Movatterモバイル変換


[0]ホーム

URL:


CN115188656A - A kind of monolithic integrated material and preparation method thereof - Google Patents

A kind of monolithic integrated material and preparation method thereof
Download PDF

Info

Publication number
CN115188656A
CN115188656ACN202210652071.4ACN202210652071ACN115188656ACN 115188656 ACN115188656 ACN 115188656ACN 202210652071 ACN202210652071 ACN 202210652071ACN 115188656 ACN115188656 ACN 115188656A
Authority
CN
China
Prior art keywords
layer
substrate
aln
gan
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210652071.4A
Other languages
Chinese (zh)
Other versions
CN115188656B (en
Inventor
李国强
邢志恒
衣新燕
吴能滔
罗添友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUTfiledCriticalSouth China University of Technology SCUT
Priority to CN202210652071.4ApriorityCriticalpatent/CN115188656B/en
Publication of CN115188656ApublicationCriticalpatent/CN115188656A/en
Application grantedgrantedCritical
Publication of CN115188656BpublicationCriticalpatent/CN115188656B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The invention discloses a monolithic integrated material and a preparation method thereof, the monolithic integrated material can further reduce the volume of a radio frequency front-end module, and avoid the problems of parasitic loss, response delay, noise and the like caused by the integration of discrete devices of the front-end module; the preparation method of the monolithic integrated material is simple and efficient, lays a foundation for monolithic integration of the radio frequency front-end module, reduces the cost of the radio frequency front-end module by adopting the monolithic integrated material, and provides a new idea of integrated packaging compared with the existing various discrete packaging.

Description

Translated fromChinese
一种单片集成材料及其制备方法A kind of monolithic integrated material and preparation method thereof

技术领域technical field

本发明属于电子元器件材料领域,具体涉及一种单片集成材料及其制备方法。The invention belongs to the field of electronic component materials, in particular to a monolithic integrated material and a preparation method thereof.

背景技术Background technique

氮化镓高电子迁移率晶体管(GaN HEMT)和薄膜体声波谐振器(FBAR)是近年来随着现代无线通信技术的快速发展而出现的综合性能更加优越的射频器件。氮化镓高电子迁移率晶体管具有极高的品质因数Q值和可集成于IC芯片上的优点,并能与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺兼容,更加有利于器件制备工艺的优化和多种器件的集成。Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) and Thin Film Bulk Acoustic Resonators (FBARs) are radio frequency devices with superior comprehensive performance that have emerged with the rapid development of modern wireless communication technology in recent years. GaN high electron mobility transistors have the advantages of extremely high quality factor Q value and can be integrated on IC chips, and are compatible with complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) technology, which is more conducive to device preparation. Process optimization and integration of multiple devices.

随着5G移动通信技术的普及以及移动数据流量的激增,大数据时代也正在推动通信终端市场的增长,人们对数据传输速率提出的更高要求使得射频前端模块功能更加多样复杂化。现有的射频前端模块是通过将多个分立的芯片组件组装在单个层压板或PC板上构建而成,这种方法的缺点是不同芯片要互联在一起,连接不同的芯片会导致电气连接损失以及增加的装配复杂性、尺寸和成本。With the popularization of 5G mobile communication technology and the surge in mobile data traffic, the era of big data is also promoting the growth of the communication terminal market. People's higher requirements for data transmission rates make the functions of RF front-end modules more diverse and complex. Existing RF front-end modules are constructed by assembling multiple discrete chip assemblies on a single laminate or PC board. The disadvantage of this approach is that different chips are interconnected together, and connecting different chips results in loss of electrical connections As well as increased assembly complexity, size and cost.

单片集成技术解决了射频前端模块是通过多个分立芯片组件组装而成的问题,因此被用于优化改进电子通信射频前端模块。但现有的单片集成技术存在射频前端模块集成度差、损耗高、成本高等技术问题,因此有必要开发一种新的单片集成材料以解决上述问题。Monolithic integration technology solves the problem that the RF front-end module is assembled by multiple discrete chip components, so it is used to optimize and improve the electronic communication RF front-end module. However, the existing monolithic integration technology has technical problems of poor RF front-end module integration, high loss, and high cost. Therefore, it is necessary to develop a new monolithic integration material to solve the above problems.

发明内容SUMMARY OF THE INVENTION

为了克服上述现有技术存在的问题,本发明的目的之一在于提供一种单片集成材料;本发明的目的之二在于提供这种单片集成材料的制备方法;本发明的目的之三在于提供这种单片集成材料的应用。In order to overcome the above-mentioned problems in the prior art, one of the purposes of the present invention is to provide a monolithic integrated material; the second purpose of the present invention is to provide a method for preparing such a monolithic integrated material; the third purpose of the present invention is to Applications for this monolithic integrated material are provided.

为了实现上述目的,本发明所采取的技术方案是:In order to achieve the above object, the technical scheme adopted by the present invention is:

本发明第一方面提供一种单片集成材料,所述单片集成材料包括:A first aspect of the present invention provides a monolithic integrated material, the monolithic integrated material comprising:

衬底以及覆盖在所述衬底表面区域上的键合层;a substrate and a bonding layer overlying a surface area of the substrate;

形成于覆盖在所述键合层上的第一单晶层AlN;a first single crystal layer of AlN formed on the bonding layer;

形成于覆盖在所述第一单晶层AlN上的沟道层GaN;a channel layer GaN formed on the first single crystal layer AlN;

形成于覆盖在所述沟道层GaN上的异质结;forming a heterojunction overlying the channel layer GaN;

其中,所述衬底的表面具有凹槽;所述凹槽位于所述衬底靠近所述第一单晶层AlN的表面上;所述单片集成材料还包括布拉格反射层,所述布拉格反射层嵌入在所述凹槽与所述第一单晶层AlN之间,且所述布拉格反射层贯通键合层。Wherein, the surface of the substrate has grooves; the grooves are located on the surface of the substrate close to the first single crystal layer of AlN; the monolithic integrated material further includes a Bragg reflection layer, the Bragg reflection A layer is embedded between the groove and the first single crystal layer of AlN, and the Bragg reflection layer penetrates through the bonding layer.

优选的,所述键合层包括Au、Sn、Cr、Ti、Pt、Ni中的至少一种;进一步优选的,所述键合层包括Au、Sn中的至少一种。Preferably, the bonding layer includes at least one of Au, Sn, Cr, Ti, Pt, and Ni; further preferably, the bonding layer includes at least one of Au and Sn.

优选的,所述布拉格反射层包括SiO2、AlN、W、GaN中的至少一种;进一步优选的,所述布拉格反射层为SiO2Preferably, the Bragg reflection layer includes at least one of SiO2 , AlN, W, and GaN; further preferably, the Bragg reflection layer is SiO2 .

优选的,所述第一单晶层AlN的厚度为0.01μm-10μm;进一步优选的,所述第一单晶层AlN的厚度为0.1μm-5μm;再进一步优选的,所述第一单晶层AlN的厚度为0.5μm-3μm。Preferably, the thickness of the first single crystal layer of AlN is 0.01 μm-10 μm; further preferably, the thickness of the first single crystal layer of AlN is 0.1 μm-5 μm; even more preferably, the first single crystal layer The thickness of the layer AlN is 0.5 μm-3 μm.

优选的,所述沟道层GaN的厚度为0.5μm-15μm;进一步优选的,所述沟道层GaN的厚度为1μm-10μm。Preferably, the thickness of the channel layer GaN is 0.5 μm-15 μm; further preferably, the thickness of the channel layer GaN is 1 μm-10 μm.

优选的,所述异质结的厚度为2nm-40nm;进一步优选的,所述异质结的厚度为3nm-30nm;再进一步优选的,所述异质结的厚度为5nm-20nm。Preferably, the thickness of the heterojunction is 2 nm-40 nm; further preferably, the thickness of the heterojunction is 3 nm-30 nm; still further preferably, the thickness of the heterojunction is 5 nm-20 nm.

优选的,所述异质结包括AlN、AlGaN、InAlGaN、InAlN中的至少一种;进一步优选的,所述异质结包括AlN、AlGaN、InAlGaN中的至少一种。Preferably, the heterojunction includes at least one of AlN, AlGaN, InAlGaN, and InAlN; further preferably, the heterojunction includes at least one of AlN, AlGaN, and InAlGaN.

优选的,所述衬底包括硅衬底、蓝宝石衬底、碳化硅衬底、金刚石衬底、氧化锌衬底、LaAlO2衬底中的至少一种;进一步优选的,所述衬底包括硅衬底、蓝宝石衬底、碳化硅衬底中的至少一种;再进一步优选的,所述衬底为硅衬底。Preferably, the substrate includes at least one of a silicon substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, a zinc oxide substrate, and a LaAlO2 substrate; further preferably, the substrate includes silicon At least one of a substrate, a sapphire substrate, and a silicon carbide substrate; further preferably, the substrate is a silicon substrate.

本发明第二方面提供根据本发明第一方面所述单片集成材料的制备方法,包括以下步骤:A second aspect of the present invention provides a method for preparing a monolithic integrated material according to the first aspect of the present invention, comprising the following steps:

1)用金属有机物气相外延设备在第一衬底上依次外延生长基础层、应力过渡层、功能层,得到集成外延片;所述功能层依次包括层叠的第一单晶层AlN、沟道层GaN和异质结;1) using metal-organic vapor phase epitaxy equipment to epitaxially grow a base layer, a stress transition layer, and a functional layer on the first substrate in turn to obtain an integrated epitaxial wafer; the functional layer sequentially includes a stacked first single crystal layer AlN, channel layer GaN and heterojunctions;

2)将集成外延片倒置,将集成外延片的功能层异质结与涂覆有键合胶的第二衬底键合,然后采用激光剥离技术将应力过渡层分解剥离第一衬底,得到剥离的外延材料;2) Invert the integrated epitaxial wafer, bond the functional layer heterojunction of the integrated epitaxial wafer to the second substrate coated with the bonding glue, and then use the laser lift-off technology to decompose the stress transition layer and peel off the first substrate to obtain peeled epitaxial material;

3)将剥离的外延材料的应力过渡层进行刻蚀,刻蚀停止层为功能层,得到刻蚀后的外延材料;3) etching the stress transition layer of the peeled epitaxial material, and the etching stop layer is a functional layer to obtain the epitaxial material after etching;

4)在第三衬底上分别依次制备空腔结构、布拉格反射层和键合层;4) respectively preparing a cavity structure, a Bragg reflection layer and a bonding layer in sequence on the third substrate;

5)将所述刻蚀后的外延材料倒置,与所述第三衬底的键合层键合,然后剥离第二衬底,得到所述的单片集成材料。5) Invert the etched epitaxial material, bond with the bonding layer of the third substrate, and then peel off the second substrate to obtain the monolithic integrated material.

优选的,所述第一衬底包括硅衬底、蓝宝石衬底、碳化硅衬底、金刚石衬底、氧化锌衬底、LaAlO2衬底中的至少一种;进一步优选的,所述第一衬底包括硅衬底、蓝宝石衬底、碳化硅衬底中的至少一种;再进一步优选的,所述第一衬底为硅衬底。Preferably, the first substrate includes at least one of a silicon substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, a zinc oxide substrate, and a LaAlO2 substrate; further preferably, the first substrate The substrate includes at least one of a silicon substrate, a sapphire substrate, and a silicon carbide substrate; further preferably, the first substrate is a silicon substrate.

优选的,所述第二衬底包括硅衬底、蓝宝石衬底、碳化硅衬底、金刚石衬底、氧化锌衬底、LaAlO2衬底中的至少一种;进一步优选的,所述第二衬底包括硅衬底、蓝宝石衬底、碳化硅衬底中的至少一种;再进一步优选的,所述第二衬底为硅衬底。Preferably, the second substrate includes at least one of a silicon substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, a zinc oxide substrate, and a LaAlO2 substrate; further preferably, the second substrate The substrate includes at least one of a silicon substrate, a sapphire substrate, and a silicon carbide substrate; further preferably, the second substrate is a silicon substrate.

优选的,所述第三衬底包括硅衬底、蓝宝石衬底、碳化硅衬底、金刚石衬底、氧化锌衬底、LaAlO2衬底中的至少一种;进一步优选的,所述第三衬底包括硅衬底、蓝宝石衬底、碳化硅衬底中的至少一种;再进一步优选的,所述第三衬底为硅衬底。Preferably, the third substrate includes at least one of a silicon substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, a zinc oxide substrate, and a LaAlO2 substrate; further preferably, the third substrate The substrate includes at least one of a silicon substrate, a sapphire substrate, and a silicon carbide substrate; further preferably, the third substrate is a silicon substrate.

优选的,所述基础层为AlN。Preferably, the base layer is AlN.

优选的,所述应力过渡层包括AlGaN、AlN、GaN中的至少一种。Preferably, the stress transition layer includes at least one of AlGaN, AlN, and GaN.

优选的,所述基础层的厚度为1nm-300nm;进一步优选的,所述基础层的厚度为100nm-300nm;再进一步优选的,所述基础层的厚度为150nm-200nm。Preferably, the thickness of the base layer is 1 nm-300 nm; further preferably, the thickness of the base layer is 100 nm-300 nm; still further preferably, the thickness of the base layer is 150 nm-200 nm.

优选的,所述应力过渡层的厚度为100nm-17000nm;进一步优选的,所述应力过渡层的厚度为500nm-8000nm;再进一步优选的,所述应力过渡层的厚度为1200nm-3000nm。Preferably, the thickness of the stress transition layer is 100nm-17000nm; further preferably, the thickness of the stress transition layer is 500nm-8000nm; still further preferably, the thickness of the stress transition layer is 1200nm-3000nm.

优选的,所述有机物气相外延设备采用的气体包括三甲基铝、三乙基铝、三甲基镓、三乙基镓、氨气、氢气、氮气中的至少一种。Preferably, the gas used in the organic vapor phase epitaxy equipment includes at least one of trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, ammonia, hydrogen, and nitrogen.

优选的,所述刻蚀采用的气体包括氯气、三氯化硼中的至少一种。Preferably, the gas used in the etching includes at least one of chlorine gas and boron trichloride.

优选的,所述刻蚀气体中,氯气与三氯化硼的摩尔比为(0.3-100):1。Preferably, in the etching gas, the molar ratio of chlorine gas to boron trichloride is (0.3-100):1.

优选的,所述刻蚀的功率为100W-300W。Preferably, the power of the etching is 100W-300W.

优选的,所述制备方法中,得到单片集成材料后还包括将单片集成材料进行退火的步骤。Preferably, in the preparation method, after the monolithic integrated material is obtained, the step of annealing the monolithic integrated material is further included.

优选的,所述退火的温度为400℃-800℃。Preferably, the temperature of the annealing is 400°C-800°C.

优选的,所述退火的气氛为氮气气氛。Preferably, the annealing atmosphere is nitrogen atmosphere.

本发明第三方面提供根据本发明第一方面所述单片集成材料在传感器、滤波器、GaN开关中的应用。A third aspect of the present invention provides applications of the monolithic integrated material according to the first aspect of the present invention in sensors, filters, and GaN switches.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明公开的单片集成材料可以进一步缩小射频前端模块的体积,避免前端模块分立器件集成时引入寄生损耗、响应延迟和噪声等问题;该单片集成材料的制备方法简单高效,为射频前端模块单片集成奠定基础,采用该单片集成材料降低了射频前端模块的成本,与现有的各种离散封装相比,本发明提供了一种集成封装的新思路,该单片集成材料可广泛应用于传感器、滤波器、GaN开关中。The monolithic integrated material disclosed in the invention can further reduce the volume of the radio frequency front-end module, and avoid problems such as parasitic loss, response delay and noise introduced when the discrete components of the front-end module are integrated; the preparation method of the monolithic integrated material is simple and efficient, and is a radio frequency front-end module. The monolithic integration lays the foundation, and the use of the monolithic integrated material reduces the cost of the radio frequency front-end module. Compared with various existing discrete packages, the present invention provides a new idea of integrated packaging, and the monolithic integrated material can be widely used. Used in sensors, filters, and GaN switches.

附图说明Description of drawings

图1为实施例1制备的GaN HEMT和滤波器件单片集成外延材料结构示意图。FIG. 1 is a schematic structural diagram of the monolithic integrated epitaxial material of the GaN HEMT and filter device prepared in Example 1. FIG.

图2为实施例1制备的GaN开关和滤波器件单片集成材料结构示意图。FIG. 2 is a schematic structural diagram of the monolithic integrated material of the GaN switch and filter device prepared in Example 1. FIG.

具体实施方式Detailed ways

以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用材料或仪器末注明生产厂商者,视为可以通过市售购买得到的常规产品。The specific implementation of the present invention will be further described below with reference to examples, but the implementation and protection of the present invention are not limited thereto. It should be pointed out that, if there are any processes that are not described in detail below, those skilled in the art can realize or understand them with reference to the prior art. If the materials or instruments used do not indicate the manufacturer, they are regarded as conventional products that can be purchased in the market.

实施例1Example 1

本例单片集成材料制备步骤如下:The preparation steps of the monolithic integrated material in this example are as follows:

1)GaN HEMT和滤波器件单片集成材料键合前利用MOCVD设备在蓝宝石单晶衬底从下到上依次生长单晶AlN基础层厚度为200nm;应力过渡层AlxGa1-xN厚度为300nm,x为10,应力过渡层AlN/GaN超晶格,AlN厚度为2nm,GaN厚度为6nm,周期数为100周期,应力过渡层AlN/AlGaN超晶格,AlN厚度为4nm,AlGaN厚度为6nm,周期数为100周期、功能层单晶AlN第一单晶层为AlN,厚度为1μm,GaN沟道层厚度为1μm及其异质结AlGaN,厚度20nm。图1为实施例1制备的GaN HEMT和滤波器件单片集成外延材料结构示意图。其中,substrate表示蓝宝石单晶衬底,AlN seed layer表示AlN基础层,AlGaN buffer表示AlxGa1-xN应力过渡层,AlN/GaN SL buffer和AlN/AlGaN SL buffer分别表示应力过渡层AlN/GaN超晶格和应力过渡层AlN/AlGaN超晶格,AlN layer表示AlN第一单晶层,GaN channel layer表示GaN沟道层,barrier layer表示异质结AlGaN层,异质结层可选包括AlGaN、AlN、InAlN、InAlGaN中的至少一种。1) Before bonding the GaN HEMT and the filter device monolithic integrated material, MOCVD equipment is used to grow the single crystal AlN base layer from bottom to top on the sapphire single crystal substrate with a thickness of 200nm; the thickness of the stress transition layer AlxGa1-xN is 300nm, and x is 10. The stress transition layer AlN/GaN superlattice, the thickness of AlN is 2nm, the thickness of GaN is 6nm, the number of cycles is 100, the thickness of AlN/AlGaN superlattice of the stress transition layer is 4nm, the thickness of AlGaN is 6nm, the number of cycles The first single crystal layer is AlN with a thickness of 1 μm, and the thickness of the GaN channel layer is 1 μm and its heterojunction AlGaN with a thickness of 20 nm. FIG. 1 is a schematic structural diagram of the monolithic integrated epitaxial material of the GaN HEMT and filter device prepared in Example 1. FIG. Among them, substrate represents sapphire single crystal substrate, AlN seed layer represents AlN base layer, AlGaN buffer represents AlxGa1-xN stress transition layer, AlN/GaN SL buffer and AlN/AlGaN SL buffer represent stress transition layer AlN/GaN superlattice respectively and stress transition layer AlN/AlGaN superlattice, AlN layer represents the first single crystal layer of AlN, GaN channel layer represents the GaN channel layer, barrier layer represents the heterojunction AlGaN layer, the heterojunction layer can optionally include AlGaN, AlN, At least one of InAlN and InAlGaN.

2)另取Si基板一,在Si基板上涂键合胶将步骤1)的器件功能层和Si基板上的键合层进行键合;2) Take another Si substrate 1, apply bonding glue on the Si substrate to bond the device functional layer in step 1) and the bonding layer on the Si substrate;

3)在步骤2)中的键合材料倒置,Si基板向下,采用激光剥离将GaN分解剥离单晶衬底;3) In step 2), the bonding material is inverted, the Si substrate is downward, and the single crystal substrate is decomposed and peeled off by laser lift-off;

4)在步骤3)的材料基础上通过调整ICP干法刻蚀工艺将应力过渡层AlGaN、应力过渡层AlN/GaN超晶格、应力过渡层AlN/AlGaN超晶格层刻蚀掉,刻蚀气体为氯气和三氯化硼,气体比例为100:20,刻蚀功率为100W;4) On the basis of the material in step 3), the stress transition layer AlGaN, the stress transition layer AlN/GaN superlattice, and the stress transition layer AlN/AlGaN superlattice layer are etched away by adjusting the ICP dry etching process, and etching The gas is chlorine and boron trichloride, the gas ratio is 100:20, and the etching power is 100W;

5)另取Si基板二,在Si基板上固定区域依次制备空腔结构、布拉格反射层和键合层。Si基板表面进行选区刻蚀,形成空腔,空腔中制备第一布拉格反射层或第二布拉格反射层,布拉格反射层包括SiO2,之后在Si基板表面键合层为Au/Sn。将步骤4)的器件功能层和Si基板上的键合层进行键合;5) Another Si substrate is taken, and a cavity structure, a Bragg reflection layer and a bonding layer are sequentially prepared in the fixed area on the Si substrate. The surface of the Si substrate is selectively etched to form a cavity, and a first Bragg reflection layer or a second Bragg reflection layer is prepared in the cavity. The Bragg reflection layer includes SiO2 , and then the bonding layer on the surface of the Si substrate is Au/Sn. bonding the functional layer of the device in step 4) with the bonding layer on the Si substrate;

6)对步骤5)材料的表面进行修平、氮气气氛下400℃退火。将材料表面刻蚀损伤修复,最终制备得到满足射频前端模块中GaN HEMT和滤波器件单片集成材料。图2为实施例1制备的GaN开关和滤波器件单片集成材料结构示意图。其中,substrate表示衬底Si基板二,reflect layer表示布拉格反射层,bonding layer表示键合层Au/Sn,AlN layer表示AlN第一单晶层,GaN channel layer表示GaN沟道层,barrier layer表示异质结。6) The surface of the material in step 5) is smoothed and annealed at 400° C. in a nitrogen atmosphere. The surface of the material is etched and damaged to be repaired, and finally a monolithic integrated material of GaN HEMT and filter device in the RF front-end module is prepared. FIG. 2 is a schematic structural diagram of the monolithic integrated material of the GaN switch and filter device prepared in Example 1. FIG. Among them, substrate represents the second substrate Si substrate, reflect layer represents Bragg reflection layer, bonding layer represents bonding layer Au/Sn, AlN layer represents the first single crystal layer of AlN, GaN channel layer represents GaN channel layer, barrier layer represents different Quality knot.

实施例2Example 2

本例单片集成材料制备步骤如下:The preparation steps of the monolithic integrated material in this example are as follows:

1)GaN HEMT和滤波器件单片集成材料键合前利用MOCVD设备在蓝宝石单晶衬底从下到上依次生长单晶AlN基础层厚度为150nm;剥离层GaN厚度为800nm、应力过渡层AlxGa1-xN厚度为200nm,x为15,应力过渡层AlN/GaN超晶格,AlN厚度为4nm,GaN厚度为4nm,周期数为80周期,应力过渡层AlN/AlGaN超晶格,AlN厚度为4nm,AlGaN厚度为4nm,周期数为80周期、功能层单晶AlN第一单晶层为AlN,厚度为1.5μm,GaN沟道层厚度为5μm及其异质结AlN,厚度5nm;1) Before bonding GaN HEMT and filter device monolithic integrated material, MOCVD equipment is used to grow single crystal AlN on the sapphire single crystal substrate from bottom to top, the thickness of the base layer is 150nm; the thickness of the peeling layer GaN is 800nm, and the stress transition layer xN thickness is 200nm, x is 15, stress transition layer AlN/GaN superlattice, AlN thickness is 4nm, GaN thickness is 4nm, period number is 80 cycles, stress transition layer AlN/AlGaN superlattice, AlN thickness is 4nm, The thickness of AlGaN is 4nm, the number of cycles is 80, the first single crystal layer of functional layer single crystal AlN is AlN, the thickness is 1.5μm, the thickness of the GaN channel layer is 5μm and its heterojunction AlN, the thickness is 5nm;

2)另取Si基板一,在Si基板上涂键合胶将步骤1)的器件功能层和Si基板上的键合层进行键合;2) Take another Si substrate 1, apply bonding glue on the Si substrate to bond the device functional layer in step 1) and the bonding layer on the Si substrate;

3)在步骤2)中的键合材料倒置,Si基板向下,采用激光剥离将GaN分解剥离单晶衬底;3) In step 2), the bonding material is inverted, the Si substrate is downward, and the single crystal substrate is decomposed and peeled off by laser lift-off;

4)在步骤3)的材料基础上通过调整ICP干法刻蚀工艺将应力过渡层AlGaN、应力过渡层AlN/GaN超晶格、应力过渡层AlN/AlGaN超晶格层刻蚀掉,刻蚀气体为氯气和三氯化硼,气体比例为80:40,刻蚀功率为150W;4) On the basis of the material in step 3), the stress transition layer AlGaN, the stress transition layer AlN/GaN superlattice, and the stress transition layer AlN/AlGaN superlattice layer are etched away by adjusting the ICP dry etching process, and etching The gas is chlorine and boron trichloride, the gas ratio is 80:40, and the etching power is 150W;

5)另取Si基板二,在Si基板上固定区域依次制备空腔结构、布拉格反射层和键合层。Si基板表面进行选区刻蚀,形成空腔,空腔中制备第一布拉格反射层或第二布拉格反射层包括SiO2,之后在Si基板表面键合层为Ni。将步骤4)的器件功能层和Si基板上的键合层进行键合;5) Another Si substrate is taken, and a cavity structure, a Bragg reflection layer and a bonding layer are sequentially prepared in the fixed area on the Si substrate. The surface of the Si substrate is selectively etched to form a cavity, and the first Bragg reflection layer or the second Bragg reflection layer is prepared in the cavity including SiO2 , and then the bonding layer on the surface of the Si substrate is Ni. bonding the functional layer of the device in step 4) with the bonding layer on the Si substrate;

6)对步骤5)材料的表面进行修平、氮气气氛下500℃退火。将材料表面刻蚀损伤修复,最终制备得到满足射频前端模块中GaN HEMT和滤波器件单片集成材料。6) The surface of the material in step 5) is smoothed and annealed at 500° C. in a nitrogen atmosphere. The surface of the material is etched and damaged to be repaired, and finally a monolithic integrated material of GaN HEMT and filter device in the RF front-end module is prepared.

实施例3Example 3

本例单片集成材料制备步骤如下:The preparation steps of the monolithic integrated material in this example are as follows:

1)GaN HEMT和滤波器件单片集成材料键合前利用MOCVD设备在蓝宝石单晶衬底从下到上依次生长单晶AlN基础层厚度为200nm;剥离层GaN厚度为1200nm、应力过渡层AlxGa1-xN厚度为500nm,x为17,应力过渡层AlN/GaN超晶格,AlN厚度为4nm,GaN厚度为6nm,周期数为120周期,应力过渡层AlN/AlGaN超晶格,AlN厚度为6nm,AlGaN厚度为6nm,周期数为90周期、功能层单晶AlN第一单晶层为AlN,厚度为1.5μm,GaN沟道层厚度为10μm及其异质结InAlGaN,厚度7nm;1) Before bonding the GaN HEMT and the filter device monolithic integrated material, MOCVD equipment is used to grow the single crystal AlN on the sapphire single crystal substrate from bottom to top. The thickness of the base layer is 200nm; xN thickness is 500nm, x is 17, stress transition layer AlN/GaN superlattice, AlN thickness is 4nm, GaN thickness is 6nm, period number is 120 cycles, stress transition layer AlN/AlGaN superlattice, AlN thickness is 6nm, The thickness of AlGaN is 6nm, the number of cycles is 90, the first single crystal layer of functional layer single crystal AlN is AlN, the thickness is 1.5μm, the thickness of the GaN channel layer is 10μm and its heterojunction InAlGaN, the thickness is 7nm;

2)另取Si基板一,在Si基板上涂键合胶将步骤1)的器件功能层和Si基板上的键合层进行键合;2) Take another Si substrate 1, apply bonding glue on the Si substrate to bond the device functional layer in step 1) and the bonding layer on the Si substrate;

3)在步骤2)中的键合材料倒置,Si基板向下,采用激光剥离将GaN分解剥离单晶衬底;3) In step 2), the bonding material is inverted, the Si substrate is downward, and the single crystal substrate is decomposed and peeled off by laser lift-off;

4)在步骤3)的材料基础上通过调整ICP干法刻蚀工艺将应力过渡层AlGaN、应力过渡层AlN/GaN超晶格、应力过渡层AlN/AlGaN超晶格层刻蚀掉,刻蚀气体为氯气和三氯化硼,气体比例为90:30,刻蚀功率为120W。4) On the basis of the material in step 3), the stress transition layer AlGaN, the stress transition layer AlN/GaN superlattice, and the stress transition layer AlN/AlGaN superlattice layer are etched away by adjusting the ICP dry etching process, and etching The gas is chlorine gas and boron trichloride, the gas ratio is 90:30, and the etching power is 120W.

5)另取Si基板,在Si基板上固定区域依次制备空腔结构、布拉格反射层和键合层。Si基板表面进行选区刻蚀,形成空腔,空腔中制备第一布拉格反射层或第二布拉格反射层包括SiO2,之后在Si基板表面键合层为Ti。将步骤1)的器件功能层和Si基板上的键合层进行键合;5) Another Si substrate is taken, and a cavity structure, a Bragg reflection layer and a bonding layer are sequentially prepared in the fixed area on the Si substrate. The surface of the Si substrate is selectively etched to form a cavity, and the first Bragg reflection layer or the second Bragg reflection layer is prepared in the cavity including SiO2 , and then the bonding layer on the surface of the Si substrate is Ti. bonding the functional layer of the device in step 1) with the bonding layer on the Si substrate;

6)对步骤5)材料的表面进行修平、氮气气氛下550℃退火。将材料表面刻蚀损伤修复,最终制备得到满足射频前端模块中GaN HEMT和滤波器件单片集成材料。6) The surface of the material in step 5) is smoothed and annealed at 550° C. in a nitrogen atmosphere. The surface of the material is etched and damaged to be repaired, and finally a monolithic integrated material of GaN HEMT and filter device in the RF front-end module is prepared.

上述实例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above examples are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above examples, and any other changes, modifications, substitutions, combinations, simplifications made without departing from the spirit and principle of the present invention , all should be equivalent replacement modes, and all are included in the protection scope of the present invention.

Claims (10)

CN202210652071.4A2022-06-102022-06-10 A monolithic integrated material and its preparation methodActiveCN115188656B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202210652071.4ACN115188656B (en)2022-06-102022-06-10 A monolithic integrated material and its preparation method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210652071.4ACN115188656B (en)2022-06-102022-06-10 A monolithic integrated material and its preparation method

Publications (2)

Publication NumberPublication Date
CN115188656Atrue CN115188656A (en)2022-10-14
CN115188656B CN115188656B (en)2025-10-03

Family

ID=83513597

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210652071.4AActiveCN115188656B (en)2022-06-102022-06-10 A monolithic integrated material and its preparation method

Country Status (1)

CountryLink
CN (1)CN115188656B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060255341A1 (en)*2005-04-212006-11-16Aonex Technologies, Inc.Bonded intermediate substrate and method of making same
US20080169482A1 (en)*2007-01-112008-07-17Dae Sung KangSemiconductor light emitting device and a method for manufacturing the same
KR20120047406A (en)*2010-11-042012-05-14서울옵토디바이스주식회사Light emitting diode with high efficiency and method of manufacturing thereof
US8680507B1 (en)*2013-01-162014-03-25Translucent, Inc.A1N inter-layers in III-N material grown on DBR/silicon substrate
CN105720144A (en)*2016-03-242016-06-29晶能光电(常州)有限公司Silicon substrate nitride ultraviolet LED chip structure and implementation method therefor
CN108847438A (en)*2018-03-302018-11-20映瑞光电科技(上海)有限公司A kind of LED chip and its manufacturing method
CN110676287A (en)*2019-08-272020-01-10河源市众拓光电科技有限公司Monolithic integrated radio frequency device, preparation method and integrated circuit system
CN210467842U (en)*2019-08-272020-05-05广州市艾佛光通科技有限公司Monolithic integrated radio frequency device and integrated circuit system
CN112701200A (en)*2020-12-312021-04-23华南理工大学Monolithic integration device and method for HEMT and embedded electrode structure LED

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20060255341A1 (en)*2005-04-212006-11-16Aonex Technologies, Inc.Bonded intermediate substrate and method of making same
US20080169482A1 (en)*2007-01-112008-07-17Dae Sung KangSemiconductor light emitting device and a method for manufacturing the same
KR20120047406A (en)*2010-11-042012-05-14서울옵토디바이스주식회사Light emitting diode with high efficiency and method of manufacturing thereof
US8680507B1 (en)*2013-01-162014-03-25Translucent, Inc.A1N inter-layers in III-N material grown on DBR/silicon substrate
CN105720144A (en)*2016-03-242016-06-29晶能光电(常州)有限公司Silicon substrate nitride ultraviolet LED chip structure and implementation method therefor
CN108847438A (en)*2018-03-302018-11-20映瑞光电科技(上海)有限公司A kind of LED chip and its manufacturing method
CN110676287A (en)*2019-08-272020-01-10河源市众拓光电科技有限公司Monolithic integrated radio frequency device, preparation method and integrated circuit system
CN210467842U (en)*2019-08-272020-05-05广州市艾佛光通科技有限公司Monolithic integrated radio frequency device and integrated circuit system
CN112701200A (en)*2020-12-312021-04-23华南理工大学Monolithic integration device and method for HEMT and embedded electrode structure LED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周仕忠;林志霆;王海燕;李国强;: "图形化蓝宝石衬底GaN基LED的研究进展", 半导体技术, no. 06, 3 June 2012 (2012-06-03), pages 16 - 23*

Also Published As

Publication numberPublication date
CN115188656B (en)2025-10-03

Similar Documents

PublicationPublication DateTitle
US12244289B2 (en)Method of manufacturing integrated circuit configured with two or more single crystal acoustic resonator devices
US11398402B2 (en)Wafer scale packaging
US11245376B2 (en)Single crystal acoustic resonator and bulk acoustic wave filter
US20230023845A1 (en)Method of manufacture for single crystal capacitor dielectric for a resonance circuit
CN110912529B (en) Monolithic filter ladder network and manufacturing method thereof
US9064928B2 (en)Growth of multi-layer group III-nitride buffers on large-area silicon substrates and other substrates
CN110380702A (en)Integrated device manufacturing method and Related product
CN110931433B (en) Integrated device manufacturing method and related products
JP2018206955A (en) Semiconductor device, power supply device, amplifier, and semiconductor device manufacturing method
CN109461656A (en)Method, semi-conductor device manufacturing method
CN110544689A (en) Active device and passive single crystal device in radio frequency front-end module and monolithic integration method
CN115188656B (en) A monolithic integrated material and its preparation method
CN114362703A (en)Preparation method of piezoelectric film template for acoustic wave device
CN117318658A (en)Semiconductor device with integrated acoustic wave resonator and transistor and manufacturing method thereof
CN110540169B (en)Device and method for monolithic integration of FBAR filter and amplifier or switch
KR20050088664A (en)Nitride-based semiconductor device and method thereof
WO2025086642A1 (en)Transistor, electronic device and method for manufacturing transistor
CN119421445A (en) A high heat dissipation diamond substrate GaN transistor structure and preparation method thereof
CN118510369A (en)FBAR and HEMT power device integrated structure and preparation method thereof
CN116288698A (en) A kind of Al1-xScxN film, filter device and preparation method thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp