Movatterモバイル変換


[0]ホーム

URL:


CN115276937B - Method, device, terminal and storage medium for sending sounding reference signal - Google Patents

Method, device, terminal and storage medium for sending sounding reference signal
Download PDF

Info

Publication number
CN115276937B
CN115276937BCN202210844002.3ACN202210844002ACN115276937BCN 115276937 BCN115276937 BCN 115276937BCN 202210844002 ACN202210844002 ACN 202210844002ACN 115276937 BCN115276937 BCN 115276937B
Authority
CN
China
Prior art keywords
operator
bandwidth
frequency domain
index
iteration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210844002.3A
Other languages
Chinese (zh)
Other versions
CN115276937A (en
Inventor
邓周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weiguang Co ltd
Original Assignee
Zeku Technology Beijing Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeku Technology Beijing Corp LtdfiledCriticalZeku Technology Beijing Corp Ltd
Priority to CN202210844002.3ApriorityCriticalpatent/CN115276937B/en
Publication of CN115276937ApublicationCriticalpatent/CN115276937A/en
Application grantedgrantedCritical
Publication of CN115276937BpublicationCriticalpatent/CN115276937B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The embodiment of the application discloses a method, a device, a terminal and a storage medium for sending a sounding reference signal, and belongs to the technical field of baseband chips. The method comprises the following steps: determining a target conversion parameter based on a first bandwidth configuration parameter issued by a base station; determining a frequency domain position offset value based on the target conversion parameter and a second bandwidth configuration parameter issued by the base station; determining a frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value; and transmitting a sounding reference signal to the base station according to the frequency domain starting position. The division operation taking the first bandwidth configuration parameter as the divisor is converted into the non-division operation corresponding to the target conversion parameter, so that the number of complex operations such as integral division, modulus taking and the like can be reduced, the calculation complexity of the frequency domain initial position is reduced, and the signal transmission efficiency is improved.

Description

Translated fromChinese
探测参考信号的发送方法、装置、终端及存储介质Method, device, terminal and storage medium for transmitting sounding reference signal

技术领域Technical Field

本申请实施例涉及基带芯片技术领域,特别涉及一种探测参考信号的发送方法、装置、终端及存储介质。The embodiments of the present application relate to the field of baseband chip technology, and in particular to a method, device, terminal and storage medium for sending a sounding reference signal.

背景技术Background Art

在第五代移动通信新空口(FifthGenerationNewRadio,5GNR)系统中,基站通过指示终端用户设备(UserEquipment,UE)发送探测参考信号(SoundingReferenceSignal,SRS)估计上行方向的信道质量。为了避免不同UE在信道探测时相互干扰,基站下发不同的配置参数,UE需基于配置参数以及信号发送时机等数据,确定SRS发射的频域起始位置等信息。In the Fifth Generation New Radio (5GNR) system, the base station estimates the uplink channel quality by instructing the terminal user equipment (UE) to send a sounding reference signal (SRS). In order to avoid mutual interference between different UEs during channel detection, the base station sends different configuration parameters. The UE needs to determine the frequency domain starting position of the SRS transmission based on the configuration parameters and data such as the signal transmission timing.

相关技术中,由于频域起始位置的计算公式较为复杂,为了降低计算复杂度,通常采用预先计算各种配置下的频域起始位置并构造查找表的方式,基于查表结果得到频域起始位置。In the related art, since the calculation formula of the frequency domain starting position is relatively complicated, in order to reduce the calculation complexity, the frequency domain starting position under various configurations is usually pre-calculated and a lookup table is constructed to obtain the frequency domain starting position based on the lookup table result.

然而,5GNR系统中存在64种小区级SRS带宽配置参数,一种小区级带宽配置参数又存在最多68种频域起始位置,因此查表的方式会消耗较多的存储资源,增加信道探测的实现成本。However, there are 64 cell-level SRS bandwidth configuration parameters in the 5GNR system, and one cell-level bandwidth configuration parameter has a maximum of 68 frequency domain starting positions. Therefore, the table lookup method will consume more storage resources and increase the implementation cost of channel detection.

发明内容Summary of the invention

本申请实施例提供了一种探测参考信号的发送方法、装置、终端及存储介质。所述技术方案如下:The embodiment of the present application provides a method, device, terminal and storage medium for sending a sounding reference signal. The technical solution is as follows:

一方面,本申请提供了一种探测参考信号的发送方法,所述方法由终端中的基带芯片执行,所述方法包括:On the one hand, the present application provides a method for sending a sounding reference signal, the method being executed by a baseband chip in a terminal, the method comprising:

基于基站下发的第一带宽配置参数确定目标转化参数,所述第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,所述目标转化参数是用于通过非除法运算得到除法运算结果的参数;Determine a target conversion parameter based on a first bandwidth configuration parameter sent by the base station, wherein the first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process, and the target conversion parameter is a parameter used to obtain a division operation result through a non-division operation;

基于所述目标转化参数以及所述基站下发的第二带宽配置参数确定频域位置偏移值,所述频域位置偏移值表征信号发送时实际频域起始位置相对于所述基站指示的频域基准位置的偏移量;Determine a frequency domain position offset value based on the target conversion parameter and the second bandwidth configuration parameter sent by the base station, wherein the frequency domain position offset value represents an offset of an actual frequency domain starting position relative to a frequency domain reference position indicated by the base station when a signal is sent;

基于所述频域基准位置以及所述频域位置偏移值,确定频域起始位置;Determine a frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value;

按照所述频域起始位置,向所述基站发送探测参考信号。Sending a sounding reference signal to the base station according to the frequency domain starting position.

另一方面,本申请提供了一种探测参考信号的发送装置,所述装置包括:On the other hand, the present application provides a device for sending a sounding reference signal, the device comprising:

参数确定模块,用于基于基站下发的第一带宽配置参数确定目标转化参数,所述第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,所述目标转化参数是用于通过非除法运算得到除法运算结果的参数;A parameter determination module, configured to determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station, wherein the first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process, and the target conversion parameter is a parameter used to obtain a division operation result through a non-division operation;

偏移值确定模块,用于基于所述目标转化参数以及所述基站下发的第二带宽配置参数确定频域位置偏移值,所述频域位置偏移值表征信号发送时实际频域起始位置相对于所述基站指示的频域基准位置的偏移量;An offset value determination module, configured to determine a frequency domain position offset value based on the target conversion parameter and the second bandwidth configuration parameter sent by the base station, wherein the frequency domain position offset value represents an offset of an actual frequency domain starting position relative to a frequency domain reference position indicated by the base station when a signal is sent;

起始位置确定模块,用于基于所述频域基准位置以及所述频域位置偏移值,确定频域起始位置;A starting position determination module, used to determine a frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value;

信号发送模块,用于按照所述频域起始位置,向所述基站发送探测参考信号。A signal sending module is used to send a sounding reference signal to the base station according to the frequency domain starting position.

另一方面,本申请提供了一种终端,所述终端包括处理器和存储器;所述存储器中存储有至少一段程序,所述至少一段程序由所述处理器加载并执行以实现如上述方面所述的探测参考信号的发送方法。On the other hand, the present application provides a terminal, comprising a processor and a memory; the memory stores at least one program, and the at least one program is loaded and executed by the processor to implement the method for sending a sounding reference signal as described in the above aspects.

另一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条计算机程序,所述计算机程序由处理器加载并执行以实现如上述方面所述的探测参考信号的发送方法。On the other hand, the present application provides a computer-readable storage medium, in which at least one computer program is stored, and the computer program is loaded and executed by a processor to implement the method for sending a sounding reference signal as described in the above aspects.

根据本申请的一个方面,提供了一种计算机程序产品过计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该终端执行上述方面的各种可选实施方式中提供的探测参考信号的发送方法。According to one aspect of the present application, a computer program product or a computer program is provided, the computer program product or the computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium. A processor of a terminal reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the terminal executes the method for sending a sounding reference signal provided in various optional implementations of the above aspects.

本申请实施例提供的技术方案至少包括以下有益效果:The technical solution provided by the embodiment of the present application includes at least the following beneficial effects:

本申请实施例中,由于频域位置偏移值的计算中包含大量整除、取模等涉及除法运算的过程,而二进制的除法运算较为复杂,因此通过将第一带宽配置参数作为除数的除法运算转换为目标转化参数对应的非除法运算,可以减少整除以及取模等复杂运算的数量,降低了频域起始位置的计算复杂度,提高了信号发送效率。并且相比于预先存储各种参数配置情况下的频域起始位置的方式,只需存储少量转化参数,节省了存储资源。In the embodiment of the present application, since the calculation of the frequency domain position offset value includes a large number of processes involving division operations such as integer division and modulo, and the binary division operation is relatively complex, the number of complex operations such as integer division and modulo can be reduced by converting the division operation with the first bandwidth configuration parameter as the divisor into a non-division operation corresponding to the target conversion parameter, the calculation complexity of the frequency domain starting position is reduced, and the signal transmission efficiency is improved. In addition, compared with the method of pre-storing the frequency domain starting position under various parameter configuration conditions, only a small number of conversion parameters need to be stored, saving storage resources.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本申请一个示例性实施例示出的信号收发装置的结构框图;FIG1 is a structural block diagram of a signal transceiver device shown in an exemplary embodiment of the present application;

图2示出了本申请一个示例性实施例提供的探测参考信号的发送方法的流程图;FIG2 shows a flow chart of a method for sending a sounding reference signal provided by an exemplary embodiment of the present application;

图3示出了本申请另一个示例性实施例提供的探测参考信号的发送方法的流程图;FIG3 shows a flow chart of a method for sending a sounding reference signal provided by another exemplary embodiment of the present application;

图4示出了本申请另一个示例性实施例提供的探测参考信号的发送方法的流程图;FIG4 shows a flow chart of a method for sending a sounding reference signal provided by another exemplary embodiment of the present application;

图5示出了本申请另一个示例性实施例提供的探测参考信号的发送方法的流程图;FIG5 shows a flowchart of a method for sending a sounding reference signal provided by another exemplary embodiment of the present application;

图6示出了本申请一个示例性实施例提供的探测参考信号的发送装置的结构框图;FIG6 shows a structural block diagram of a device for sending a sounding reference signal provided by an exemplary embodiment of the present application;

图7示出了本申请一个示例性实施例提供的终端的结构框图。FIG. 7 shows a structural block diagram of a terminal provided by an exemplary embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present application more clear, the implementation methods of the present application will be further described in detail below with reference to the accompanying drawings.

在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。The term "multiple" as used herein refers to two or more than two. "And/or" describes the relationship between related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone. The character "/" generally indicates that the related objects are in an "or" relationship.

在5GNR系统中,基站通过指示UE周期性或非周期性地发送SRS,对上行方向不同频段的信道质量进行估计,从而可以根据估计结果对物理上行共享信道(Physical UplinkShared Channel,PUSCH)的发送进行频率选择性调度,提高上行链路的业务传输质量。SRS探测包括两种方式,一是通过发送宽带SRS覆盖整个频带,二是通过发送多个窄带SRS并进行跳频的方式,多次跳频组合以覆盖整个频带。为了避免不同UE在上行信道探测时相互干扰,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准采用了树状结构将整个上行带宽划分为四层,每一层对应了不同的探测带宽配置。同时还定义了SRS的频域起始位置计算方法,使其可以按照预定的跳频图样对不同频带进行信道探测。基站可以通过配置不同的参数调度各个UE的SRS发送,以避免探测干扰。而UE在发送SRS时则需要根据基站配置的参数确定总的探测带宽、每次发送的探测带宽以及频域起始位置等信息。In the 5GNR system, the base station estimates the channel quality of different frequency bands in the uplink direction by instructing the UE to send SRS periodically or non-periodically, so that the transmission of the physical uplink shared channel (PUSCH) can be frequency selectively scheduled according to the estimation results to improve the service transmission quality of the uplink. SRS detection includes two methods, one is to cover the entire frequency band by sending broadband SRS, and the other is to send multiple narrowband SRS and perform frequency hopping, and multiple frequency hopping combinations are used to cover the entire frequency band. In order to avoid mutual interference between different UEs during uplink channel detection, the 3rd Generation Partnership Project (3GPP) standard adopts a tree structure to divide the entire uplink bandwidth into four layers, each layer corresponds to a different detection bandwidth configuration. At the same time, the frequency domain starting position calculation method of SRS is also defined, so that it can perform channel detection on different frequency bands according to a predetermined frequency hopping pattern. The base station can schedule the SRS transmission of each UE by configuring different parameters to avoid detection interference. When sending SRS, the UE needs to determine information such as the total detection bandwidth, the detection bandwidth for each transmission, and the frequency domain starting position according to the parameters configured by the base station.

NR系统中,SRS发射和接收过程所涉及到的功能模块如图1所示。发射机用于发射无线信号,具体的,通过Zadoff-Chu(ZC)序列生成模块计算生成ZC序列;通过子载波映射模块进行子载波的调制,将有效数据映射至有效子载波的位置;通过快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)模块对各个子信道进行正交调制,将数字信号转换为子载波的幅度和相位,将数据频谱表达至时域上;通过循环前缀插入模块插入符号前缀,以消除符号间的干扰;最后通过发射机射频模块发射无线信号。接收机通过接收机射频模块接收无线信号,通过循环前缀去除模块去除发射机插入的符号前缀,以进行后续的信号解调;通过快速傅里叶变换(Fast Fourier Transform,FFT)模块将信号从时域转换至频域;通过子载波解映射模块,按照信号的频域特征将通过多个子载波并行发射的信号转换为一条载波中的完整信号;通过信道估计模块以及ZC序列生成模块获取信道信息,以进行信号解调。其中,发射机(如UE)的子载波映射模块以及接收机(如基站)的解映射模块需要负责计算频域起始位置等信息。In the NR system, the functional modules involved in the SRS transmission and reception process are shown in Figure 1. The transmitter is used to transmit wireless signals. Specifically, the Zadoff-Chu (ZC) sequence generation module calculates and generates the ZC sequence; the subcarrier is modulated by the subcarrier mapping module, and the valid data is mapped to the position of the valid subcarrier; the Inverse Fast Fourier Transform (IFFT) module orthogonally modulates each subchannel, converts the digital signal into the amplitude and phase of the subcarrier, and expresses the data spectrum in the time domain; the cyclic prefix insertion module inserts the symbol prefix to eliminate the interference between symbols; finally, the wireless signal is transmitted through the transmitter RF module. The receiver receives wireless signals through the receiver RF module, removes the symbol prefix inserted by the transmitter through the cyclic prefix removal module for subsequent signal demodulation; converts the signal from the time domain to the frequency domain through the Fast Fourier Transform (FFT) module; converts the signal transmitted in parallel through multiple subcarriers into a complete signal in one carrier according to the frequency domain characteristics of the signal through the subcarrier demapping module; obtains channel information through the channel estimation module and the ZC sequence generation module for signal demodulation. Among them, the subcarrier mapping module of the transmitter (such as UE) and the demapping module of the receiver (such as the base station) need to be responsible for calculating information such as the starting position of the frequency domain.

3GPPNR标准TS 38.211还提供了带宽配置表(6.4.1.4.3-1),针对不同的探测带宽定义了不同的SRS带宽配置参数。其中探测资源块(Resource Block,RB)的数量mSRS,b均为4的倍数,为了方便计算,可以统一除以4,如表1所示:3GPPNR standard TS 38.211 also provides a bandwidth configuration table (6.4.1.4.3-1), which defines different SRS bandwidth configuration parameters for different detection bandwidths. The number of detection resource blocks (RBs) mSRS,b is a multiple of 4. For the convenience of calculation, it can be uniformly divided by 4, as shown in Table 1:

表1Table 1

表1中,CSRS是小区级SRS带宽配置参数,对应了基站为小区内所有UE的SRS发送所分配的总频域带宽。BSRS是UE级SRS带宽参数,对应了UE一次SRS发送实际所占的带宽。Nb为信号频带数,是指SRS的带宽在频域上被划分的数量。CSRS和BSRS共同决定了SRS带宽的大小(mSRS,b)以及在带宽频域上被分为几份(Nb)。例如,以CSRS=1为例,参照表1可知,假设BSRS=0,则每个SRS为8RB(mSRS,0/4=2),频域上只分为1份(N0=1);假设BSRS=1,则每个SRS的带宽为4RB(mSRS,0/4=1),频域上被分为2分(N1=2)。基站可以根据实际需求,通过配置不同的CSRS和BSRS对小区内各个UE实现灵活的频域资源调度,避免SRS发送的干扰。小区级SRS带宽配置一共有64种类型(编号0至63),对应最小4个RB(即mSRS,b的值为1),最大272个RB(即对应的mSRS,b值为68),包含的RB数均为4的整数倍。对于某一种小区级SRS带宽配置,可以对应4种SRS实际发送带宽,最小为4、8或12个RB,最大可占满整个小区级SRS带宽。如果使能了SRS跳频,基站还可以通过配置SRS跳频带宽参数bhop以确定多次跳频覆盖的实际总带宽。In Table 1,CSRS is the cell-level SRS bandwidth configuration parameter, which corresponds to the total frequency domain bandwidth allocated by the base station for the SRS transmission of all UEs in the cell.B SRS is the UE-level SRS bandwidth parameter, which corresponds to the bandwidth actually occupied by the UE for one SRS transmission. Nb is the number of signal bands, which refers to the number of divisions of the SRS bandwidth in the frequency domain.CSRS and BSRS jointly determine the size of the SRS bandwidth (mSRS,b ) and the number of parts (Nb ) into which the bandwidth is divided in the frequency domain. For example, takingCSRS = 1 as an example, referring to Table 1, it can be seen that if BSRS = 0, each SRS is 8RB (mSRS,0 /4 = 2), and is only divided into 1 part in the frequency domain (N0 = 1); if BSRS = 1, the bandwidth of each SRS is 4RB (mSRS,0 /4 = 1), and is divided into 2 parts in the frequency domain (N1 = 2). According to actual needs, the base station can implement flexible frequency domain resource scheduling for each UE in the cell by configuring differentCSRS andBSRS to avoid interference from SRS transmission. There are 64 types of cell-level SRS bandwidth configuration (numbered 0 to 63), corresponding to a minimum of 4 RBs (i.e., the value of mSRS,b is 1) and a maximum of 272 RBs (i.e., the correspondingmSRS,b value is 68), and the number of RBs included is an integer multiple of 4. For a certain cell-level SRS bandwidth configuration, there can be 4 types of SRS actual transmission bandwidths, with a minimum of 4, 8 or 12 RBs and a maximum of the entire cell-level SRS bandwidth. If SRS frequency hopping is enabled, the base station can also determine the actual total bandwidth covered by multiple frequency hopping by configuring the SRS frequency hopping bandwidth parameter bhop .

NR系统各小区级SRS带宽配置参数中,SRS的最大带宽配置为272个RB,对应每次发送的最小带宽为4RB,因此最多存在272/4=68种可能的频域起始位置。基站可以通过配置一个SRS频域位置索引参数nRRC决定UE的频域基准位置,参数的取值范围为0≤nRRC≤67。当使能跳频时,每次SRS发送的实际频域起始位置还需要在频域基准位置上叠加一个跳频偏移量Fb(nSRS),而跳频偏移量与SRS发送时机计数值nSRS相关。In the cell-level SRS bandwidth configuration parameters of the NR system, the maximum bandwidth of SRS is configured to 272 RBs, corresponding to a minimum bandwidth of 4 RBs for each transmission, so there are at most 272/4 = 68 possible frequency domain starting positions. The base station can determine the frequency domain reference position of the UE by configuring an SRS frequency domain position index parameter nRRC , and the parameter value range is 0≤nRRC ≤67. When frequency hopping is enabled, the actual frequency domain starting position of each SRS transmission also needs to be superimposed with a frequency hopping offset Fb (nSRS ) on the frequency domain reference position, and the frequency hopping offset is related to the SRS transmission opportunity count value nSRS .

标准TS38.211中详细定义了SRS发送频域起始位置k0的计算公式:The calculation formula for the SRS transmission frequency domain starting position k0 is defined in detail in standard TS38.211:

其中,是一个频域参考位置,是频域位置偏移值。in, is a frequency domain reference position, is the frequency domain position offset value.

在频域位置偏移值kΔ的计算式中,是每个RB中的子载波个数,的值为12;mSRS,b对应了带宽树状结构各层的SRS带宽,可以基于小区级带宽配置参数以及UE级带宽配置参数查表得到(例如,当小区级带宽配置参数CSRS为0,UE级带宽配置参数BSRS为0时,根据表1所示的带宽配置表可知,mSRS,0/4为1,即mSRS,0为4;当CSRS为4且BSRS为1时,mSRS,1/4为2,即mSRS,1为8);nb对应了带宽树状结构各层的索引号,其计算公式如下:In the calculation formula of the frequency domain position offset value kΔ , is the number of subcarriers in each RB, The value is 12; mSRS,b corresponds to the SRS bandwidth of each layer of the bandwidth tree structure, which can be obtained based on the cell-level bandwidth configuration parameter and the UE-level bandwidth configuration parameter (for example, when the cell-level bandwidth configuration parameter CSRS is 0 and the UE-level bandwidth configuration parameter BSRS is 0, according to the bandwidth configuration table shown in Table 1, mSRS,0 /4 is 1, that is, mSRS,0 is 4; when CSRS is 4 and BSRS is 1, mSRS,1 /4 is 2, that is, mSRS,1 is 8); nb corresponds to the index number of each layer of the bandwidth tree structure, and its calculation formula is as follows:

其中,方括号为取整运算符,mod为取余运算符。为了方便表述,当取整运算符内为分式时,本申请称该运算为被除数对除数的整除运算。例如表示a对b的整除。The square brackets are integer operators, and mod is the remainder operator. For the convenience of description, when the integer operator contains a fraction, this application refers to the operation as the integer division of the dividend by the divisor. For example Indicates whether a is divisible by b.

跳频偏移量Fb(nSRS)的计算公式如下:The calculation formula of the frequency hopping offset Fb (nSRS ) is as follows:

上式的计算过程中,当b’=bhop时,忽略Nb’的实际取值,取Nbhop=1。In the calculation process of the above formula, when b'=bhop , the actual value of Nb' is ignored and Nbhop =1 is taken.

需要说明的是,带宽索引号nb的计算公式统一了禁用跳频以及使能跳频两种情形,当配置bhop≥BSRS时,SRS跳频被禁用,当配置bhop<BSRS时,SRS跳频被使能。It should be noted that the calculation formula of the bandwidth index numbernb unifies the two situations of disabling frequency hopping and enabling frequency hopping. When bhop ≥ BSRS is configured, SRS frequency hopping is disabled, and when bhop < BSRS is configured, SRS frequency hopping is enabled.

可以看出,频域起始位置计算的优化目的主要是降低带宽索引号nb以及跳频偏移量Fb(nSRS)的计算复杂度。其计算过程中涉及到整除、取模以及连乘等复杂计算,实现难度和成本较高。为了降低计算复杂度,简化计算过程,相关技术提出了基于查表的方法。相关技术中,开发人员预先计算各种配置下跳频时的频域起始位置图样,并构造查找表,终端基于查表结果可以得到频域起始位置。然而,NR系统中有64种小区级SRS带宽配置参数,并且一种小区级SRS带宽配置参数最多可以存在68种频域起始位置,相关技术中的方案会消耗较多的存储资源,增加实现成本。It can be seen that the purpose of optimizing the frequency domain starting position calculation is mainly to reduce the calculation complexity of the bandwidth index numbernb and the frequency hopping offsetFb (nSRS ). The calculation process involves complex calculations such as integer division, modulo, and multiplication, which are difficult and costly to implement. In order to reduce the calculation complexity and simplify the calculation process, the related art proposes a table-based method. In the related art, the developer pre-calculates the frequency domain starting position pattern during frequency hopping under various configurations, and constructs a lookup table. The terminal can obtain the frequency domain starting position based on the table lookup result. However, there are 64 cell-level SRS bandwidth configuration parameters in the NR system, and a cell-level SRS bandwidth configuration parameter can have up to 68 frequency domain starting positions. The solution in the related art will consume more storage resources and increase the implementation cost.

本申请提出了一种探测信号的发送方法。本申请各个实施例提供的探测信号的发送方法应用于设置有基带芯片的终端,该终端可以是智能手机、平板电脑、电子书阅读器、个人便携式计算机、台式计算机等。The present application proposes a method for sending a detection signal. The detection signal sending method provided in each embodiment of the present application is applied to a terminal provided with a baseband chip, which may be a smart phone, a tablet computer, an e-book reader, a personal portable computer, a desktop computer, etc.

请参考图2,其示出了本申请一个示例性实施例提供的探测信号的发送方法的流程图。本申请实施例以该方法由终端中的基带芯片执行为例进行说明。该方法包括如下步骤:Please refer to Figure 2, which shows a flow chart of a method for sending a detection signal provided by an exemplary embodiment of the present application. The present application embodiment takes the method executed by a baseband chip in a terminal as an example for explanation. The method comprises the following steps:

步骤201,基于基站下发的第一带宽配置参数确定目标转化参数,第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,目标转化参数是用于通过非除法运算得到除法运算结果的参数。Step 201, determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station. The first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process. The target conversion parameter is a parameter used to obtain a division operation result through a non-division operation.

终端与基站建立通信连接后,基站向终端下发带宽配置参数。该带宽配置参数包括第一带宽配置参数,第一带宽配置参数是指在频域位置计算过程中作为除数参与除法运算的参数。After the terminal establishes a communication connection with the base station, the base station sends bandwidth configuration parameters to the terminal. The bandwidth configuration parameters include a first bandwidth configuration parameter, which refers to a parameter that participates in a division operation as a divisor in the frequency domain position calculation process.

由上述公式可以看出,基站下发带宽配置参数后,终端需要基于该参数以及自身发送SRS的时机等数据,计算频域起始位置。通信标准所规定的频域起始位置计算式中,存在多项除法运算,并且分式中的分子和分母较为复杂。然而通过对频域起始位置计算式的化简可知,可以利用转化参数与被除数之间的简单非除法运算代替计算式中除数与被除数之间的除法运算。考虑各种情况下的带宽配置参数,除数的取值与探测资源块数mSRS,b以及信号频带数Nb相关(基于频域位置偏移值的计算公式可知,涉及到的除数包括mSRS,b以及Nb)。由表1可知,探测资源块数mSRS,b以及信号频带数Nb在提取出2n后,得到的奇数的数量小于小区级带宽配置参数的数量即原本表中mSRS,b以及Nb涉及的几十种取值在提取出2n后,仅涉及3、5、7、9、11、13、15、17、19、21、23及27这12种取值(1作为除数时无需进行除法转换)。因此终端需存储的转化参数的数量小于小区级带宽配置参数的数量(考虑提取2n保留奇数原因,可以参考下述利用非除法运算代替除法运算的实现原理)。It can be seen from the above formula that after the base station sends the bandwidth configuration parameters, the terminal needs to calculate the frequency domain starting position based on the parameters and data such as the timing of its own SRS transmission. In the frequency domain starting position calculation formula specified by the communication standard, there are multiple division operations, and the numerator and denominator in the fraction are relatively complex. However, by simplifying the frequency domain starting position calculation formula, it can be seen that the division operation between the divisor and the dividend in the calculation formula can be replaced by a simple non-division operation between the conversion parameter and the dividend. Considering the bandwidth configuration parameters in various situations, the value of the divisor is related to the number of detection resource blocks mSRS,b and the number of signal frequency bands Nb (based on the calculation formula of the frequency domain position offset value, it can be seen that the divisors involved include mSRS,b and Nb ). As can be seen from Table 1, after extracting2n from the number of sounding resource blocks mSRS,b and the number of signal frequency bands Nb , the number of odd numbers obtained is less than the number of cell-level bandwidth configuration parameters, that is, the dozens of values of mSRS,b and Nb in the original table only involve 12 values of 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 27 after extracting2n (no division conversion is required when 1 is used as the divisor). Therefore, the number of conversion parameters that the terminal needs to store is less than the number of cell-level bandwidth configuration parameters (considering the reason for extracting2n to retain odd numbers, you can refer to the following implementation principle of using non-division operations instead of division operations).

在一种可能的实施方式中,终端内预存储有各种参数配置情况下,频域位置偏移值计算过程中所需的转化参数,以及转化参数与第一带宽配置参数之间的对应关系。终端基于基站下发的第一带宽配置参数的具体数值,确定对应的目标转化参数。一种带宽配置参数对应的频域起始位置的计算过程,只需利用一部分预存储的转化参数即可实现计算式中的除法运算。In a possible implementation, the terminal pre-stores the conversion parameters required in the frequency domain position offset value calculation process under various parameter configuration conditions, as well as the correspondence between the conversion parameters and the first bandwidth configuration parameters. The terminal determines the corresponding target conversion parameter based on the specific value of the first bandwidth configuration parameter sent by the base station. In the calculation process of the frequency domain starting position corresponding to a bandwidth configuration parameter, the division operation in the calculation formula can be realized by using only a part of the pre-stored conversion parameters.

例如,基带芯片中存储有10组转化参数,基站下发的CSRS为7。基于表1中CSRS为7时,计算过程中涉及到的除数mSRS,b以及Nb的取值1、2、3、6可知,在除数提取出2n后,终端最多需要3作为除数时的转化参数,因此终端将除数3对应的一组转化参数确定为目标转化参数(在带宽配置参数的其它取值情况下,可能需要更多组转化参数)。For example, 10 groups of conversion parameters are stored in the baseband chip, and theCSRS sent by the base station is 7. Based on the values of 1, 2, 3, and 6 of the divisor mSRS,b and Nb involved in the calculation process whenCSRS is 7 in Table 1, it can be known that after the divisor is extracted to2n , the terminal needs at most 3 as the conversion parameter when the divisor is used, so the terminal determines a group of conversion parameters corresponding to the divisor 3 as the target conversion parameters (in the case of other values of the bandwidth configuration parameters, more groups of conversion parameters may be required).

在一种可能的实施方式中,利用转化参数代替除数,通过非除法运算实现除法运算的原理如下:In a possible implementation, the principle of using a conversion parameter instead of a divisor to implement a division operation through a non-division operation is as follows:

1、设有无符号整数a,b和c,令a除以bc的商为q余数为r,有:1. Suppose there are unsigned integers a, b and c. Let the quotient of a divided by bc be q and the remainder be r. We have:

a=qbc+r,0≤r≤bc-1a=qbc+r,0≤r≤bc-1

再令r除以b的商为q’余数为r’,有:Let the quotient of r divided by b be q' and the remainder be r', we have:

r=q’b+r’,0≤r’≤b-1,0≤q’≤c-1r=q’b+r’, 0≤r’≤b-1, 0≤q’≤c-1

则a=qbc+r=qbc+q’b+r’,因此成立(整除结果均为q)。Then a=qbc+r=qbc+q'b+r', so It holds true (the integer division result is always q).

2、假设一整除运算式中,被除数为a,除数为d,可以将除数分解为d=2n·c的形式,其中约数c为奇数。根据公式可知,a对d的整除可以转化为:其中,(由于二进制计算)整除运算很容易通过对a进行移位操作实现。而整除运算则可以根据除数c的值以及被除数s的取值范围(由于涉及到移位,因此需考虑s的取值范围选取合适的转化参数),预先计算出一组转化参数(N,M,L),使得等式对取值范围内所有的s均成立,并将转化参数存储在终端中。示意性的,对于整除运算可以将除数分解为6=21·3,则其中可以通过移位实现,得到结果为5,而则可以基于3对应的转化参数(N,M,L)转化为算式比如(2,1,2)。2. Assume that in a division operation, the dividend is a and the divisor is d. The divisor can be decomposed into the form of d = 2n · c, where the divisor c is an odd number. According to the formula It can be seen that a is divisible by d can be transformed into: make but where (due to binary arithmetic) integer division This can be easily achieved by shifting a. Then, according to the value of the divisor c and the value range of the dividend s (since it involves shifting, the value range of s needs to be considered to select the appropriate conversion parameters), a set of conversion parameters (N, M, L) can be calculated in advance so that the equation This holds true for all s within the value range, and the conversion parameters are stored in the terminal. The divisor can be decomposed into 6 = 21 · 3, then in This can be achieved by shifting, and the result is 5, while Then it can be converted into the formula based on the corresponding conversion parameters (N, M, L) of 3 For example (2,1,2).

结合上述两点可知,开发人员可以预先基于各种带宽配置参数确定出被除数s的取值范围,结合c的各种取值情况,选取合适的转化参数(N,M,L),使终端将除法运算转化为乘法运算、加法运算以及移位操作等非除法运算的结合。Combining the above two points, it can be seen that developers can determine the value range of the dividend s in advance based on various bandwidth configuration parameters, and select appropriate conversion parameters (N, M, L) based on various values of c, so that the terminal can convert the division operation into a combination of non-division operations such as multiplication, addition, and shift operations.

步骤202,基于目标转化参数以及基站下发的第二带宽配置参数确定频域位置偏移值。Step 202: determine a frequency domain position offset value based on the target conversion parameter and the second bandwidth configuration parameter sent by the base station.

其中,频域位置偏移值表征信号发送时,信号的实际频域起始位置相对于基站指示的频域基准位置的偏移量。The frequency domain position offset value represents the offset of the actual frequency domain starting position of the signal relative to the frequency domain reference position indicated by the base station when the signal is sent.

若终端均按照基站指示的频域基准位置发送信号,会导致当小区内终端较多时,存在较多的信号干扰。通过设置频域位置偏移值,使跳频发送信号时在频域基准位置的基础上进行频域偏移,可以有效减少信号干扰的情况。If all terminals send signals according to the frequency domain reference position indicated by the base station, there will be more signal interference when there are many terminals in the cell. By setting the frequency domain position offset value, the frequency domain offset is performed based on the frequency domain reference position when the frequency hopping signal is sent, which can effectively reduce the signal interference.

第二带宽配置参数包括频域位置偏移值计算式中,未作为除数参数除法运算的参数。终端得到目标转化参数后,通过目标转化参数与第二带宽配置参数之间的非除法运算,得到频域位置偏移值kΔThe second bandwidth configuration parameter includes the parameter not used as the divisor parameter in the frequency domain position offset value calculation formula. After obtaining the target conversion parameter, the terminal obtains the frequency domain position offset value kΔ by performing a non-division operation between the target conversion parameter and the second bandwidth configuration parameter.

步骤203,基于频域基准位置以及频域位置偏移值,确定频域起始位置。Step 203: Determine the frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value.

基于上述频域起始位置的计算式终端在确定出带宽索引号nb后,还需基于每个RB中的子载波个数频域位置偏移值kΔ以及上述步骤中查询得到的RB数mSRS,b(根据基站下发的CSRS以及BSRS查表得到),计算得到SRS实际发送时的频域起始位置k0Based on the above calculation formula of the starting position of the frequency domain After determining the bandwidth indexnb , the terminal needs to calculate the number of subcarriers in each RB. The frequency domain position offset value kΔ and the RB number mSRS,b obtained in the above step (obtained by looking up the table according tothe CSRS andBSRS sent by the base station) are used to calculate the frequency domain starting position k0 when the SRS is actually sent.

步骤204,按照频域起始位置,向基站发送探测参考信号。Step 204: Send a sounding reference signal to the base station according to the starting position in the frequency domain.

终端计算得到频域起始位置后,基于带宽配置参数还包括的频域起始位置等信息,向基站发送探测参考信号。After calculating the frequency domain starting position, the terminal sends a sounding reference signal to the base station based on information such as the frequency domain starting position also included in the bandwidth configuration parameters.

由图1可知,基站在接收到UE发送的SRS后,也需通过基带芯片中的子载波解映射模块计算SRS的频域起始位置,从而进行后续的信道质量估计、频率选择性调度等操作。在一种可能的实施方式中,基站内同样存储有各种情况下所需的转化参数,在接收到SRS后,基站设备按照与上述终端相同的计算过程计算频域起始位置。As shown in Figure 1, after receiving the SRS sent by the UE, the base station also needs to calculate the frequency domain starting position of the SRS through the subcarrier demapping module in the baseband chip, so as to perform subsequent operations such as channel quality estimation and frequency selective scheduling. In a possible implementation, the base station also stores the conversion parameters required in various situations. After receiving the SRS, the base station device calculates the frequency domain starting position according to the same calculation process as the above terminal.

综上所述,本申请实施例中,由于频域位置偏移值的计算中包含大量整除、取模等涉及除法运算的过程,而二进制的除法运算较为复杂,因此通过将第一带宽配置参数作为除数的除法运算转换为目标转化参数对应的非除法运算,可以减少整除以及取模等复杂运算的数量,降低了频域起始位置的计算复杂度,提高了信号发送效率。并且相比于预先存储各种参数配置情况下的频域起始位置的方式,只需存储少量转化参数,节省了存储资源。In summary, in the embodiment of the present application, since the calculation of the frequency domain position offset value includes a large number of processes involving division operations such as integer division and modulo, and the binary division operation is relatively complex, the number of complex operations such as integer division and modulo can be reduced by converting the division operation with the first bandwidth configuration parameter as the divisor into a non-division operation corresponding to the target conversion parameter, the calculation complexity of the frequency domain starting position is reduced, and the signal transmission efficiency is improved. In addition, compared with the method of pre-storing the frequency domain starting position under various parameter configuration conditions, only a small number of conversion parameters need to be stored, saving storage resources.

针对上述实施例的实现原理,其计算成立的推导过程如下。With respect to the implementation principle of the above embodiment, the derivation process of the calculation is as follows.

首先说明推导计算中涉及到的公式。设有无符号整数a,b和c,令a除以bc的商为q余数为r,有:First, let's explain the formulas involved in the derivation and calculation. Suppose there are unsigned integers a, b and c, and let the quotient of a divided by bc be q and the remainder be r, then:

a=qbc+r,0≤r≤bc-1a=qbc+r,0≤r≤bc-1

再令r除以b的商为q’余数为r’,有:Let the quotient of r divided by b be q' and the remainder be r', we have:

r=q’b+r’,0≤r’≤b-1,0≤q’≤c-1r=q’b+r’, 0≤r’≤b-1, 0≤q’≤c-1

则a=qbc+r=qbc+q’b+r’。Then a=qbc+r=qbc+q’b+r’.

可以证明如下三个公式成立。It can be proved that the following three formulas hold true.

公式1:Formula 1:

公式2:Formula 2:

公式3:a mod b=(a mod bc)mod bFormula 3: a mod b = (a mod bc) mod b

特别的,公式2中,当b=2n时,有其中,对2n的整除运算可以通过移位操作实现。In particular, in formula 2, when b = 2n , we have Among them, the integer division operation of2n can be realized through shift operation.

SRS信号的频域起始位置k0的计算公式如下:The calculation formula of the frequency domain starting positionk0 of the SRS signal is as follows:

其中,关键在于带宽索引号nb(0≤b≤BSRS)的计算,而nb在禁用跳频时的计算式为:The key lies in the calculation of the bandwidth index number nb (0≤b≤BSRS ), and the calculation formula of nb when frequency hopping is disabled is:

在使能跳频时的计算式为:The calculation formula when frequency hopping is enabled is:

因此,禁用跳频时的计算式可以统一在使能跳频时的计算式中。通过观察上述公式可知,两种情况下的计算式中存在相同的项,在b>bhop的情况下需要叠加跳频偏移量Fb(nSRS)进行计算。因此可以将带宽索引号nb分为两部分进行计算,即nb=(nb,0+nb,1)mod Nb,其中nb,0为第一索引号算子,nb,1为第二索引号算子。Therefore, the calculation formula when frequency hopping is disabled can be unified in the calculation formula whenfrequency hopping is enabled. By observing the above formula, it can be seen that there are the same terms in the calculation formulas in the two cases. When b>bhop , the frequency hopping offsetFb (nSRS ) needs to be superimposed for calculation. Therefore, the bandwidth index numbernb can be divided into two parts for calculation, that is,nb =(nb,0 +nb,1 )modNb , wherenb,0 is the first index number operator andnb,1 is the second index number operator.

当b≤bhop时,有:When b≤bhop , we have:

nb,1=0nb,1 = 0

当b>bhop时,有:When b>bhop , we have:

nb,1=Fb(nSRS)modNbnb,1 =Fb (nSRS ) mod Nb

一、考虑第一索引号算子nb,0的计算。1. Consider the calculation of the first index operator nb,0 .

通过表1可知,探测资源块数mSRS,b均为4的倍数,并且满足mSRS,b-1=mSRS,bNb,1≤b≤3,因此对于b=3,满足:It can be seen from Table 1 that the number of sounding resource blocks mSRS,b is a multiple of 4 and satisfies mSRS,b-1 =mSRS,b Nb , 1≤b≤3. Therefore, for b=3, it satisfies:

对于b=2,1,根据公式2可以推出:For b=2,1, according to formula 2, we can deduce:

对于b=0,由于(3GPPNR标准TS 38.211的表6.4.1.4.3-1规定)N0固定取值为1,因此:For b=0, since (as specified in Table 6.4.1.4.3-1 of 3GPPNR standard TS 38.211) N0 is fixed to 1, therefore:

可以看出,nb,0之间存在迭代关系。所以,第一索引号算子nb,0的计算可以采用迭代的方式实现。令qb为第一迭代算子。终端先计算第一基准迭代算子,然后基于相邻两个第一迭代算子之间的迭代关系得到下一个第一迭代算子,无需重新计算算式迭代计算的方式如下:It can be seen that there is an iterative relationship between nb,0 . Therefore, the calculation of the first index operator nb,0 can be implemented in an iterative manner. qb is the first iteration operator. The terminal first calculates the first benchmark iteration operator, and then obtains the next first iteration operator based on the iteration relationship between two adjacent first iteration operators, without recalculating the formula The iterative calculation method is as follows:

1、以q3为第一基准迭代算子,终端首先计算然后当b=3,2,1时,依次计算:1. Taking q3 as the first benchmark iterative operator, the terminal first calculates Then when b=3,2,1, calculate in sequence:

nb,0=qb mod Nb=qb-qb-1Nbnb, 0 = qb mod Nb = qb -qb-1 Nb

可见,第一索引号算子nb,0的计算只需考虑对mSRS,b/4和Nb的各种取值的整除实现方法。It can be seen that the calculation of the first index number operator nb,0 only needs to consider the integer division implementation method for various values of mSRS,b /4 and Nb .

又由于,假设被除数为a,除数为d,可以将除数分解为d=2n·c的形式,其中约数c为奇数。根据公式2可知,a对d的整除可以转化为:其中,(由于二进制计算)整除运算很容易通过对a进行移位操作实现。而整除运算则可以根据除数c的值以及被除数s的取值范围,预先计算出一组转化参数(N,M,L),使得等式对取值范围内所有的s均成立,并将转化参数存储在终端中。从而将整除运算转化为乘法运算、加法运算以及移位操作的结合。Furthermore, assuming that the dividend is a and the divisor is d, the divisor can be decomposed into the form of d = 2n · c, where the divisor c is an odd number. According to formula 2, a divides d can be transformed into: make but where (due to binary arithmetic) integer division This can be easily achieved by shifting a. Then, according to the value of the divisor c and the value range of the dividend s, a set of conversion parameters (N, M, L) can be calculated in advance so that the equation This is true for all s within the value range, and the conversion parameters are stored in the terminal, thereby converting the integer division operation into a combination of multiplication, addition and shift operations.

由于第一索引号算子nb,0的计算只需考虑对mSRS,b/4和Nb的各种取值的整除,因此当考虑所有情况下的配置参数时,对应涉及到的被除数c也只需考虑Nb的各种可能的取值,以及第一基准迭代算子所对应的mSRS,b/4各种可能的取值。比如当第一基准迭代算子为时,通过表1中mSRS,3/4对应的列以及N3、N2、N1、N0对应的列可知,除数c仅对应3、5、7、9、11、13、15、17、19、23这10种取值,因此共需存储10组转化参数。Since the calculation of the first index operator nb,0 only needs to consider the integer division of various values ofmSRS,b /4 andNb , when considering the configuration parameters in all cases, the corresponding dividend c only needs to consider various possible values ofNb and various possible values ofmSRS,b /4 corresponding to the first benchmark iteration operator. For example, when the first benchmark iteration operator is From the columns corresponding to mSRS, 3 /4 and the columns corresponding to N3 , N2 , N1 , and N0 in Table 1 , it can be seen that the divisor c only corresponds to 10 values of 3, 5, 7, 9, 11, 13, 15, 17, 19, and 23, so a total of 10 sets of conversion parameters need to be stored.

2、以为第一基准迭代算子,对于b=0,因为N0固定取值为1,有:2. is the first benchmark iteration operator. For b = 0, since N0 is fixed to 1, we have:

对于b=1,2,…,BSRS,根据公式1有:For b=1, 2, ..., BSRS , according to Formula 1:

所以,nb,0的计算也可以采用如下方式:Therefore, nb,0 can also be calculated as follows:

首先计算:First calculate:

r′0=nRRC mod(mSRS,0/4)=nRRC-q′0(mSRS,0/4)r′0 =nRRC mod (mSRS, 0 /4) = nRRC -q′0 (mSRS, 0 /4)

然后,依次迭代计算b=1,2,…,BSRS时nb,0的值。根据公式3可以推出:Then, the value of nb,0 when b=1, 2, ..., BSRS is calculated iteratively in sequence. According to formula 3, it can be deduced that:

r′b=nRRC mod(mSRS,b/4)r′b =nRRC mod(mSRS, b /4)

=(nRRC mod(mSRS,b/4)Nb)mod(mSRb,b/4)=(nRRC mod(mSRS, b /4)Nb )mod (mSRb, b /4)

=(nRRC mod(mSRS,b-1/4))mod(mSRS,b/4)=(nRRC mod(mSRS, b-1 /4)) mod (mSRS, b /4)

=r′b-1 mod(mSRS,b/4)=r′b-1 mod(mSRS, b /4)

则迭代计算式为:The iterative calculation formula is:

r′b=r′b-1 mod(mSRS,b/4)=r′b-1-q′b(mSRS,b/4)r′b =r′b-1 mod(mSRS, b /4) = r′b-1 -q′b (mSRS, b /4)

得到nb,0=q′b,1≤b≤BSRSIt is obtained that nb,0 =q′b ,1≤b≤BSRS .

当第一基准迭代算子为时,通过表1中mSRS,0/4对应的列以及N3、N2、N1、N0对应的列可知,除数c仅对应3、5、7、9、11、13、15、17、19、21、23、27、33这13种取值,因此共需存储13组转化参数。When the first base iteration operator is From the columns corresponding to mSRS,0 /4 and the columns corresponding toN3 ,N2 ,N1 , andN0 in Table 1, it can be seen that the divisor c only corresponds to 13 values of 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, and 33, so a total of 13 sets of conversion parameters need to be stored.

由此可见,相比于相关技术中的查表法,本申请的方案所需存储的数据量大幅度降低,并且所需的计算中不包括连乘、除法等复杂运算,只需计算基准迭代算子即可通过简单的迭代计算,得到各种情况下的迭代算子,提高了信号处理和发送的效率。It can be seen that compared with the table lookup method in the related art, the amount of data required to be stored in the solution of the present application is greatly reduced, and the required calculations do not include complex operations such as multiplication and division. It is only necessary to calculate the benchmark iterative operator to obtain the iterative operator for various situations through simple iterative calculations, thereby improving the efficiency of signal processing and transmission.

迭代计算可以得到所有情况下的nb,0,0≤b≤3,而每次信号发射只对应一种配置参数,因此SRS频域起始位置的实际计算过程只需涉及一部分nb,0的计算,对应b的取值范围为0≤b≤BSRS≤3。Iterative calculation can obtain nb,0 in all cases, 0≤b≤3, and each signal transmission corresponds to only one configuration parameter, so the actual calculation process of the SRS frequency domain starting position only needs to involve a part of the calculation of nb,0 , and the corresponding b value range is 0≤b≤BSRS ≤3.

二、其次考虑第二索引号算子nb,1的计算。2. Next, consider the calculation of the second index number operator nb,1 .

当b≤bhop时,nb,1=0。When b≤bhop , nb,1 =0.

当bhop<b≤BSRS时,代入跳频偏移量Fb(nSRS)的表达式,nb,1可以写为:When bhop <b≤BSRS , substituting into the expression of frequency hopping offset Fb (nSRS ), nb,1 can be written as:

根据公式1,有:make According to formula 1, we have:

将pb转化后的表达式代入nb,1并进行简化,nb,1可以写为:Substituting the transformed expression of pb into nb,1 and simplifying it, nb,1 can be written as:

由于pb<Nb,根据pb取值的奇偶性,nb,1可以进一步化简为:Since pb <Nb , according to the parity of pb values, nb,1 can be further simplified to:

不妨令则有nb,1=n′b,1mod Nb,本申请实施例将n′b,1称为第三索引号算子。因此,终端可以先计算第三索引号算子n′b,1,再对Nb取模,得到第二索引号算子。由于第三索引号算子满足关系式-Nb<n′b,1<Nb,所以对Nb的取模运算可以分情况讨论,简化为:May as well Then nb,1 =n′b,1 mod Nb , and in the embodiment of the present application, n′b,1 is referred to as the third index operator. Therefore, the terminal can first calculate the third index operator n′b,1 , and then take the modulus of Nb to obtain the second index operator. Since the third index operator satisfies the relationship -Nb <n′b,1 <Nb , the modulus operation of Nb can be discussed in different cases and simplified as:

终端只需根据n′b,1的正负性确定nb,1,无需进行真正的取模运算。The terminal only needs to determine n b,1 according to the positivity of n′b,1 without performing a real modulo operation.

可见,上述第二索引号算子nb,1的计算过程中,关键在于pb的计算。由于当b≤bhop时,nb,1=0,因此实际需要考虑进行计算的b的取值范围为bhop<b≤BSRS。例如,当bhop=0,BSRS=3时,根据pb的计算式以及公式2,有:It can be seen that the key to the calculation of the second index operator nb,1 is the calculation of pb . Since when b≤bhop , nb,1 = 0, the value range of b that needs to be considered for calculation is bhop <b≤BSRS . For example, when bhop = 0 and BSRS = 3, according to the calculation formula of pb And formula 2, we have:

p1=nSRSmodN1p1 = nSRS mod N1

所以,pb也可以采用迭代的方式计算。此处令thop=nSRS,当bhop<b≤BSRS,即bhop+1≤b≤BSRS时,依次计算:Therefore, pb can also be calculated in an iterative manner. Here, let thop = nSRS , when bhop <b≤BSRS , that is, bhop +1≤b≤BSRS , calculate in sequence:

pb=tb-1modNb=tb-1-tbNbpb =tb-1 modNb =tb-1 -tb Nb

可见,与第一索引号算子的计算过程类似,第二索引号算子的计算只需考虑迭代计算tb的过程中,对Nb各种可能的取值的整除。由于整除实现方法与第一索引号算子计算过程中的整除实现方法类似,其推导过程此处不再赘述。根据表1中Nb的各种取值可知,除数c涉及的取值同样为3、5、7、9、11、13、15、17、19、23这10种(此处分解Nb=2n·c),但此处被除数a的取值范围为0≤a≤nSRS,终端也需另外存储10组转化参数。It can be seen that, similar to the calculation process of the first index number operator, the calculation of the second index number operator only needs to consider the integer division of various possible values of Nb during the iterative calculation of tb . Since the integer division implementation method is similar to the integer division implementation method in the calculation process of the first index number operator, its derivation process is not repeated here. According to the various values of Nb in Table 1, the values involved in the divisor c are also 3, 5, 7, 9, 11, 13, 15, 17, 19, and 23 (here Nb =2n ·c), but the value range of the dividend a here is 0≤a≤nSRS , and the terminal also needs to store 10 sets of conversion parameters.

三、在求出第一索引号算子nb,0和第二索引号算子nb,1的值后,终端即可计算带宽索引号nb的值为nb=(nb,0+nb,1)modNb,0≤b≤BSRS。因为0≤nb,0≤Nb,并且0≤nb,1≤Nb,所以0≤nb,0+nb,1≤2Nb。此时,对Nb的取模运算可以通过分情况讨论的方式进行简化,得到:3. After obtaining the values of the first index operatornb,0 and the second index operatornb,1 , the terminal can calculate the value of the bandwidth indexnb asnb = (nb,0 +nb,1 )modNb ,0≤b≤BSRS . Because0≤nb,0≤Nb, and0≤nb,1≤Nb, 0≤nb,0 +nb,1≤2Nb. At this time, the modulo operation ofNb can be simplified by discussing the different cases, and the result is:

最后,根据带宽索引号nb的值可以计算SRS频域起始位置k0Finally, the SRS frequency domain starting position k0 can be calculated according to the value of the bandwidth index number nb :

SRS的发送包括使能跳频和禁止跳频两种。基于上述推导结果可知,在使能跳频的情况下,带宽索引号nb由第一索引号算子nb,0和第二索引号算子nb,1两部分组成,终端需分别对第一基准迭代算子和第二基准迭代算子进行迭代运算,得到第一索引号算子和第二索引号算子,进而得到带宽索引号。请参考图3,其示出了本申请另一个示例性实施例提供的探测信号的发送方法的流程图。本申请实施例以该方法由终端中的基带芯片执行为例进行说明。在带宽配置参数指示使能跳频的情况下,该方法包括如下步骤:The transmission of SRS includes two types: enabling frequency hopping and disabling frequency hopping. Based on the above derivation results, it can be known that when frequency hopping is enabled, the bandwidth index numbernb is composed of two parts: the first index number operatornb,0 and the second index number operatornb,1. The terminal needs to iterate the first benchmark iteration operator and the second benchmark iteration operator respectively to obtain the first index number operator and the second index number operator, and then obtain the bandwidth index number. Please refer to Figure 3, which shows a flowchart of a method for sending a detection signal provided by another exemplary embodiment of the present application. The embodiment of the present application takes the method being executed by a baseband chip in a terminal as an example to illustrate. When the bandwidth configuration parameter indicates that frequency hopping is enabled, the method includes the following steps:

步骤301,基于基站下发的第一带宽配置参数确定目标转化参数,第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,目标转化参数是用于通过非除法运算得到除法运算结果的参数。Step 301, determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station. The first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process. The target conversion parameter is a parameter used to obtain a division operation result through a non-division operation.

在一种可能的实施方式中,基站发送的第一带宽配置参数中包括目标小区带宽序号CSRS。终端基于目标小区带宽序号CSRS查询带宽配置表(如表1所示),可以得到对应一行mSRS,b以及Nb的取值。由于本申请实施例中,终端只需计算出基准迭代算子,即可基于相邻终端带宽序号对应的迭代算子之间的整除迭代关系,得到中b在各种取值情况下的带宽索引号nb。例如计算出后,即可依据关系式和nb,0=qb mod Nb=qb-qb-1Nb,根据Nb逐步计算出q2、q1、q0,以及对应的第一基准迭代算子n2,0、n1,0、n0,0。因此终端只需确定终端带宽序号取基准值时的mSRS,b以及各个终端带宽序号取值情况下的Nb,无需确定所有mSRS,b对应的转换参数。基于基准迭代算子进行迭代运算得到带宽索引号的过程可以参考下述步骤302。In a possible implementation, the first bandwidth configuration parameter sent by the base station includes the target cell bandwidth numberCSRS . The terminal queries the bandwidth configuration table (as shown in Table 1) based on the target cell bandwidth numberCSRS , and can obtain the values ofmSRS,b andNb corresponding to a row. In the embodiment of the present application, the terminal only needs to calculate the reference iteration operator, and can obtain the integer division iteration relationship between the iteration operators corresponding to the bandwidth numbers of adjacent terminals. The bandwidth index number nb for various values of b in . For example, Then, according to the relation and nb,0 =qb mod Nb =qb -qb-1 Nb , q2 , q1 , q0 , and the corresponding first reference iteration operators n2,0 , n1,0 , n0,0 are calculated step by step according to Nb . Therefore, the terminal only needs to determine mSRS,b when the terminal bandwidth number takes the reference value and Nb when each terminal bandwidth number takes the value, and does not need to determine the conversion parameters corresponding to all mSRS,b . The process of performing iterative calculation based on the reference iteration operator to obtain the bandwidth index number can refer to the following step 302.

步骤301的具体实施方式可以参考上述步骤201,本申请实施例在此不再赘述。The specific implementation of step 301 can refer to the above step 201, and the embodiment of the present application will not be repeated here.

步骤302,基于目标转化参数以及第二带宽配置参数确定带宽索引号,带宽索引号用于指示带宽树结构中的频域位置。Step 302: Determine a bandwidth index number based on the target conversion parameter and the second bandwidth configuration parameter, where the bandwidth index number is used to indicate a frequency domain position in the bandwidth tree structure.

基于频域位置偏移值的计算公式可知,要得到频域位置偏移值,首先需要计算b在各种取值下(即终端带宽序号BSRS在各种取值下)的带宽索引号nb。基于带宽索引号nb的计算公式可知,带宽索引号nb可转换为迭代算子qb与信号频带数Nb之间的整除,而相邻终端带宽序号对应的带宽索引号计算式中的迭代算子之间(qb与qb-1之间)存在整除迭代关系。例如:Calculation formula based on frequency domain position offset value It can be seen that to obtain the frequency domain position offset value, it is first necessary to calculate the bandwidth index numbernb under various values of b (that is, the terminal bandwidth sequence number BSRS under various values). The calculation formula based on the bandwidth index numbernb is It can be seen that the bandwidth index numbernb can be converted into an integer division between the iteration operatorqb and the number of signal frequency bandsNb , and there is an integer division iteration relationship between the iteration operators in the bandwidth index number calculation formula corresponding to the bandwidth serial numbers of adjacent terminals (betweenqb andqb-1 ). For example:

nb,0=qb mod Nb=qb-qb-1Nbnb,0 =qb mod Nb =qb -qb-1 Nb

因此,终端可基于终端带宽序号为基准值时的mSRS,b以及各种Nb对应的目标转换参数,先计算基准迭代算子,再进行迭代运算得到b在各种取值下的带宽索引号。Therefore, the terminal may calculate the reference iteration operator based on mSRS,b when the terminal bandwidth sequence number is the reference value and the target conversion parameters corresponding to various Nb , and then perform iterative operations to obtain the bandwidth index number under various values of b.

在一种可能的实施方式中,第一带宽配置参数包括目标小区带宽序号,第二带宽配置参数包括目标终端带宽序号以及频域位置索引参数,其中,终端带宽序号及小区带宽序号共同指示探测参考信号所占用的探测资源块数量以及信号频带数,频域位置索引参数用于指示频域基准位置。步骤302具体包括如下步骤302a至步骤302b:In a possible implementation, the first bandwidth configuration parameter includes a target cell bandwidth serial number, and the second bandwidth configuration parameter includes a target terminal bandwidth serial number and a frequency domain position index parameter, wherein the terminal bandwidth serial number and the cell bandwidth serial number jointly indicate the number of detection resource blocks and the number of signal frequency bands occupied by the detection reference signal, and the frequency domain position index parameter is used to indicate the frequency domain reference position. Step 302 specifically includes the following steps 302a to 302b:

步骤302a,基于目标转化参数以及第二带宽配置参数确定基准迭代算子。Step 302a: determining a reference iteration operator based on the target conversion parameter and the second bandwidth configuration parameter.

其中,基准迭代算子是指终端带宽序号为基准值时的迭代算子,迭代算子为频域位置索引参数对探测资源块数量的整除算子,或发送时机计数值对信号频带数的整除算子,发送时机计数值指示探测参考信号的已发射次数。Among them, the benchmark iteration operator refers to the iteration operator when the terminal bandwidth number is the benchmark value, the iteration operator is the integer divisor of the frequency domain position index parameter on the number of detection resource blocks, or the integer divisor of the sending opportunity count value on the number of signal frequency bands, and the sending opportunity count value indicates the number of times the detection reference signal has been transmitted.

由上述化简得到的公式nb=(nb,0+nb,1)mod Nb可知,带宽索引号nb分为两部分,即第一索引号算子nb,0和第二索引号算子nb,1。因此终端需分别计算第一索引号算子nb,0的基准迭代算子,以及第二索引号算子nb,1的基准迭代算子。From the simplified formula nb =(nb,0 +nb,1 )mod Nb, it can be seen that the bandwidth index nb is divided into two parts, namely the first index operator nb,0 and the second index operator nb,1 . Therefore, the terminal needs to calculate the reference iteration operator of the first index operator nb,0 and the reference iteration operator of the second index operator nb,1 respectively.

对于第一索引号算子相邻终端带宽序号下的第一索引号算子之间存在整除迭代关系:nb,0=qb mod Nb=qb-qb-1Nb。因此在计算出一个迭代算子qb后,即可逐步计算出相邻的迭代算子qb-1或qb+1,最终得到b在各种取值下的第一索引号算子nb,0。(基于表1可知b的取值范围为0、1、2、3)。For the first index operator There is an integer division iteration relationship between the first index number operators under the bandwidth sequence numbers of adjacent terminals: nb,0 = qb mod Nb = qb -qb-1 Nb . Therefore, after calculating an iterative operator qb , the adjacent iterative operators qb-1 or qb+1 can be calculated step by step, and finally the first index operator nb,0 under various values of b is obtained. (Based on Table 1, it can be known that the value range of b is 0, 1, 2, 3).

同样的,对于第二索引号算子nb,1Similarly, for the second index operator nb,1 :

可见,第二索引号算子nb,1的计算过程中,关键在于pb的计算。而相邻终端带宽序号下的pb之间存在整除迭代关系:pb=tb-1modNb=tb-1-tbNb。因此,在计算出一个迭代算子tb后,即可逐步计算出相邻的迭代算子tb-1,最终得到b在各种取值下的第一索引号算子nb,0It can be seen that the key to the calculation of the second index operatornb,1 is the calculation ofpb . There is an integer division iteration relationship betweenpb under adjacent terminal bandwidth numbers: pb = tb-1 modNb = tb-1 -tb Nb . Therefore, after calculating an iterative operator tb , the adjacent iterative operators tb-1 can be calculated step by step, and finally the first index number operator nb,0 under various values of b can be obtained.

上述基准迭代算子的计算以及后续对基准迭代算子的整除迭代运算,均可通过目标转化参数对应的非除法运算实现。The calculation of the above-mentioned benchmark iterative operator and the subsequent integer division iterative operation on the benchmark iterative operator can be realized by the non-division operation corresponding to the target transformation parameter.

步骤302b,基于终端带宽序号在不同取值下的迭代算子之间的迭代关系,对基准迭代算子进行迭代运算,得到带宽索引号。Step 302b: based on the iterative relationship between iterative operators under different values of the terminal bandwidth sequence number, perform iterative operation on the reference iterative operator to obtain a bandwidth index number.

步骤303,基于带宽索引号确定频域位置偏移值。Step 303: Determine a frequency domain position offset value based on the bandwidth index number.

终端计算得到b在各种取值情况下的带宽索引号nb后,基于带宽索引号nb、每个RB中的子载波个数(固定值12)以及b在各种取值情况下的mSRS,b,即可计算得到频域位置偏移值After the terminal calculates the bandwidth index numbernb for various values of b, it calculates the bandwidth index number nb based on the bandwidth index numbernb and the number of subcarriers in each RB. (fixed value 12) and mSRS,b under various values of b , the frequency domain position offset value can be calculated

步骤304,基于频域基准位置以及频域位置偏移值,确定频域起始位置。Step 304: Determine the frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value.

步骤305,按照频域起始位置,向基站发送探测参考信号。Step 305: Send a sounding reference signal to the base station according to the starting position in the frequency domain.

步骤304至步骤305的具体实施方式可以参考上述步骤203至步骤204,本申请实施例在此不再赘述。The specific implementation of step 304 to step 305 can refer to the above-mentioned step 203 to step 204, and the embodiment of the present application will not be repeated here.

本申请实施例中,通过计算基准迭代算子,并基于相邻终端带宽序号对应的迭代算子之间的迭代关系,得到频域位置偏移值计算式中b在各种取值情况下的带宽索引号,无需依次完整执行带宽索引号的计算过程。并且,基准迭代算子的计算以及后续的迭代运算中的整除,均可以通过目标转化参数和非除法运算实现。因此,能够大幅度减少运算量,降低了计算复杂度。In the embodiment of the present application, by calculating the reference iteration operator and based on the iteration relationship between the iteration operators corresponding to the bandwidth numbers of adjacent terminals, the frequency domain position offset value calculation formula is obtained: The bandwidth index number of b in various value cases does not need to perform the calculation process of the bandwidth index number in sequence. In addition, the calculation of the benchmark iteration operator and the integer division in the subsequent iteration operation can be realized through the target conversion parameter and non-division operation. Therefore, the amount of calculation can be greatly reduced and the calculation complexity is reduced.

由于带宽索引号nb分为两部分,即第一索引号算子nb,0和第二索引号算子nb,1。因此终端需分别计算第一索引号算子nb,0的基准迭代算子,以及第二索引号算子nb,1的基准迭代算子。Since the bandwidth index numbernb is divided into two parts, namely the first index number operatornb,0 and the second index number operatornb,1 , the terminal needs to calculate the reference iteration operator of the first index number operatornb,0 and the reference iteration operator of the second index number operatornb,1 respectively.

请参考图4,其示出了本申请另一个示例性实施例提供的探测信号的发送方法的流程图。本申请实施例以该方法由终端中的基带芯片执行为例进行说明。在带宽配置参数指示使能跳频的情况下,该方法包括如下步骤:Please refer to Figure 4, which shows a flow chart of a method for sending a detection signal provided by another exemplary embodiment of the present application. The present application embodiment takes the method executed by a baseband chip in a terminal as an example. When the bandwidth configuration parameter indicates that frequency hopping is enabled, the method includes the following steps:

步骤401,基于基站下发的第一带宽配置参数确定目标转化参数,第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,目标转化参数是用于通过非除法运算得到除法运算结果的参数。Step 401, determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station. The first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process. The target conversion parameter is a parameter used to obtain a division operation result through a non-division operation.

步骤401的具体实施方式可以参考上述步骤201,本申请实施例在此不再赘述。The specific implementation of step 401 can refer to the above step 201, and the embodiment of the present application will not be repeated here.

步骤402,基于目标转化参数以及第二带宽配置参数确定第一基准迭代算子,第一基准迭代算子为频域位置索引参数对探测资源块数量的整除算子。Step 402: determine a first reference iteration operator based on the target conversion parameter and the second bandwidth configuration parameter, where the first reference iteration operator is an integer division operator of the frequency domain position index parameter to the number of detection resource blocks.

第一索引号算子nb,0的表达式为对于b=3,满足:对于b=2,1,根据公式2可以推出:n1,0=nRPCmSRS,1/4modN2=nRPCmSRS,3/4/N3/N2modN1。可以看出,nb,0之间存在迭代关系,因此终端只需计算基准算子,然后通过迭代运算得到所需的nb,0。其中第一迭代算子为The expression of the first index operator nb,0 is For b=3, it satisfies: For b=2,1, according to formula 2, we can deduce: n1,0=nRPCmSRS,1/4modN2=nRPCmSRS,3/4/N3/N2modN1. It can be seen that there is an iterative relationship between nb,0, so the terminal only needs to calculate the reference operator and then obtain the required nb,0 through iterative operation. The first iterative operator is

可选的,终端以q3为第一基准迭代算子进行迭代计算,或者,终端基于另一种迭代计算公式,以q0为第一基准迭代算子进行迭代计算,或者,终端基于其它迭代计算公式,以中间的q1或q2为第一基准迭代算子进行迭代计算。本申请实施例对此不作限定。而第一基准迭代算子的计算可以参考推导过程,利用目标转化参数实现其中的除法运算。Optionally, the terminal performs iterative calculation with q3 as the first benchmark iterative operator, or the terminal performs iterative calculation with q0 as the first benchmark iterative operator based on another iterative calculation formula, or the terminal performs iterative calculation with the middle q1 or q2 as the first benchmark iterative operator based on other iterative calculation formulas. The embodiment of the present application is not limited to this. The calculation of the first benchmark iterative operator can refer to the derivation process, and the division operation therein can be implemented using the target conversion parameter.

示意性的,终端以q3为第一基准迭代算子进行迭代计算。首先,基于带宽配置参数中的探测资源块数量mSRS,3确定除数c,然后基于带宽配置参数中的频域位置索引参数nRRC确定被除数s,进而基于除数c对应的目标转化参数(N,M,L)计算即第一基准迭代算子q3的值。Indicatively, the terminal performs iterative calculation with q3 as the first benchmark iteration operator. First, the divisor c is determined based on the number of sounding resource blocks mSRS,3 in the bandwidth configuration parameter, and then the dividend s is determined based on the frequency domain position index parameter nRRC in the bandwidth configuration parameter, and then the target conversion parameter (N, M, L) corresponding to the divisor c is calculated. That is, the value of the first benchmark iteration operator q3 .

步骤403,基于目标转化参数以及发送时机计数值确定第二基准迭代算子,第二基准迭代算子为发送时机计数值对信号频带数的整除算子。Step 403: determine a second reference iteration operator based on the target conversion parameter and the sending opportunity count value, where the second reference iteration operator is an integer division operator of the sending opportunity count value to the number of signal frequency bands.

其中,第二基准迭代算子为信号发送计数值对信号频带数的整除算子。The second reference iteration operator is an integer division operator of the signal transmission count value to the number of signal frequency bands.

同样的,第二索引号算子nb,1的计算同样需要基于基准迭代算子的迭代运算。由上述推导过程可知,终端以tb为第二迭代算子,以t0为第二基准迭代算子,计算第二索引号算子nb,1中的重要项pb。其中,第二基准迭代算子t0等于信号发送时机计数值nSRS。其中信号发送时机计数值nSRS由终端基于历史SRS发送情况确定。Similarly, the calculation of the second index number operatornb,1 also requires an iterative operation based on the reference iteration operator. From the above derivation process, it can be seen that the terminal usestb as the second iteration operator andt0 as the second reference iteration operator to calculate the important itempb in the second index number operatornb,1 . The second reference iteration operatort0 is equal to the signal transmission opportunity count valuenSRS . The signal transmission opportunity count valuenSRS is determined by the terminal based on the historical SRS transmission situation.

值得一提的是,步骤402与步骤403之间并无严格的先后执行顺序。终端可以先执行步骤402后执行步骤403,也可以先执行步骤403,后执行步骤402,或者终端同时执行步骤402和步骤403本申请实施例对此不作限定。It is worth mentioning that there is no strict execution order between step 402 and step 403. The terminal may execute step 402 first and then step 403, or may execute step 403 first and then step 402, or the terminal may execute step 402 and step 403 simultaneously. The embodiment of the present application does not limit this.

步骤404,基于目标转化参数对第一基准迭代算子进行迭代运算,确定第一索引号算子。Step 404: perform an iterative operation on the first reference iteration operator based on the target conversion parameter to determine a first index number operator.

在一种可能的实施方式中,第一基准迭代算子对应的基准值为终端带宽序号取值范围内的最大值,即第一基准迭代算子对应的终端带宽序号为3,即终端以q3为第一基准迭代算子进行迭代运算,步骤404具体包括如下步骤404a至步骤404b:In a possible implementation, the reference value corresponding to the first reference iteration operator is the maximum value within the value range of the terminal bandwidth sequence number, that is, the terminal bandwidth sequence number corresponding to the first reference iteration operator is 3, that is, the terminal performs iterative operation with q3 as the first reference iteration operator, and step 404 specifically includes the following steps 404a to 404b:

步骤404a,基于第i个第一迭代算子,以及第i个终端带宽序号对应的目标转化参数,生成第i-1个第一迭代算子。第i个第一迭代算子是基于目标转化参数对第一基准迭代算子或第i+1个第一迭代算子进行一轮迭代运算得到的,i为正整数。Step 404a, based on the i-th first iteration operator and the target conversion parameter corresponding to the i-th terminal bandwidth sequence number, generate the i-1-th first iteration operator. The i-th first iteration operator is obtained by performing a round of iterative operation on the first reference iteration operator or the i+1-th first iteration operator based on the target conversion parameter, where i is a positive integer.

基于预先推导得到的迭代计算公式终端以第一基准迭代算子q3为第一个第一迭代算子,计算得到第二个第一迭代算子其中除法运算同样通过除数c对应的目标转化参数实现,除数c满足N3=2n·c,被除数s满足可通过对第一基准迭代算子q3的移位操作得到。Based on the iterative calculation formula derived in advance The terminal uses the first benchmark iteration operator q3 as the first first iteration operator and calculates the second first iteration operator The division operation is also implemented by the target conversion parameter corresponding to the divisor c, where the divisor c satisfies N3 = 2n · c and the dividend s satisfies It can be obtained by shifting the first base iterative operator q3 .

以此类推,终端基于第i个第一迭代算子qi,以及第i个终端带宽序号对应的目标转化参数(即基于Ni得到的除数c所对应的目标转化参数),生成第i-1个第一迭代算子qi-1By analogy, the terminal generates the i-1th first iteration operator qi-1 based on the i-th first iteration operatorqiand the target conversion parameter corresponding to the i-th terminal bandwidth sequence number (ie, the target conversion parameter corresponding to the divisor c obtained based onNi ).

步骤404b,在i-1的值与目标终端带宽序号一致的情况下,将所述第i个第一迭代算子对应的第i个索引号算子确定为第一索引号算子。Step 404b: When the value of i-1 is consistent with the target terminal bandwidth sequence number, the i-th index number operator corresponding to the i-th first iteration operator is determined as the first index number operator.

当计算到qi-1,且i-1与目标终端带宽序号BSRS一致时,终端停止迭代运算,并基于qi-1确定第一索引号算子ni-1,0(即需要计算的nb,0)。ni-1,0=qi-qi-1NiWhen qi-1 is calculated and i-1 is consistent with the target terminal bandwidth sequence number BSRS , the terminal stops the iterative operation and determines the first index number operator ni-1,0 (ie, nb,0 to be calculated) based on qi-1 . ni-1,0 = qi-qi-1 Ni .

在另一种可能的实施方式中,第一基准迭代算子对应的基准值为终端带宽序号取值范围内的最小值,即第一基准迭代算子对应的终端带宽序号为0,即终端以q0为第一基准迭代算子进行迭代运算,步骤404具体包括如下步骤404c至步骤404d:In another possible implementation, the reference value corresponding to the first reference iteration operator is the minimum value within the value range of the terminal bandwidth sequence number, that is, the terminal bandwidth sequence number corresponding to the first reference iteration operator is 0, that is, the terminal performs iterative operation with q0 as the first reference iteration operator, and step 404 specifically includes the following steps 404c to 404d:

步骤404c,基于第i个第一迭代算子,以及第i个终端带宽序号对应的目标转化参数,生成第i+1个第一迭代算子,第i个第一迭代算子是基于目标转化参数对第一基准迭代算子或第i-1个第一迭代算子进行一轮迭代运算得到的,i为正整数。Step 404c, based on the i-th first iteration operator and the target conversion parameter corresponding to the i-th terminal bandwidth sequence number, generate the i+1-th first iteration operator, the i-th first iteration operator is obtained by performing a round of iterative operation on the first benchmark iteration operator or the i-1-th first iteration operator based on the target conversion parameter, and i is a positive integer.

步骤404d,在i+1的值与目标终端带宽序号一致的情况下,将第i+1个第一迭代算子对应的第i+1个索引号算子确定为第一索引号算子。Step 404d: When the value of i+1 is consistent with the target terminal bandwidth sequence number, the i+1th index number operator corresponding to the i+1th first iteration operator is determined as the first index number operator.

上文的方案中nb,0的迭代计算从b=3开始,也可以采用另一种方案,从b=0开始计算。In the above scheme, the iterative calculation of nb,0 starts from b=3. Another scheme may be adopted, in which the calculation starts from b=0.

对于b=0,因为N0固定取值为1,有:For b = 0, since N0 is fixed to 1, we have:

对于b=1,2,…,BSRS,根据公式1有:For b=1,2,…,BSRS , according to Formula 1:

所以,nb,0的计算也可以采用如下方式:Therefore, nb,0 can also be calculated as follows:

首先计算:First calculate:

r′0=nRRC mod(mSRS,0/4)=nRRC-q′0(mSRS,0/4)r′0 =nRRC mod(mSRS,0 /4)=nRRC -q′0 (mSRS,0 /4)

然后,依次迭代计算b=1,2,…,BSRS时nb,0的值。根据公式3可以推出:Then, the value of nb,0 is calculated iteratively when b=1, 2, …, BSRS . According to formula 3, it can be deduced that:

则迭代计算式为:The iterative calculation formula is:

r′b=r′b-1 mod(mSRS,b/4)=r′b-1-q′b(mSRS,b/4)r′b =r′b-1 mod(mSRS, b /4) = r′b-1 -q′b (mSRS, b /4)

得到nb,0=q′b,1≤b≤BSRSIt is obtained that nb,0 =q′b , 1≤b≤BSRS .

计算中需要考虑对mSRS,b/4各种取值的整除。整除实现方法与上文方案中的方法类似,但根据表1可知,需要考虑的所有可能的除数取值是3,5,7,9,11,13,15,17,19,21,23,27,33这13种,因此需要存储13组整转化参数。The calculation needs to consider the integer divisibility of various values of mSRS,b /4. The integer divisibility implementation method is similar to the method in the above scheme, but according to Table 1, all possible divisor values that need to be considered are 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, and 33, so 13 sets of integer conversion parameters need to be stored.

步骤405,基于目标转化参数对第二基准迭代算子进行迭代运算,确定第二索引号算子。Step 405 , iteratively calculate the second reference iteration operator based on the target conversion parameter to determine the second index number operator.

基于上述推导,第二索引号算子nb,1的计算同样需要基于一个基准迭代算子进行迭代运算。在一种可能的实施方式中,步骤405具体包括如下步骤405a至步骤405c:Based on the above derivation, the calculation of the second index number operator nb,1 also needs to be iteratively calculated based on a reference iteration operator. In a possible implementation, step 405 specifically includes the following steps 405a to 405c:

步骤405a,对第二基准迭代算子进行迭代运算,生成目标终端带宽序号对应的第二迭代算子。Step 405a: perform iterative operation on the second reference iterative operator to generate a second iterative operator corresponding to the target terminal bandwidth sequence number.

参考上述推导过程,终端以thop=nSRS为第二基准迭代算子,基于目标转化参数,依次计算即目标终端带宽序号对应的第二迭代算子,从而得到pb=tb-1 modWb=tb-1-tbWb。进而基于pb得到第三索引号算子Referring to the above derivation process, the terminal uses thop = nSRS as the second benchmark iteration operator and calculates in sequence based on the target conversion parameter That is, the second iteration operator corresponding to the target terminal bandwidth serial number, thereby obtaining pb = tb-1 mod Wb = tb-1 -t b Wb . Then, based on pb, the third index number operator is obtained:

基于本申请提出的整除实现方法,步骤405a包括如下步骤一至步骤二:Based on the integer division implementation method proposed in this application, step 405a includes the following steps 1 and 2:

步骤一,基于第i个第二迭代算子以及第i+1个终端带宽序号对应的目标转化参数,生成第i+1个第二迭代算子。Step 1: Generate the i+1th second iteration operator based on the i-th second iteration operator and the target conversion parameter corresponding to the i+1th terminal bandwidth sequence number.

其中第i个第二迭代算子是基于目标转化参数对第二基准迭代算子或第i-1个第二迭代算子进行一轮得待运算得到的,i为正整数。The i-th second iterative operator is obtained by performing a round of operation on the second benchmark iterative operator or the i-1-th second iterative operator based on the target conversion parameter, and i is a positive integer.

终端以第二基准迭代算子t0为第一个第二迭代算子,计算得到第二个第一迭代算子其中除法运算同样通过对除数x对应的目标转化参数实现,除数c满足N1=2n·c,被除数s满足可通过对第二基准迭代算子t0的移位操作得到。The terminal uses the second reference iteration operator t0 as the first second iteration operator and calculates the second first iteration operator The division operation is also implemented by converting the target parameters corresponding to the divisor x. The divisor c satisfies N1 = 2n · c, and the dividend s satisfies It can be obtained by shifting the second reference iteration operator t0 .

以此类推,终端基于第i个第二迭代算子ti,以及第i个终端带宽序号对应的目标转化参数(即基于Ni得到的除数c所对应的目标转化参数),生成第i+1个第一迭代算子ti+1By analogy, the terminal generates the (i+1)th first iteration operator ti+1 based on the (i)th second iteration operatorti and the target conversion parameter corresponding to the (i)th terminal bandwidth number (ie, the target conversion parameter corresponding to the divisor c obtained based onNi) .

步骤二,在i+1的值与目标终端带宽序号一致的情况下,将第i+1个终端带宽序号对应的第二迭代算子确定为目标终端带宽序号对应的第二迭代算子。Step 2: When the value of i+1 is consistent with the target terminal bandwidth number, the second iteration operator corresponding to the i+1th terminal bandwidth number is determined as the second iteration operator corresponding to the target terminal bandwidth number.

当计算到ti+1,且i+1与目标终端带宽序号BSRS一致时,终端停止迭代运算,并基于ti+1(即需要计算的tb)确定第二索引号算子ni+1,1(即需要计算的nb,1)。When ti+1 is calculated and i+1 is consistent with the target terminal bandwidth sequence numberBSRS , the terminal stops the iterative operation and determines the second index number operator ni+1,1 (ie, nb,1 to be calculated) based on ti+1 (ie, tb to be calculated).

步骤405b,基于目标终端带宽序号对应的第二迭代算子确定第三索引号算子,第三索引号算子是由目标终端带宽序号对应的第二迭代算子以及目标终端带宽序号经过加法、乘法、移位以及取整的结合运算得到的。Step 405b, determining a third index operator based on the second iteration operator corresponding to the target terminal bandwidth number, wherein the third index operator is obtained by combining the second iteration operator corresponding to the target terminal bandwidth number and the target terminal bandwidth number through addition, multiplication, shift and rounding operations.

终端确定出目标终端带宽序号对应的第二迭代算子tb后,得到第二索引号算子中的重要计算式pb=tb-1modNb=tb-1-tbNb,进而计算得到第三索引号算子其中对2的整除运算可以通过简单的移位操作实现。After the terminal determines the second iteration operator tb corresponding to the target terminal bandwidth sequence number, it obtains the important calculation formula pb = tb-1 mod Nb = tb-1 -t b Nb in the second index operator, and then calculates the third index operator The integer division operation of 2 can be achieved through a simple shift operation.

步骤405c,基于第三索引号算子的正负性,确定第二索引号算子。Step 405c: Determine the second index operator based on the positive or negative property of the third index operator.

基于上述推导内容,第三索引号算子的正负性决定了第二索引号算子的取值,步骤405c包括如下步骤三至步骤四:Based on the above derivation, the positivity of the third index operator determines the value of the second index operator. Step 405c includes the following steps 3 to 4:

步骤三,在第三索引号算子为非负数的情况下,将第三索引号算子确定为第二索引号算子。Step three: when the third index number operator is a non-negative number, determine the third index number operator as the second index number operator.

步骤四,在第三索引号算子为负数的情况下,将第三索引号算子与目标终端带宽序号之和确定为第二索引号算子。Step 4: When the third index number operator is a negative number, the sum of the third index number operator and the target terminal bandwidth sequence number is determined as the second index number operator.

由于,因此nb,1=n′b,1modNb。又由于第三索引号算子满足关系式-Nb<n′b,1<Nb,所以对Nb的取模运算可以分情况讨论,简化为:because, Therefore, nb,1 =n′b,1 modNb . Since the third index operator satisfies the relation -Nb <n′b,1 <Nb , the modulus operation on Nb can be discussed in different cases and simplified to:

因此,在第三索引号算子n′b,1为非负数的情况下,将第三索引号算子n′b,1确定为第二索引号算子nb,1;在第三索引号算子n′b,1为负数的情况下,将第三索引号算子n′b,1与目标终端带宽序号Nb之和确定为第二索引号算子nb,1Therefore, when the third index number operator n′b,1 is a non-negative number, the third index number operator n′b,1 is determined as the second index number operator nb,1 ; when the third index number operator n′b,1 is a negative number, the sum of the third index number operator n′b,1 and the target terminal bandwidth sequence number Nb is determined as the second index number operator nb,1 .

步骤406,基于第一索引号算子、第二索引号算子以及目标终端带宽序号对应的目标信号频带数,确定带宽索引号。Step 406: Determine a bandwidth index number based on the first index number operator, the second index number operator, and the number of target signal frequency bands corresponding to the target terminal bandwidth sequence number.

在求出第一索引号算子nb,0和第二索引号算子nb,1的值后,终端即可计算带宽索引号nb的值为nb=(nb,0+nb,1)modNb,0≤b≤BSRS。因为0≤nb,0≤Nb,并且0≤nb,1≤Nb,所以0≤nb,0+nb,1≤2Nb。此时,对Nb的取模运算可以通过分情况讨论的方式进行简化,得到:After obtaining the values of the first index operatornb,0 and the second index operatornb,1 , the terminal can calculate the value of the bandwidth indexnb asnb = (nb,0 +nb,1 )modNb , 0≤b≤BSRS . Because 0≤nb,0≤Nb , and 0≤nb,1≤Nb , 0≤nb,0 +nb,1≤2Nb . At this time, the modulo operation ofNb can be simplified by discussing the different cases, and the result is:

步骤407,基于带宽索引号确定频域位置偏移值。Step 407: Determine a frequency domain position offset value based on the bandwidth index number.

步骤408,基于频域基准位置以及频域位置偏移值,确定频域起始位置。Step 408: Determine the frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value.

步骤409,按照频域起始位置,向基站发送探测参考信号。Step 409: Send a sounding reference signal to the base station according to the starting position in the frequency domain.

步骤407至步骤409的具体实施方式可以参考上述步骤303至步骤305,本申请实施例在此不再赘述。The specific implementation of steps 407 to 409 can refer to the above steps 303 to 305, and the embodiments of the present application will not be repeated here.

本申请实施例中,通过存储转化参数,并基于转化参数与被除数之间的乘法、加法、移位、取整等简单运算的方式实现复杂的除法运算。并且,无论终端级配置参数的取值如何,终端均可以基于基准迭代参数,通过几组目标转化参数进行简单的迭代计算得到带宽索引号,大幅度减少了运算量,降低了计算复杂度。并且终端只需存储10组或13组转化参数即可满足各种带宽配置参数取值下的频域起始位置计算,无需较多的存储资源。In the embodiment of the present application, complex division operations are implemented by storing conversion parameters and performing simple operations such as multiplication, addition, shifting, and rounding between the conversion parameters and the dividend. Moreover, regardless of the value of the terminal-level configuration parameter, the terminal can obtain the bandwidth index number by performing simple iterative calculations based on several sets of target conversion parameters based on the benchmark iteration parameters, which greatly reduces the amount of calculation and reduces the calculation complexity. Moreover, the terminal only needs to store 10 or 13 sets of conversion parameters to satisfy the frequency domain starting position calculation under various bandwidth configuration parameter values, without requiring more storage resources.

请参考图5,其示出了本申请另一个示例性实施例提供的探测信号的发送方法的流程图。本申请实施例以该方法由终端中的基带芯片执行为例进行说明。在带宽配置参数指示禁用跳频的情况下,该方法包括如下步骤:Please refer to Figure 5, which shows a flow chart of a method for sending a detection signal provided by another exemplary embodiment of the present application. The present application embodiment takes the method executed by a baseband chip in a terminal as an example. When the bandwidth configuration parameter indicates that frequency hopping is disabled, the method includes the following steps:

步骤501,基于基站下发的第一带宽配置参数确定目标转化参数,第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,目标转化参数是用于通过非除法运算得到除法运算结果的参数。Step 501, determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station. The first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process. The target conversion parameter is a parameter used to obtain a division operation result through a non-division operation.

步骤502,基于目标转化参数以及第二带宽配置参数确定第一基准迭代算子,第一基准迭代算子为频域位置索引参数对探测资源块数量的整除算子。Step 502: determine a first reference iteration operator based on the target conversion parameter and the second bandwidth configuration parameter, where the first reference iteration operator is an integer division operator of the frequency domain position index parameter to the number of detection resource blocks.

步骤503,基于目标转化参数对第一基准迭代算子进行迭代运算,确定第一索引号算子。Step 503: Perform an iterative operation on the first reference iteration operator based on the target conversion parameter to determine a first index number operator.

步骤501至步骤503的具体实施方式可以参考上述步骤401至步骤404,本申请实施例在此不再赘述。The specific implementation of steps 501 to 503 can refer to the above steps 401 to 404, and the embodiments of the present application will not be repeated here.

步骤504,基于第一索引号算子确定带宽索引号。Step 504: Determine a bandwidth index based on the first index operator.

由于禁用跳频的情况下,各层带宽索引号nb=nb,0,因此终端将第一索引号算子确定为带宽索引号。When frequency hopping is disabled, the bandwidth index number of each layer nb = nb,0 , so the terminal determines the first index number operator as the bandwidth index number.

步骤505,基于带宽索引号确定频域位置偏移值。Step 505: determine a frequency domain position offset value based on the bandwidth index number.

步骤506,基于频域基准位置以及频域位置偏移值,确定频域起始位置。Step 506: Determine the frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value.

步骤507,按照频域起始位置,向基站发送探测参考信号。Step 507: Send a sounding reference signal to the base station according to the starting position in the frequency domain.

步骤505至步骤507的具体实施方式可以参考上述步骤303至步骤305,本申请实施例在此不再赘述。The specific implementation of steps 505 to 507 can refer to the above steps 303 to 305, and the embodiments of the present application will not be repeated here.

本申请实施例中,通过存储转化参数,并基于转化参数与被除数之间的乘法、加法、移位、取整等简单运算的方式实现复杂的除法运算,并且,无论终端级配置参数的取值如何,终端均可以基于基准迭代参数,通过几组目标转化参数进行简单的迭代计算得到带宽索引号,并基于参数的奇偶性分情况讨论进一步简化第二索引号算子的计算公式,大幅度减少了运算量,降低了计算复杂度。并且终端只需存储10组或13组转化参数即可满足所有的带宽配置参数,无需较多的存储资源。In the embodiment of the present application, complex division operations are implemented by storing conversion parameters and performing simple operations such as multiplication, addition, shifting, and rounding between conversion parameters and dividends. Moreover, regardless of the value of the terminal-level configuration parameters, the terminal can obtain the bandwidth index number by performing simple iterative calculations based on the benchmark iteration parameters and several sets of target conversion parameters, and further simplify the calculation formula of the second index number operator by discussing the parity of the parameters, which greatly reduces the amount of operations and the complexity of calculation. Moreover, the terminal only needs to store 10 or 13 sets of conversion parameters to meet all bandwidth configuration parameters, without requiring more storage resources.

结合上述各个实施例,SRS频域起始位置的计算过程可以大致总结为如下步骤:In combination with the above embodiments, the calculation process of the SRS frequency domain starting position can be roughly summarized as follows:

(1)采用迭代的方式计算第一索引号算子0≤b≤BSRS(1) Calculate the first index operator in an iterative manner 0≤b≤BSRS .

该步骤中首先可以计算然后当b=3,2,1时,依次计算nb,0=qb-qb-1Nb,而n0,0=0。禁用跳频时,各层的带宽索引号nb=nb,0,直接跳转至第(4)步;使能跳频时,继续执行第(2)步。或者,该步骤也可以采用第二种迭代计算方式,首先计算r′0=nRRC mod(mSRS,0/4)=nRRC-q′0(mSRS,0/4),然后依次迭代计算r′b=r′b-1 mod(mSRS,b/4)=r′b-1-q′b(mSRS,b/4),得到nb,0=q′bIn this step, we first calculate Then when b=3,2,1, calculate nb,0 = qb -qb-1 Nb , and n0,0 = 0. When frequency hopping is disabled, the bandwidth index number of each layer is nb = nb,0 , and the process directly jumps to step (4); when frequency hopping is enabled, the process continues to execute step (2). Alternatively, this step can also adopt the second iterative calculation method, first calculating r′0 =nRRC mod(mSRS,0 /4)=nRRC -q′0 (mSRS,0 /4), then iterate and calculate r′b =r′b-1 mod(mSRS,b /4)=r′b-1 -q′b (mSRS,b /4), and nb,0 =q′b .

(2)计算第二索引号算子nb,1。当0≤b≤bhop时,nb,1=0;当bhop+1≤b≤BSRS时,计算如下:(2) Calculate the second index number operator nb,1 . When 0≤b≤bhop , nb,1 =0; when bhop +1≤b≤BSRS , the calculation is as follows:

(2.1)采用迭代的方式计算令thop=nSRS,依次计算pb=tb-1-tbNb(2.1) Calculate using an iterative method Let thop = nSRS , calculate pb = tb - 1 -t b Nb .

(2.2)计算第三索引号算子(2.2) Calculate the third index operator

(2.3)基于第三索引号算子的正负性,计算第二索引号算子(2.3) Based on the positive and negative properties of the third index operator, calculate the second index operator

(3)计算带宽索引号(3) Calculate the bandwidth index number

(4)计算SRS频域起始位置(4) Calculate the starting position of the SRS frequency domain

上述计算过程中的除法运算均可通过对应的目标转化参数进行非除法运算实现。The division operations in the above calculation process can all be implemented by performing non-division operations through corresponding target conversion parameters.

图6是本申请一个示例性实施例提供的探测信号的发送装置的结构框图,该装置可以通过或硬件、或软件、或硬件与软件结合的方式实现上述任意实施例中所述提供的探测信号的发送方法。该装置包括如下结构。Fig. 6 is a structural block diagram of a detection signal sending device provided by an exemplary embodiment of the present application, and the device can implement the detection signal sending method provided in any of the above embodiments by hardware, software, or a combination of hardware and software. The device includes the following structure.

参数确定模块601,用于基于基站下发的第一带宽配置参数确定目标转化参数,所述第一带宽配置参数在频域位置计算过程中作为除数参与除法运算,所述目标转化参数是用于通过非除法运算得到除法运算结果的参数;A parameter determination module 601 is used to determine a target conversion parameter based on a first bandwidth configuration parameter sent by a base station, wherein the first bandwidth configuration parameter is used as a divisor in a division operation during a frequency domain position calculation process, and the target conversion parameter is a parameter used to obtain a division operation result through a non-division operation;

偏移值确定模块602,用于基于所述目标转化参数以及所述基站下发的第二带宽配置参数确定频域位置偏移值,所述频域位置偏移值表征信号发送时实际频域起始位置相对于所述基站指示的频域基准位置的偏移量;An offset value determination module 602 is used to determine a frequency domain position offset value based on the target conversion parameter and the second bandwidth configuration parameter sent by the base station, wherein the frequency domain position offset value represents an offset of an actual frequency domain starting position relative to a frequency domain reference position indicated by the base station when a signal is sent;

起始位置确定模块603,用于基于所述频域基准位置以及所述频域位置偏移值,确定频域起始位置;A starting position determination module 603, configured to determine a frequency domain starting position based on the frequency domain reference position and the frequency domain position offset value;

信号发送模块604,用于按照所述频域起始位置,向所述基站发送探测参考信号。The signal sending module 604 is used to send a sounding reference signal to the base station according to the frequency domain starting position.

可选的,所述偏移值确定模块602,还用于:Optionally, the offset value determining module 602 is further configured to:

基于所述目标转化参数以及所述第二带宽配置参数确定带宽索引号,所述带宽索引号用于指示带宽树结构中的频域位置;Determine a bandwidth index number based on the target conversion parameter and the second bandwidth configuration parameter, where the bandwidth index number is used to indicate a frequency domain position in a bandwidth tree structure;

基于所述带宽索引号确定所述频域位置偏移值。The frequency domain position offset value is determined based on the bandwidth index number.

可选的,所述第一带宽配置参数包括目标小区带宽序号,所述第二带宽配置参数包括目标终端带宽序号以及频域位置索引参数,其中,终端带宽序号及小区带宽序号共同指示所述探测参考信号所占用的探测资源块数量以及信号频带数,所述频域位置索引参数用于指示所述频域基准位置;Optionally, the first bandwidth configuration parameter includes a target cell bandwidth sequence number, and the second bandwidth configuration parameter includes a target terminal bandwidth sequence number and a frequency domain position index parameter, wherein the terminal bandwidth sequence number and the cell bandwidth sequence number jointly indicate the number of detection resource blocks and the number of signal frequency bands occupied by the detection reference signal, and the frequency domain position index parameter is used to indicate the frequency domain reference position;

所述偏移值确定模块602,还用于:The offset value determination module 602 is further configured to:

基于所述目标转化参数以及所述第二带宽配置参数确定基准迭代算子,所述基准迭代算子是指所述终端带宽序号为基准值时的迭代算子,所述迭代算子为所述频域位置索引参数对所述探测资源块数量的整除算子,或发送时机计数值对所述信号频带数的整除算子,所述发送时机计数值指示所述探测参考信号的已发射次数;Determine a reference iteration operator based on the target conversion parameter and the second bandwidth configuration parameter, the reference iteration operator refers to an iteration operator when the terminal bandwidth sequence number is a reference value, the iteration operator is an integer divisor of the frequency domain position index parameter by the number of sounding resource blocks, or an integer divisor of the sending opportunity count value by the number of signal frequency bands, the sending opportunity count value indicating the number of times the sounding reference signal has been transmitted;

基于所述终端带宽序号在不同取值下的迭代算子之间的迭代关系,对所述基准迭代算子进行迭代运算,得到所述带宽索引号。Based on the iterative relationship between iterative operators under different values of the terminal bandwidth sequence number, the reference iterative operator is iteratively calculated to obtain the bandwidth index number.

可选的,所述带宽配置参数指示使能跳频;Optionally, the bandwidth configuration parameter indicates enabling frequency hopping;

所述偏移值确定模块602,还用于:The offset value determination module 602 is further configured to:

基于所述目标转化参数以及所述第二带宽配置参数确定第一基准迭代算子,所述第一基准迭代算子为所述频域位置索引参数对所述探测资源块数量的整除算子;Determine a first benchmark iteration operator based on the target conversion parameter and the second bandwidth configuration parameter, where the first benchmark iteration operator is an integer division operator of the frequency domain position index parameter to the number of detection resource blocks;

基于所述目标转化参数以及所述发送时机计数值确定第二基准迭代算子,所述第二基准迭代算子为所述发送时机计数值对所述信号频带数的整除算子;Determine a second reference iteration operator based on the target conversion parameter and the sending opportunity count value, wherein the second reference iteration operator is an integer division operator of the sending opportunity count value to the number of signal frequency bands;

基于所述目标转化参数对所述第一基准迭代算子进行迭代运算,确定第一索引号算子;Iterate the first benchmark iteration operator based on the target conversion parameter to determine a first index number operator;

基于所述目标转化参数对所述第二基准迭代算子进行迭代运算,确定第二索引号算子;Iterate the second benchmark iteration operator based on the target conversion parameter to determine a second index number operator;

基于所述第一索引号算子、所述第二索引号算子以及所述目标终端带宽序号对应的目标信号频带数,确定所述带宽索引号。The bandwidth index number is determined based on the first index number operator, the second index number operator, and the number of target signal frequency bands corresponding to the target terminal bandwidth sequence number.

可选的,所述第一基准迭代算子对应的所述基准值为终端带宽序号取值范围内的最大值;Optionally, the reference value corresponding to the first reference iteration operator is a maximum value within a value range of a terminal bandwidth sequence number;

所述偏移值确定模块602,还用于:The offset value determination module 602 is further configured to:

基于第i个第一迭代算子,以及第i个终端带宽序号对应的所述目标转化参数,生成第i-1个第一迭代算子,所述第i个第一迭代算子是基于所述目标转化参数对所述第一基准迭代算子或第i+1个第一迭代算子进行一轮迭代运算得到的,i为正整数;Based on the i-th first iteration operator and the target conversion parameter corresponding to the i-th terminal bandwidth sequence number, generate an i-1-th first iteration operator, wherein the i-th first iteration operator is obtained by performing a round of iterative operation on the first benchmark iteration operator or the i+1-th first iteration operator based on the target conversion parameter, where i is a positive integer;

在i-1的值与所述目标终端带宽序号一致的情况下,将所述第i个第一迭代算子对应的第i个索引号算子确定为所述第一索引号算子。When the value of i-1 is consistent with the target terminal bandwidth sequence number, the i-th index number operator corresponding to the i-th first iteration operator is determined as the first index number operator.

可选的,所述第一基准迭代算子对应的所述基准值为终端带宽序号取值范围内的最小值;Optionally, the reference value corresponding to the first reference iteration operator is a minimum value within a range of terminal bandwidth sequence numbers;

所述偏移值确定模块602,还用于:The offset value determination module 602 is further configured to:

基于第i个第一迭代算子,以及第i个终端带宽序号对应的所述目标转化参数,生成第i+1个第一迭代算子,所述第i个第一迭代算子是基于所述目标转化参数对所述第一基准迭代算子或第i-1个第一迭代算子进行一轮迭代运算得到的,i为正整数;Based on the i-th first iteration operator and the target conversion parameter corresponding to the i-th terminal bandwidth sequence number, generate an i+1-th first iteration operator, wherein the i-th first iteration operator is obtained by performing a round of iterative operation on the first benchmark iteration operator or the i-1-th first iteration operator based on the target conversion parameter, where i is a positive integer;

在i+1的值与所述目标终端带宽序号一致的情况下,将所述第i+1个第一迭代算子对应的第i+1个索引号算子确定为所述第一索引号算子。When the value of i+1 is consistent with the target terminal bandwidth sequence number, the i+1th index number operator corresponding to the i+1th first iteration operator is determined as the first index number operator.

可选的,所述偏移值确定模块602,还用于:Optionally, the offset value determining module 602 is further configured to:

对所述第二基准迭代算子进行迭代运算,生成所述目标终端带宽序号对应的第二迭代算子;Iteratively operate the second benchmark iteration operator to generate a second iteration operator corresponding to the target terminal bandwidth sequence number;

基于所述目标终端带宽序号对应的第二迭代算子确定第三索引号算子,所述第三索引号算子是由所述目标终端带宽序号对应的第二迭代算子以及所述目标终端带宽序号经过加法、乘法、移位以及取整的结合运算得到的;Determine a third index number operator based on the second iteration operator corresponding to the target terminal bandwidth number, wherein the third index number operator is obtained by combining the second iteration operator corresponding to the target terminal bandwidth number and the target terminal bandwidth number through addition, multiplication, shift and integer operation;

基于所述第三索引号算子的正负性,确定所述第二索引号算子。Based on the positivity of the third index operator, the second index operator is determined.

可选的,所述偏移值确定模块602,还用于:Optionally, the offset value determining module 602 is further configured to:

基于第i个第二迭代算子以及第i+1个终端带宽序号对应的所述目标转化参数,生成第i+1个第二迭代算子,所述第i个第二迭代算子是基于所述目标转化参数对所述第二基准迭代算子或第i-1个第二迭代算子进行一轮得待运算得到的,i为正整数;Based on the i-th second iteration operator and the target conversion parameter corresponding to the i+1-th terminal bandwidth sequence number, generating the i+1-th second iteration operator, the i-th second iteration operator being obtained by performing a round of operation on the second reference iteration operator or the i-1-th second iteration operator based on the target conversion parameter, where i is a positive integer;

在i+1的值与所述目标终端带宽序号一致的情况下,将所述第i+1个终端带宽序号对应的所述第二迭代算子确定为所述目标终端带宽序号对应的第二迭代算子。When the value of i+1 is consistent with the target terminal bandwidth sequence number, the second iteration operator corresponding to the i+1th terminal bandwidth sequence number is determined as the second iteration operator corresponding to the target terminal bandwidth sequence number.

可选的,所述偏移值确定模块602,还用于:Optionally, the offset value determining module 602 is further configured to:

在所述第三索引号算子为非负数的情况下,将所述第三索引号算子确定为所述第二索引号算子;When the third index operator is a non-negative number, determining the third index operator as the second index operator;

在所述第三索引号算子为负数的情况下,将所述第三索引号算子与所述目标终端带宽序号之和确定为所述第二索引号算子。When the third index number operator is a negative number, the sum of the third index number operator and the target terminal bandwidth sequence number is determined as the second index number operator.

可选的,所述带宽配置参数指示禁用跳频;Optionally, the bandwidth configuration parameter indicates disabling frequency hopping;

所述偏移值确定模块602,还用于:The offset value determination module 602 is further configured to:

基于所述目标转化参数以及所述第二带宽配置参数确定第一基准迭代算子,所述第一基准迭代算子为所述频域位置索引参数对所述探测资源块数量的整除算子;Determine a first benchmark iteration operator based on the target conversion parameter and the second bandwidth configuration parameter, where the first benchmark iteration operator is an integer division operator of the frequency domain position index parameter to the number of detection resource blocks;

基于所述目标转化参数对所述第一基准迭代算子进行迭代运算,确定第一索引号算子;Iterate the first benchmark iteration operator based on the target conversion parameter to determine a first index number operator;

基于所述第一索引号算子确定所述带宽索引号。The bandwidth index number is determined based on the first index number operator.

可选的,所述目标转化参数用于通过加法运算、乘法运算以及移位运算,得到所述除法运算结果。Optionally, the target conversion parameter is used to obtain the division operation result through addition operation, multiplication operation and shift operation.

请参考图7,其示出了本申请一个示例性实施例提供的装置700的结构方框图。该装置700可以是智能手机、平板电脑、电子书、便携式个人计算机等安装并运行有应用程序的电子设备,也可以是设置在上述电子设备中的芯片。示例性的,本申请中的装置700可以包括一个或多个如下部件:处理器710和存储器720。Please refer to FIG. 7 , which shows a block diagram of a device 700 provided by an exemplary embodiment of the present application. The device 700 may be an electronic device such as a smart phone, a tablet computer, an e-book, a portable personal computer, etc., which has an application installed and running, or a chip set in the above electronic device. Exemplarily, the device 700 in the present application may include one or more of the following components: a processor 710 and a memory 720.

处理器710可以包括一个或者多个处理核心。处理器710利用各种接口和线路连接整个装置700内的各个部分,通过运行或执行存储在存储器720内的指令、程序、代码集或指令集,以及调用存储在存储器720内的数据,执行装置700的各种功能和处理数据。可选地,处理器710可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器710可以包括调制解调器,还可以进一步包括中央处理器(Central Processing Unit,CPU)、图形处理单元(Graphics ProcessingUnit,GPU)等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责屏幕所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。The processor 710 may include one or more processing cores. The processor 710 uses various interfaces and lines to connect various parts within the entire device 700, and executes various functions and processes data of the device 700 by running or executing instructions, programs, code sets or instruction sets stored in the memory 720, and calling data stored in the memory 720. Optionally, the processor 710 can be implemented in at least one hardware form of digital signal processing (DSP), field-programmable gate array (FPGA), and programmable logic array (PLA). The processor 710 may include a modem, and may further include a central processing unit (CPU), a graphics processing unit (GPU), etc., or a combination of several of them. Among them, the CPU mainly processes the operating system, user interface, and application programs; the GPU is responsible for rendering and drawing the content to be displayed on the screen; and the modem is used to process wireless communications.

存储器720可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory,ROM)。可选地,该存储器720包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器720可用于存储指令、程序、代码、代码集或指令集。存储器720可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等,该操作系统可以是Android系统(包括基于Android系统深度开发的系统)、苹果公司开发的IOS系统(包括基于IOS系统深度开发的系统)或其它系统。存储数据区还可以存储装置700在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。The memory 720 may include a random access memory (RAM) or a read-only memory (ROM). Optionally, the memory 720 includes a non-transitory computer-readable storage medium. The memory 720 may be used to store instructions, programs, codes, code sets or instruction sets. The memory 720 may include a storage program area and a storage data area, wherein the storage program area may store instructions for implementing an operating system, instructions for implementing at least one function (such as a touch function, a sound playback function, an image playback function, etc.), instructions for implementing the above-mentioned various method embodiments, etc. The operating system may be an Android system (including a system deeply developed based on an Android system), an IOS system developed by Apple (including a system deeply developed based on an IOS system) or other systems. The storage data area may also store data (such as a phone book, audio and video data, chat record data) created by the storage device 700 during use.

除此之外,本领域技术人员可以理解,上述附图所示出的装置700的结构并不构成对装置700的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。比如,装置700中还包括射频电路、拍摄组件、传感器、音频电路、Wi-Fi组件、电源、蓝牙组件等部件,在此不再赘述。In addition, those skilled in the art can understand that the structure of the device 700 shown in the above figures does not constitute a limitation on the device 700, and the terminal may include more or fewer components than shown, or combine certain components, or arrange the components differently. For example, the device 700 also includes a radio frequency circuit, a shooting component, a sensor, an audio circuit, a Wi-Fi component, a power supply, a Bluetooth component, and other components, which will not be described in detail here.

本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现如上各个实施例所述的探测参考信号的发送方法。An embodiment of the present application further provides a computer-readable storage medium, which stores at least one instruction, and the at least one instruction is loaded and executed by a processor to implement the method for sending a sounding reference signal as described in the above embodiments.

根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面的各种可选实现方式中提供的探测参考信号的发送方法。According to one aspect of the present application, a computer program product or a computer program is provided, the computer program product or the computer program including computer instructions, the computer instructions being stored in a computer-readable storage medium. A processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for sending a sounding reference signal provided in various optional implementations of the above aspects.

本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读存储介质中或者作为计算机可读存储介质上的一个或多个指令或代码进行传输。计算机可读存储介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。Those skilled in the art should be aware that in one or more of the above examples, the functions described in the embodiments of the present application can be implemented with hardware, software, firmware, or any combination thereof. When implemented using software, these functions can be stored in a computer-readable storage medium or transmitted as one or more instructions or codes on a computer-readable storage medium. Computer-readable storage media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another. The storage medium can be any available medium that a general or special-purpose computer can access.

需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。例如,本申请中涉及到的终端标识、位置信息等都是在充分授权的情况下获取的。It should be noted that the information (including but not limited to user device information, user personal information, etc.), data (including but not limited to data used for analysis, stored data, displayed data, etc.) and signals involved in this application are all authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data must comply with the relevant laws, regulations and standards of relevant countries and regions. For example, the terminal identification and location information involved in this application are all obtained with full authorization.

以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only an optional embodiment of the present application and is not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application shall be included in the protection scope of the present application.

Claims (13)

Determining a frequency domain position offset value based on the target conversion parameter and a second bandwidth configuration parameter issued by the base station, wherein the second bandwidth configuration parameter comprises a target terminal bandwidth sequence number and a frequency domain position index parameter, the frequency domain position offset value characterizes the offset of an actual frequency domain starting position relative to a frequency domain reference position indicated by the base station when a signal is transmitted, wherein the terminal bandwidth sequence number and a cell bandwidth sequence number jointly indicate the number of detection resource blocks occupied by the detection reference signal and the number of signal frequency bands, and the frequency domain position index parameter is used for indicating the frequency domain reference position;
The offset value determining module is configured to determine a frequency domain position offset value based on the target conversion parameter and a second bandwidth configuration parameter issued by the base station, where the second bandwidth configuration parameter includes a target terminal bandwidth sequence number and a frequency domain position index parameter, the frequency domain position offset value characterizes an offset of an actual frequency domain starting position relative to a frequency domain reference position indicated by the base station when a signal is sent, where the terminal bandwidth sequence number and a cell bandwidth sequence number indicate together a number of sounding resource blocks occupied by the sounding reference signal and a number of signal frequency bands, and the frequency domain position index parameter is used to indicate the frequency domain reference position;
CN202210844002.3A2022-07-182022-07-18Method, device, terminal and storage medium for sending sounding reference signalActiveCN115276937B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202210844002.3ACN115276937B (en)2022-07-182022-07-18Method, device, terminal and storage medium for sending sounding reference signal

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210844002.3ACN115276937B (en)2022-07-182022-07-18Method, device, terminal and storage medium for sending sounding reference signal

Publications (2)

Publication NumberPublication Date
CN115276937A CN115276937A (en)2022-11-01
CN115276937Btrue CN115276937B (en)2023-11-28

Family

ID=83766716

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210844002.3AActiveCN115276937B (en)2022-07-182022-07-18Method, device, terminal and storage medium for sending sounding reference signal

Country Status (1)

CountryLink
CN (1)CN115276937B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104283581A (en)*2013-07-012015-01-14中兴通讯股份有限公司Method and system for determining frequency hopping pattern of sounding reference signaling (SRS)
CN107911203A (en)*2017-08-112018-04-13华为技术有限公司 Method for sending and receiving reference signal, network device, terminal device and system
CN109883539A (en)*2019-02-282019-06-14中国海洋大学 Vibration signal processing method of offshore wind turbine based on adaptive OMP algorithm
CN111245556A (en)*2018-11-282020-06-05普天信息技术有限公司TBS (transport block size ratio) calculation method of 5GNR (generalized maximum likelihood ratio) and MACPDU (machine Access data Unit) multiplexing method and equipment
CN113381957A (en)*2020-02-112021-09-10马维尔亚洲私人有限公司Method and apparatus for decoding received uplink transmissions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8059524B2 (en)*2008-01-042011-11-15Texas Instruments IncorporatedAllocation and logical to physical mapping of scheduling request indicator channel in wireless networks
CN108632008B (en)*2017-03-242023-06-02华为技术有限公司Reference signal sending method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104283581A (en)*2013-07-012015-01-14中兴通讯股份有限公司Method and system for determining frequency hopping pattern of sounding reference signaling (SRS)
CN107911203A (en)*2017-08-112018-04-13华为技术有限公司 Method for sending and receiving reference signal, network device, terminal device and system
CN111245556A (en)*2018-11-282020-06-05普天信息技术有限公司TBS (transport block size ratio) calculation method of 5GNR (generalized maximum likelihood ratio) and MACPDU (machine Access data Unit) multiplexing method and equipment
CN109883539A (en)*2019-02-282019-06-14中国海洋大学 Vibration signal processing method of offshore wind turbine based on adaptive OMP algorithm
CN113381957A (en)*2020-02-112021-09-10马维尔亚洲私人有限公司Method and apparatus for decoding received uplink transmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NR系统同步和测量性能研究;孙瑶;中国优秀硕士学位论文全文数据库;全文*
R1-1905346_DL and UL Reference Signals for NR Positioning.3GPP tsg_ran\wg1_rl1.2019,全文.*

Also Published As

Publication numberPublication date
CN115276937A (en)2022-11-01

Similar Documents

PublicationPublication DateTitle
WO2019137057A1 (en)Resource indication method, terminal device, and network device
CN110999367B (en) Data transmission method, terminal and base station
US10873434B2 (en)Signal processing method and apparatus
WO2017185915A1 (en)Time-frequency resource allocation method and apparatus
US20190132177A1 (en)Signal Processing Method and Apparatus
JP6953519B2 (en) Communication method, terminal and network equipment
US11706786B2 (en)Wireless communication method, terminal device, and network device
US20230141169A1 (en)Sequence-based signal processing method and apparatus
WO2016119687A1 (en)Signal sending method, receiving method and device
CN114616860B (en) A modulation and coding scheme configuration method and device
CN114071766A (en)Resource scheduling method, device and equipment
WO2019052370A1 (en)Method and apparatus for transmitting data
US10999108B2 (en)Wireless communication method, apparatus, and system
CN115276937B (en)Method, device, terminal and storage medium for sending sounding reference signal
CN111181884A (en) Reference signal transmission method and device
CN102045085B (en)Sequence frequency hopping method and device based on ARNS (Aeronautical Radio Navigation Service)
CN111972020B (en)Resource allocation method and device
JP2022524937A (en) Control channel transmission method, equipment and storage media
US10681692B2 (en)Transmission resource mapping method and device
CN113037422B (en)Cell reference signal sending method, device, storage medium and computer equipment
WO2018157403A1 (en)Resource allocation method, determination method and apparatus
CN110100392B (en)Signal transmission method and base station
CN113015245A (en)Data sending processing method, data receiving processing method and equipment
CN116916453B (en)Time-frequency resource occupation indication method, device, communication equipment and storage medium
WO2018228296A1 (en)Method and apparatus for data transmission

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
TR01Transfer of patent right
TR01Transfer of patent right

Effective date of registration:20241107

Address after:6th Floor, No.1 Chongqing Road, Banqiao District, Xinbei City, Taiwan, China, China

Patentee after:Weiguang Co.,Ltd.

Country or region after:Samoa

Address before:Room 1501, 15 / F, building 2, No. 10 yard, Chaoyang Park South Road, Chaoyang District, Beijing

Patentee before:Zheku Technology (Beijing) Co.,Ltd.

Country or region before:China


[8]ページ先頭

©2009-2025 Movatter.jp