





技术领域technical field
本发明涉及微流控芯片技术领域,尤其涉及一种汗液多参数并行检测的微流控芯片。The invention relates to the technical field of microfluidic chips, in particular to a microfluidic chip for multi-parameter parallel detection of sweat.
背景技术Background technique
目前,随着人口增长、老龄化和慢性病的日益普及,医疗成本不断上升,医疗体系正在经历从传统的以医院为中心的系统向以个人为中心的系统的重要转变。由此,可穿戴汗液检测应运而生,其在医疗诊断、科学运动等方面具有广泛的应用场景。目前,现有汗液检测的微流控芯片由于其结构的不合理性,容易造成汗液的污染与蒸发,而且汗液的检测成分单一,并不能完全反应检测物与人体健康之间的关系;另外,现有微流控芯片的微通道中存在着Taylor-Aris现象,管道内前后浓度的差异会对检测结果的准确性产生影响等问题,而且基本是一次性的,重复使用性低,成本高。Currently, with rising healthcare costs due to population growth, aging and the increasing prevalence of chronic diseases, the healthcare system is undergoing an important shift from a traditional hospital-centric system to an individual-centric system. As a result, wearable sweat detection came into being, which has a wide range of application scenarios in medical diagnosis, scientific sports, etc. At present, due to the irrationality of the structure of the existing microfluidic chip for sweat detection, it is easy to cause sweat pollution and evaporation, and the detection component of sweat is single, which cannot fully reflect the relationship between the detection object and human health; in addition, The Taylor-Aris phenomenon exists in the microchannel of the existing microfluidic chip, and the difference in the concentration before and after the pipeline will affect the accuracy of the detection results. Moreover, it is basically disposable, with low reusability and high cost.
发明内容Contents of the invention
针对现有技术不足,本发明的目的在于提供一种汗液多参数并行检测的微流控芯片。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a microfluidic chip for parallel detection of multiple parameters of sweat.
为了实现上述目的,本发明一实施例提供的技术方案如下:In order to achieve the above object, the technical solution provided by an embodiment of the present invention is as follows:
一种汗液多参数并行检测的微流控芯片,包括:A microfluidic chip for multi-parameter parallel detection of sweat, including:
底板,所述底板上开设有入口井、出口井以及连通所述入口井与出口井的通道机构,所述通道机构包括依次相连通的分流主通道、反应机构和汇流主通道,所述分流主通道与所述入口井相连通,所述反应机构包括并行排布的多个反应腔,每个所述反应腔通过对应的分支通道分别与所述分流主通道、汇流主通道相连通,所述汇流主通道与所述出口井相连通;The bottom plate is provided with an inlet well, an outlet well, and a channel mechanism connecting the inlet well and the outlet well. The channel communicates with the inlet well, and the reaction mechanism includes a plurality of reaction chambers arranged in parallel, each of the reaction chambers communicates with the split main channel and the confluence main channel through a corresponding branch channel, the The confluence main channel communicates with the outlet well;
顶板,密封盖设于所述底板,所述顶板上开设有收集口、排出口,所述收集口、排出口分别对准所述入口井、出口井;The top plate, the sealing cover is arranged on the bottom plate, and the top plate is provided with a collection port and a discharge port, and the collection port and discharge port are respectively aligned with the inlet well and the outlet well;
电极机构,所述电极机构包括多个电极,每个所述电极穿过所述顶板伸入对应的所述反应腔内。An electrode mechanism, the electrode mechanism includes a plurality of electrodes, and each electrode extends through the top plate into the corresponding reaction chamber.
作为本发明的进一步改进,所述反应腔包括反应腔体、设于所述反应腔体内的腔体外壁以及设于所述腔体外壁内的腔体内壁,所述反应腔体与所述分支通道相连通,所述腔体外壁由间隔设置的多个外壁体围合而成,所述腔体内壁由间隔设置的多个内壁体围合而成。As a further improvement of the present invention, the reaction chamber includes a reaction chamber, an outer wall of the chamber disposed in the reaction chamber, and an inner wall of the chamber disposed in the outer wall of the chamber, the reaction chamber and the branch The channels are connected, the outer wall of the cavity is surrounded by a plurality of outer walls arranged at intervals, and the inner wall of the cavity is enclosed by a plurality of inner walls arranged at intervals.
作为本发明的进一步改进,所述腔体外壁呈圆形。As a further improvement of the present invention, the outer wall of the cavity is circular.
作为本发明的进一步改进,所述腔体外壁的外径为1700-1800微米,所述外壁体的壁厚为100微米,相邻所述外壁体之间的间距为140-200微米。As a further improvement of the present invention, the outer diameter of the outer wall of the cavity is 1700-1800 microns, the wall thickness of the outer walls is 100 microns, and the distance between adjacent outer walls is 140-200 microns.
作为本发明的进一步改进,所述腔体内壁呈圆内接多边形。As a further improvement of the present invention, the inner wall of the cavity is a polygon inscribed in a circle.
作为本发明的进一步改进,所述腔体内壁的外接圆直径为1400-1500微米,所述内壁体的壁厚为100微米,相邻所述内壁体之间的间距为20-30微米。As a further improvement of the present invention, the diameter of the circumscribed circle of the inner wall of the cavity is 1400-1500 microns, the wall thickness of the inner walls is 100 microns, and the distance between adjacent inner walls is 20-30 microns.
作为本发明的进一步改进,所述腔体内壁呈圆内接六边形或圆内接八边形。As a further improvement of the present invention, the inner wall of the cavity is inscribed in a hexagon or inscribed in an octagon.
作为本发明的进一步改进,所述分流主通道的直径为200-300微米,所述分支通道的直径为140-200微米。As a further improvement of the present invention, the diameter of the branching main channel is 200-300 microns, and the diameter of the branch channels is 140-200 microns.
作为本发明的进一步改进,所述收集口内设置有亲水填料。As a further improvement of the present invention, a hydrophilic filler is arranged in the collection port.
作为本发明的进一步改进,所述亲水填料的上表面设置有水凝胶层。As a further improvement of the present invention, the upper surface of the hydrophilic filler is provided with a hydrogel layer.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明使得汗液不与外界接触,避免了汗液的污染与蒸发。(1) The present invention prevents sweat from contacting with the outside world, avoiding sweat pollution and evaporation.
(2)本发明使得汗液进入微流控芯片内,无需外部能量输入,仅依靠固 -液-气三相的界面力即可使得汗液自驱动输送。(2) The present invention allows sweat to enter the microfluidic chip without external energy input, and the sweat can be driven and transported only by solid-liquid-gas three-phase interface force.
(3)本发明利用多参数分支,使得汗液进入不同的反应腔,分别检测不同的相关联物质,提高检测的可信度。(3) The present invention utilizes multi-parameter branches to allow sweat to enter different reaction chambers to detect different associated substances, thereby improving the reliability of detection.
(4)本发明的反应腔仿照植物叶脉壁室结构和细胞副室结构,设计出仿生结构,使得汗液流入反应腔后能够保持流场与浓度场均一稳定,提高检测的精度。(4) The reaction chamber of the present invention imitates the plant leaf vein wall chamber structure and the cell subchamber structure, and a bionic structure is designed, so that after sweat flows into the reaction chamber, the flow field and concentration field can be kept uniform and stable, and the detection accuracy is improved.
(5)电极能够拆卸,便于重复利用。(5) The electrodes can be disassembled for easy reuse.
(6)利用该芯片,可以实时无创便捷的检测体内葡萄糖、乳酸及Na+含量的变化,从而实时地评估身体状况,进行健康监测和预警。(6) Using this chip, it is possible to non-invasively and conveniently detect changes in the content of glucose, lactic acid and Na+ in the body in real time, so as to evaluate the physical condition in real time and carry out health monitoring and early warning.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明的优选实施例的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the preferred embodiment of the present invention;
图2为本发明的优选实施例的水凝胶层、亲水填料与顶板的分解结构示意图;Fig. 2 is a schematic diagram of the decomposition structure of the hydrogel layer, the hydrophilic filler and the top plate of the preferred embodiment of the present invention;
图3为本发明的优选实施例的底板上设置入口井、出口井和通道机构的结构示意图;Fig. 3 is a schematic structural view of an inlet well, an outlet well and a channel mechanism arranged on the bottom plate of a preferred embodiment of the present invention;
图4为本发明的优选实施例的分流主通道与三个分支通道相连通的俯视图;Fig. 4 is the plan view that the branching main channel of the preferred embodiment of the present invention communicates with three branch channels;
图5为本发明的优选实施例的反应腔的结构示意图;FIG. 5 is a schematic structural view of a reaction chamber in a preferred embodiment of the present invention;
图6为本发明的优选实施例的电极的结构示意图;Fig. 6 is the structural representation of the electrode of preferred embodiment of the present invention;
图中:1、底板,11、入口井,12、出口井,13、分流主通道,14、汇流主通道,15、反应腔,151、反应腔体,152、外壁体,153、内壁体,16、分支通道,2、顶板,21、收集口,22、排出口,24、亲水填料,25、水凝胶层,26、通孔,3、电极。In the figure: 1. bottom plate, 11. inlet well, 12. outlet well, 13. main diversion channel, 14. main confluence channel, 15. reaction chamber, 151. reaction chamber body, 152. outer wall body, 153. inner wall body, 16. Branch channel, 2. Top plate, 21. Collection port, 22. Discharge port, 24. Hydrophilic filler, 25. Hydrogel layer, 26. Through hole, 3. Electrode.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
请参阅图1-图3,本申请实施例公开了一种汗液多参数并行检测的微流控芯片,包括:Please refer to Figures 1-3, the embodiment of the present application discloses a microfluidic chip for multi-parameter parallel detection of sweat, including:
底板1,底板1上开设有入口井11、出口井12以及连通入口井11与出口井12的通道机构,通道机构包括依次相连通的分流主通道13、反应机构和汇流主通道14,分流主通道13与入口井11相连通,反应机构包括并行排布的多个反应腔15,每个反应腔15通过对应的分支通道16分别与分流主通道 13、汇流主通道14相连通,汇流主通道14与出口井12相连通;The
顶板2,密封盖设于底板1,顶板2上开设有收集口21、排出口22,收集口21、排出口22分别对准入口井11、出口井12;The
电极机构,电极机构包括多个电极3,每个电极3穿过顶板2伸入对应的反应腔15内。An electrode mechanism, the electrode mechanism includes a plurality of
请参阅图2,收集口21内设置有亲水填料24,通过亲水填料24填充在收集口21内,以保证顶板2的刚性,同时亲水填料24具有亲水性,能够吸附汗液,快速将汗液引导至分流主通道13处,减少汗液收集时间,提高检测效率。亲水填料24是使用标准程序在柔性PET上制备厚度为200微米的图案化填料,之后将含0.5%PVA的去离子水的溶液滴注到图案化填料上,确保完全覆盖整个填料并在80℃的电炉上快速加热制成。图案化填料表面有凹槽,便于引导汗液流动。Please refer to Fig. 2, the
为了避免皮肤表面杂质进入通道机构内,优选亲水填料24的上表面设置有水凝胶层25。水凝胶层25作为无刺激性材料可以直接附着在皮肤表面,在吸收汗液的同时可以使得汗液透过水凝胶层25,从而达到过滤作用。水凝胶层25是通过将2%琼脂糖和50%甘油在120℃下搅拌并溶解在去离子水中5 分钟形成溶液,之后将3毫升溶液迅速倒入直径100毫米的亲水性玻璃皿中,等待干燥成为凝胶状薄膜。In order to prevent impurities on the skin surface from entering the channel mechanism, it is preferable that the upper surface of the
优选收集口21的直径为2500微米。The diameter of the
请参阅图4,通道机构是基于Murray定律即默里定律设计的,以实现汗液的运输。为保证汗液的快速运输,需保证通道机构内阻力最小,Murray即是基于能量最小定律推理而出,其指出母径的立方等于所有子径的立方和。为更好地达到多参数并行检测的目的,与分流主通道13相连通有三个分支通道16,形成三通道分叉,Murray定律中的母径即为分流主通道13的直径、子径即为分支通道16的直径,分流主通道16的直径为200-300微米,分支通道16的直径为140-200微米。优选地,设置分流主通道13的直径为250微米,分支通道16的直径为200微米。Please refer to Fig. 4, the channel mechanism is designed based on Murray's law, that is, Murray's law, to realize the transportation of sweat. In order to ensure the rapid transport of sweat, it is necessary to ensure the minimum resistance in the channel mechanism. Murray reasoned based on the law of minimum energy, which pointed out that the cube of the parent diameter is equal to the sum of the cubes of all sub-diameters. In order to better achieve the purpose of multi-parameter parallel detection, there are three
请参阅图3、图5,反应腔15包括反应腔体151、设于反应腔体151内的腔体外壁以及设于腔体外壁内的腔体内壁,反应腔体151与分支通道13相连通,腔体外壁由间隔设置的多个外壁体152围合而成,腔体内壁由间隔设置的多个内壁体153围合而成。通过设置腔体外壁能够起到缓冲分流作用,大大降低流体的速度,使得反应能够更加全面,同时配合设置腔体内壁,能够极大地保证反应中心流场及浓度的均一、稳定,使得检测精度大大提高。Please refer to Fig. 3, Fig. 5,
具体地,反应腔体151的内径为2000微米。Specifically, the inner diameter of the
具体地,腔体外壁呈圆形。Specifically, the outer wall of the cavity is circular.
更具体地,腔体外壁的外径为1700-1800微米,外壁体152的壁厚为100 微米,相邻外壁体152之间的间距为140-200微米。More specifically, the outer diameter of the outer wall of the cavity is 1700-1800 microns, the wall thickness of the
具体地,腔体内壁呈圆内接多边形。优选地,腔体内壁呈圆内接六边形,但并不局限于圆内接六边形,也可以为圆内接八边形。Specifically, the inner wall of the cavity is a polygon inscribed in a circle. Preferably, the inner wall of the cavity is a hexagon inscribed in a circle, but is not limited to a hexagon inscribed in a circle, and may also be an octagon inscribed in a circle.
更具体地,腔体内壁的外接圆直径为1400-1500微米,内壁体153的壁厚为100微米,相邻内壁体153之间的间距为20-30微米。More specifically, the diameter of the circumscribed circle of the inner wall of the cavity is 1400-1500 microns, the wall thickness of the
优选出口井12的直径为1000微米。Preferably the outlet well 12 has a diameter of 1000 microns.
底板1、顶板2以及通道机构采用模塑成型的方法制造,通过高精度3D 打印机打印模板,高精度3D打印机的打印参数为:层厚10微米、曝光时间 5秒,将PDMS也就是聚二甲基硅氧烷均匀涂抹到模板表面,固化后剥离,得到柔性的可穿戴设备。具体地,将PDMS预聚体与交联剂按照质量比10:1 的比例进行混合,搅拌均匀后放入真空干燥箱中,除去搅拌过程中产生的气泡,之后将去除气泡后的PDMS滴涂到由3D打印制备的模板上,将滴涂上 PDMS的模板放到70C℃烘箱中固化2小时,固化后沿着边缘小心揭下,得到柔性PDMS设备。优选底板1与顶板2采用热压键合密封在一起。
请参阅图2、图6,为保证微流控芯片的可重复利用性,顶板2上设置有多个通孔26,每个电极3穿过对应的通孔26伸入反应腔15内,检测完成后,电极3能够从通孔26取出,具有可拆卸性,更换即可进行下一次的检测使用,便于重复利用。更具体地,电极3伸入腔体内壁内,与进入到腔体内壁内的汗液充分反应后通过外接电路,检测电流大小,从而判断汗液中检测物的含量。电极3由三种不同的材料制成,先用丝印碳浆制备工作电极,再在工作电极上涂覆选择性膜便于不同的生化反应;其次选用Ag或AgCl制备参比电极;最后,选用导电银浆做导电基底。Please refer to Fig. 2 and Fig. 6, in order to ensure the reusability of the microfluidic chip, a plurality of through
本发明的微流控芯片采用PDMS制作而成,为柔性可穿戴器件,可以用 3M医用型双面胶贴在人体的任意部位,水凝胶层25紧贴皮肤表面。汗液经表皮渗出进入微流控芯片的收集口21处,经水凝胶层25过滤杂质后进入亲水填料24,汗液被引导流入分流主通道13,再经分叉的三个分支通道16分别进入三个反应腔15内,汗液先经反应腔体151流过腔体外壁,再流入腔体内壁,与电极3反应,通过外加小型化检测电路检测电流,根据不同含量所对应的电流不一样,即可得知物质含量变化,从而判断人体健康状况。可特异性检测汗液中的葡萄糖、乳酸以及Na+的含量。检测完毕之后,在毛细力的作用下汗液自动流出反应腔15,再经过汇流主通道14、出口井12、排出口 22,排出微流控芯片。利用该微流控芯片,可以实时无创便捷的检测体内葡萄糖、乳酸及Na+含量的变化,从而评估运动员或其他人员的身体状况,从而制定更加科学合理的运动和饮食策略。检测电路可与手机蓝牙连接,在手机上可以实时查看身体健康状况。The microfluidic chip of the present invention is made of PDMS, is a flexible wearable device, and can be pasted on any part of the human body with 3M medical double-sided adhesive tape, and the
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to implementation modes, not each implementation mode only contains an independent technical solution, and this description in the specification is only for clarity, and those skilled in the art should take the specification as a whole , the technical solutions in the various embodiments can also be properly combined to form other implementations that can be understood by those skilled in the art.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211349100.6ACN115791935A (en) | 2022-10-31 | 2022-10-31 | Microfluidic chip for multi-parameter parallel detection of sweat |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211349100.6ACN115791935A (en) | 2022-10-31 | 2022-10-31 | Microfluidic chip for multi-parameter parallel detection of sweat |
| Publication Number | Publication Date |
|---|---|
| CN115791935Atrue CN115791935A (en) | 2023-03-14 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211349100.6APendingCN115791935A (en) | 2022-10-31 | 2022-10-31 | Microfluidic chip for multi-parameter parallel detection of sweat |
| Country | Link |
|---|---|
| CN (1) | CN115791935A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103913489A (en)* | 2013-01-09 | 2014-07-09 | 北京怡成生物电子技术有限公司 | Micro biochip for real-time detection of substances in body fluids |
| WO2018067412A1 (en)* | 2016-09-29 | 2018-04-12 | General Electric Company | Method and systems for a sensor patch with embedded microfluidics for monitoring of fluid biomarkers |
| EP3364183A1 (en)* | 2017-02-21 | 2018-08-22 | Eccrine Systems, Inc. | Sweat electrolyte loss monitoring devices |
| CN111007121A (en)* | 2019-11-26 | 2020-04-14 | 广州万孚生物技术股份有限公司 | Electrochemical sensor, conductive layer thereof and preparation method |
| CN111671437A (en)* | 2020-07-21 | 2020-09-18 | 香港纺织及成衣研发中心有限公司 | A wearable sweat detection system, method and wearable equipment |
| CN112494037A (en)* | 2020-11-24 | 2021-03-16 | 华南师范大学 | Wearable cloth-based electrochemical sweat sensing device and method |
| US20210086179A1 (en)* | 2018-06-12 | 2021-03-25 | Lansion Biotechnology Co., Ltd | Microfluidic detection chip for multi-channel rapid detection |
| CN113466172A (en)* | 2021-05-06 | 2021-10-01 | 江苏大学 | Plant organ fully-integrated chip system based on resonance waveguide and detection method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103913489A (en)* | 2013-01-09 | 2014-07-09 | 北京怡成生物电子技术有限公司 | Micro biochip for real-time detection of substances in body fluids |
| WO2018067412A1 (en)* | 2016-09-29 | 2018-04-12 | General Electric Company | Method and systems for a sensor patch with embedded microfluidics for monitoring of fluid biomarkers |
| EP3364183A1 (en)* | 2017-02-21 | 2018-08-22 | Eccrine Systems, Inc. | Sweat electrolyte loss monitoring devices |
| US20210086179A1 (en)* | 2018-06-12 | 2021-03-25 | Lansion Biotechnology Co., Ltd | Microfluidic detection chip for multi-channel rapid detection |
| CN111007121A (en)* | 2019-11-26 | 2020-04-14 | 广州万孚生物技术股份有限公司 | Electrochemical sensor, conductive layer thereof and preparation method |
| CN111671437A (en)* | 2020-07-21 | 2020-09-18 | 香港纺织及成衣研发中心有限公司 | A wearable sweat detection system, method and wearable equipment |
| CN112494037A (en)* | 2020-11-24 | 2021-03-16 | 华南师范大学 | Wearable cloth-based electrochemical sweat sensing device and method |
| CN113466172A (en)* | 2021-05-06 | 2021-10-01 | 江苏大学 | Plant organ fully-integrated chip system based on resonance waveguide and detection method |
| Title |
|---|
| 徐远清等编著: "《微流控芯片技术与建模分析》", 31 March 2021, 北京理工大学出版社, pages: 78* |
| 李建国主编: "《高等仪器分析》", 30 June 2020, 苏州大学出版社, pages: 154 - 155* |
| Publication | Publication Date | Title |
|---|---|---|
| US11883165B2 (en) | Microfluidic systems for epidermal sampling and sensing | |
| CN105925480B (en) | Micro-fluidic chip and preparation method for blood-brain barrier drug permeability high flux screening | |
| US8003062B2 (en) | Microchannel for separating blood plasma | |
| CN107118938B (en) | Fluid enhances the unicellular arrangement of dielectrophoresis and control chip and preparation method thereof | |
| CN107643411B (en) | Microfluidic chip, manufacturing method and using method thereof | |
| CN209644909U (en) | Tissue fluid extraction element | |
| CN100570353C (en) | Two-channel self calibrating multiple parameters rapid whole blood biochemistry analyzing sensor | |
| WO2004074846A1 (en) | Blood analysis device and blood analysis method | |
| CN113680403B (en) | A microfluidic chip with continuous sweat sampling and constant velocity splitting and its working method | |
| CN113907753B (en) | Noninvasive blood glucose detection electrode patch and anti-iontophoresis in-vitro experimental device | |
| JP4660662B2 (en) | cartridge | |
| CN113447548A (en) | Construction method of biological sensing system for detecting physiological and pathological parameters of organ chip | |
| JP2007003414A (en) | Cartridge for analyzer | |
| CN115078487A (en) | In-vitro myocardial flexible microelectrode array based on liquid metal and preparation method thereof | |
| CN115791935A (en) | Microfluidic chip for multi-parameter parallel detection of sweat | |
| CN209644910U (en) | Blood-glucose detector | |
| CN118146927B (en) | Microphysiological system sensor chip for real-time dynamic multi-parameter monitoring and its assembly method | |
| CN111879922A (en) | Integrated paper-based chip structure suitable for synchronous detection of nucleic acid and immunity and manufacturing method thereof | |
| CN101666776A (en) | Multi-channel chip electrophoresis integrated nanometer micro-strip electrode array and production method and application thereof | |
| CN113520381A (en) | A Microfluidic Channel for Differential Admittance Measurement of Sweat Rate | |
| Cho et al. | Soft, wearable, microfluidic system for fluorometric analysis of loss of amino acids through eccrine sweat | |
| CN113092384B (en) | Preparation and detection method of micro-fluidic paper chip for rapidly detecting potassium in blood | |
| CN203320000U (en) | Cell chemotaxis analysis chip and device | |
| CN114469188A (en) | A flexible body surface sweat collection device | |
| TW201623955A (en) | A biosensor with structure of micro chamber |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |