





技术领域technical field
本发明属于压缩空气储能技术领域,特别涉及一种风力发电深海储能装置及动态调控方法。The invention belongs to the technical field of compressed air energy storage, and in particular relates to a deep-sea energy storage device for wind power generation and a dynamic control method.
背景技术Background technique
可再生能源具有的随机性、间歇性和波动性,严重影响其回收和利用以及电力大规模并网。储能技术应用于可再生能源发电系统可确保可再生能源电力与电网的电压、频率和相位相互匹配,降低可再生能源电力波动对电网的损害,提高并网安全。The randomness, intermittency and volatility of renewable energy seriously affect its recovery and utilization and large-scale grid integration of electricity. The application of energy storage technology to the renewable energy power generation system can ensure that the voltage, frequency and phase of the renewable energy power and the grid match each other, reduce the damage to the grid caused by the fluctuation of the renewable energy power, and improve the safety of grid connection.
其中,压缩空气储能技术以其清洁无污染、成本低廉和生命周期长等优点,被认为是最具有发展前景的大规模储能技术之一。然而,压缩空气储能技术仍存在限制:Among them, compressed air energy storage technology is considered to be one of the most promising large-scale energy storage technologies due to its clean and pollution-free, low cost and long life cycle. However, compressed air energy storage technology still has limitations:
1. 自然界难以营造出适宜的高压环境存储高压空气;现有的大型压缩空气储能系统通常以地下洞穴、空旷山谷或废弃矿洞作为天然压缩空气储能箱,易受地理条件限制;1. It is difficult to create a suitable high-pressure environment in nature to store high-pressure air; existing large-scale compressed air energy storage systems usually use underground caves, empty valleys or abandoned mines as natural compressed air energy storage boxes, which are easily restricted by geographical conditions;
2. 常规压缩空气储能技术中机械能与电能之间频繁相互转换,能量损失加剧;常规压缩空气储能系统的空气输送管道由压缩空气设备延伸到地下洞穴、山谷或矿洞的底部,其输送距离长,空气阻力大,运输能量消耗严重;2. In the conventional compressed air energy storage technology, the frequent mutual conversion between mechanical energy and electric energy increases the energy loss; the air transmission pipeline of the conventional compressed air energy storage The distance is long, the air resistance is large, and the transportation energy consumption is serious;
3. 常规压缩空气储能的压缩过程和膨胀过程相互独立且要求两套独立设备,显著增加系统规模和投资成本;空气压力的动态变化对压缩机和膨胀机的运行产生不利影响;空气压缩过程释放的热量未有效利用,造成严重的能量损失。3. The compression process and expansion process of conventional compressed air energy storage are independent of each other and require two sets of independent equipment, which significantly increases the system scale and investment cost; the dynamic change of air pressure has an adverse effect on the operation of the compressor and expander; the air compression process The released heat is not effectively utilized, causing serious energy loss.
发明内容Contents of the invention
本发明解决的技术问题:本发明的目的是针对上述背景技术中的问题,提出一种风力发电深海储能装置及动态调控方法,有效解决可再生能源发电系统大规模并网,实现电力负荷削峰填谷。The technical problem solved by the present invention: the purpose of the present invention is to solve the problems in the above-mentioned background technology, and propose a deep-sea energy storage device for wind power generation and a dynamic control method, which can effectively solve the problem of large-scale grid connection of renewable energy power generation systems and realize power load reduction. Peaks fill valleys.
本发明的技术方案:本发明公开了一种风力发电深海储能装置,包括风力发电系统、压缩-膨胀联级装置和变容积耐压储能箱;The technical solution of the present invention: the present invention discloses a deep-sea energy storage device for wind power generation, including a wind power generation system, a compression-expansion cascade device and a variable-volume pressure-resistant energy storage box;
所述风力发电系统包括叶片和发电机,所述叶片通过发电机传动轴向所述发电机输出扭矩;The wind power generation system includes a blade and a generator, and the blade outputs torque to the generator through a generator drive shaft;
所述风力发电系统内发电机传动轴可通过齿轮传动转换箱向所述压缩-膨胀联级装置输出扭矩;The generator transmission shaft in the wind power generation system can output torque to the compression-expansion cascade device through a gear transmission conversion box;
所述压缩-膨胀联级装置将空气压缩为高压空气,存储于所述变容积耐压储能箱中;The compression-expansion cascade device compresses air into high-pressure air, which is stored in the variable-volume pressure-resistant energy storage tank;
所述变容积耐压储能箱为高压空气提供存储空间、为所述压缩-膨胀联级装置维持定压工作条件;The variable-volume pressure-resistant energy storage tank provides storage space for high-pressure air and maintains constant-pressure working conditions for the compression-expansion cascade device;
所述变容积耐压储能箱通过释放高压空气,逆向驱动所述压缩-膨胀联级装置,将静压能转化为机械能,通过所述齿轮传动转换箱输送到所述发电机传动轴向所述发电机输出扭矩。The variable-volume pressure-resistant energy storage tank reversely drives the compression-expansion cascade device by releasing high-pressure air, converts static pressure energy into mechanical energy, and transmits it to the drive shaft of the generator through the gear transmission conversion box. The generator output torque.
进一步的,所述齿轮传动转换箱由传动齿轮、滑动齿轮和固定装置组成;Further, the gear transmission conversion box is composed of a transmission gear, a sliding gear and a fixing device;
所述传动齿轮包括连接所述发电机传动轴中发电机传动齿轮的第一传动齿轮、连接所述压缩-膨胀联级装置中压缩膨胀机传动齿轮的第二传动齿轮以及第三传动齿轮;The transmission gear includes a first transmission gear connected to the generator transmission gear in the generator transmission shaft, a second transmission gear connected to the compression-expander transmission gear in the compression-expansion cascade device, and a third transmission gear;
所述第三传动齿轮与所述第二传动齿轮啮合;The third transmission gear meshes with the second transmission gear;
所述滑动齿轮所处位置包括不接触所述传动齿轮的空档位a、啮合所述第一传动齿轮和第二传动齿轮的工作档位b以及啮合所述第一传动齿轮与第三传动齿轮的逆工作档位c。The position of the sliding gear includes a neutral position a that does not contact the transmission gear, a working position b that engages the first transmission gear and the second transmission gear, and engages the first transmission gear and the third transmission gear The inverse working position c.
进一步的,所述第一传动齿轮通过第一齿条连接所述风力发电系统连接;所述第一齿条与所述发电机传动轴上的发电机传动齿轮啮合;Further, the first transmission gear is connected to the wind power generation system through a first rack; the first rack meshes with the generator transmission gear on the generator transmission shaft;
所述第二传动齿轮通过第二齿条连接所述压缩-膨胀联级装置;所述第二齿条与所述压缩膨胀机传动轴上的压缩膨胀机传动齿轮啮合。The second transmission gear is connected to the compression-expansion cascade device through a second rack; the second rack meshes with the compression-expander transmission gear on the transmission shaft of the compression-expander.
进一步的,所述压缩-膨胀联级装置包括若干组压缩膨胀机,两相邻所述压缩膨胀机间通过回热器连通;设置在所述若干组压缩膨胀机末端的回热器出气端连通所述变容积耐压储能箱;Further, the compression-expansion cascade device includes several groups of compression-expanders, and two adjacent compression-expanders are communicated through regenerators; The variable-volume pressure-resistant energy storage tank;
若干所述回热器的一侧均设有水循环管道,若干所述回热器内的热能通过所述水循环管道的热交换传送至储热箱。One side of each of the regenerators is provided with water circulation pipes, and the heat energy in the regenerators is transferred to the heat storage tank through the heat exchange of the water circulation pipes.
进一步的,所述缩-膨胀联级装置包括第一级压缩膨胀机、第二级压缩膨胀机和第三级压缩膨胀机;Further, the compression-expansion cascade device includes a first-stage compression-expander, a second-stage compression-expander, and a third-stage compression-expander;
所述回热系统包括第一级回热器、第二级回热器和第三级回热器;The heat recovery system includes a first-stage regenerator, a second-stage regenerator and a third-stage regenerator;
所述第一级压缩膨胀机与第二级压缩膨胀机间连通有第一级回热器;A first-stage regenerator is communicated between the first-stage compression-expander and the second-stage compression-expander;
所述第二级压缩膨胀机与第三级压缩膨胀机间连通有第二级回热器;A second-stage regenerator is communicated between the second-stage compression-expander and the third-stage compression-expander;
所述第三级压缩膨胀机与变容积耐压储能箱间连通有第三级回热器;A third-stage regenerator is connected between the third-stage compander-expander and the variable-volume pressure-resistant energy storage tank;
所述水循环管道分别与第一级回热器、第二级回热器和第三级回热器构成独立循环。The water circulation pipeline respectively constitutes an independent circulation with the first-stage regenerator, the second-stage regenerator and the third-stage regenerator.
进一步的,还包括支撑所述风力发电系统的内部中空塔架和设置在所述塔架底部的地基;Further, it also includes an internal hollow tower supporting the wind power generation system and a foundation provided at the bottom of the tower;
所述压缩-膨胀联级装置及回热系统均设置在所述地基内;Both the compression-expansion cascade device and the heat recovery system are arranged in the foundation;
所述变容积耐压储能箱设置在邻近所述地基外侧;The variable volume pressure-resistant energy storage tank is arranged adjacent to the outside of the foundation;
所述塔架侧面具有空气流通的开口,所述塔架开口的上端安装挡雨板;There is an opening for air circulation on the side of the tower, and a rain shield is installed on the upper end of the opening of the tower;
所述地基设置在深海,通过海面以上的塔架连通外界,保持所述塔架和地基内部处于常温常压状态。The foundation is set in the deep sea, connected to the outside world through the tower above the sea surface, and the inside of the tower and the foundation are kept in a state of normal temperature and pressure.
进一步的,所述塔架侧面具有空气流通的开口;所述塔架开口的上端安装挡雨板;所述塔架内部放置所述齿轮传动转换箱。Further, the side of the tower has an opening for air circulation; the upper end of the opening of the tower is equipped with a rain shield; the gear transmission conversion box is placed inside the tower.
进一步的,所述变容积耐压储能箱包括两平行式设置的耐压钢板和环绕两所述耐压钢板的耐压柔性橡胶;所述耐压钢板和耐压柔性橡胶形成柔性变容积腔体,用于存储高压空气;Further, the variable-volume pressure-resistant energy storage tank includes two parallel pressure-resistant steel plates and pressure-resistant flexible rubber surrounding the two pressure-resistant steel plates; the pressure-resistant steel plates and pressure-resistant flexible rubber form a flexible variable volume chamber Body, used to store high-pressure air;
所述高压空气沿着空气流通管道从压缩-膨胀联级装置注入所述变容积耐压储能箱;The high-pressure air is injected into the variable-volume pressure-resistant energy storage tank from the compression-expansion cascade device along the air circulation pipeline;
所述空气流通管道为耐高压软管,可基于所述变容积耐压储能箱自由折叠和弯曲。The air circulation pipeline is a high-pressure hose, which can be freely folded and bent based on the variable-volume pressure-resistant energy storage tank.
本发明还公开了一种风力发电深海储能装置的动态调控方法,包括基于上述的风力发电深海储能装置及如下方法,The present invention also discloses a dynamic control method of a wind power generation deep sea energy storage device, including the above wind power generation deep sea energy storage device and the following method,
电网供电低谷时期,风力发电系统将多余机械能通过压缩-膨胀联级装置转化为静压能,以高压空气的形式储存于变容积耐压储能箱内;During the low period of grid power supply, the wind power generation system converts the excess mechanical energy into static pressure energy through the compression-expansion cascade device, and stores it in the variable-volume pressure-resistant energy storage box in the form of high-pressure air;
电网供电高峰时期,变容积耐压储能箱将其储存的高压空气静压能通过压缩-膨胀联级装置转化为额外的机械能,驱动风力发电系统工作;During the peak period of grid power supply, the variable-volume pressure-resistant energy storage box converts the stored high-pressure air static pressure energy into additional mechanical energy through the compression-expansion cascade device to drive the wind power generation system to work;
电网供电需求平衡时期,切断风力发电系统与压缩-膨胀联级装置和变容积耐压储能箱的连接,停止压缩空气储能和膨胀空气释能。During the balance period of grid power supply demand, cut off the connection between the wind power generation system and the compression-expansion cascade device and the variable volume pressure-resistant energy storage box, and stop the compressed air energy storage and expansion air energy release.
进一步的,还包括数据采集控制器;Further, it also includes a data acquisition controller;
电网供电低谷时期,数据采集控制器控制滑动齿轮移动到滑槽的工作档位b,连接第一传动齿轮与第二传动齿轮,包括如下步骤:During the low power supply period of the power grid, the data acquisition controller controls the sliding gear to move to the working position b of the chute, and connects the first transmission gear and the second transmission gear, including the following steps:
S11. 风力发电系统的叶片和轮毂回收风能并转化为机械能,带动发电机传动轴正向旋转,一部分机械能驱动发电机执行发电任务;S11. The blades and hubs of the wind power generation system recycle wind energy and convert it into mechanical energy, which drives the generator drive shaft to rotate forward, and part of the mechanical energy drives the generator to perform power generation tasks;
S12. 发电机传动轴(104)正向旋转,驱动发电机(106)执行发电任务;同时所述发电机传动轴(104)正向旋转产生的机械能通过发电机传动齿轮、第一齿条、齿轮传动转换箱和第二齿条传递到压缩膨胀机传动齿轮,为压缩膨胀机传动轴提供正向旋转的动力;S12. The generator drive shaft (104) rotates forward to drive the generator (106) to perform power generation tasks; at the same time, the mechanical energy generated by the generator drive shaft (104) rotates forward through the generator drive gear, the first rack, The gear transmission conversion box and the second rack are transmitted to the drive gear of the compressor-expander to provide positive rotation power for the drive shaft of the compressor-expander;
S13. 压缩膨胀机传动轴正向旋转驱动压缩-膨胀联级装置工作,执行压缩空气储能的任务,并将产生的高压空气输送至变容积耐压储能箱;S13. The transmission shaft of the compressor expander rotates forward to drive the compression-expansion cascade device to work, perform the task of compressing air energy storage, and deliver the generated high-pressure air to the variable-volume pressure-resistant energy storage tank;
电网供电高峰时期,数据采集控制器控制滑动齿轮移动到滑槽的逆工作档位c,连接第一传动齿轮与第三传动齿轮,包括如下步骤:During the peak power supply period of the power grid, the data acquisition controller controls the sliding gear to move to the reverse working position c of the chute, and connects the first transmission gear and the third transmission gear, including the following steps:
S21. 高压空气从变容积耐压储能箱流入压缩-膨胀联级装置,驱动压缩-膨胀联级装置执行膨胀空气释能的任务,同时带动压缩膨胀机传动轴逆向旋转;S21. High-pressure air flows into the compression-expansion cascade device from the variable-volume pressure-resistant energy storage tank, drives the compression-expansion cascade device to perform the task of releasing the energy of the expanding air, and drives the drive shaft of the compressor-expander to rotate in reverse;
S22. 压缩膨胀机传动轴逆向旋转的动力沿着压缩膨胀机传动齿轮、第二齿条、齿轮传动转换箱和第一齿条传递到发电机传动齿轮,为发电机传动轴提供一个额外的动力促进发电机传动轴加速旋转;S22. The power of the reverse rotation of the drive shaft of the compressor-expander is transmitted to the drive gear of the generator along the drive gear of the compressor-expander, the second rack, the gear transmission conversion box and the first rack, providing an additional power for the drive shaft of the generator Accelerate the rotation of the drive shaft of the generator;
S23. 发电机传动轴同时获得由风能和压缩空气静压能转化成的机械能,驱动发电机执行发电任务;S23. The drive shaft of the generator obtains mechanical energy converted from wind energy and static pressure energy of compressed air at the same time, and drives the generator to perform power generation tasks;
电网供电需求平衡时期,数据采集控制器控制滑动齿轮移动到滑槽的空档位a,切断第一传动齿轮与第二传动齿轮和第三传动齿轮的机械传动,停止压缩-膨胀联级装置及变容积耐压储能箱工作。During the balance period of grid power supply demand, the data acquisition controller controls the sliding gear to move to the neutral position a of the chute, cuts off the mechanical transmission of the first transmission gear, the second transmission gear and the third transmission gear, stops the compression-expansion cascade device and The variable volume pressure-resistant energy storage tank works.
有益效果Beneficial effect
1. 本发明公开一种风力发电深海储能装置,包括风力发电系统、齿轮传动转换箱、压缩-膨胀联级装置、回热系统和变容积耐压储能箱。风力发电系统为压缩-膨胀联级装置提供机械能,用于压缩空气并存储于变容积耐压储能箱,确保可再生能源电力与电网的电压、频率和相位相互匹配,降低可再生能源电力波动对电网的损害,提高并网安全。1. The present invention discloses a deep-sea energy storage device for wind power generation, including a wind power generation system, a gear transmission conversion box, a compression-expansion cascade device, a heat recovery system, and a variable-volume pressure-resistant energy storage box. The wind power generation system provides mechanical energy for the compression-expansion cascade device, which is used to compress the air and store it in the variable volume pressure-resistant energy storage box, so as to ensure that the voltage, frequency and phase of the renewable energy power and the grid match each other, and reduce the fluctuation of renewable energy power damage to the grid and improve grid-connected security.
2. 本发明通过调控风力发电系统、压缩-膨胀联级装置和变容积耐压储能箱,在压缩空气储能和膨胀空气释能过程始终将能量传递和转换的形式维持为机械能,从而有效降低因可再生能源间歇性而频繁发生机械能与电能之间相互转换所损失的能量,减小能量转换所需的响应时间,保持空气压缩储能装置的运行特性始终处于最佳范围内。2. The present invention maintains the form of energy transfer and conversion as mechanical energy throughout the process of compressed air energy storage and expansion air energy release by regulating the wind power generation system, compression-expansion cascade device and variable volume pressure-resistant energy storage box, thereby effectively Reduce the energy lost due to the frequent conversion between mechanical energy and electrical energy due to the intermittent nature of renewable energy, reduce the response time required for energy conversion, and keep the operating characteristics of the air compression energy storage device within the optimal range.
3. 本发明公开了风力发电深海储能装置的控制方法。通过数据采集控制器控制齿轮传动转换箱中滑动齿轮在滑槽的位置,控制压缩-膨胀联级装置执行压缩空气储能和膨胀空气释能的任务,动态切换机械能与静压能之间的转换和传递方向,从而削弱电力负荷高峰以及填补电力负荷低谷,减小电网负荷峰谷差,实现发电和用电平衡。3. The present invention discloses a control method for a wind power generation deep sea energy storage device. Control the position of the sliding gear in the chute in the gear transmission conversion box through the data acquisition controller, control the compression-expansion cascade device to perform the task of compressing air energy storage and expanding air energy release, and dynamically switch the conversion between mechanical energy and static pressure energy and transmission direction, so as to weaken the peak power load and fill the valley of power load, reduce the peak-valley load difference of the power grid, and realize the balance of power generation and power consumption.
4. 由于抽水蓄能电站中容积式涡轮机在高压工作条件下可同时发挥水轮机和水泵的作用,为此,本发明考虑采用一套容积式压缩-膨胀联级装置,在高压工作条件下同时用于空气压缩储能和空气膨胀释能,极大简化系统流程,降低系统规模,提高经济效益。4. Since the volumetric turbine in the pumped storage power station can simultaneously play the role of the water turbine and the water pump under high-pressure working conditions, the present invention considers the use of a set of volumetric compression-expansion cascaded devices, which can be used simultaneously under high-pressure working conditions. Based on air compression energy storage and air expansion energy release, the system process is greatly simplified, the system scale is reduced, and economic benefits are improved.
5. 本发明的回热系统与压缩-膨胀联级装置连接,有效回收压缩空气储能过程释放的热量,并用于膨胀空气释能过程预热,显著降低循环能量损失。其中,回热系统采用逐级并联交替换热的方式,让容积式压缩-膨胀两用机分别在压缩空气储能和膨胀空气释能过程的入口空气温度尽可能冷却到最低和预热到最高,从而显著增强压缩-膨胀联级装置工作效率,提高机械能与静压能的转换能力,进一步降低压缩空气储能和膨胀空气释能过程损失的能量。5. The heat recovery system of the present invention is connected with the compression-expansion cascade device to effectively recover the heat released during the energy storage process of the compressed air and use it for preheating during the energy release process of the expanded air, thereby significantly reducing the cycle energy loss. Among them, the heat recovery system adopts the method of step-by-step parallel connection and alternating heat, so that the volumetric compression-expansion dual-purpose machine can cool the inlet air temperature to the lowest and preheat to the highest during the compressed air energy storage and expansion air energy release process respectively. , thereby significantly enhancing the working efficiency of the compression-expansion cascade device, improving the conversion capability of mechanical energy and static pressure energy, and further reducing the energy lost in the process of compressed air energy storage and expansion air energy release.
6. 本发明的塔架和地基内部充满常温常压空气,压缩-膨胀联级装置在数百米深海下可与常温常压空气直接接触,从而忽略空气从陆地输送到数百米深海下的输送能耗,解决现有技术中空气输送管道长,空气阻力大的问题。同时,变容积耐压储能箱放置在压缩-膨胀联级装置一侧,显著降低数百米深海下高压环境中压缩空气输送的流动阻力,提高深海压缩储能系统的安全性和生命周期。6. The tower and the foundation of the present invention are filled with air at normal temperature and pressure, and the compression-expansion cascade device can directly contact the air at normal temperature and pressure at a depth of hundreds of meters, thereby ignoring the air transport from the land to the depth of hundreds of meters. Conveying energy consumption, solving the problems of long air conveying pipes and large air resistance in the prior art. At the same time, the variable-volume pressure-resistant energy storage tank is placed on the side of the compression-expansion cascade device, which significantly reduces the flow resistance of compressed air delivery in a high-pressure environment hundreds of meters deep, and improves the safety and life cycle of the deep-sea compression energy storage system.
7. 本发明的变容积耐压储能箱,以深海作为天然高压环境,显著降低营造高压环境以及维护储能箱所耗费的投资成本。通过调节变容积耐压储能箱在深海中的深度,可调节变容积耐压储能箱自身储存压缩空气的能力。变容积耐压储能箱根据注入的空气数量,柔性调节储能箱容积,使得变容积耐压储能箱和第三级压缩膨胀机之间的空气流通管道压力保持恒定,从而保持压缩-膨胀联级装置入口和出口的空气压力恒定。随后,各级压缩膨胀机的最佳压缩比和膨胀比对应固定的入口和出口压力,继而保持各级压缩膨胀机入口和出口的空气压力恒定,从而让压缩-膨胀联级装置始终处于最佳运行工况,有效解决现有技术中空气压力的动态变化对压缩-膨胀联级装置在压缩空气储能和膨胀空气释能过程产生消极影响,显著提升压缩-膨胀联级装置整体工作效率。7. The variable-volume pressure-resistant energy storage box of the present invention uses the deep sea as a natural high-pressure environment, which significantly reduces the investment cost for building a high-pressure environment and maintaining the energy storage box. By adjusting the depth of the variable-volume pressure-resistant energy storage tank in the deep sea, the capacity of the variable-volume pressure-resistant energy storage tank itself to store compressed air can be adjusted. The variable-volume pressure-resistant energy storage tank flexibly adjusts the volume of the energy storage tank according to the amount of air injected, so that the pressure of the air circulation pipeline between the variable-volume pressure-resistant energy storage tank and the third-stage compression-expander remains constant, thereby maintaining compression-expansion The air pressure at the inlet and outlet of the cascade is constant. Then, the optimal compression ratio and expansion ratio of each stage of compressor-expander correspond to fixed inlet and outlet pressures, and then keep the air pressure at the inlet and outlet of each stage of compressor-expander constant, so that the compression-expansion cascade device is always at its optimum Operating conditions, effectively solve the negative impact of dynamic changes in air pressure on the compression-expansion cascade device in the process of compressed air energy storage and expansion air energy release in the prior art, and significantly improve the overall working efficiency of the compression-expansion cascade device.
附图说明Description of drawings
图1为本发明中风力发电深海储能装置的原理图;Fig. 1 is the principle diagram of wind power generation deep sea energy storage device among the present invention;
图2为本发明中风力发电系统的结构示意图;Fig. 2 is the structural representation of wind power generation system among the present invention;
图3为本发明中齿轮传动转换箱的结构示意图;Fig. 3 is the structural representation of gear transmission conversion box among the present invention;
图4为本发明中压缩空气储能的工作过程示意图;Fig. 4 is a schematic diagram of the working process of compressed air energy storage in the present invention;
图5为本发明中膨胀空气释能的工作过程示意图;Fig. 5 is a schematic diagram of the working process of expanding air energy release in the present invention;
图6为本发明中变容积耐压储能箱的结构示意图。Fig. 6 is a structural schematic diagram of a variable volume pressure-resistant energy storage tank according to the present invention.
其中:1-风力发电系统,2-第一齿条,3-第二齿条,4-齿轮传动转换箱,5-空气过滤器,6-压缩-膨胀联级装置,7-回热系统,8-变容积耐压储能箱,9-数据采集控制器,10-塔架,11-地基,12-挡雨板,13-升梯,14-海平面,101-叶片,102-轮毂,103-发电机齿轮箱,104-发电机传动轴,105-发电机传动齿轮,106-发电机,401-第一传动齿轮,402-第二传动齿轮,403-第三传动齿轮,404-滑动齿轮,405-固定块,406-滑块,407-固定片,408-滑槽,601-压缩膨胀机传动齿轮,602-压缩膨胀机传动轴,603-空气流通管道,604-第一级压缩膨胀机,605-第二级压缩膨胀机,606-第三级压缩膨胀机,607-单向阀,701-第一级回热器,702-第二级回热器,703-第三级回热器,704-水循环管道,705-三通阀,706-水泵,707-储热箱,801-耐压钢板,802-耐压柔性橡胶,803-高压空气,804-固定支架。Among them: 1-wind power generation system, 2-first rack, 3-second rack, 4-gear transmission conversion box, 5-air filter, 6-compression-expansion cascade device, 7-regeneration system, 8-variable volume pressure-resistant energy storage box, 9-data acquisition controller, 10-tower, 11-foundation, 12-rainshield, 13-elevator, 14-sea level, 101-blade, 102-hub, 103-generator gearbox, 104-generator transmission shaft, 105-generator transmission gear, 106-generator, 401-first transmission gear, 402-second transmission gear, 403-third transmission gear, 404-sliding Gear, 405-fixed block, 406-slider, 407-fixed plate, 408-chute, 601-compressor-expander drive gear, 602-compressor-expander drive shaft, 603-air circulation pipe, 604-first stage compression Expander, 605-second-stage compression-expander, 606-third-stage compression-expander, 607-check valve, 701-first-stage regenerator, 702-second-stage regenerator, 703-third-stage Regenerator, 704-water circulation pipeline, 705-three-way valve, 706-water pump, 707-heat storage tank, 801-pressure-resistant steel plate, 802-pressure-resistant flexible rubber, 803-high-pressure air, 804-fixed bracket.
具体实施方式Detailed ways
如图1所示,一种风力发电深海储能装置,主要包括风力发电系统1、第一齿条2、第二齿条3、齿轮传动转换箱4、空气过滤器5、压缩-膨胀联级装置6、回热系统7、变容积耐压储能箱8、数据采集控制器9、塔架10、地基11、挡雨板12、升梯13以及若干传动齿轮、传动轴、回热器、管路、弯头、阀门和泵。As shown in Figure 1, a deep-sea energy storage device for wind power generation mainly includes a wind power generation system 1, a
其中,风力发电系统1为压缩-膨胀联级装置6提供机械能,用于压缩空气并存储于变容积耐压储能箱8;Among them, the wind power generation system 1 provides mechanical energy for the compression-
齿轮传动转换箱4、第一齿条2和第二齿条3用于风力发电系统1和压缩-膨胀联级装置6之间相互传递机械能。The gear transmission conversion box 4 , the
风力发电系统1产生的电能在并网前流入并网逆变器,确保产生的电力与电网的电压、频率和相位相互匹配,提高可再生能源的利用效率与发电系统的安全并网,降低可再生能源电力波动对电网的损害。The electric energy generated by the wind power generation system 1 flows into the grid-connected inverter before being connected to the grid, so as to ensure that the generated power matches the voltage, frequency and phase of the grid, so as to improve the utilization efficiency of renewable energy and secure grid-connection of the power generation system, and reduce possible Damage to the grid from renewable energy power fluctuations.
风力发电系统1依靠海平面14以上的塔架10和海平面14以下的地基11支撑,稳定伫立在海上。The wind power generation system 1 is supported by a
塔架10在风力发电系统1下端;塔架10内部中空,放置第一齿条2、第二齿条3和齿轮传动转换箱4;侧面具有空气流通的开口;侧面开口上端安装挡雨板12。The
地基11在塔架10下端,内部中空,放置第二齿条3、空气过滤器5、压缩-膨胀联级装置6和回热系统7;左侧贯穿空气流通管道603和镶嵌变容积耐压储能箱8的固定支架804。The
如图2所示,风力发电系统1包括叶片101、轮毂102、发电机齿轮箱103、发电机传动轴104、发电机传动齿轮105和发电机106。As shown in FIG. 2 , the wind power generation system 1 includes a
叶片101和轮毂102构成风能回收装置,安装在风力发电系统1外部;发电机齿轮箱103、发电机传动轴104和发电机传动齿轮105组成机械能传动装置,安装在风力发电系统1内部;发电机106与发电机传动轴104连接,充当机械能与电能的转换装置。The
如图3所示,齿轮传动转换箱4由传动齿轮、滑动齿轮和固定装置组成。As shown in Figure 3, the gear transmission conversion box 4 is made up of a transmission gear, a sliding gear and a fixing device.
第一齿条2分别与风力发电系统1的发电机传动齿轮105和齿轮传动转换箱4的第一传动齿轮401啮合、第二齿条3分别与压缩膨胀机传动齿轮6的压缩膨胀机传动齿轮601和齿轮传动转换箱4的第二传动齿轮402啮合。The
第一传动齿轮401、第二传动齿轮402和第三传动齿轮403为传动构件,通过固定块405固定在齿轮传动转换箱4内部;滑动齿轮404为旋转切换构件,通过滑块406固定在齿轮传动转换箱4内部;滑槽408通过固定片407固定在齿轮传动转换箱4内部。The
滑动齿轮404所处位置包括不接触传动齿轮的空档位a和空档位d、啮合第一传动齿轮401和第二传动齿轮402的工作档位b以及啮合第一传动齿轮401与第三传动齿轮403的逆工作档位c。The position of the sliding
滑动齿轮404安装在滑槽408上,可任意从a位置移动到d位置。Sliding
如图4和5所示,压缩-膨胀联级装置6主要包括压缩膨胀机传动齿轮601、压缩膨胀机传动轴602和多级压缩膨胀机组成;回热系统7主要由多级回热器、水循环管道704、水泵706和储热箱707组成。As shown in Figures 4 and 5, the compression-expansion cascaded
第二齿条3与压缩膨胀机传动齿轮601啮合;压缩膨胀机传动齿轮601安装在压缩膨胀机传动轴602上;压缩膨胀机传动轴602依次与第一级压缩膨胀机604、第二级压缩膨胀机605和第三级压缩膨胀机606连接。The
空气流通管道603在压缩-膨胀联级装置6的入口安装空气过滤器5,在压缩-膨胀联级装置6的出口处安装单向阀607;空气流通管道603依次注入空气到第一级压缩膨胀机604、第二级压缩膨胀机605和第三级压缩膨胀机606内部;空气流通管道603在地基11的贯穿处焊接。The
水循环管道704上安装三通阀705、水泵706和储热箱707;第一级回热器701、第二级回热器702和第三级回热器703两侧分别连接空气流通管道603和水循环管道704。A three-
如图6所示,变容积耐压储能箱8由耐压钢板801、耐压柔性橡胶802和固定支架804组成。As shown in FIG. 6 , the variable volume pressure-resistant energy storage box 8 is composed of a pressure-
变容积耐压储能箱8的上下两侧为耐压钢板801;变容积耐压储能箱8的周围覆盖耐压柔性橡胶802;变容积耐压储能箱8通过固定支架804与地基11固定;空气流通管道603在变容积耐压储能箱8的贯穿处焊接。The upper and lower sides of the variable-volume pressure-resistant energy storage box 8 are pressure-
耐压钢板801被耐压柔性橡胶802紧密包裹,形成柔性变容积的腔体;柔性变容积的腔体用于存放高压空气803。The pressure-
本发明的一种风力发电深海储能装置在三种状态(电网供电低谷时期、电网供电高峰时期和电网供电需求平衡时期)的工作过程如下。The working process of a deep-sea energy storage device for wind power generation of the present invention in three states (low period of grid power supply, peak period of grid power supply and balance period of grid power supply demand) is as follows.
电网供电低谷时期,多出现在电力廉价的夜间,如图4所示。首先叶片101和轮毂102收集外界风能并转换为机械能。一部分机械能驱动发电机106正向旋转,将机械能转变成电能输送到外界高压电线;另一部分机械能通过发电机传动轴104上的发电机传动齿轮105以及发电机传动齿轮105上的第一齿条2,传递到齿轮传动转换箱4,带动第一传动齿轮401正向旋转。During the low power supply period of the grid, it usually occurs at night when the electricity is cheap, as shown in Figure 4. First, the
此时,齿轮传动转换箱4的滑动齿轮404移动到滑槽408的工作档位b,第一传动齿轮401和第二传动齿轮402连接,将机械能沿着第二齿条3传递到压缩膨胀机传动齿轮601。At this time, the sliding
随后,压缩膨胀机传动齿轮601带动压缩膨胀机传动轴602正向旋转,驱动第一级压缩膨胀机604、第二级压缩膨胀机605和第三级压缩膨胀机606执行压缩空气储能任务:Subsequently, the compressor-
塔架10和地基11内部常温常压空气在压缩-膨胀联级装置6的吸附力下,沿着空气流通管道603先经过空气过滤器5,随后进入压缩-膨胀联级装置6的第一级压缩膨胀机604;执行第一级压缩空气后,低温低压的空气转变成高温高压的空气,继而进入回热系统7的第一级回热器701,被水循环管道704的冷水冷却;Under the adsorption force of the compression-
从第一级回热器701流出的低温高压空气随后依次进入第二级压缩膨胀机605、第二级回热器702、第三级压缩膨胀机606和第三级回热器703,执行空气逐级压缩和冷却任务,实现机械能与静压能之间的能量转换,从而将一部分用于发电的机械能以静压能的形式存储于高压空气803。The low-temperature high-pressure air flowing out from the first-
最后,开启单向阀607,高压空气803沿着空气流通管道603流入并存储于变容积耐压储能箱8,变容积耐压储能箱8的容积增大。Finally, the one-
电网供电高峰时期,多发生在电力昂贵的白天,如图5所示。首先,开启单向阀607,存储于变容积耐压储能箱8的高压空气803沿着空气流通管道603进入回热系统7的第三级回热器703,变容积耐压储能箱8的容积减小。During the peak period of grid power supply, it mostly occurs during the daytime when electricity is expensive, as shown in Figure 5. First, the
随后,高压空气803在第三级回热器703内被空气流通管道603的热水预热,继而流入压缩-膨胀联级装置6的第三级压缩膨胀机606;高压空气803蕴含的静压能推动第三级压缩膨胀机606逆向旋转,实现静压能与机械能之间的能量转换。执行空气膨胀释能任务后,高温高压的空气转变成低温低压的空气,继而依次进入第二级回热器702、第二级压缩膨胀机605、第一级回热器701和第一级压缩膨胀机604,执行空气逐级预热和膨胀任务。最后,低压空气沿着空气流通管道603流入塔架10和地基11。Subsequently, the high-
同时,压缩-膨胀联级装置6带动压缩膨胀机传动轴602逆向旋转,并将机械能通过压缩膨胀机传动齿轮601沿着第二齿条3传递于齿轮传动转换箱4的第二传动齿轮402。At the same time, the compression-
此时,滑动齿轮404移动到滑槽408的工作档位c,第二传动齿轮402逆向旋转带动第三传动齿轮403正向旋转,第三传动齿轮403通过滑动齿轮404带动第一传动齿轮401正向旋转。At this time, the sliding
最后,第一传动齿轮401沿着第一齿条2将机械能传递到发电机传动齿轮105,为发电机传动轴104提供一个额外的推力促进其正向加速旋转,驱动发电机106产生更多电力,从而将一部分存储于高压空气的静压能转化为机械能用于发电。Finally, the
电网供电需求平衡时期,齿轮传动转换箱4内的滑动齿轮404移动到滑槽408的工作档位a或d,切断第一传动齿轮401和第二传动齿轮402之间的传动,阻止发电机传动轴104的机械能传递到压缩膨胀机传动轴602,停止压缩-膨胀联级装置6、回热系统7、和变容积耐压储能箱8的工作。During the balance period of grid power supply demand, the sliding
同时,叶片101收集外界风能并转换为机械能,沿着轮毂102传递到发电机齿轮箱103。低速正向旋转的叶片101在发电机齿轮箱103的变速机构的帮助下,带动发电机传动轴104高速正向旋转,驱动发电机106正向旋转,将全部机械能转变成电能。产生的电力输送到外部高压电线。At the same time, the
以上所示仅为本发明的优选实例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等均应包含在本发明的保护范围之内。What is shown above is only a preferred example of the present invention, and is not intended to limit the present invention. For those skilled in the art, the present invention can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. should be included in the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211179304.XACN115653837B (en) | 2022-09-27 | 2022-09-27 | Wind power generation deep sea energy storage device and dynamic regulation and control method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211179304.XACN115653837B (en) | 2022-09-27 | 2022-09-27 | Wind power generation deep sea energy storage device and dynamic regulation and control method |
| Publication Number | Publication Date |
|---|---|
| CN115653837Atrue CN115653837A (en) | 2023-01-31 |
| CN115653837B CN115653837B (en) | 2025-08-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211179304.XAActiveCN115653837B (en) | 2022-09-27 | 2022-09-27 | Wind power generation deep sea energy storage device and dynamic regulation and control method |
| Country | Link |
|---|---|
| CN (1) | CN115653837B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118336818A (en)* | 2024-06-14 | 2024-07-12 | 东北电力大学 | Energy storage and release device and method for semi-submersible wind turbine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102352777A (en)* | 2011-10-24 | 2012-02-15 | 艾赫威(北京)科技有限公司 | Energy-storage and power-generation system and method of reversible single-screw compression expansion machine |
| CN102661175A (en)* | 2012-05-17 | 2012-09-12 | 西安交通大学 | Compressed air energy storage system |
| CN105043147A (en)* | 2015-06-25 | 2015-11-11 | 中国科学院理化技术研究所 | Liquefied compressed air energy storage system adopting liquid cold accumulation working medium |
| CN107559146A (en)* | 2017-10-12 | 2018-01-09 | 华能国际电力股份有限公司 | Offshore wind power generation system with seabed compressed air energy storage function |
| CN109505666A (en)* | 2018-12-05 | 2019-03-22 | 中国科学院工程热物理研究所 | A kind of jet expansion compound compression air energy storage systems |
| CN209458061U (en)* | 2018-12-28 | 2019-10-01 | 动能(北京)科技发展有限公司 | Compressed air is collected as the electricity generation system of power using wind-force |
| CN112524060A (en)* | 2020-11-05 | 2021-03-19 | 东南大学 | Constant-pressure compressed air energy storage system utilizing underground cave and single-tank energy storage |
| CN212803463U (en)* | 2020-06-11 | 2021-03-26 | 上海发电设备成套设计研究院有限责任公司 | Wind power generation system with compressed air energy storage function |
| CN114562419A (en)* | 2022-03-09 | 2022-05-31 | 武汉新能源研究院有限公司 | An energy storage system for offshore wind farms |
| CN217462275U (en)* | 2022-05-05 | 2022-09-20 | 西安联创分布式可再生能源研究院有限公司 | Constant-pressure energy storage system of energy recovery unit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102352777A (en)* | 2011-10-24 | 2012-02-15 | 艾赫威(北京)科技有限公司 | Energy-storage and power-generation system and method of reversible single-screw compression expansion machine |
| CN102661175A (en)* | 2012-05-17 | 2012-09-12 | 西安交通大学 | Compressed air energy storage system |
| CN105043147A (en)* | 2015-06-25 | 2015-11-11 | 中国科学院理化技术研究所 | Liquefied compressed air energy storage system adopting liquid cold accumulation working medium |
| CN107559146A (en)* | 2017-10-12 | 2018-01-09 | 华能国际电力股份有限公司 | Offshore wind power generation system with seabed compressed air energy storage function |
| CN109505666A (en)* | 2018-12-05 | 2019-03-22 | 中国科学院工程热物理研究所 | A kind of jet expansion compound compression air energy storage systems |
| CN209458061U (en)* | 2018-12-28 | 2019-10-01 | 动能(北京)科技发展有限公司 | Compressed air is collected as the electricity generation system of power using wind-force |
| CN212803463U (en)* | 2020-06-11 | 2021-03-26 | 上海发电设备成套设计研究院有限责任公司 | Wind power generation system with compressed air energy storage function |
| CN112524060A (en)* | 2020-11-05 | 2021-03-19 | 东南大学 | Constant-pressure compressed air energy storage system utilizing underground cave and single-tank energy storage |
| CN114562419A (en)* | 2022-03-09 | 2022-05-31 | 武汉新能源研究院有限公司 | An energy storage system for offshore wind farms |
| CN217462275U (en)* | 2022-05-05 | 2022-09-20 | 西安联创分布式可再生能源研究院有限公司 | Constant-pressure energy storage system of energy recovery unit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118336818A (en)* | 2024-06-14 | 2024-07-12 | 东北电力大学 | Energy storage and release device and method for semi-submersible wind turbine |
| CN118336818B (en)* | 2024-06-14 | 2024-09-03 | 东北电力大学 | Energy storage and release device and method for semi-submersible wind turbine |
| Publication number | Publication date |
|---|---|
| CN115653837B (en) | 2025-08-01 |
| Publication | Publication Date | Title |
|---|---|---|
| US4206608A (en) | Natural energy conversion, storage and electricity generation system | |
| CN103352830B (en) | Compressed air energy storage power generation system adopting unsteady state compression process | |
| CN102797613B (en) | A kind of water pumping compressed air energy-storage | |
| CN107299891B (en) | A non-supplementary combustion compressed air energy storage system | |
| CN201090375Y (en) | Wind energy waterwheel generator | |
| WO2008110018A1 (en) | Wind powered system for the direct mechanical powering of systems and energy storage devices | |
| CN103225598A (en) | Method and system for accumulating energy by compressed air and heat accumulation medium simultaneously | |
| CN216381532U (en) | Compressed air energy storage system | |
| CN111396288A (en) | Power generation system based on constant pressure | |
| CN104265458A (en) | Compressed air energy-storage power generation system and working mode thereof | |
| CN105927455A (en) | Water storage power generation system using seabed pressure energy | |
| CN114033517A (en) | Geothermal power generation and cold and heat supply system based on carbon dioxide compression energy storage and operation method | |
| CN103711535B (en) | Environment thermal energy conversion method and device used for providing power through environment thermal energy | |
| CN112234634A (en) | Hybrid energy storage power generation system and method | |
| CN108757056A (en) | A kind of natural gas pressure difference driving electricity generation system | |
| CN202047927U (en) | Water pumping compressed air energy-storage system | |
| CN115653837A (en) | A deep-sea energy storage device for wind power generation and its dynamic control method | |
| CN102410046A (en) | Compressed air electric energy storage device | |
| CN112901431B (en) | Near-isothermal compressed air energy storage system and operation method thereof | |
| CN115013220A (en) | Compact geothermal energy compressed air energy storage system and method based on middle-deep dry hot rock | |
| CN209838595U (en) | A wind power generation system | |
| CN205805816U (en) | A kind of water storage generating system utilizing subsea pressure energy | |
| CN201991715U (en) | Low-temperature solar thermal power generation device | |
| CN116576094A (en) | A system and method based on compressed air energy storage-hydrodynamic combined heat and power generation | |
| CN111535886A (en) | Multi-energy combined constant-pressure power generation system |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |