
















技术领域technical field
本申请涉及光学技术领域,特别涉及一种衍射光波导及电子设备。The present application relates to the field of optical technology, and in particular, to a diffractive optical waveguide and an electronic device.
背景技术Background technique
在衍射光波导方案中,光线通过耦入元件进入波导基体发生全反射,反射至耦出元件,得到需要的级次衍射光的同时,由于扩瞳需要,还会得到0级衍射光,0级衍射光的衍射效率需要很高,多次经过耦出元件耦出。由于0级衍射光的光效远高于被耦出的光线的光效,0级衍射光经过耦出元件继续向前传播容易从波导基体中漏出,造成较多光线被浪费。In the diffractive optical waveguide scheme, the light enters the waveguide matrix through the coupling element and is totally reflected, and is reflected to the coupling out element to obtain the required order diffracted light. The diffraction efficiency of the diffracted light needs to be high, and it is coupled out through the coupling element for many times. Since the luminous efficiency of the 0th-order diffracted light is much higher than that of the out-coupled light, the 0th-order diffracted light continues to propagate forward through the outcoupling element and is likely to leak from the waveguide matrix, causing more light to be wasted.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种衍射光波导及电子设备,旨在提高光线利用率的同时,获得一种具有出射清晰图像的衍射光波导及电子设备。The embodiments of the present application provide a diffractive optical waveguide and an electronic device, aiming at improving the utilization rate of light, and at the same time obtaining a diffractive optical waveguide and an electronic device with a clear output image.
第一方面,提供了一种衍射光波导。所述衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件,所述耦入元件和所述耦出元件间隔设于所述波导基体,所述光学元件设于所述耦入元件和所述耦出元件之间,所述反射元件设于所述耦出元件远离所述耦入元件的一侧;In a first aspect, a diffractive optical waveguide is provided. The diffractive optical waveguide includes a waveguide base, an in-coupling element, an out-coupling element, an optical element and a reflective element, the coupling-in element and the coupling-out element are spaced apart from the waveguide base, and the optical element is provided in the between the coupling-in element and the coupling-out element, the reflective element is arranged on the side of the coupling-out element away from the coupling-in element;
外部光线经所述耦入元件进入所述波导基体,并经过所述光学元件形成第一光线,所述第一光线射入所述耦出元件并被衍射形成第二光线和第三光线,所述第二光线射出所述波导基体,所述第三光线在所述波导基体中传播,所述第三光线被所述反射元件反射形成第四光线,所述第四光线被所述耦出元件和所述光学元件反射形成第五光线;External light enters the waveguide substrate through the coupling element, and passes through the optical element to form a first light, the first light enters the coupling-out element and is diffracted to form a second light and a third light. The second light exits the waveguide base, the third light propagates in the waveguide base, the third light is reflected by the reflective element to form a fourth light, and the fourth light is reflected by the outcoupling element and the optical element is reflected to form a fifth ray;
耦出元件具有耦出选择性,例如具有角度选择性,即所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同;或者,偏振选择性,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同。The coupling-out element has out-coupling selectivity, for example, has angle selectivity, that is, the coupling-out element is used to couple out the light of a specific angle and reflect the light of other angles, and the propagation direction of the fifth light is the same as that of the first light. Or, the polarization selectivity, the coupling-out element is used to couple out the light of a specific polarization state and reflect the light of other polarization states, and the polarization state of the fifth light ray is the same as that of the first light ray.
本实施通过将光学元件和反射元件分别设于耦出元件的两侧,且限定耦出元件具有耦出选择性,例如角度选择性和偏振选择性,从而第二光线能够从耦出元件耦出,第三光线经反射元件反射形成第四光线,第四光线入射到耦出元件的方向(传播方向)或偏振态由于与第一光线入射到耦出元件的方向(传播方向)或偏振态不同,被耦出元件反射而不耦出,然后经过光学元件反射后形成第五光线,第五光线再次入射至耦出元件,其入射方向或偏振态与第一光线入射至耦出元件的方向或偏振态相同,第五光线部分经耦出元件耦出。也就是说,本申请通过对经反射元件反射回的与第四光线入射的方向或偏振态不一致的光线不耦出,只有再次经光学元件反射后,与第一光线入射方向或偏振态一致,即第五光线和第一光线从耦出元件出射的角度相同,从而耦出。既有效避免第三光线从衍射光波导中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。In this implementation, the optical element and the reflective element are respectively disposed on two sides of the outcoupling element, and the outcoupling element is limited to have outcoupling selectivity, such as angle selectivity and polarization selectivity, so that the second light can be coupled out from the outcoupling element , the third light is reflected by the reflective element to form a fourth light, and the direction (propagation direction) or polarization state of the fourth light incident on the outcoupling element is different from the direction (propagation direction) or polarization state of the first light incident on the outcoupling element , is reflected by the out-coupling element but not out-coupled, and then is reflected by the optical element to form a fifth ray, the fifth ray is incident on the out-coupling element again, and its incident direction or polarization state is the same as the direction in which the first ray is incident on the out-coupling element or The polarization states are the same, and the fifth light part is coupled out through the coupling-out element. That is to say, the present application does not couple out the light reflected by the reflective element that is inconsistent with the incident direction or polarization state of the fourth light, and only after being reflected by the optical element again is consistent with the incident direction or polarization state of the first light, That is, the fifth light ray and the first light ray exit from the coupling-out element at the same angle, so that they are coupled out. It not only effectively prevents the third light from leaking out of the diffractive optical waveguide, improves the utilization rate of light, but also avoids the superposition of symmetrical images caused by different light coupling and outgoing directions in the same field of view to form ghost images, and users can observe clear images.
所述衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件。所述耦入元件和所述耦出元件间隔设于所述波导基体,所述光学元件设于所述耦入元件和所述耦出元件之间,所述反射元件设于所述耦出元件远离所述耦入元件的一侧。The diffractive optical waveguide includes a waveguide base, an in-coupling element, an out-coupling element, an optical element and a reflective element. The coupling-in element and the coupling-out element are spaced apart from the waveguide base, the optical element is provided between the coupling-in element and the coupling-out element, and the reflective element is provided in the coupling-out element the side away from the coupling element.
所述耦入元件用于将外部光线耦入所述波导基体;所述光学元件用于使所述光线经过形成第一光线,所述耦出元件用于衍射所述第一光线,以形成第二光线和第三光线,并允许所述第二光线耦出所述波导基体,反射所述第三光线,所述反射元件用于反射所述第三光线形成第四光线,所述耦出元件和所述光学元件用于依次反射所述第四光线,以形成第五光线;所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同;或者,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同。The coupling element is used for coupling external light into the waveguide substrate; the optical element is used for passing the light to form the first light, and the coupling-out element is used for diffracting the first light to form the first light. two light rays and a third light ray, and allow the second light ray to be coupled out of the waveguide base to reflect the third light ray, the reflecting element is used to reflect the third light ray to form a fourth light ray, and the coupling-out element and the optical element is used to reflect the fourth light in turn to form the fifth light; the coupling-out element is used to couple out the light of a specific angle and reflect the light of other angles, and the propagation direction of the fifth light is the same as that of the fifth light. The first light rays are the same; or, the coupling-out element is used to couple out the light rays of a specific polarization state and reflect the light rays of other polarization states, and the polarization state of the fifth light rays is the same as the first light rays.
一种可能的实现方式中,所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同,所述光学元件包括第一光学膜,所述反射元件包括第一反射膜。通过第一光学膜和第一反射膜反射配合,以使第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the coupling-out element is used to couple out light of a specific angle and reflect light of other angles, the propagation direction of the fifth light is the same as that of the first light, and the optical element includes a first light. An optical film, the reflective element includes a first reflective film. The first optical film and the first reflective film are reflectively matched, so that the propagation direction (incident angle) of the fifth light ray and the first light ray are the same.
一种可能的实现方式中,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线,所述反射元件还包括第一1/4波片,所述第一反射膜为高反膜,所述第一1/4波片位于所述高反膜朝向所述耦出元件的一侧。通过第一偏振反射膜、第一1/4波片和高反膜配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the first optical film is a first polarized reflective film, the light passes through the first polarized reflective film to form the first light, and the reflective element further includes a first 1/ 4-wave plate, the first reflective film is a high-reflection film, and the first 1/4-wave plate is located on the side of the high-reflection film facing the outcoupling element. Through the cooperation of the first polarizing reflection film, the first quarter wave plate and the high reflection film, the propagation direction (incident angle) of the fifth light ray is the same as that of the first light ray.
一种可能的实现方式中,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线;所述反射元件还包括第一1/4波片,所述第一反射膜为第二偏振反射膜,所述第一1/4波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。通过第一偏振反射膜、第一1/4波片和第二偏振反射膜配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the first optical film is a first polarized reflective film, and the light passes through the first polarized reflective film to form the first light; the reflective element further includes a first 1/ 4-wave plate, the first reflective film is a second polarized reflective film, and the first 1/4-wave plate is located on the side of the second polarized reflective film facing the coupling element. Through the cooperation of the first polarized reflection film, the first 1/4 wave plate and the second polarized reflection film, the propagation direction (incident angle) of the fifth light ray and the first light ray is the same.
一种可能的实现方式中,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述第一反射膜为高反膜。通过高反膜和高反膜配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the first optical film is a high-reflection film, the first optical film includes a gap, the light passes through the gap to form the first light, and the first reflective film is a high-reflection film. Reverse film. The propagation direction (incidence angle) of the fifth light ray and the first light ray is the same as realized by the cooperation of the high-reflection film and the high-reflection film.
一种可能的实现方式中,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述反射元件还包括1/2波片,所述第一反射膜为第二偏振反射膜,所述1/2波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。通过高反膜、1/2波片和第二偏振反射膜配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the first optical film is a high-reflection film, the first optical film includes a gap, the light passes through the gap to form the first light, and the reflective element further includes 1/ 2 wave plates, the first reflection film is a second polarization reflection film, and the 1/2 wave plate is located on the side of the second polarization reflection film facing the coupling element. The fifth light ray and the first light ray have the same propagation direction (incident angle) through the cooperation of the high reflective film, the 1/2 wave plate and the second polarized reflective film.
一种可能的实现方式中,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同;所述光学元件包括第二光学膜和第二1/4波片,所述第二1/4波片设于所述第二光学膜靠近所述耦出元件一侧,所述第二1/4波片包括第一通孔,所述光线经过所述第二光学膜且通过所述第一通孔形成所述第一光线,所述反射元件包括第二反射膜和第三1/4波片,所述第三1/4波片设于所述第二反射膜朝向所述耦出元件的一侧。通过第二光学膜、第二1/4波片、第二反射膜和第三1/4波片配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the out-coupling element is used to couple out light of a specific polarization state and reflect light of other polarization states, and the polarization state of the fifth light ray is the same as that of the first light ray; the optical element It includes a second optical film and a second 1/4 wave plate, the second 1/4 wave plate is arranged on the side of the second optical film close to the coupling element, and the second 1/4 wave plate includes a first through hole, the light passes through the second optical film and forms the first light through the first through hole, the reflective element includes a second reflective film and a third 1/4 wave plate, the The third quarter wave plate is disposed on the side of the second reflective film facing the outcoupling element. Through the cooperation of the second optical film, the second 1/4 wave plate, the second reflection film and the third 1/4 wave plate, the propagation direction (incident angle) of the fifth light ray and the first light ray is the same.
一种可能的实现方式中,所述第二光学膜为第二高反膜所述第二高反膜包括第二通孔,所述光线依次通过第二通孔和第一通孔形成所述第一光线,所述第二反射膜为第一高反膜。所述第二反射膜为第四偏振反射膜。通过第二高反膜、第二1/4波片、第一高反膜和第三1/4波片配合实现第五光线与第一光线的传播方向(入射角度)相同。In a possible implementation manner, the second optical film is a second highly reflective film, and the second highly reflective film includes a second through hole, and the light passes through the second through hole and the first through hole in sequence to form the For the first light, the second reflective film is a first highly reflective film. The second reflective film is a fourth polarized reflective film. Through the cooperation of the second high-reflection film, the second 1/4 wave plate, the first high-reflection film and the third 1/4 wave plate, the propagation direction (incidence angle) of the fifth light ray and the first light ray is the same.
一种可能的实现方式中,所述光学元件和所述反射元件分别设于所述耦出元件两侧并均与所述耦出元件接触。相比于将光学元件和反射元件分别设于远离耦出元件的位置,光学元件和反射元件与耦出元件之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。In a possible implementation manner, the optical element and the reflection element are respectively disposed on two sides of the coupling-out element and both are in contact with the coupling-out element. Compared with placing the optical element and the reflective element away from the outcoupling element, there is no distance between the optical element and the reflective element and the outcoupling element, which prevents the light from hitting the edge of the waveguide substrate and greatly reduces the amount of light hitting the waveguide substrate. The stray light caused by the edge of the device can effectively improve the light efficiency and the energy utilization rate of the light.
一种可能的实现方式中,所述耦出元件为光栅或超表面器件。In a possible implementation manner, the coupling-out element is a grating or a metasurface device.
一种可能的实现方式中,所述光栅为一维光栅或二维光栅。In a possible implementation manner, the grating is a one-dimensional grating or a two-dimensional grating.
一种可能的实现方式中,所述衍射光波导还包括第一反射件,所述第一反射件位于所述耦入元件远离所述耦出元件的一侧。第一反射件将经耦入元件后的背向耦出元件的衍射光通过高反膜反射加以利用,有效提高光效。当然,在其他实施例中,第一反射件还可以为偏振反射膜。In a possible implementation manner, the diffractive optical waveguide further includes a first reflection member, and the first reflection member is located on a side of the coupling-in element away from the coupling-out element. The first reflector utilizes the diffracted light coupled back to the out-coupling element through the reflection of the high-reflection film, thereby effectively improving the light efficiency. Of course, in other embodiments, the first reflection member may also be a polarized reflection film.
第二方面,还提供了一种电子设备。所述电子设备包括图像发射器和上述的衍射光波导,所述图像发射器发射光线,所述光线经所述耦入元件进入所述衍射光波导。具有上述衍射光波导的电子设备成像清晰,光效高。In a second aspect, an electronic device is also provided. The electronic device includes an image transmitter and the above-mentioned diffractive optical waveguide, the image transmitter emits light, and the light enters the diffractive optical waveguide through the coupling element. The electronic device with the above diffractive optical waveguide has clear imaging and high light efficiency.
附图说明Description of drawings
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the background technology, the accompanying drawings required in the embodiments or the background technology of the present application will be described below.
图1是本申请实施例提供的一种电子设备的结构示意图;1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application;
图2是图1所示的电子设备的增强现实组件的结构示意图;FIG. 2 is a schematic structural diagram of an augmented reality component of the electronic device shown in FIG. 1;
图3是图2所示的衍射光波导的结构示意图;3 is a schematic structural diagram of the diffractive optical waveguide shown in FIG. 2;
图4是图3所示的耦出元件的耦出原理示意图;FIG. 4 is a schematic diagram of the coupling-out principle of the coupling-out element shown in FIG. 3;
图5是相关技术的结构示意图;Fig. 5 is the structural representation of related art;
图6是图3所示的衍射光波导的另一实施方式的结构示意图;FIG. 6 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图7是光栅的结构示意图;Fig. 7 is the structural representation of grating;
图8是超表面器件的结构示意图;FIG. 8 is a schematic structural diagram of a metasurface device;
图9是图3所示的衍射光波导的制备工艺示意图;FIG. 9 is a schematic diagram of the preparation process of the diffractive optical waveguide shown in FIG. 3;
图10是图3所示衍射光波导的另一实施方式的结构示意图;FIG. 10 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图11是图3所示衍射光波导的另一实施方式的结构示意图;FIG. 11 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图12是图3所示衍射光波导的另一实施方式的结构示意图;FIG. 12 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图13是图3所示衍射光波导的另一实施方式的结构示意图;FIG. 13 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图14是图13所示的耦出元件的耦出原理示意图;FIG. 14 is a schematic diagram of the coupling-out principle of the coupling-out element shown in FIG. 13;
图15是图3所示衍射光波导的另一实施方式的结构示意图;FIG. 15 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
图16是图15所示衍射光波导的另一实施方式的结构示意图;FIG. 16 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 15;
图17是图3所示衍射光波导的另一实施方式的结构示意图。FIG. 17 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3 .
具体实施方式Detailed ways
下面结合本申请实施例中的附图对本申请实施例进行描述。The embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。其中,“固定连接”是指彼此连接且连接后的相对位置关系不变。“转动连接”是指彼此连接且连接后能够相对转动。“滑动连接”是指彼此连接且连接后能够相对滑动。本申请实施例中所提到的方位用语,例如,“上”、“下”、“左”、“右”、“内”、“外”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。“多个”是指至少两个。In the description of the embodiments of the present application, it should be noted that, unless otherwise expressly specified and limited, the terms "installation" and "connection" should be understood in a broad sense. For example, "connection" may be detachable connection, or It is a non-removable connection; it can be a direct connection or an indirect connection through an intermediate medium. Wherein, "fixed connection" refers to connection with each other and the relative positional relationship after connection remains unchanged. "Rotationally connected" means connected to each other and capable of relative rotation after connection. "Slidingly connected" means connected to each other and capable of sliding relative to each other after connection. Orientation terms mentioned in the embodiments of the present application, such as "upper", "lower", "left", "right", "inner", "outer", etc., only refer to the directions of the drawings, therefore, use The orientation terms are for better and clearer description and understanding of the embodiments of the present application, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a Limitations of application examples. "Plurality" means at least two.
可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the invention are shown in the drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
本申请实施例提供一种电子设备,用于佩戴在用户的头部。电子设备可以为头戴显示设备,例如电子设备可以为增强现实设备,比如增强现实(augmented reality,AR)眼镜、AR头盔、混合现实(mixrtual reality,MR)眼镜或MR头盔等将数字内容和现实场景结合在一起的电子产品。电子设备还可以不佩戴在头部。或者电子设备还可以不是增强现实设备。本申请以电子设备是AR眼镜为例进行具体说明。Embodiments of the present application provide an electronic device for wearing on a user's head. The electronic device may be a head-mounted display device, for example, the electronic device may be an augmented reality device, such as augmented reality (AR) glasses, AR helmet, mixed reality (MR) glasses or MR helmet, etc. Electronic products that combine scenes together. The electronic device may also not be worn on the head. Or the electronic device may not be an augmented reality device. In this application, the electronic device is an example of AR glasses for specific description.
请参阅图1,图1是本申请实施例提供的一种电子设备的结构示意图。Please refer to FIG. 1 , which is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
本实施例中,电子设备100包括镜架10以及安装于镜架10的增强现实组件20。其中,增强现实组件20有两个,两个增强现实组件20间隔安装于镜架10。当然,在其他实施例中,增强显示组件的数量也可以是一个或多个,本申请对此不作具体限定。In this embodiment, the
本实施例中,两个增强现实组件20的结构相同。电子设备100穿戴于用户头部时,一个增强现实组件20对应于用户的左眼,另一个增强现实组件20对应于用户的右眼,此时用户的双眼可以通过两个增强现实组件20观看虚拟场景和真实场景。需要说明的是,在其他实施例中,两个增强现实组件20的结构也可以不同,本申请对此不作具体限定。In this embodiment, the structures of the two
接下来,为了便于理解,以与用户的左眼相对应的增强现实组件20为例对增强现实组件20的结构进行具体描述。Next, for ease of understanding, the structure of the
请参阅图2,图2是图1所示的电子设备100的增强现实组件20的结构示意图。Please refer to FIG. 2 , which is a schematic structural diagram of the
增强现实组件20包括衍射光波导21、投影系统22和图像发射器23。具体的,衍射光波导21、投影系统22和图像发射器23均安装于镜架10。图像发射器23发出光,投影系统22将图像发射器23发出的光进行准直入射到衍射光波导21,经耦入后衍射光在衍射光波导21中通过全内反射传播,最后从衍射光波导21中射出进入人眼。本实施例中,衍射光波导21具有多种实施方式。The
一种实施方式中,请参阅图3,图3是图2所示的衍射光波导的结构示意图。In one embodiment, please refer to FIG. 3 , which is a schematic structural diagram of the diffractive optical waveguide shown in FIG. 2 .
衍射光波导21包括波导基体211、耦入元件212、耦出元件213、光学元件214和反射元件215,耦入元件212和耦出元件213间隔设于波导基体211,光学元件214设于耦入元件212和耦出元件213之间,反射元件215设于耦出元件213远离耦入元件212的一侧。The diffractive
外部光线经耦入元件212进入波导基体211,并经过光学元件214形成第一光线L1,第一光线L1射入耦出元件213并被衍射形成第二光线L2和第三光线L3,第二光线L2射出波导基体211,第三光线L3在波导基体211中传播,第三光线L3被反射元件215反射形成第四光线L4,第四光线L4被耦出元件213和光学元件214反射形成第五光线L5。The external light enters the
耦出元件213具有耦出选择性,例如具有角度选择性,即耦出元件213用于耦出特定角度的光线并反射其他角度的光线,第五光线L5的传播方向与第一光线L1相同,第五光线L5被射入耦出元件213并被衍射部分耦出波导基体211。The out-
可以理解的是,第五光线L5重复第一光线L1的传播路径,如此循环。第三光线L3继续传播过程中反射至耦出元件213后,一部分被耦出波导基体211,一部分经耦出元件213反射该部分光线不再命名和标号。It can be understood that the fifth light ray L5 repeats the propagation path of the first light ray L1, and so on. After the third light L3 is reflected to the
可以理解的是,如图4所示,本实施例中的耦出元件213被设定为光线在第一角度范围A1入射则耦出效率高,光线在第二角度范围A2入射则耦出效率低,此处耦出效率低可以理解为基本不耦出。特定角度在第一角度范围A1内,其他角度位于第二角度范围A2内,第一光线L1的入射角位于第一角度范围A1内,因此第一光线L1部分能够从耦出元件213耦出。经过反射元件215反射至耦出元件213的第四光线L4的入射角位于第二角度范围A2内,无法从耦出元件213耦出,继而反射至光学元件214,经光学元件214反射后变为第五光线L5,第五光线L5的传播方向与第一光线L1相同,也即第五光线L5入射至耦出元件213的入射角位于第一角度范围A1内,因此能从耦出元件213耦出。It can be understood that, as shown in FIG. 4 , the coupling-out
如图5,传统方案通过在衍射光波导的出射端面处放置反射元件30,使得原本从端面损失的光反射,继续和耦出光栅40相互作用,将泄露出波导的光有效再循环利用。但是,反射回来的光线直接与耦出光栅40相互作用耦出,会导致人眼处无法观察到清晰的图像,可以理解的是,反射回来的光v2入射至耦出光栅40的入射方向与直接耦出光栅40的光v1的入射方向不同,同一视场的入射光线出射的时候有两个不同的方向,在人眼处最终会形成两个对称的像叠加,由于被反射回来的光能量较强,两个方向出射的光分别形成的图像都能被人眼所感知,形成鬼像,导致无法观测到清晰的图像。As shown in FIG. 5 , in the conventional solution, the
本实施通过将光学元件214和反射元件215分别设于耦出元件213的两侧,且限定耦出元件213具有角度选择性,从而第二光线L2能够从耦出元件213耦出,第三光线L3经反射元件215反射形成第四光线L4,第四光线L4入射到耦出元件213的方向(传播方向)由于与第一光线L1入射到耦出元件213的方向(传播方向)不同,被耦出元件213反射而不耦出,然后经过光学元件214反射后形成第五光线L5,第五光线L5再次入射至耦出元件213,其入射方向与第一光线L1入射至耦出元件213的方向相同,第五光线L5部分经耦出元件213耦出。也就是说,本申请通过对经反射元件215反射回的与第四光线L4入射的方向不一致的光线不耦出,只有再次经光学元件214反射后,与第一光线L1入射方向一致,即第五光线L5和第一光线L1从耦出元件213出射的角度(传播方向)相同,从而耦出。既有效避免第三光线L3从衍射光波导21中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。In this embodiment, the
本实施例中,如图3,波导基体211包括相对设置的第一表面2111和第二表面2112,耦入元件212设于第一表面2111,耦出元件213设于第二表面2112,耦入元件212和耦出元件213在垂直于波导基体211的厚度的方向上间隔设置。光学元件214连接在第一表面2111和第二表面2112之间,反射元件215也连接在第一表面2111和第二表面2112之间。当然,在其他实施例中,如图6所示,耦入元件212和耦出元件213还可以均位于第一表面2111或第二表面2112,耦入元件212和耦出元件213间隔设置。In this embodiment, as shown in FIG. 3 , the
耦入元件212和耦出元件213均包括但不限于如图7和图8所示的浮雕光栅G1、全息光栅G2以及超表面器件S1。浮雕光栅G1可以是一维光栅也可以是二维光栅。不同于耦入元件212,耦出元件213具有角度选择性。耦出元件213的角度选择性可以通过如下方式设置,示例的,耦出元件213为光栅时,耦出元件213的角度选择性可以通过优化占空比、周期、高度、倾角等光栅的形貌参数得到。耦出元件213为超表面器件S1时,角度选择性同样是通过优化单元结构柱子的尺寸大小来得到。Both the coupling-in
本实施例中,耦出元件213还对偏振不敏感,也就是说,不同偏振态的光都能从耦出元件213中耦出。本申请通过限定耦出元件213既为角度选择性,又对偏振不敏感,能保证不同偏振光都能从耦出元件213耦出,有效提高光线的利用率。当然,在其他实施例中,耦出元件213还可以是具有角度选择性且对偏振敏感。或者耦出元件213还可以是具有偏振选择性对角度不敏感。In this embodiment, the out-
具体的,可通过目标函数MF=sum((DE_s-Tar)2+(DE_p-Tar)2+(DE_s-DE_p)2)。式中DE_s和DE_p分别代表s偏振光和p偏振光入射到光栅后的衍射效率,Tar是我们需要的耦出效率目标值,将该目标函数最小作为优化光栅结构的目标,这个目标代表着我们期望得到s和p偏振下同样的耦出效率目标值,通过模拟退火算法或者是基因算法等全局优化算法进行优化,得到具体的光栅结构参数值。对于超表面器件S1来说,偏振不敏感意味着是对称结构的单元,纳米结构柱子只是直径大小发生改变,但保持对称结构不变,则是偏振不敏感的。Specifically, the objective function MF=sum((DE_s-Tar)2 +(DE_p-Tar)2 +(DE_s-DE_p)2 ) can be used. In the formula, DE_s and DE_p represent the diffraction efficiency of s-polarized light and p-polarized light incident on the grating, respectively, and Tar is the target value of the outcoupling efficiency we need. It is expected to obtain the same target value of outcoupling efficiency under s and p polarization, and optimize by global optimization algorithm such as simulated annealing algorithm or genetic algorithm to obtain specific grating structure parameter values. For the metasurface device S1, the polarization insensitivity means that it is a unit of symmetric structure. The nanostructure pillars only change in diameter, but keep the symmetric structure unchanged, which means they are polarization insensitive.
如图3,本实施方式中,光学元件214包括第一光学膜,反射元件215包括第一反射膜和第一1/4波片2152,第一1/4波片2152位于第一反射膜朝向耦出元件213的一侧。具体的,第一光学膜为第一偏振反射膜2141,第一偏振反射膜2141透p偏振光反射s偏振光,光线透过第一偏振反射膜2141形成第一光线L1。第一反射膜为第二偏振反射膜2151,第二偏振反射膜2151反射s偏振光透过p偏振光,第三光线L3经第一1/4波片2152透射,第二偏振反射膜2151发射,再次经第一1/4波片2152透射形成第四光线L4,第四光线L4依次经耦出元件213和第一偏振反射膜2141形成第五光线L5。As shown in FIG. 3 , in this embodiment, the
本实施例中,光学元件214和反射元件215分别设于耦出元件213两侧并均与耦出元件213接触。具体的,第一偏振反射膜2141设于耦出元件213靠近耦入元件212的一侧,并与耦出元件213接触,第一1/4波片2152设于耦出元件213远离耦入元件212的一侧,并与耦出元件213接触,第二偏振反射膜2151设于第一1/4波片2152背向耦出元件213的一侧。相比于将光学元件214和反射元件215分别设于远离耦出元件213的位置,光学元件214和反射元件215与耦出元件213之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。In this embodiment, the
具体的,本实施例中的光学元件214和反射元件215通过如下工艺形成于波导基体211内部。如图9的制备流程图所示,先在确定的大小的耦出元件的块状材料边上镀光学元件214和反射元件215,然后将区域块黏合成整个衍射光波导的大小,然后将块状材料切片成衍射光波导后,在光学元件214和反射元件215的耦入区域和耦出区域上压印或者刻蚀所需的结构,形成耦入元件和耦出元件,得到最终的衍射光波导。Specifically, the
如图2和图3,下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出p偏振光,p偏振光经过投影系统22仍为p偏振光,p偏振光从耦入元件212进入波导基体211,透过第一偏振反射膜2141,形成第一光线L1,第一光线L1入射至耦出元件213后形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三光线L3经过第二偏振反射膜2151和第一1/4波片2152反射后变成s偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213的入射角在第二角度范围A2内,第四光线L4被反射至第一偏振反射膜2141,由于第一偏振反射膜2141反射s偏振光,第四光线L4经第一偏振反射膜2141反射后形成第五光线L5,第五光线L5随后入射至耦出元件213,由于经第一偏振反射膜2141反射形成的第五光线L5入射耦出元件213的角度在第一角度范围A1内,因此第五光线L5部分从耦出元件213耦出。As shown in FIG. 2 and FIG. 3 , the process of light propagating in the diffractive
本申请的耦出元件213对偏振不敏感具有角度选择性,从而s偏振光和p偏振光只要入射到耦出元件213的角度相同,均能从耦出元件213耦出,有效提高了能量利用率,还避免了光线从不同方向耦出引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。The out-
当然,在其他实施方式中,图像发射器23还可以发出s偏振光,第一偏振反射膜2141还可以是透s偏振光反射p偏振光,第二偏振反射膜2151朝向第一1/4波片2152的表面设有1/2波片,第二偏振反射膜2151可以是反射p偏振光透过s偏振光。或者,在其他实施方式中,图像发射器23还可以发射自然光,在经过第一偏振反射膜2141后变成p偏振光,但是相比于图像发射器23直接发出p偏振光,图像发射器23还可以发射自然光的光效有部分会被第一偏振反射膜2141阻挡,降低了光效,而图像发射器23直接发出p偏振光,p偏振光会全部透过第一偏振反射膜2141,不会造成光的浪费。Of course, in other embodiments, the
另一种实施方式中,请参阅图10,图10是图3所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 10 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式与图3所示的实施方式大致相同,不同在于第一反射膜为高反膜2153,第一1/4波片2152位于高反膜2153朝向耦出元件213的一侧,第三光线L3透过第一1/4波片2152,被高反膜2153反射后从第一1/4波片2152透射,形成第四光线L4,第四光线L4依次经耦出元件213和第一偏振反射膜2141反射形成第五光线L5。This embodiment is substantially the same as the embodiment shown in FIG. 3 , except that the first reflective film is a high-
另一种实施方式中,请参阅图11,图11是图3所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 11 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式与图10所示的实施方式大致相同,不同在于,本实施方式中,光学元件214包括第一光学膜,反射元件215包括第一反射膜。第一光学膜为高反膜2142,第一光学膜包括缺口h1,光线通过缺口h1形成第一光线L1,第一反射膜为高反膜2153,第三光线L3经高反膜2153反射形成第四光线L4,第四光线L4依次经耦出元件213和高反膜2142反射形成第五光线L5。高反膜可以反射任意偏振态的光线。This embodiment is substantially the same as the embodiment shown in FIG. 10 , except that, in this embodiment, the
下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出p偏振光,p偏振光经过投影系统22仍为p偏振光,p偏振光从耦入元件212进入波导基体211,通过高反膜2142的缺口h1形成第一光线L1,第一光线L1入射耦出元件213形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三部分经过高反膜2153反射后形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213的入射角在第二角度范围A2内,第四光线L4被反射至高反膜2142,第四光线L4经高反膜2142反射形成第五光线L5,随后入射至耦出元件213,由于经高反膜2142反射形成的第五光入射耦出元件213的角度在第一角度范围A1内,因此第五光线L5部分从耦出元件213耦出。The process of the light propagating in the diffractive
本实施方式中的耦出元件213可以是仅对p偏振光敏感且具有角度选择性,有效提高了能量利用率,还避免了光线从不同方向耦出引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。本实施方式可以通过设置光学元件和反射元件的距离,以使第四光线L4反射至反射元件时,避让缺口。The out-
当然,在其他实施方式中,图像发射器23还可以发出s偏振光或自然光,第一光学膜和第一反射膜均反射s偏振光或自然光。Of course, in other embodiments, the
另一种实施方式中,请参阅图12,图12是图3所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 12 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式与图11所示的实施方式大致相同,不同在于,本实施方式中,反射元件215还包括1/2波片2156,第一反射膜为第二偏振反射膜2151,第二偏振反射膜2151反射s偏振光透过p偏振光。第三光线L3透过1/2波片2156,经第二偏振反射膜2151反射,再次透过1/2波片2156形成第四光线L4,第四光线L4依次经耦出元件213和高反膜2142反射形成第五光线L5。This embodiment is substantially the same as the embodiment shown in FIG. 11 , except that in this embodiment, the
另一种实施方式中,请参阅图13,图13是图3所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 13 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式中,衍射光波导21包括波导基体211、耦入元件212、耦出元件213、光学元件214和反射元件215,上述元件之间的关系和图3所示实施方式相同。不同在于,本实施方式中,外部光线经耦入元件212进入波导基体211,并经过光学元件214形成第一光线L1,第一光线L1射入耦出元件213并被衍射形成第二光线L2和第三光线L3,第二光线L2射出波导基体211,第三光线L3在波导基体211中传播,第三光线L3被反射元件215反射形成第四光线L4,第四光线L4被耦出元件213和光学元件214反射形成第五光线L5。In this embodiment, the diffractive
耦出元件213具有耦出选择性,例如具有偏振选择性,即耦出元件213用于耦出特定偏振态的光线并反射其他偏振态的光线,第五光线L5的偏振态与第一光线L1相同。The out-
可以理解的是,如图14所示,本实施例中的耦出元件213被设定为第一偏振光敏感,第二偏振光不敏感,第一偏振光能够从耦出元件213耦出,第二偏振光不能从耦出元件213耦出。特定偏振态为第一偏振态,其他偏振态为第二偏振态,第一偏振光为s偏振光,第二偏振光为p偏振光。第一光线L1为s偏振光,因此第二光线L2能够从耦出元件213耦出。经过反射元件215反射至耦出元件213的第四光线L4为p偏振光,无法从耦出元件213耦出,继而反射至光学元件214,经光学元件214反射后的第五光线L5变为s偏振光,因此能从耦出元件213耦出。It can be understood that, as shown in FIG. 14 , the out-
本实施通过将光学元件214和反射元件215分别设于耦出元件213的两侧,且限定耦出元件213具有偏振选择性,从而第二光线L2能够从耦出元件213耦出,第三光线L3经反射元件215反射形成第四光线L4,第四光线L4入射至耦出元件213时,第四光线L4入射到耦出元件213的偏振态由于与第一光线L1入射到耦出元件213的偏振态不同,被耦出元件213反射而不耦出,然后经过光学元件214反射后形成第五光线L5,第五光线L5再次入射至耦出元件213的偏振态与第一光线L1入射至耦出元件213的偏振态相同,第五光线L5部分经耦出元件213耦出。也就是说,本申请通过对经反射元件215反射回的与第一光线L1不一致偏振态的第四光线L4不耦出,只有再次经光学元件214反射后,与第一光线L1的偏振态一致,即第一光线L1和第五光线L5从耦出元件213出射的偏振态相同,从而耦出,第五光线L5耦出时入射耦出元件213的角度与第一光线L1入射耦出元件213的角度相同。既有效避免第三部分从衍射光波导21中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。In this implementation, the
本实施方式中,光学元件214包括第二光学膜和第二1/4波片2144,第二1/4波片2144设于第二光学膜靠近耦出元件213一侧,第二1/4波片2144包括第一通孔h2,反射元件215包括第二反射膜和第三1/4波片2155,第三1/4波片2155设于第二反射膜朝向耦出元件213的一侧。第二光学膜为第二高反膜2143,第二1/4波片2144设于第二高反膜2143靠近耦出元件213一侧,第二高反膜2143包括第二通孔h3,第二高反膜2143反射任意偏振态的光线,光线依次通过第二通孔h3和第一通孔h2形成第一光线L1,第二反射膜为第一高反膜2154,第三1/4波片2155设于第一高反膜2154朝向耦出元件213的一侧,第一高反膜2154反射任意偏振态的光线。In this embodiment, the
本实施例中,光学元件214和反射元件215分别设于耦出元件213两侧并均与耦出元件213接触。具体的,具体的,第二1/4波片2144设于耦出元件213靠近耦入元件212的一侧,并与耦出元件213接触,第二高反膜2143设于第二1/4波片2144远离耦出元件213的一侧。第三1/4波片2155设于耦出元件213远离耦入元件212的一侧,并与耦出元件213接触,第一高反膜2154设于第三1/4波片2155背向耦出元件213的一侧。相比于将光学元件214和反射元件215分别设于远离耦出元件213的位置,光学元件214和反射元件215与耦出元件213之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。In this embodiment, the
如图13,下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出s偏振光,经过投影系统22仍为s偏振光,s偏振光从耦入元件212进入波导基体211,通过第二高反膜2143的第二通孔h3和第二1/4波片2144的第一通孔h2,形成第一光线L1,第一光线L1入射至耦出元件213后形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三光线L3经过第一高反膜2154和第三1/4波片2155反射后变成p偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213时为p偏振光,第四光线L4被反射至第三1/4波片2155和第二高反膜2143,第四光线L4经过第三1/4波片2155和第二高反膜2143反射后变为s偏振光,形成第五光线L5,随后入射至耦出元件213部分从耦出元件213耦出。As shown in FIG. 13 , the process of the light propagating in the diffractive
本实施方式可以通过设置光学元件和反射元件的距离,以使第四光线L4反射至反射元件时,避让第一通孔和第二通孔。In this embodiment, the distance between the optical element and the reflection element can be set, so that when the fourth light L4 is reflected to the reflection element, the first through hole and the second through hole are avoided.
当然,在其他实施例中,第一偏振光为p偏振光,第三光线L3经过第一高反膜2154和第三1/4波片2155反射后变成s偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,第四光线L4被反射至第三1/4波片2155和第二高反膜2143,第二部分L4经过第三1/4波片2155和第二高反膜2143反射后变为p偏振光,形成第五光线L5,随后入射至耦出元件213部分从耦出元件213耦出。Of course, in other embodiments, the first polarized light is p-polarized light, and the third light L3 becomes s-polarized light after being reflected by the first high-
另一种实施方式中,请参阅图15,图15是图3所示衍射光波导21的另一实施方式的结构示意图。本实施方式与图3所示的实施方式大致相同,不同在于,本实施方式中的耦出元件213为二维光栅。In another embodiment, please refer to FIG. 15 , which is a schematic structural diagram of another embodiment of the diffractive
另一种实施方式中,请参阅图16,图16是图15所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 16 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式与图15所示的实施方式大致相同,不同在于,衍射光波导21还包括第一反射件216,第一反射件216位于耦入元件212远离耦出元件213的一侧。具体的,第一反射件216为高反膜,将经耦入元件212后的背向耦出元件213的衍射光通过高反膜反射加以利用,有效提高光效。当然,在其他实施例中,第一反射件还可以为偏振反射膜。This embodiment is substantially the same as the embodiment shown in FIG. 15 , except that the diffractive
另一种实施方式中,请参阅图17,图17是图3所示衍射光波导21的另一实施方式的结构示意图。In another embodiment, please refer to FIG. 17 , which is a schematic structural diagram of another embodiment of the diffractive
本实施方式与图3所示的实施方式大致相同,不同在于,本实施例中,衍射光波导21还包括转光元件217及分别设于转光元件217入光侧和出光侧的光学元件218和第二反射件219,光线从耦入元件212进入波导基体211,通过转光元件217转向,以使光线传播至耦出元件213,并从耦出元件213耦出。光学元件218和第二反射件219用于防止光线在传播过程中漏光,有效提高光线的利用率。This embodiment is substantially the same as the embodiment shown in FIG. 3 , except that, in this embodiment, the diffractive
本实施例中的光学元件218和第二反射件219可以均为高反膜。光学元件218的具体结构还可以参考光学元件214,第二反射件219的具体结构可以参考反射元件215,不在赘述。The
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only some examples and implementations of the present application, and the protection scope of the present application is not limited thereto. Any person skilled in the art can easily think of changes or replacements within the technical scope disclosed in the present application, and should cover within the scope of protection of this application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110316351.3ACN115128737B (en) | 2021-03-24 | 2021-03-24 | Diffractive optical waveguide and electronic device |
| PCT/CN2022/081956WO2022199517A1 (en) | 2021-03-24 | 2022-03-21 | Diffractive optical waveguide and electronic device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110316351.3ACN115128737B (en) | 2021-03-24 | 2021-03-24 | Diffractive optical waveguide and electronic device |
| Publication Number | Publication Date |
|---|---|
| CN115128737Atrue CN115128737A (en) | 2022-09-30 |
| CN115128737B CN115128737B (en) | 2023-04-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110316351.3AActiveCN115128737B (en) | 2021-03-24 | 2021-03-24 | Diffractive optical waveguide and electronic device |
| Country | Link |
|---|---|
| CN (1) | CN115128737B (en) |
| WO (1) | WO2022199517A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117930424A (en)* | 2024-03-22 | 2024-04-26 | 宁波舜宇光电信息有限公司 | AR diffraction waveguide sheet, design method and AR device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024088055A1 (en)* | 2022-10-28 | 2024-05-02 | 深圳迈塔兰斯科技有限公司 | In-coupling meta-grating, out-coupling meta-grating, image combiner, and ar optical system |
| CN116047647B (en)* | 2022-12-27 | 2025-09-30 | 谷东科技有限公司 | Device and method for expanding the field of view of an optical waveguide |
| CN118112812B (en)* | 2024-04-23 | 2024-07-02 | 北京灵犀微光科技有限公司 | Array optical waveguide group and near-to-eye display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090303212A1 (en)* | 2008-06-10 | 2009-12-10 | Sony Corporation | Optical device and virtual image display |
| CN105934902A (en)* | 2013-11-27 | 2016-09-07 | 奇跃公司 | Virtual and augmented reality systems and methods |
| US20170102544A1 (en)* | 2015-10-08 | 2017-04-13 | Tuomas Vallius | Reducing stray light transmission in near eye display using resonant grating filter |
| US20170176745A1 (en)* | 2015-12-17 | 2017-06-22 | Yarn Chee Poon | Reducing ghost images |
| CN107632406A (en)* | 2016-07-18 | 2018-01-26 | 北京灵犀微光科技有限公司 | Holographic waveguide, augmented reality display system and display method |
| US20190227316A1 (en)* | 2018-01-23 | 2019-07-25 | Facebook, Inc. | Slanted surface relief grating for rainbow reduction in waveguide display |
| US10598938B1 (en)* | 2018-11-09 | 2020-03-24 | Facebook Technologies, Llc | Angular selective grating coupler for waveguide display |
| CN110989172A (en)* | 2019-12-24 | 2020-04-10 | 平行现实(杭州)科技有限公司 | Waveguide display device with ultra-large field angle |
| US20200225416A1 (en)* | 2017-08-18 | 2020-07-16 | EARDG Photonics, Inc. | Waveguide image combiners for augmented reality displays |
| US20200371280A1 (en)* | 2019-05-20 | 2020-11-26 | Facebook Technologies, Llc | Optical waveguide beam splitter with polarization volume gratings for display |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108107576A (en)* | 2017-11-27 | 2018-06-01 | 北京灵犀微光科技有限公司 | Waveguide display device |
| US10866426B2 (en)* | 2018-02-28 | 2020-12-15 | Apple Inc. | Scanning mirror display devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090303212A1 (en)* | 2008-06-10 | 2009-12-10 | Sony Corporation | Optical device and virtual image display |
| CN105934902A (en)* | 2013-11-27 | 2016-09-07 | 奇跃公司 | Virtual and augmented reality systems and methods |
| US20170102544A1 (en)* | 2015-10-08 | 2017-04-13 | Tuomas Vallius | Reducing stray light transmission in near eye display using resonant grating filter |
| US20170176745A1 (en)* | 2015-12-17 | 2017-06-22 | Yarn Chee Poon | Reducing ghost images |
| CN107632406A (en)* | 2016-07-18 | 2018-01-26 | 北京灵犀微光科技有限公司 | Holographic waveguide, augmented reality display system and display method |
| US20200225416A1 (en)* | 2017-08-18 | 2020-07-16 | EARDG Photonics, Inc. | Waveguide image combiners for augmented reality displays |
| US20190227316A1 (en)* | 2018-01-23 | 2019-07-25 | Facebook, Inc. | Slanted surface relief grating for rainbow reduction in waveguide display |
| US10598938B1 (en)* | 2018-11-09 | 2020-03-24 | Facebook Technologies, Llc | Angular selective grating coupler for waveguide display |
| US20200371280A1 (en)* | 2019-05-20 | 2020-11-26 | Facebook Technologies, Llc | Optical waveguide beam splitter with polarization volume gratings for display |
| CN110989172A (en)* | 2019-12-24 | 2020-04-10 | 平行现实(杭州)科技有限公司 | Waveguide display device with ultra-large field angle |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117930424A (en)* | 2024-03-22 | 2024-04-26 | 宁波舜宇光电信息有限公司 | AR diffraction waveguide sheet, design method and AR device |
| CN117930424B (en)* | 2024-03-22 | 2024-06-11 | 宁波舜宇光电信息有限公司 | AR diffraction waveguide sheet, design method and AR device |
| Publication number | Publication date |
|---|---|
| CN115128737B (en) | 2023-04-18 |
| WO2022199517A1 (en) | 2022-09-29 |
| Publication | Publication Date | Title |
|---|---|---|
| JP3226588U (en) | Optical system with compact collimating image projector | |
| CN115128737A (en) | Diffractive optical waveguides and electronic equipment | |
| TWI871876B (en) | Near-eye displays | |
| JP5545076B2 (en) | Image display device and optical device | |
| US20140192418A1 (en) | Optical Element and Optical Mechanism | |
| JP3460716B1 (en) | Image display device | |
| CN111175897B (en) | Grating waveguide pupil expander and augmented reality display module | |
| CN112433368B (en) | Image display device and head mounted display using the same | |
| JP2015106105A (en) | Optical device and virtual image display device | |
| CA2758633A1 (en) | Optical waveguide and display device | |
| CN110824613A (en) | Polarization multiplexing waveguide display device | |
| US11269189B2 (en) | Image display device | |
| CN113985519B (en) | Optical waveguide device, display device and display equipment | |
| CN111458886A (en) | Waveguide AR display device with large field angle and implementation method thereof | |
| JP2005148655A (en) | Image display device | |
| JP2022102491A5 (en) | ||
| TW202332945A (en) | Curved light guide image combiner and system including the same | |
| CN219302777U (en) | Apparatus for manufacturing cholesteric liquid crystal device and near-eye display device | |
| CN103513422A (en) | Perspective display device | |
| CN217718285U (en) | Apparatus for manufacturing holographic optical element and near-to-eye display device | |
| CN111474719A (en) | Waveguide device and augmented reality apparatus | |
| WO2025179985A1 (en) | Speckle suppression assembly, laser illumination apparatus, and display device | |
| JP6600742B2 (en) | Display device and vehicle head-up display device | |
| CN113552721A (en) | Waveguide Structures and Head Mounted Display Devices | |
| CN219799825U (en) | Light guide system, light source device and display equipment |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |