在一个实施例中,重构模块50,包括:第二计算单元,用于根据电芯老化后的容量和第二放电电流倍率,计算电芯的第一放电时间;第二计算单元还用于,根据第一放电时间、第二放电电流倍率以及电芯老化后的容量,计算电芯在不同时刻的荷电状态值;荷电状态值与第一输出电压值一一对应;重构单元,用于根据不同时刻的荷电状态值和第一输出电压值,重构电芯的OCV-SOC曲线。In one embodiment, the reconfiguration module 50 includes: a second computing unit, configured to calculate the first discharge time of the cell according to the aging capacity of the cell and the second discharge current rate; the second computing unit is also used to , according to the first discharge time, the second discharge current rate and the capacity of the cell after aging, calculate the state of charge value of the cell at different times; the state of charge value corresponds to the first output voltage value one by one; the reconstruction unit, It is used to reconstruct the OCV-SOC curve of the cell according to the state of charge value and the first output voltage value at different moments.
本实施例,对电芯在第二放电电流倍率下的放电过程进行仿真,得到电芯第一放电时间内各个时刻的OCV值,并根据电芯老化后的容量计算第一放电时间,通过第一放电时间、第二放电电流倍率以及电芯老化后的容量,得到各个OCV值对应的SOC值,实现对电芯OCV-SOC关系曲线的重构。In this embodiment, the discharge process of the battery cell under the second discharge current rate is simulated to obtain the OCV value at each moment in the first discharge time of the battery cell, and the first discharge time is calculated according to the capacity of the battery cell after aging. The first discharge time, the second discharge current rate, and the capacity of the cell after aging can obtain the SOC value corresponding to each OCV value, and realize the reconstruction of the OCV-SOC relationship curve of the cell.
在一个实施例中,辨识模块10包括:第二获取单元,用于获取电芯在不同工况下的数据,对不同工况下的数据进行数据清洗,得到电芯的实际工况数据集;仿真单元,用于对预设的电芯电化学模型进行仿真,得到电芯电化学模型的仿真数据集;辨识单元,用于根据实际工况数据集与仿真数据集,采用启发式算法,对电芯进行参数辨识,得到电芯电化学模型的各个参数。In one embodiment, the identification module 10 includes: a second acquisition unit, configured to acquire the data of the battery cell under different working conditions, perform data cleaning on the data under different working conditions, and obtain the actual working condition data set of the battery cell; The simulation unit is used to simulate the preset battery electrochemical model to obtain the simulation data set of the battery electrochemical model; the identification unit is used to use a heuristic algorithm based on the actual working condition data set and the simulation data set to The parameters of the cell are identified to obtain the parameters of the electrochemical model of the cell.
本实施例,对电芯的实际工况数据进行清洗,通过实际工况数据集和模型仿真得到的仿真数据集,结合启发式算法,得到电芯电化学模型的各个参数。In this embodiment, the actual working condition data of the battery is cleaned, and the parameters of the electrochemical model of the battery are obtained through the actual working condition data set and the simulation data set obtained by model simulation, combined with a heuristic algorithm.
需要说明的是,本发明提供的锂电池OCV-SOC关系曲线的重构装置的实施例与前述提供的锂电池OCV-SOC关系曲线的重构方法的实施例均基于同一发明构思,能够取得相同的技术效果。因而,锂电池OCV-SOC关系曲线的重构装置的实施例的其它具体内容可以参照前述锂电池OCV-SOC关系曲线的重构方法的实施例内容的记载。It should be noted that the embodiment of the reconstruction device of the lithium battery OCV-SOC relationship curve provided by the present invention and the embodiment of the reconstruction method of the lithium battery OCV-SOC relationship curve provided above are all based on the same inventive concept, and can achieve the same technical effect. Therefore, other specific content of the embodiment of the device for reconstructing the OCV-SOC relationship curve of the lithium battery can refer to the description of the content of the embodiment of the method for reconstructing the OCV-SOC relationship curve of the lithium battery mentioned above.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those skilled in the art can appreciate that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are implemented by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
应当说明的是,上述实施例均可根据需要自由组合。以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。It should be noted that the above embodiments can be freely combined as required. The above are only preferred embodiments of the present invention, and it should be pointed out that for those of ordinary skill in the art, some improvements and modifications can also be made without departing from the principle of the present invention, and these improvements and modifications should also be considered Be the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310060616.7ACN116050147A (en) | 2023-01-17 | 2023-01-17 | A method and device for reconstructing the OCV-SOC relationship curve of a lithium battery |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310060616.7ACN116050147A (en) | 2023-01-17 | 2023-01-17 | A method and device for reconstructing the OCV-SOC relationship curve of a lithium battery |
| Publication Number | Publication Date |
|---|---|
| CN116050147Atrue CN116050147A (en) | 2023-05-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310060616.7APendingCN116050147A (en) | 2023-01-17 | 2023-01-17 | A method and device for reconstructing the OCV-SOC relationship curve of a lithium battery |
| Country | Link |
|---|---|
| CN (1) | CN116050147A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120559485A (en)* | 2025-07-30 | 2025-08-29 | 南京感动科技有限公司 | A method and system for optimizing electrode open circuit potential based on lithium battery electrochemical model |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120559485A (en)* | 2025-07-30 | 2025-08-29 | 南京感动科技有限公司 | A method and system for optimizing electrode open circuit potential based on lithium battery electrochemical model |
| Publication | Publication Date | Title |
|---|---|---|
| CN107066722B (en) | Electrochemical model-based combined estimation method for state of charge and state of health of power battery system | |
| CN108603918B (en) | Device and method for testing performance of battery cell | |
| CN112005124A (en) | Battery Condition Evaluation Method | |
| CN112014735A (en) | A method and device for predicting battery aging life based on full life cycle | |
| CN105550452B (en) | The discrimination method of lithium ion battery P2D model parameter based on heuritic approach | |
| CN113702845B (en) | Retired lithium battery core parameter evaluation method and equipment | |
| CN111999665B (en) | Lithium ion battery aging test method based on micro-mechanism automobile driving condition | |
| CN108509762A (en) | A kind of the physicochemical change performance parameter analogy method and device of battery | |
| CN115084693B (en) | Lithium battery solid phase concentration correction method, system and storage medium | |
| CN114089204B (en) | Battery capacity diving inflection point prediction method and device | |
| CN116068408B (en) | Battery aging data determining method, device, computer equipment and storage medium | |
| CN111044909B (en) | Battery state prediction method and device | |
| CN111665451A (en) | Aging test method for lithium ion battery under time-varying cycle working condition | |
| Thele et al. | Impedance-based overcharging and gassing model for VRLA/AGM batteries | |
| JP2022085385A (en) | Battery deterioration judgment device, battery management system, battery-equipped equipment, battery deterioration judgment method, and battery deterioration judgment program | |
| CN114609530B (en) | Method, device, equipment and medium for correcting battery state of charge | |
| CN116050147A (en) | A method and device for reconstructing the OCV-SOC relationship curve of a lithium battery | |
| Wett et al. | Method of Lines for flexible coupling of the Single Particle Model for Lithium-Ion Batteries demonstrated by thermal modelling | |
| CN116125314A (en) | Lithium battery state of charge estimation method based on electrochemical model and particle filtering | |
| WO2019184879A1 (en) | Method and device for acquiring rc network parameter of power battery pack and electric vehicle | |
| CN115410655A (en) | Electrochemical model-based data set simulation method and system and storage medium | |
| CN113391225A (en) | Lithium battery state-of-charge estimation method considering capacity degradation | |
| CN113125981A (en) | Battery standing method and device, electronic equipment and storage medium | |
| CN117491884A (en) | Battery power evaluation method, device and storage medium | |
| WO2025055061A1 (en) | Health level estimation system and method for lead-acid battery for transformer substation |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information | Country or region after:China Address after:Room 1101, No. 2, Lane 288, Qianfan Road, Xinqiao Town, Songjiang District, Shanghai 201612 Applicant after:Shanghai Meikesheng Energy Technology Co.,Ltd. Address before:Room 1101, No. 2, Lane 288, Qianfan Road, Xinqiao Town, Songjiang District, Shanghai Applicant before:Shanghai Meike Energy Storage Technology Co.,Ltd. Country or region before:China |