Movatterモバイル変換


[0]ホーム

URL:


CN115986353A - Coaxial microstrip conversion structure - Google Patents

Coaxial microstrip conversion structure
Download PDF

Info

Publication number
CN115986353A
CN115986353ACN202211740704.3ACN202211740704ACN115986353ACN 115986353 ACN115986353 ACN 115986353ACN 202211740704 ACN202211740704 ACN 202211740704ACN 115986353 ACN115986353 ACN 115986353A
Authority
CN
China
Prior art keywords
coaxial
insulator
impedance
microstrip
microstrip line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211740704.3A
Other languages
Chinese (zh)
Inventor
韩欣丽
余显斌
卢驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang LabfiledCriticalZhejiang Lab
Priority to CN202211740704.3ApriorityCriticalpatent/CN115986353A/en
Publication of CN115986353ApublicationCriticalpatent/CN115986353A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromChinese

本申请提供一种同轴微带转换结构,包括射频绝缘子、绝缘子探针、同轴空气腔、微带线和金属载体,微带线包括设于金属载体的微带线介质板和设于微带线介质板的阻抗渐变中心导体;射频绝缘子的一端与金属载体的一端侧壁齐平,射频绝缘子的另一端通过同轴空气腔定位于金属载体;绝缘子探针贯穿射频绝缘子的中心轴线,并在射频绝缘子的两端延伸,其中绝缘子探针的一端可连接至同轴连接器,绝缘子探针的另一端穿过同轴空气腔形成空气同轴,并搭接在微带线的阻抗渐变中心导体。如此可满足低损耗、超宽带、结构简单易加工等的需求。

Figure 202211740704

The application provides a coaxial microstrip conversion structure, including a radio frequency insulator, an insulator probe, a coaxial air cavity, a microstrip line and a metal carrier, and the microstrip line includes a microstrip line dielectric plate set on the metal The impedance gradient center conductor of the strip dielectric plate; one end of the radio frequency insulator is flush with the side wall of one end of the metal carrier, and the other end of the radio frequency insulator is positioned on the metal carrier through the coaxial air cavity; the insulator probe runs through the central axis of the radio frequency insulator, and Extending at both ends of the radio frequency insulator, one end of the insulator probe can be connected to the coaxial connector, the other end of the insulator probe passes through the coaxial air cavity to form an air coaxial, and is lapped at the impedance gradient center of the microstrip line conductor. In this way, the requirements of low loss, ultra-wideband, simple structure and easy processing can be met.

Figure 202211740704

Description

Translated fromChinese
同轴微带转换结构Coaxial Microstrip Transition Structure

技术领域technical field

本申请涉及微波毫米波射频技术领域,尤其涉及一种同轴微带转换结构。The present application relates to the field of microwave and millimeter wave radio frequency technologies, and in particular to a coaxial microstrip conversion structure.

背景技术Background technique

在毫米波系统中,射频模组之间的连接多采用同轴结构,同轴连接器和同轴电缆具有体积小、工作带宽大、传输路径可重塑等优势,广泛应用于毫米波系统中长距离传输。在射频模组内部,同轴连接器可通过射频绝缘子与微带电路连接。随着射频模组的发展,在追求高性能的同时,也需要进行小型化、轻量化设计。微带线是目前最流行的平面传输线,采用印制电路板实现,非常易与其他无源和有源毫米波器件集成,是微波毫米波混合集成电路的最佳媒介。毫米波射频电路,尤其是工作频率在10GHz以上频段,大量采用裸片形式的功能电路,如放大器、混频器、滤波器、移相器等。使用微组装工艺进行毫米波射频电路的高精度装配生产,从而实现很小的射频模组单元内,其射频路径上的裸芯片器件达几十个之多。这也对毫米波射频模组的端口驻波提出很大的挑战。目前难以做到超宽带匹配,设计出具有大工作带宽、低插入损耗、高传输效率等特点的同轴微带转换结构,是毫米波射频模组电路研制中重要一环。In the millimeter wave system, the connection between RF modules mostly adopts a coaxial structure. Coaxial connectors and coaxial cables have the advantages of small size, large working bandwidth, and reshapeable transmission paths, and are widely used in millimeter wave systems. Long distance transmission. Inside the RF module, the coaxial connector can be connected to the microstrip circuit through the RF insulator. With the development of RF modules, miniaturization and lightweight design are also required while pursuing high performance. Microstrip line is currently the most popular planar transmission line. It is realized by printed circuit board and is very easy to integrate with other passive and active millimeter wave devices. It is the best medium for microwave and millimeter wave hybrid integrated circuits. Millimeter wave radio frequency circuits, especially in the frequency band above 10GHz, use a large number of functional circuits in the form of bare chips, such as amplifiers, mixers, filters, phase shifters, etc. Micro-assembly technology is used for high-precision assembly and production of millimeter-wave radio frequency circuits, so that in a small radio frequency module unit, there are as many as dozens of bare chip devices on the radio frequency path. This also poses a great challenge to the port standing wave of the mmWave RF module. At present, it is difficult to achieve ultra-wideband matching. Designing a coaxial microstrip conversion structure with the characteristics of large operating bandwidth, low insertion loss, and high transmission efficiency is an important part of the development of millimeter-wave radio frequency module circuits.

发明内容Contents of the invention

本申请提供一种低损耗、超宽带、结构简单易加工的同轴微带转换结构。The application provides a coaxial microstrip conversion structure with low loss, ultra-broadband, simple structure and easy processing.

本申请提供一种同轴微带转换结构,包括:射频绝缘子、绝缘子探针、同轴空气腔、微带线和金属载体,所述微带线包括设于所述金属载体的微带线介质板和设于所述微带线介质板的阻抗渐变中心导体;所述射频绝缘子的一端与所述金属载体的一端侧壁齐平,所述射频绝缘子的另一端通过所述同轴空气腔定位于所述金属载体;所述绝缘子探针贯穿所述射频绝缘子的中心轴线,并在所述射频绝缘子的两端延伸,其中所述绝缘子探针的一端可连接至同轴连接器,所述绝缘子探针的另一端穿过所述同轴空气腔形成空气同轴,并搭接在所述微带线的所述阻抗渐变中心导体。The application provides a coaxial microstrip conversion structure, including: a radio frequency insulator, an insulator probe, a coaxial air cavity, a microstrip line and a metal carrier, and the microstrip line includes a microstrip line medium arranged on the metal carrier plate and the impedance gradient central conductor arranged on the microstrip dielectric plate; one end of the radio frequency insulator is flush with the side wall of one end of the metal carrier, and the other end of the radio frequency insulator is positioned through the coaxial air cavity on the metal carrier; the insulator probe runs through the central axis of the radio frequency insulator, and extends at both ends of the radio frequency insulator, wherein one end of the insulator probe can be connected to a coaxial connector, and the insulator The other end of the probe passes through the coaxial air cavity to form an air coaxial, and is connected to the impedance gradient center conductor of the microstrip line.

可选的,所述阻抗渐变中心导体包括阻抗渐变段和与所述阻抗渐变段连接的阻抗固定段,所述阻抗渐变段相对所述阻抗固定段靠近所述绝缘子探针设置,且所述阻抗渐变段与所述绝缘子探针搭接。Optionally, the impedance gradient central conductor includes an impedance gradient section and an impedance fixed section connected to the impedance gradient section, the impedance gradient section is arranged closer to the insulator probe relative to the impedance fixed section, and the impedance The transition section overlaps the insulator probe.

可选的,所述阻抗渐变段的阻抗大于所述阻抗固定段的阻抗,其中所述阻抗固定段的阻抗为50欧姆。Optionally, the impedance of the impedance gradient section is greater than the impedance of the impedance fixed section, wherein the impedance of the impedance fixed section is 50 ohms.

可选的,所述阻抗渐变中心导体相对靠近所述绝缘子探针的一端与所述同轴空气腔的侧壁之间具有间隙。Optionally, there is a gap between an end of the impedance gradient center conductor relatively close to the insulator probe and a side wall of the coaxial air cavity.

可选的,所述微带线介质板相对靠近所述绝缘子探针的一端与所述同轴空气腔的侧壁之间具有间隙。Optionally, there is a gap between an end of the microstrip line dielectric plate relatively close to the insulator probe and a side wall of the coaxial air cavity.

可选的,所述阻抗渐变中心导体的长度相对于所述微带线介质板的长度避让的尺寸范围为0.01mm~0.2mm。Optionally, the length of the impedance gradient center conductor is within a range of 0.01 mm to 0.2 mm relative to the length of the microstrip line dielectric plate.

可选的,所述阻抗渐变中心导体相对靠近所述绝缘子探针的一端与所述绝缘子探针焊接。Optionally, one end of the impedance gradient central conductor relatively close to the insulator probe is welded to the insulator probe.

可选的,所述微带线还包括底层金属层,设于所述微带线介质板的底部,所述微带线介质板通过所述底层金属层焊接于所述金属载体。Optionally, the microstrip line further includes a bottom metal layer disposed at the bottom of the microstrip line dielectric board, and the microstrip line dielectric board is welded to the metal carrier through the bottom metal layer.

可选的,所述微带线介质板为高频介质板。Optionally, the microstrip line dielectric board is a high-frequency dielectric board.

可选的,所述射频绝缘子的绝缘介质为玻璃材质。Optionally, the insulating medium of the radio frequency insulator is made of glass.

可选的,所述微带线为所述微带线介质板表面的覆铜带。Optionally, the microstrip line is a copper-clad strip on the surface of the microstrip line dielectric board.

本申请实施例的同轴微带转换结构,通过设置绝缘子探针穿过同轴空气腔形成空气同轴,并搭接在微带线的阻抗渐变中心导体上,可补偿由电磁波模式转变引入的失配、为满足装配工艺安全性和可靠性等引入的不连续所带来的失配,实现毫米波信号的高效率传输,以满足毫米波射频模组对端口转换的低损耗、超宽带、结构简单易加工等的需求。In the coaxial microstrip conversion structure of the embodiment of the present application, by setting the insulator probe through the coaxial air cavity to form an air coaxial, and lapped on the central conductor of the impedance gradient of the microstrip line, it can compensate for the electromagnetic wave mode change. Mismatch, the mismatch caused by the discontinuity introduced to meet the safety and reliability of the assembly process, etc., to achieve high-efficiency transmission of millimeter-wave signals to meet the low-loss, ultra-wideband, Requirements such as simple structure and easy processing.

附图说明Description of drawings

图1所示为本申请的同轴微带转换结构的一个实施例的结构示意图。FIG. 1 is a schematic structural diagram of an embodiment of the coaxial microstrip conversion structure of the present application.

图2所示为图1所示的同轴微带转换结构的一个视角的结构示意图。FIG. 2 is a structural schematic diagram of a perspective view of the coaxial microstrip conversion structure shown in FIG. 1 .

图3所示为图1所示的同轴微带转换结构的另一个视角的结构示意图。FIG. 3 is a structural schematic diagram of another viewing angle of the coaxial microstrip conversion structure shown in FIG. 1 .

图4所示为图1所示的同轴微带转换结构插入损耗的仿真结果图。FIG. 4 is a simulation result diagram of the insertion loss of the coaxial microstrip conversion structure shown in FIG. 1 .

图5所示为图1所示的同轴微带转换结构输入驻波的仿真结果图。FIG. 5 is a simulation result diagram of the input standing wave of the coaxial microstrip conversion structure shown in FIG. 1 .

具体实施方式Detailed ways

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application. Rather, they are merely examples of means consistent with aspects of the present application as recited in the appended claims.

在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。若仅指代“一个”时会再单独说明。“多个”或者“若干”表示两个及两个以上。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only, and is not intended to limit the application. Unless otherwise defined, the technical terms or scientific terms used in the present application shall have the common meanings understood by those skilled in the art to which the present invention belongs. "First", "second" and similar words used in the specification and claims of this application do not indicate any sequence, quantity or importance, but are only used to distinguish different components. Likewise, words like "a" or "one" do not denote a limitation in quantity, but indicate that there is at least one. If only "one" is referred to, it will be explained separately. "Multiple" or "several" means two or more. Unless otherwise indicated, terms such as "front", "rear", "lower" and/or "upper" are used for convenience of description only and are not intended to be limiting to a position or orientation in space. "Includes" or "comprises" and similar terms mean that the elements or items listed before "comprises" or "comprises" include the elements or items listed after "comprises" or "comprises" and their equivalents, and do not exclude other elements or objects. Words such as "connected" or "connected" are not limited to physical or mechanical connections, and may include electrical connections, whether direct or indirect. As used in this specification and the appended claims, the singular forms "a", "the" and "the" are also intended to include the plural forms unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.

毫米波信号在同轴微带转换结构中传输时,经历同轴传输线TEM模到50欧姆微带线准TEM模的转变,这其中还有微带线和金属载体侧壁间空气间隙、阻抗渐变中心导体避让、绝缘子探针焊接微带线等引入的不连续,其传输特性极易随着频率的升高而快速恶化。目前典型的同轴微带转换结构,其形式是加入同轴空气腔,与绝缘子探针形成空气同轴。该结构的一大限制是,引入的优化变量较少(同轴空气腔的半径和长度),难以做到超宽带匹配。设计出具有大工作带宽、低插入损耗、高传输效率等特点的同轴微带转换结构,是毫米波射频模组电路研制中重要一环。When the millimeter wave signal is transmitted in the coaxial microstrip conversion structure, it undergoes the transition from the TEM mode of the coaxial transmission line to the quasi-TEM mode of the 50 ohm microstrip line, which also includes air gaps and impedance gradients between the microstrip line and the sidewall of the metal carrier The discontinuity introduced by center conductor avoidance, insulator probe welding microstrip line, etc., its transmission characteristics are easy to deteriorate rapidly with the increase of frequency. The current typical coaxial microstrip conversion structure is in the form of adding a coaxial air cavity to form an air coaxial with the insulator probe. A major limitation of this structure is that there are few optimization variables introduced (radius and length of the coaxial air cavity), and it is difficult to achieve ultra-broadband matching. Designing a coaxial microstrip conversion structure with the characteristics of large operating bandwidth, low insertion loss, and high transmission efficiency is an important part of the development of millimeter-wave radio frequency module circuits.

因此,本申请提供一种低损耗、超宽带、结构简单易加工的同轴微带转换结构。同轴微带转换结构包括射频绝缘子、绝缘子探针、同轴空气腔、微带线和金属载体,微带线包括设于金属载体的微带线介质板和设于微带线介质板的阻抗渐变中心导体;射频绝缘子的一端与金属载体的一端侧壁齐平,射频绝缘子的另一端通过同轴空气腔定位于金属载体;绝缘子探针贯穿射频绝缘子的中心轴线,并在射频绝缘子的两端延伸,其中绝缘子探针的一端可连接至同轴连接器,绝缘子探针的另一端穿过同轴空气腔形成空气同轴,并搭接在微带线的阻抗渐变中心导体。如此设置,通过设置绝缘子探针穿过同轴空气腔搭接在微带线的阻抗渐变中心导体上,可补偿由电磁波模式转变引入的失配、为满足装配工艺安全性和可靠性等引入的不连续所带来的失配,实现毫米波信号的高效率传输,以满足毫米波射频模组对端口转换的低损耗、超宽带、结构简单易加工等的需求。Therefore, the present application provides a coaxial microstrip conversion structure with low loss, ultra-wideband, simple structure and easy processing. The coaxial microstrip conversion structure includes a radio frequency insulator, an insulator probe, a coaxial air cavity, a microstrip line and a metal carrier. Gradient central conductor; one end of the RF insulator is flush with the side wall of one end of the metal carrier, and the other end of the RF insulator is positioned on the metal carrier through a coaxial air cavity; the insulator probe runs through the central axis of the RF insulator and is placed at both ends of the RF insulator Extending, one end of the insulator probe can be connected to the coaxial connector, the other end of the insulator probe passes through the coaxial air cavity to form an air coaxial, and is lapped on the impedance gradient central conductor of the microstrip line. In such a setting, by setting the insulator probe through the coaxial air cavity and lapping it on the impedance gradient center conductor of the microstrip line, it can compensate the mismatch caused by the electromagnetic wave mode change and the safety and reliability of the assembly process. The mismatch caused by discontinuity realizes the high-efficiency transmission of millimeter wave signals to meet the needs of millimeter wave RF modules for port conversion with low loss, ultra-wideband, simple structure and easy processing.

图1所示为本申请的同轴微带转换结构1的一个实施例的结构示意图。图2所示为图1所示的同轴微带转换结构1的一个视角的结构示意图。图3所示为图1所示的同轴微带转换结构1的另一个视角的结构示意图。结合图1至图3所示,同轴微带转换结构1包括射频绝缘子20、绝缘子探针30、同轴空气腔201、微带线40和金属载体10。其中,金属载体10作为固定载体,用于固定射频绝缘子20和微带线40。微带线40包括设于金属载体10的微带线介质板401和设FIG. 1 is a structural schematic diagram of an embodiment of a coaxialmicrostrip conversion structure 1 of the present application. FIG. 2 is a structural schematic view of the coaxialmicrostrip conversion structure 1 shown in FIG. 1 from a viewing angle. FIG. 3 is a structural schematic diagram of another viewing angle of the coaxialmicrostrip conversion structure 1 shown in FIG. 1 . As shown in FIG. 1 to FIG. 3 , the coaxialmicrostrip conversion structure 1 includes aradio frequency insulator 20 , aninsulator probe 30 , acoaxial air cavity 201 , amicrostrip line 40 and ametal carrier 10 . Wherein, themetal carrier 10 is used as a fixed carrier for fixing theradio frequency insulator 20 and themicrostrip line 40 . Themicrostrip line 40 includes a microstrip linedielectric plate 401 arranged on themetal carrier 10 and a device

于微带线介质板401的阻抗渐变中心导体402。射频绝缘子20的一端与金属载5体10的一端侧壁齐平,射频绝缘子20的另一端通过同轴空气腔201定位于金属载体10。绝缘子探针30贯穿射频绝缘子20的中心轴线,并在射频绝缘子20的两端延伸,其中绝缘子探针30的一端可连接至同轴连接器(未图示),绝缘子探针30的另一端穿过同轴空气腔201形成空气同轴,并搭接在微带线40的阻抗渐变中心导体402。The impedancegradient center conductor 402 of the microstrip linedielectric board 401 . One end of theradio frequency insulator 20 is flush with one side wall of themetal carrier 10 , and the other end of theradio frequency insulator 20 is positioned on themetal carrier 10 through thecoaxial air cavity 201 . Theinsulator probe 30 runs through the central axis of theradio frequency insulator 20, and extends at both ends of theradio frequency insulator 20, wherein one end of theinsulator probe 30 can be connected to a coaxial connector (not shown), and the other end of theinsulator probe 30 passes through The air coaxial is formed through thecoaxial air cavity 201 , and is overlapped with the impedance gradientcentral conductor 402 of themicrostrip line 40 .

0在图1所示的实施例中,绝缘子探针30穿设于射频绝缘子20。绝缘子探针30的中心轴线与射频绝缘子20的中心轴线同轴设置。绝缘子探针30相对靠近微带线40的一端与同轴空气腔201形成空气同轴,并穿过同轴空气腔201延伸至射频绝缘子20外。阻抗渐变中心导体402相对靠近绝缘子探针30的一端与0 In the embodiment shown in FIG. 1 , theinsulator probe 30 penetrates theradio frequency insulator 20 . The central axis of theinsulator probe 30 is arranged coaxially with the central axis of theradio frequency insulator 20 . One end of theinsulator probe 30 relatively close to themicrostrip line 40 forms an air coaxial with thecoaxial air cavity 201 , and extends out of theradio frequency insulator 20 through thecoaxial air cavity 201 . The impedancegradient center conductor 402 is relatively close to one end of theinsulator probe 30 and

绝缘子探针30连接。绝缘子探针30贯穿射频绝缘子20的中心轴线,并在射频5绝缘子20的两端延伸。在一些实施例中,绝缘子探针30可延伸至射频绝缘子20的左侧,与2.92mm的同轴连接器连接。绝缘子探针30可延伸至射频绝缘子20的右侧,穿过同轴空气腔201搭接在阻抗渐变中心导体402上,并与阻抗渐变中心导体402连接。在本实施例中,射频绝缘子20的左端与金属载体10的Theinsulator probe 30 is connected. Theinsulator probe 30 runs through the central axis of theRF insulator 20 and extends at both ends of the RF 5insulator 20 . In some embodiments, theinsulator probe 30 may extend to the left side of theRF insulator 20 to connect with a 2.92 mm coaxial connector. Theinsulator probe 30 can extend to the right side of theradio frequency insulator 20 , pass through thecoaxial air cavity 201 to overlap thecentral conductor 402 with variable impedance, and connect with thecentral conductor 402 with variable impedance. In this embodiment, the left end of theradio frequency insulator 20 and themetal carrier 10

左侧壁齐平,射频绝缘子20的右端通过同轴空气腔201定位,烧结在绝缘孔1030上。同轴微带转换结构1工作时,毫米波信号经射频绝缘子20、绝缘子探针30The left side wall is flush, and the right end of theradio frequency insulator 20 is positioned through thecoaxial air cavity 201 and sintered on the insulating hole 1030 . When the coaxialmicrostrip conversion structure 1 is working, the millimeter wave signal passes through theradio frequency insulator 20 and theinsulator probe 30

与同轴空气腔201组成的空气同轴、搭接至阻抗渐变中心导体402上。其中绝缘子探针30与同轴空气腔201组成的空气同轴、阻抗渐变中心导体402起到阻抗匹配作用。如此可降低插入损耗,改善驻波。可补偿由电磁波模式转变引入The air formed by thecoaxial air cavity 201 is coaxially connected to the impedancegradient center conductor 402 . Theinsulator probe 30 and thecoaxial air cavity 201 are air-coaxial and thecentral conductor 402 with gradually changing impedance plays the role of impedance matching. This reduces insertion loss and improves standing waves. Can compensate for the introduction of electromagnetic wave mode transitions

的失配、为满足装配工艺安全性和可靠性等引入的不连续所带来的失配,实现5毫米波信号的高效率传输,以满足毫米波射频模组对端口转换的低损耗、超宽The mismatch caused by the discontinuity introduced to meet the safety and reliability of the assembly process, etc., to achieve high-efficiency transmission of 5 mm wave signals to meet the requirements of low loss and ultra- Width

带、结构简单易加工等的需求。belt, simple structure and easy processing.

在图1至图3所示的实施例中,微带线介质板401为高频介质板。高频介质板为复合纤维材料板,型号为Rogers5880,厚度为0.254mm,介电常数为2.2。在图1至图3所示的实施例中,射频绝缘子20的绝缘介质为玻璃材质。在图1至图3所示的实施例中,金属载体10为镀金合金材质。在一些实施例中,金属载体10为镀金铝合金材质或镀金铜合金材质或镀银合金材质,但不仅限于此。在图1至图3所示的实施例中,微带线为微带线介质板401表面的覆铜带。在图1至图3所示的实施例中,射频绝缘子20的外表面镀有金层或锡层或银层,与金属载体10连接。在图1至图3所示的实施例中,绝缘子探针30的外表面镀有金层或锡层或银层,与阻抗渐变中心导体402连接。在本实施例中,射频绝缘子20的绝缘介质为Glass7070,介电常数为4.1,射频绝缘子20的直径为1.93mm,绝缘子探针30的直径为0.3mm,射频绝缘子20和绝缘子探针30的外表面均镀有金层,便于进行射频绝缘子20与金属载体10、绝缘子探针30与阻抗渐变中心导体402的焊接。使用时可依据射频绝缘子20的公差尺寸精度进行设计,以降低由装配引入的不连续性。In the embodiments shown in FIG. 1 to FIG. 3 , the microstrip linedielectric board 401 is a high frequency dielectric board. The high-frequency dielectric plate is a composite fiber material plate, the model is Rogers5880, the thickness is 0.254mm, and the dielectric constant is 2.2. In the embodiments shown in FIGS. 1 to 3 , the insulating medium of theradio frequency insulator 20 is made of glass. In the embodiment shown in FIGS. 1 to 3 , themetal carrier 10 is made of a gold-plated alloy. In some embodiments, themetal carrier 10 is made of gold-plated aluminum alloy, gold-plated copper alloy or silver-plated alloy, but not limited thereto. In the embodiments shown in FIGS. 1 to 3 , the microstrip line is a copper-clad strip on the surface of the microstrip linedielectric board 401 . In the embodiment shown in FIG. 1 to FIG. 3 , the outer surface of theradio frequency insulator 20 is plated with a gold layer, a tin layer or a silver layer, and is connected to themetal carrier 10 . In the embodiment shown in FIG. 1 to FIG. 3 , the outer surface of theinsulator probe 30 is plated with a gold layer, a tin layer or a silver layer, and is connected to the impedancegradient center conductor 402 . In this embodiment, the insulating medium of theradio frequency insulator 20 is Glass7070, the dielectric constant is 4.1, the diameter of theradio frequency insulator 20 is 1.93 mm, the diameter of theinsulator probe 30 is 0.3 mm, the outer surface of theradio frequency insulator 20 and theinsulator probe 30 The surface is all plated with gold layer, which is convenient for welding theradio frequency insulator 20 and themetal carrier 10 , theinsulator probe 30 and thecentral conductor 402 with impedance gradient. When in use, it can be designed according to the tolerance and dimensional accuracy of theradio frequency insulator 20, so as to reduce the discontinuity introduced by assembly.

在图1至图3所示的实施例中,阻抗渐变中心导体402包括阻抗渐变段403和与阻抗渐变段403连接的阻抗固定段404,阻抗渐变段403相对阻抗固定段404靠近绝缘子探针30设置,且阻抗渐变段403与绝缘子探针30搭接。在图1至图3所示的实施例中,阻抗渐变段403的阻抗大于阻抗固定段404的阻抗,其中阻抗固定段404的阻抗为50欧姆。同轴微带转换结构1工作时,毫米波信号经射频绝缘子20、绝缘子探针30与同轴空气腔201组成的空气同轴、搭接至阻抗渐变中心导体402上的绝缘子探针30、阻抗渐变中心导体402的阻抗渐变段403,传输至50欧姆阻抗固定段404上,其中绝缘子探针30与同轴空气腔201组成的空气同轴、微带线阻抗渐变段起到阻抗匹配作用。如此设置,引入同轴空气腔201和阻抗渐变中心导体402的阻抗渐变段403进行阻抗匹配,引入更多的优化变量,以实现超宽带毫米波信号高效传输。In the embodiment shown in FIGS. 1 to 3 , the impedance gradientcentral conductor 402 includes animpedance gradient section 403 and an impedance fixedsection 404 connected to theimpedance gradient section 403 , and theimpedance gradient section 403 is closer to theinsulator probe 30 relative to the impedance fixedsection 404 set, and theimpedance transition section 403 overlaps with theinsulator probe 30 . In the embodiments shown in FIGS. 1 to 3 , the impedance of thevariable impedance section 403 is greater than the impedance of the fixedimpedance section 404 , wherein the impedance of the fixedimpedance section 404 is 50 ohms. When the coaxialmicrostrip conversion structure 1 is working, the millimeter-wave signal passes through the air coaxial formed by theradio frequency insulator 20, theinsulator probe 30 and thecoaxial air cavity 201, and is lapped to theinsulator probe 30 on the impedancegradient center conductor 402, the impedance Theimpedance gradient section 403 of the gradientcentral conductor 402 is transmitted to the 50 ohm impedance fixedsection 404, wherein the air coaxial and microstrip line impedance gradient section composed of theinsulator probe 30 and thecoaxial air cavity 201 plays an impedance matching role. In this way, thecoaxial air cavity 201 and theimpedance gradient section 403 of the impedance gradientcentral conductor 402 are introduced for impedance matching, and more optimization variables are introduced to realize efficient transmission of ultra-wideband millimeter wave signals.

在图1至图3所示的实施例中,阻抗渐变中心导体402相对靠近绝缘子探针30的一端与同轴空气腔201的侧壁之间具有间隙。如此设置,在充分考虑装配工艺安全性和可靠性需求,避免或减少阻抗渐变中心导体402在射频绝缘子20焊接或绝缘子探针30焊接时易发生短路的情形。因此,将阻抗渐变中心导体402相对靠近绝缘子探针30的一端与同轴空气腔201的侧壁之间设有足够的余量的间隙来避让,安全可靠。In the embodiment shown in FIG. 1 to FIG. 3 , there is a gap between the end of the impedancegradient center conductor 402 relatively close to theinsulator probe 30 and the sidewall of thecoaxial air cavity 201 . Such setting, fully considering the safety and reliability requirements of the assembly process, avoids or reduces the situation that thecentral conductor 402 with gradually changing impedance is prone to short circuit when theradio frequency insulator 20 is welded or theinsulator probe 30 is welded. Therefore, it is safe and reliable to provide a sufficient margin gap between the end of the impedancegradient center conductor 402 relatively close to theinsulator probe 30 and the side wall of thecoaxial air cavity 201 .

在图1至图3所示的实施例中,微带线介质板401相对靠近绝缘子探针30的一端与同轴空气腔201的侧壁之间具有间隙。在一些实施例中,微带线介质板401相对靠近绝缘子探针30的一端距离同轴空气腔201的侧壁之间的尺寸范围为0.05mm~0.1mm。在一些实施例中,微带线介质板401相对靠近绝缘子探针30的一端距离同轴空气腔201的侧壁之间的尺寸为0.05mm或0.06mm或0.07mm或0.08mm或0.09mm或0.1mm。如此设置,在充分考虑装配工艺安全性和可靠性需求,避免或减少因微带线介质板401超出金属载体10的尺寸难以安装的情况发生,且避免或减少微带线介质板401与金属载体10发生短路的情况发生。因此,将微带线介质板401相对靠近绝缘子探针30的一端与同轴空气腔201的侧壁之间设有足够的余量的间隙来避让,安全可靠。In the embodiment shown in FIGS. 1 to 3 , there is a gap between the end of the microstrip linedielectric plate 401 relatively close to theinsulator probe 30 and the sidewall of thecoaxial air cavity 201 . In some embodiments, the distance between the end of the microstrip linedielectric plate 401 relatively close to theinsulator probe 30 and the side wall of thecoaxial air cavity 201 is 0.05 mm˜0.1 mm. In some embodiments, the distance between one end of the microstrip linedielectric plate 401 relatively close to theinsulator probe 30 and the side wall of thecoaxial air cavity 201 is 0.05 mm or 0.06 mm or 0.07 mm or 0.08 mm or 0.09 mm or 0.1 mm. mm. Such setting, fully considering the safety and reliability requirements of the assembly process, avoids or reduces the situation that it is difficult to install because the microstrip linedielectric plate 401 exceeds the size of themetal carrier 10, and avoids or reduces the contact between the microstrip linedielectric plate 401 and the metal carrier. 10 A short circuit occurs. Therefore, it is safe and reliable to provide a sufficient margin gap between the end of the microstrip linedielectric plate 401 relatively close to theinsulator probe 30 and the side wall of thecoaxial air cavity 201 .

在图1至图3所示的实施例中,阻抗渐变中心导体402的长度相对于微带线介质板401的长度避让的尺寸范围为0.01mm~0.2mm。在一些实施例中,阻抗渐变中心导体402的长度相对于微带线介质板401的长度避让的尺寸为0.01mm或0.02mm或0.03mm或0.04mm或0.05mm或0.06mm或0.07mm或0.08mm或0.09mm或0.1mm或0.11mm或0.12mm或0.13mm或0.14mm或0.15mm或0.16mm或0.17mm或0.18mm或0.19mm或0.2mm。如此设置,为满足装配工艺安全性和可靠性的需求,降低装配过程中引入的短路风险。且该结构紧凑,工作频带宽,调试量小、可重复性高,适用于毫米波工程应用,可以广泛满足实际工程需求。In the embodiments shown in FIG. 1 to FIG. 3 , the length of the impedancegradient center conductor 402 relative to the length of themicrostrip dielectric plate 401 is in the range of 0.01 mm to 0.2 mm. In some embodiments, the length of the impedance gradientcentral conductor 402 is 0.01mm or 0.02mm or 0.03mm or 0.04mm or 0.05mm or 0.06mm or 0.07mm or 0.08mm. Or 0.09mm or 0.1mm or 0.11mm or 0.12mm or 0.13mm or 0.14mm or 0.15mm or 0.16mm or 0.17mm or 0.18mm or 0.19mm or 0.2mm. With such setting, in order to meet the safety and reliability requirements of the assembly process, the risk of short circuit introduced during the assembly process is reduced. Moreover, the structure is compact, the working frequency is wide, the amount of debugging is small, and the repeatability is high. It is suitable for millimeter wave engineering applications and can widely meet actual engineering needs.

在图1至图3所示的实施例中,阻抗渐变中心导体402相对靠近绝缘子探针30的一端与绝缘子探针30焊接。在本实施例中,阻抗渐变中心导体402相对靠近绝缘子探针30的一端与绝缘子探针30通过锡焊50焊接。通过焊接方式连接阻抗渐变中心导体402和绝缘子探针30,连接稳定性更好。In the embodiment shown in FIG. 1 to FIG. 3 , one end of the impedancegradient center conductor 402 relatively close to theinsulator probe 30 is welded to theinsulator probe 30 . In this embodiment, one end of the impedancegradient center conductor 402 relatively close to theinsulator probe 30 is welded to theinsulator probe 30 by soldering 50 . Thecentral conductor 402 with variable impedance and theinsulator probe 30 are connected by welding, so that the connection stability is better.

在图1至图3所示的实施例中,微带线40还包括底层金属层(未图示),设于微带线介质板401的底部,微带线介质板401通过底层金属层焊接于金属载体10。微带线介质板401通过底层金属层焊接于金属载体10,固定效果稳定,且连接性能稳定可靠。In the embodiment shown in Figures 1 to 3, themicrostrip line 40 also includes a bottom metal layer (not shown), which is arranged on the bottom of the microstrip linedielectric board 401, and the microstrip linedielectric board 401 is welded through the bottom metal layer on themetal carrier 10. Themicrostrip dielectric board 401 is welded to themetal carrier 10 through the underlying metal layer, so the fixing effect is stable, and the connection performance is stable and reliable.

图4所示为图1所示的同轴微带转换结构1插入损耗的仿真结果图。在图4所示的实施例中,工作频率在50GHz时,插入损耗为-0.6648dB。图5所示为图1所示的同轴微带转换结构1输入驻波的仿真结果图。在图5所示的实施例中,工作频率在50GHz时,输入驻波比为1.1971。如此设置,通过设置绝缘子探针30穿过同轴空气腔201搭接在微带线40的阻抗渐变中心导体402上,可补偿由电磁波模式转变引入的失配、为满足装配工艺安全性和可靠性等引入的不连续所带来的失配,实现毫米波信号的高效率传输,以满足毫米波射频模组对端口转换的低损耗、超宽带、结构简单易加工等的需求。FIG. 4 is a simulation result diagram of the insertion loss of the coaxialmicrostrip conversion structure 1 shown in FIG. 1 . In the embodiment shown in FIG. 4, when the operating frequency is 50 GHz, the insertion loss is -0.6648 dB. FIG. 5 is a simulation result diagram of the input standing wave of the coaxialmicrostrip conversion structure 1 shown in FIG. 1 . In the embodiment shown in FIG. 5, when the operating frequency is 50 GHz, the input standing wave ratio is 1.1971. In this way, by setting theinsulator probe 30 through thecoaxial air cavity 201 and lapping on the impedancegradient center conductor 402 of themicrostrip line 40, the mismatch introduced by the electromagnetic wave mode transition can be compensated, and the safety and reliability of the assembly process can be satisfied. The mismatch caused by the discontinuity introduced by the characteristics, etc., realizes the high-efficiency transmission of millimeter-wave signals, so as to meet the needs of millimeter-wave RF modules for port conversion with low loss, ultra-wideband, simple structure and easy processing.

以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。The above is only a preferred embodiment of the application, and is not intended to limit the application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the application should be included in the application. within the scope of protection.

Claims (10)

Translated fromChinese
1.一种同轴微带转换结构,其特征在于,包括:射频绝缘子、绝缘子探针、同轴空气腔、微带线和金属载体,所述微带线包括设于所述金属载体的微带线介质板和设于所述微带线介质板的阻抗渐变中心导体;所述射频绝缘子的一端与所述金属载体的一端侧壁齐平,所述射频绝缘子的另一端通过所述同轴空气腔定位于所述金属载体;所述绝缘子探针贯穿所述射频绝缘子的中心轴线,并在所述射频绝缘子的两端延伸,其中所述绝缘子探针的一端可连接至同轴连接器,所述绝缘子探针的另一端穿过所述同轴空气腔形成空气同轴,并搭接在所述微带线的所述阻抗渐变中心导体。1. A coaxial microstrip conversion structure, characterized in that it comprises: a radio frequency insulator, an insulator probe, a coaxial air cavity, a microstrip line and a metal carrier, and the microstrip line includes a microstrip that is located at the metal carrier The strip line dielectric plate and the impedance gradient center conductor arranged on the microstrip line dielectric plate; one end of the radio frequency insulator is flush with the side wall of one end of the metal carrier, and the other end of the radio frequency insulator passes through the coaxial The air cavity is positioned on the metal carrier; the insulator probe runs through the central axis of the radio frequency insulator and extends at both ends of the radio frequency insulator, wherein one end of the insulator probe can be connected to a coaxial connector, The other end of the insulator probe passes through the coaxial air cavity to form an air coaxial, and is overlapped with the impedance gradient central conductor of the microstrip line.2.根据权利要求1所述的同轴微带转换结构,其特征在于,所述阻抗渐变中心导体包括阻抗渐变段和与所述阻抗渐变段连接的阻抗固定段,所述阻抗渐变段相对所述阻抗固定段靠近所述绝缘子探针设置,且所述阻抗渐变段与所述绝缘子探针搭接。2. The coaxial microstrip conversion structure according to claim 1, wherein the impedance gradient central conductor includes an impedance gradient section and an impedance fixed section connected to the impedance gradient section, and the impedance gradient section is relatively opposite to the impedance transition section. The impedance fixed section is arranged close to the insulator probe, and the impedance gradual section is overlapped with the insulator probe.3.根据权利要求2所述的同轴微带转换结构,其特征在于,所述阻抗渐变段的阻抗大于所述阻抗固定段的阻抗,其中所述阻抗固定段的阻抗为50欧姆。3. The coaxial microstrip conversion structure according to claim 2, wherein the impedance of the impedance gradient section is greater than the impedance of the impedance fixed section, wherein the impedance of the impedance fixed section is 50 ohms.4.根据权利要求1所述的同轴微带转换结构,其特征在于,所述阻抗渐变中心导体相对靠近所述绝缘子探针的一端与所述同轴空气腔的侧壁之间具有间隙。4 . The coaxial microstrip conversion structure according to claim 1 , wherein there is a gap between the end of the impedance gradient center conductor relatively close to the insulator probe and the side wall of the coaxial air cavity.5.根据权利要求1所述的同轴微带转换结构,其特征在于,所述微带线介质板相对靠近所述绝缘子探针的一端与所述同轴空气腔的侧壁之间具有间隙。5. The coaxial microstrip conversion structure according to claim 1, wherein there is a gap between the end of the microstrip line dielectric plate relatively close to the insulator probe and the side wall of the coaxial air cavity .6.根据权利要求1所述的同轴微带转换结构,其特征在于,所述阻抗渐变中心导体的长度相对于所述微带线介质板的长度避让的尺寸范围为0.01mm~0.2mm。6 . The coaxial microstrip conversion structure according to claim 1 , wherein the length of the central conductor with gradual impedance change relative to the length of the microstrip line dielectric plate is in the range of 0.01 mm to 0.2 mm.7.根据权利要求1所述的同轴微带转换结构,其特征在于,所述阻抗渐变中心导体相对靠近所述绝缘子探针的一端与所述绝缘子探针焊接。7 . The coaxial microstrip conversion structure according to claim 1 , wherein one end of the impedance gradient center conductor relatively close to the insulator probe is welded to the insulator probe.8.根据权利要求1所述的同轴微带转换结构,其特征在于,所述微带线还包括底层金属层,设于所述微带线介质板的底部,所述微带线介质板通过所述底层金属层焊接于所述金属载体。8. The coaxial microstrip conversion structure according to claim 1, wherein the microstrip line also includes an underlying metal layer disposed on the bottom of the microstrip line dielectric plate, and the microstrip line dielectric plate Welded to the metal carrier through the underlying metal layer.9.根据权利要求1所述的同轴微带转换结构,其特征在于,所述微带线介质板为高频介质板;和/或9. The coaxial microstrip conversion structure according to claim 1, wherein the microstrip dielectric plate is a high-frequency dielectric plate; and/or所述射频绝缘子的绝缘介质为玻璃材质。The insulating medium of the radio frequency insulator is made of glass.10.根据权利要求1所述的同轴微带转换结构,其特征在于,所述微带线为所述微带线介质板表面的覆铜带。10. The coaxial microstrip conversion structure according to claim 1, wherein the microstrip line is a copper-clad strip on the surface of the microstrip line dielectric board.
CN202211740704.3A2022-12-302022-12-30Coaxial microstrip conversion structurePendingCN115986353A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202211740704.3ACN115986353A (en)2022-12-302022-12-30Coaxial microstrip conversion structure

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202211740704.3ACN115986353A (en)2022-12-302022-12-30Coaxial microstrip conversion structure

Publications (1)

Publication NumberPublication Date
CN115986353Atrue CN115986353A (en)2023-04-18

Family

ID=85967822

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202211740704.3APendingCN115986353A (en)2022-12-302022-12-30Coaxial microstrip conversion structure

Country Status (1)

CountryLink
CN (1)CN115986353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN117728138A (en)*2023-12-262024-03-19北京信芯科技有限公司Welding-free connecting mechanism of coaxial connector and planar microstrip

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH02237301A (en)*1989-03-101990-09-19Nec CorpCoaxial microstrip line converter
JP2008219476A (en)*2007-03-052008-09-18Mitsubishi Electric Corp Transmission line converter, high-frequency circuit and high-frequency module having the same
CN102569949A (en)*2010-12-092012-07-11中国航天科工集团第二研究院二十三所Millimeter-wave band microstrip-coaxial line conversion device
CN206921989U (en)*2017-06-302018-01-23成都玖信科技有限公司A kind of transition connector of glass insulator and microstrip line
CN107681240A (en)*2016-08-022018-02-09北京遥感设备研究所A kind of coaxial microband conversion equipment
CN110676551A (en)*2019-09-232020-01-10博微太赫兹信息科技有限公司Microstrip coaxial conversion structure with air cavity and interconnection method thereof
CN112599946A (en)*2020-12-222021-04-02上海创远仪器技术股份有限公司Device for realizing millimeter wave frequency band microstrip coaxial conversion
CN114142198A (en)*2021-12-162022-03-04西安梅隆控制工程有限责任公司Single leakage cable with multipath effect and construction method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH02237301A (en)*1989-03-101990-09-19Nec CorpCoaxial microstrip line converter
JP2008219476A (en)*2007-03-052008-09-18Mitsubishi Electric Corp Transmission line converter, high-frequency circuit and high-frequency module having the same
CN102569949A (en)*2010-12-092012-07-11中国航天科工集团第二研究院二十三所Millimeter-wave band microstrip-coaxial line conversion device
CN107681240A (en)*2016-08-022018-02-09北京遥感设备研究所A kind of coaxial microband conversion equipment
CN206921989U (en)*2017-06-302018-01-23成都玖信科技有限公司A kind of transition connector of glass insulator and microstrip line
CN110676551A (en)*2019-09-232020-01-10博微太赫兹信息科技有限公司Microstrip coaxial conversion structure with air cavity and interconnection method thereof
CN112599946A (en)*2020-12-222021-04-02上海创远仪器技术股份有限公司Device for realizing millimeter wave frequency band microstrip coaxial conversion
CN114142198A (en)*2021-12-162022-03-04西安梅隆控制工程有限责任公司Single leakage cable with multipath effect and construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN117728138A (en)*2023-12-262024-03-19北京信芯科技有限公司Welding-free connecting mechanism of coaxial connector and planar microstrip
CN117728138B (en)*2023-12-262024-07-23北京信芯科技有限公司Welding-free connecting mechanism of coaxial connector and planar microstrip

Similar Documents

PublicationPublication DateTitle
CN205666315U (en)Be used for W wave band waveguide - microstrip probe converter
CN101496279B (en)Transitions device
CN108711665A (en)Rectangular waveguide micro-strip hermetic seal transition circuit
CN103579729B (en)A kind of spaceborne high-frequency microstrip is to the vertical change-over circuit of waveguide broad-band filter with low insertion loss
CN112382837B (en)Waveguide-microstrip conversion structure in form of end-connected capacitor arc probe
CN113363691B (en)Radio frequency substrate and coaxial microstrip conversion structure
CN105977595A (en)Terminal connection feed-backward type rectangular waveguide-microstrip transition device
KR20120078697A (en)Precision waveguide interface
CN107689475B (en) A micro-coaxial ultra-wideband coupler
WO2013077916A1 (en)High frequency, high bandwidth, low loss microstrip to waveguide transition
CN114464975A (en)Surface mount waveguide for vertical transition of printed circuit boards
WO2020014891A1 (en)Balun and method for manufacturing the same
CN118920056A (en)Gold wire bonding matching structure and method for interconnecting coplanar waveguide and chip microstrip
CN107134620B (en) A K-band waveguide microstrip transition device
CN115986353A (en)Coaxial microstrip conversion structure
CN107275735A (en)A kind of new coaxial microband converter
CN112018067A (en) BGA ceramic vertical interconnection structure and package based on broadband transmission
CN204885390U (en) A double-layer miniaturized low-cost directional branch coupler
CN116325346A (en) RF connector
CN117650352A (en)W-band waveguide port metal-ceramic shell
CN113889719B (en)Waveguide-microstrip line transition structure with filtering function
CN216698694U (en)Millimeter wave waveguide coaxial microstrip conversion structure
CN214378786U (en)Waveguide-to-strip line transition structure
CN120237391A (en) A system on a chip
CN110011002B (en)Self-matching ultra-wideband microwave insulator

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp