技术领域technical field
本发明涉及心电监控加密技术领域,特别涉及一种加密方法和心电监测系统。The invention relates to the technical field of electrocardiogram monitoring encryption, in particular to an encryption method and an electrocardiogram monitoring system.
背景技术Background technique
在相关技术中,心电监控技术可采集人体个体的心电信号(ECG,Electrocardiogram),从而可以在后续对采集到的信号进行处理、分析与诊断。心电信号是个人的生理数据,属于个人隐私。由于受到硬件限制,在使用高复杂度的加密算法进行加密时,会占用大量的硬件资源,影响硬件效率,同时会增加功耗。而为了保证一定的硬件效率又容易造成加密性能差的问题,使得个人隐私容易被泄漏,对用户造成不必要的困扰。In the related art, the electrocardiogram monitoring technology can collect electrocardiogram signals (ECG, Electrocardiogram) of individual human body, so that the collected signals can be processed, analyzed and diagnosed subsequently. ECG signals are personal physiological data and belong to personal privacy. Due to hardware limitations, when a high-complexity encryption algorithm is used for encryption, it will occupy a lot of hardware resources, affect hardware efficiency, and increase power consumption. In order to ensure a certain hardware efficiency, it is easy to cause the problem of poor encryption performance, which makes personal privacy easily leaked and causes unnecessary trouble to users.
发明内容SUMMARY OF THE INVENTION
本发明的实施方式提供了一种加密方法和心电监测系统。Embodiments of the present invention provide an encryption method and an electrocardiogram monitoring system.
本发明实施方式提供的一种加密方法,用于心电监测系统,所述心电监测系统包括多导联心电信号获取装置和信号中继装置,所述加密方法包括:An encryption method provided by an embodiment of the present invention is used in an ECG monitoring system, the ECG monitoring system includes a multi-lead ECG signal acquisition device and a signal relay device, and the encryption method includes:
所述多导联心电信号获取装置获取人体不同部位的多个心电信号,根据每个所述心电信号的幅值对所述多个心电信号进行转换,生成对应的一维数组;The multi-lead ECG signal acquisition device acquires a plurality of ECG signals from different parts of the human body, and converts the plurality of ECG signals according to the amplitude of each of the ECG signals to generate a corresponding one-dimensional array;
所述多导联心电信号获取装置利用混沌系统对所述一维数组进行加密以获取加密后的传输数据,并将所述传输数据发送至所述信号中继装置,其中,所述混沌系统包括Tent映射和Logistic映射,所述Tent映射用于生成所述Logistic映射的多个初始参数。The multi-lead ECG signal acquisition device uses a chaotic system to encrypt the one-dimensional array to obtain encrypted transmission data, and sends the transmission data to the signal relay device, wherein the chaotic system It includes a Tent map and a Logistic map, where the Tent map is used to generate multiple initial parameters of the Logistic map.
上述加密方法,通过基于Tent映射和Logistic映射的组合混沌加密方式,在存在硬件资源的限制的情况下,可根据生理数据的不同类型,以低复杂度的算法进行加密,并实现较高的加密性能。The above encryption method, through the combined chaotic encryption method based on Tent mapping and Logistic mapping, can be encrypted with a low-complexity algorithm according to different types of physiological data under the condition of limited hardware resources, and achieve higher encryption. performance.
在某些实施方式中,所述心电监测系统预设有初始密钥和加密精度,所述初始密钥包括第一密钥和第二密钥,In some embodiments, the ECG monitoring system is preset with an initial key and encryption precision, and the initial key includes a first key and a second key,
生成所述Logistic映射的多个初始参数,包括:Generate multiple initial parameters of the logistic map, including:
对所述一维数组进行处理,生成第一序列和第二序列;processing the one-dimensional array to generate a first sequence and a second sequence;
利用所述第一密钥和所述第一序列,生成结构参数;Using the first key and the first sequence, generating structural parameters;
利用所述第二密钥和所述第二序列,生成所述Tent映射的初始值;Using the second key and the second sequence, generate an initial value of the Tent map;
根据所述结构参数、所述初始值和所述Tent映射进行迭代计算,并生成所述多个初始参数。Iterative calculation is performed according to the structural parameter, the initial value and the Tent map, and the plurality of initial parameters are generated.
在某些实施方式中,对所述一维数组进行处理,生成第一序列和第二序列,包括:In some embodiments, the one-dimensional array is processed to generate a first sequence and a second sequence, including:
根据所述一维数组,生成对应的二进制序列;generate a corresponding binary sequence according to the one-dimensional array;
将所述二进制序列划分为多个片段,利用所述多个片段的其中一部分生成第一序列,利用所述多个片段的其余部分生成第二序列。The binary sequence is divided into a plurality of segments, a first sequence is generated by using a part of the plurality of segments, and a second sequence is generated by using the remaining parts of the plurality of segments.
在某些实施方式中,所述加密方法包括:In some embodiments, the encryption method includes:
在第一预设数值范围中对所述第一密钥进行随机取值,在第二预设数值范围中对所述第二密钥进行随机取值。The first key is randomly selected in a first preset value range, and the second key is randomly selected in a second preset value range.
在某些实施方式中,根据所述结构参数、所述初始值和所述Tent映射进行迭代计算,并生成所述多个初始参数,包括:In some embodiments, iterative calculation is performed according to the structural parameter, the initial value and the Tent map, and the plurality of initial parameters are generated, including:
根据所述结构参数,将所述初始值代入所述Tent映射,从而依次迭代计算出多个Tent映射混沌序列;According to the structural parameter, the initial value is substituted into the Tent map, so as to iteratively calculate a plurality of Tent map chaotic sequences in turn;
在所述Tent映射的迭代次数大于第一预设次数的情况下,将计算出的所述多个Tent映射混沌序列依次作为所述多个初始参数。When the number of iterations of the Tent mapping is greater than the first preset number of times, the plurality of Tent mapping chaotic sequences calculated are used as the plurality of initial parameters in sequence.
在某些实施方式中,根据所述结构参数,将所述初始值代入所述Tent映射,从而依次迭代计算出多个Tent映射混沌序列,包括:In some embodiments, according to the structural parameter, the initial value is substituted into the Tent map, so as to sequentially iteratively calculate a plurality of Tent map chaotic sequences, including:
在迭代的过程中对生成的每个所述Tent映射混沌序列进行向下取整。In the iterative process, each generated Tent map chaotic sequence is rounded down.
在某些实施方式中,所述心电监测系统预设有系统初始值,In some embodiments, the ECG monitoring system is preset with a system initial value,
利用混沌系统对所述一维数组进行加密以获取加密后的传输数据,包括:Encrypt the one-dimensional array by using a chaotic system to obtain encrypted transmission data, including:
根据所述系统初始值,将所述多个初始参数依次代入所述Logistic映射以进行迭代计算,其中,每个所述初始参数的迭代次数为第二预设次数,每个所述初始参数对应生成一个Logistic映射混沌序列;According to the initial value of the system, the plurality of initial parameters are sequentially substituted into the Logistic map for iterative calculation, wherein the number of iterations of each initial parameter is a second preset number, and each initial parameter corresponds to Generate a Logistic map chaotic sequence;
根据依次迭代计算得到的多个所述Logistic映射混沌序列,生成所述传输数据。The transmission data is generated according to a plurality of the logistic map chaotic sequences obtained by successive iterative calculations.
在某些实施方式中,将所述多个初始参数依次代入所述Logistic映射以进行迭代计算,包括:In some embodiments, the multiple initial parameters are sequentially substituted into the logistic map for iterative calculation, including:
在迭代的过程中对生成的每个所述Logistic映射混沌序列进行向下取整。In the iterative process, each generated Logistic map chaotic sequence is rounded down.
在某些实施方式中,根据依次迭代计算得到的多个所述Logistic映射混沌序列,生成所述传输数据,包括:In some embodiments, generating the transmission data according to a plurality of the logistic map chaotic sequences obtained by successive iterative calculations, including:
将多个所述Logistic映射混沌序列逐个地进行依次对接处理,生成组合混沌加密序列;performing sequential docking processing on a plurality of the Logistic mapping chaotic sequences one by one to generate a combined chaotic encryption sequence;
对所述组合混沌加密序列进行门限判断以生成混沌二进制流;Perform threshold judgment on the combined chaotic encryption sequence to generate a chaotic binary stream;
将所述一维数组与所述混沌二进制流进行整合加密,以获取加密后的所述传输数据。The one-dimensional array and the chaotic binary stream are integrated and encrypted to obtain the encrypted transmission data.
本发明实施方式提供的一种心电监测系统,所述心电监测系统包括多导联心电信号获取装置和信号中继装置,所述多导联心电信号获取装置用于:An ECG monitoring system provided by an embodiment of the present invention includes a multi-lead ECG signal acquisition device and a signal relay device, and the multi-lead ECG signal acquisition device is used for:
获取人体不同部位的多个心电信号,根据每个所述心电信号的幅值对所述多个心电信号进行转换,生成对应的一维数组;Acquiring a plurality of ECG signals from different parts of the human body, and converting the plurality of ECG signals according to the amplitude of each of the ECG signals to generate a corresponding one-dimensional array;
利用混沌系统对所述一维数组进行加密以获取加密后的传输数据,并将所述传输数据发送至所述信号中继装置,其中,所述混沌系统包括Tent映射和Logistic映射,所述Tent映射用于生成所述Logistic映射的多个初始参数。Encrypt the one-dimensional array by using a chaotic system to obtain encrypted transmission data, and send the transmission data to the signal relay device, wherein the chaotic system includes a Tent map and a Logistic map, and the Tent map Map a number of initial parameters used to generate the logistic map.
上述心电监测系统,通过基于Tent映射和Logistic映射的组合混沌加密方式,在存在硬件资源的限制的情况下,可根据生理数据的不同类型,以低复杂度的算法进行加密,并实现较高的加密性能。The above ECG monitoring system, through the combined chaotic encryption method based on Tent mapping and Logistic mapping, can encrypt with low-complexity algorithms according to different types of physiological data under the condition of limited hardware resources, and achieve high performance. encryption performance.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是本发明实施方式的加密方法的流程图;1 is a flowchart of an encryption method according to an embodiment of the present invention;
图2是本发明实施方式的心电监测系统的模块示意图;2 is a schematic diagram of a module of an ECG monitoring system according to an embodiment of the present invention;
图3-图7是本发明实施方式的加密方法的流程图;Fig. 3-Fig. 7 is the flow chart of the encryption method of the embodiment of the present invention;
图8是本发明实施方式的多导联心电信号获取装置对心电信号进行加密的流程示意图。FIG. 8 is a schematic flowchart of a multi-lead ECG signal acquisition device for encrypting an ECG signal according to an embodiment of the present invention.
主要元件符号说明:Description of main component symbols:
心电监测系统100;
多导联心电信号获取装置110、第一控制器111、信号中继装置130、第二控制器131。The multi-lead ECG
具体实施方式Detailed ways
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, the terms "first" and "second" are only used for the purpose of description, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as "first", "second" may expressly or implicitly include one or more of said features. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本发明的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The disclosure of the present invention provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present disclosure may repeat reference numerals and/or reference letters in different instances for the purpose of simplicity and clarity and not in itself indicative of a relationship between the various embodiments and/or arrangements discussed. In addition, the present disclosure provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the application of other processes and/or the use of other materials.
请参考图1和图2,本发明实施方式提供的一种加密方法,用于心电监测系统100,心电监测系统100包括多导联心电信号获取装置110和信号中继装置130,加密方法包括:Referring to FIG. 1 and FIG. 2 , an encryption method provided by an embodiment of the present invention is used in an
步骤S110:多导联心电信号获取装置110获取人体不同部位的多个心电信号,根据每个心电信号的幅值对多个心电信号进行转换,生成对应的一维数组Yn;Step S110: the multi-lead ECG
步骤S210:多导联心电信号获取装置110利用混沌系统对一维数组Yn进行加密以获取加密后的传输数据,并将传输数据发送至信号中继装置130,其中,混沌系统包括Tent映射和Logistic映射,Tent映射用于生成Logistic映射的多个初始参数。Step S210: The multi-lead ECG
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,心电监测系统100包括多导联心电信号获取装置110和信号中继装置130。多导联心电信号获取装置110用于获取人体不同部位的多个心电信号,根据每个心电信号的幅值对多个心电信号进行转换,生成对应的一维数组Yn;及用于利用混沌系统对一维数组Yn进行加密以获取加密后的传输数据,并将传输数据发送至信号中继装置130,其中,混沌系统包括Tent映射和Logistic映射,Tent映射用于生成Logistic映射的多个初始参数。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,多导联心电信号获取装置110可包括第一控制器111,可以是多导联心电信号获取装置110的第一控制器111用于获取人体不同部位的多个心电信号,根据每个心电信号的幅值对多个心电信号进行转换,生成对应的一维数组Yn;及用于利用混沌系统对一维数组Yn进行加密以获取加密后的传输数据,并将传输数据发送至信号中继装置130,其中,混沌系统包括Tent映射和Logistic映射,Tent映射用于生成Logistic映射的多个初始参数。Specifically, the multi-lead ECG
上述加密方法和心电监测系统100,通过基于Tent映射和Logistic映射的组合混沌加密方式,在存在硬件资源的限制的情况下,可根据生理数据的不同类型,以低复杂度的算法进行加密,并实现较高的加密性能。The above-mentioned encryption method and
具体地,混沌系统(Chaos System)是指在一个确定性系统中,存在着貌似随机的不规则运动,通过混沌系统所产生的伪随机序列具有良好的随机性和复杂性。由于在混沌系统中产生的映射具有天然的非动力学特性,可以直接作为随机数生成器应用于数据加密,从而可以方便地通过建立混沌系统的数学模型并根据设定相应的混沌参数来选择实现对数据流的不同程度的加密。Specifically, a chaotic system means that in a deterministic system, there are seemingly random irregular motions, and the pseudo-random sequence generated by the chaotic system has good randomness and complexity. Since the mapping generated in the chaotic system has natural non-dynamic characteristics, it can be directly used as a random number generator for data encryption, so that it can be easily achieved by establishing a mathematical model of the chaotic system and setting the corresponding chaotic parameters. Different levels of encryption for data streams.
一维Logistic映射又称为虫口模型(insect mouth model),是一种数学形式非常简单的一维离散的Logistic映射,因其具有复杂的动力学行为,可广泛应用于保密通信领域。在预设的初始条件下,经过Logistic映射作用下的序列是非周期的、不收敛的,使得此时的Logistic映射处于混沌状态,从而可实现对数据的混沌加密。The one-dimensional logistic map, also known as the insect mouth model (insect mouth model), is a one-dimensional discrete logistic map with a very simple mathematical form. Because of its complex dynamic behavior, it can be widely used in the field of secure communication. Under the preset initial conditions, the sequence under the action of the Logistic mapping is aperiodic and non-convergent, so that the Logistic mapping at this time is in a chaotic state, so that the chaotic encryption of the data can be realized.
然而,实际上单一的Logistic映射的定点32-bit和24-bit无法通过随机性测试,使得其随机性方面存在缺陷。如何能够在保持低功耗与硬件资源利用效率的同时,提高生成序列的随机性是混沌加密方案的重要瓶颈。However, in fact, the fixed-point 32-bit and 24-bit of a single Logistic map cannot pass the randomness test, which makes it defective in randomness. How to improve the randomness of the generated sequence while maintaining low power consumption and hardware resource utilization efficiency is an important bottleneck of the chaotic encryption scheme.
Tent映射也属于一维混沌映射,其函数图像类似帐篷,并且为均匀的分布函数。使用Tent映射与Logistic映射组成的组合混沌系统,能够通过Tent映射生成Logistic映射初始值,并且对每一次混沌序列生成开始时对初始值进行更新。基于Tent映射与Logistic映射组成的混沌系统WBANs(Wireless Body Area Network,无线人体局域网)加密方案,能够打破混沌序列的周期性,介入Logistic系统的迭代,改变加密系统的轨迹,从而在计算量相等的情况下,显著提高加密系统生成序列的随机性,增强加密系统的加密性能。Tent map also belongs to one-dimensional chaotic map, its function image is similar to tent, and it is a uniform distribution function. Using the combined chaotic system composed of Tent map and Logistic map, the initial value of Logistic map can be generated by Tent map, and the initial value is updated at the beginning of each chaotic sequence generation. The chaotic system WBANs (Wireless Body Area Network, Wireless Body Area Network) encryption scheme based on Tent mapping and Logistic mapping can break the periodicity of the chaotic sequence, intervene in the iteration of the Logistic system, and change the trajectory of the encryption system. Under the circumstance, the randomness of the generated sequence of the encryption system is significantly improved, and the encryption performance of the encryption system is enhanced.
具体地,在一个实施方式中,多导联心电信号获取装置110可装设在人体的不同部位,从而可获取到对应部位的心电信号。在通过多导联心电信号获取装置110获取到多个心电信号的情况下,可根据每个心电信号的幅值(电流幅值或电压幅值)在(1,255)的数值范围内进行归一化处理,从而生成相应的一维数组Yn,使得多导联心电信号获取装置110根据由Tent映射和Logistic映射组合而成的混沌系统对得到的一维数组Yn进行加密,所得到的相应输出会生成为传输数据,进而使得多导联心电信号获取装置110可将传输数据发送至信号中继装置130。可以理解,在其它的实施方式中,可通过其他的方式对每个心电信号进行预处理以得到相应的一维数组Yn,在此不做具体限定。Specifically, in one embodiment, the multi-lead ECG
另外,在需要转换的数据类型为二维数组或图像数据的情况下,可根据相应的数据类型设置对应精度的量化方案。在一个实施方式中,可根据图像数据的像素值生成一维数组Yn。In addition, when the data type to be converted is a two-dimensional array or image data, a quantization scheme with corresponding precision can be set according to the corresponding data type. In one embodiment, a one-dimensional array Yn may be generated according to pixel values of the image data.
在其它的实施方式中,多导联心电信号获取装置110的数量可以是一个,也可以是两个及两个以上。In other embodiments, the number of the multi-lead ECG
此外,在图2所示的实施方式中,多导联心电信号获取装置110和信号中继装置130之间为通过无线通信的方式进行数据传输。在其它的实施方式中,多导联心电信号获取装置110和信号中继装置130之间也可以通过有线通信的方式进行数据传输。In addition, in the embodiment shown in FIG. 2 , data transmission is performed between the multi-lead ECG
在某些实施方式中,心电监测系统100预设有初始密钥和加密精度。初始密钥包括第一密钥α0和第二密钥y0。请参考图3,步骤S210,包括:In some embodiments, the
步骤S220:对一维数组Yn进行处理,生成第一序列和第二序列;Step S220: Process the one-dimensional array Yn to generate a first sequence and a second sequence;
步骤S230:利用第一密钥α0和第一序列,生成结构参数α;Step S230: using the first key α0 and the first sequence to generate the structure parameter α;
步骤S240:利用第二密钥y0和第二序列,生成Tent映射的初始值y;Step S240: use the second key y0 and the second sequence to generate the initial value y of the Tent map;
步骤S250:根据结构参数α、初始值y和Tent映射进行迭代计算,并生成多个初始参数。Step S250: Perform iterative calculation according to the structural parameter α, the initial value y and the Tent map, and generate a plurality of initial parameters.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于对一维数组Yn进行处理,生成第一序列和第二序列;及用于利用第一密钥α0和第一序列,生成结构参数α;及用于利用第二密钥y0和第二序列,生成Tent映射的初始值y;及用于根据结构参数α、初始值y和Tent映射进行迭代计算,并生成多个初始参数。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于对一维数组Yn进行处理,生成第一序列和第二序列;及用于利用第一密钥α0和第一序列,生成结构参数α;及用于利用第二密钥y0和第二序列,生成Tent映射的初始值y;及用于根据结构参数α、初始值y和Tent映射进行迭代计算,并生成多个初始参数。Specifically, the
如此,可增加混沌系统的随机性,提高数据加密的安全程度。In this way, the randomness of the chaotic system can be increased, and the security degree of data encryption can be improved.
可以理解,在确定第一密钥α0和第二密钥y0的情况下,由于一维数组Yn是根据多个心电信号转化得到的,其具有很大的随机性。在根据第一密钥α0和与一维数组Yn相关的第一序列得到结构参数,以及根据第二密钥y0和与一维数组Yn相关的第二序列得到初始值的情况下,将结构参数和初始值代入Tent映射进行迭代计算,可提高其输出结果的随机性,以及对心电信号的数据安全性。It can be understood that in the case of determining the first key α0 and the second key y0, since the one-dimensional array Yn is obtained by transforming a plurality of ECG signals, it has great randomness. In the case where the structural parameters are obtained from the first key α0 and the first sequence related to the one-dimensional array Yn, and the initial value is obtained from the second key y0 and the second sequence related to the one-dimensional array Yn, the structural The parameters and initial values are substituted into the Tent map for iterative calculation, which can improve the randomness of its output results and the data security of ECG signals.
需要指出的是,根据获取到的不同类型的数据,可选择不同的加密精度以使得获取到的数据适配于Logistic映射。在一些实施方式中,加密精度为24-bit。It should be pointed out that, according to different types of data obtained, different encryption precisions can be selected so that the obtained data can be adapted to the Logistic mapping. In some embodiments, the encryption precision is 24-bit.
在某些实施方式中,加密方法包括:In some embodiments, the encryption method includes:
在第一预设数值范围中对所述第一密钥进行随机取值,在第二预设数值范围中对所述第二密钥进行随机取值。The first key is randomly selected in a first preset value range, and the second key is randomly selected in a second preset value range.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于在第一预设数值范围中对所述第一密钥进行随机取值,在第二预设数值范围中对所述第二密钥进行随机取值。具体地,可以是多导联心电信号获取装置110的第一控制器111用于在第一预设数值范围中对所述第一密钥进行随机取值,在第二预设数值范围中对所述第二密钥进行随机取值。The encryption method provided by the embodiment of the present invention can be implemented by the
在这样的一个实施方式中,第一密钥α0可以在(0.4,0.5)中进行随机取值,第二密钥y0可以在(0,1)对进行随机取值。第一密钥α0和第二密钥y0可不相等。In such an embodiment, the first key α0 may be randomly valued at (0.4, 0.5), and the second key y0 may be randomly valued at (0, 1). The first key α0 and the second key y0 may not be equal.
请参考图4,在某些实施方式中,步骤S220,包括:Referring to FIG. 4, in some embodiments, step S220 includes:
步骤S221:根据一维数组Yn,生成对应的二进制序列H;Step S221: generate the corresponding binary sequence H according to the one-dimensional array Yn;
步骤S222:将二进制序列H划分为多个片段,利用多个片段的其中一部分生成第一序列,利用多个片段的其余部分生成第二序列。Step S222: Divide the binary sequence H into multiple segments, use a part of the multiple segments to generate the first sequence, and use the rest of the multiple segments to generate the second sequence.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于根据一维数组Yn,生成对应的二进制序列H;及用于将二进制序列H划分为多个片段,利用多个片段的其中一部分生成第一序列,利用多个片段的其余部分生成第二序列。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于根据一维数组Yn,生成对应的二进制序列H;及用于将二进制序列H划分为多个片段,利用多个片段的其中一部分生成第一序列,利用多个片段的其余部分生成第二序列。Specifically, the
如此,可提高生成的结构参数α和初始值y的随机性。In this way, the randomness of the generated structural parameter α and the initial value y can be improved.
具体地,在一个实施方式中,一维数组Yn的字节长度为512*512*8-bits,在将一维数组Yn输入到预设的哈希函数(如SHA-256)可得到字节长度为256-bits的二进制序列H。将二进制序列H按8-bits的字节长度依次划分得到32个片段(H1,H2,...,H32)。将前16个片段(H1,H2,...,H16)作为第一序列,以及将16个片段(H17,H18,...,H32)作为第二序列,再执行下列操作:Specifically, in one embodiment, the byte length of the one-dimensional array Yn is 512*512*8-bits, and the bytes can be obtained by inputting the one-dimensional array Yn into a preset hash function (such as SHA-256). A binary sequence H of length 256-bits. Divide the binary sequence H in sequence according to the byte length of 8-bits to obtain 32 segments (H1 , H2 , . . . , H32 ). Take the first 16 fragments (H1 , H2 , . . . , H16 ) as the first sequence, and the 16 fragments (H17 , H18 , . . . , H32 ) as the second sequence, and execute again The following actions:
其中,mod(a,b)表示计算a/b的余数,表示执行异或操作。Among them, mod(a,b) means to calculate the remainder of a/b, Indicates that an XOR operation is performed.
可以理解,根据上述计算式,使得用于代入Tent映射进行计算的结构参数α和初始值y都与一维数组Yn相关,从而可提高结构参数α和初始值y相对于一维数组Yn的相关度。It can be understood that, according to the above calculation formula, the structural parameter α and the initial value y used for the calculation in the Tent map are related to the one-dimensional array Yn, so that the correlation between the structural parameter α and the initial value y relative to the one-dimensional array Yn can be improved. Spend.
另外,在其它的实施方式中,第一序列中的片段数量和第二序列中的片段数量可以是相同的,也可以是不同的。也可以随机选取任意数量的片段来得到第一序列和/或第二序列。In addition, in other embodiments, the number of fragments in the first sequence and the number of fragments in the second sequence may be the same or different. Any number of fragments can also be randomly selected to obtain the first sequence and/or the second sequence.
请参考图5,在某些实施方式中,步骤S250,包括:Referring to FIG. 5, in some embodiments, step S250 includes:
步骤S251:根据结构参数α,将初始值y代入Tent映射,从而依次迭代计算出多个Tent映射混沌序列;Step S251: According to the structural parameter α, the initial value y is substituted into the Tent map, thereby iteratively calculating multiple Tent map chaotic sequences in turn;
步骤S252:在Tent映射的迭代次数大于第一预设次数的情况下,将计算出的多个Tent映射混沌序列依次作为多个初始参数。Step S252: In the case that the number of iterations of the Tent mapping is greater than the first preset number of times, use the calculated multiple Tent mapping chaotic sequences as multiple initial parameters in sequence.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于根据结构参数α,将初始值y代入Tent映射,从而依次迭代计算出多个Tent映射混沌序列;及用于在Tent映射的迭代次数大于第一预设次数的情况下,将计算出的多个Tent映射混沌序列依次作为多个初始参数。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于根据结构参数α,将初始值y代入Tent映射,从而依次迭代计算出多个Tent映射混沌序列;及用于在Tent映射的迭代次数大于第一预设次数的情况下,将计算出的多个Tent映射混沌序列依次作为多个初始参数。Specifically, it may be that the
如此,可实现获得多个初始参数。In this way, it is possible to obtain multiple initial parameters.
具体地,在一个实施方式中,在确定结构参数和初始值的情况下,根据下列计算式执行操作:Specifically, in one embodiment, when the structural parameters and initial values are determined, operations are performed according to the following calculation formula:
其中,n/N表示在Tent映射中当前的迭代次数,frc表示保留精度。Among them, n/N represents the current number of iterations in the Tent map, and frc represents the reserved precision.
另外,请参考上述的计算式,在其它的实施方式中,通过设置可实现对生成的每个Tent映射混沌序列进行向下取整。In addition, please refer to the above calculation formula, in other embodiments, by setting It is possible to round down each Tent map chaotic sequence generated.
在这样的一个实施方式中,第一预设次数为50次。在Tent映射进行第51次迭代的情况下,可将第51次迭代计算得到的Tent映射混沌序列代入Logistic映射以进行迭代计算。根据需要的初始参数的具体数量,还可将第51次、第52次、...迭代计算得到的Tent映射混沌序列依次代入Logistic映射以进行迭代计算,从而可相应得到对应数量的初始参数。In such an embodiment, the first preset number of times is 50 times. When the Tent map performs the 51st iteration, the Tent map chaotic sequence calculated by the 51st iteration can be substituted into the Logistic map to perform the iterative calculation. According to the specific number of initial parameters required, the Tent map chaotic sequence obtained by the 51st, 52nd, ... iterative calculations can also be substituted into the Logistic map for iterative calculation, so that the corresponding number of initial parameters can be obtained accordingly.
另外,在其它的实施方式中,可将迭代次数小于第一预设次数的Tent映射混沌序列进行舍弃,从而可节省用于存储所有Tent映射混沌序列的存储空间。In addition, in other implementation manners, the Tent mapping chaotic sequences whose iteration times are less than the first preset number of times may be discarded, thereby saving storage space for storing all Tent mapping chaotic sequences.
在某些实施方式中,心电监测系统100预设有系统初始值μ。请参考图6,步骤S210,包括:In some embodiments, the
步骤S260:根据系统初始值μ,将多个初始参数依次代入Logistic映射以进行迭代计算,其中,每个初始参数的迭代次数为第二预设次数k,每个初始参数对应生成一个Logistic映射混沌序列;Step S260: According to the initial value μ of the system, sequentially substitute a plurality of initial parameters into the Logistic map for iterative calculation, wherein the iteration number of each initial parameter is the second preset number k, and each initial parameter corresponds to generate a Logistic map chaos sequence;
步骤S270:根据依次迭代计算得到的多个Logistic映射混沌序列,生成传输数据。Step S270: Generate transmission data according to a plurality of Logistic mapping chaotic sequences obtained by successive iterative calculations.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于根据系统初始值μ,将多个初始参数依次代入Logistic映射以进行迭代计算,其中,每个初始参数的迭代次数为第二预设次数k,每个初始参数对应生成一个Logistic映射混沌序列;及用于根据依次迭代计算得到的多个Logistic映射混沌序列,生成传输数据。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于根据系统初始值μ,将多个初始参数依次代入Logistic映射以进行迭代计算,其中,每个初始参数的迭代次数为第二预设次数k,每个初始参数对应生成一个Logistic映射混沌序列;及用于根据依次迭代计算得到的多个Logistic映射混沌序列,生成传输数据。Specifically, the
如此,可实现传输数据的生成。In this way, the generation of transmission data can be achieved.
具体地,在得到多个初始参数的情况下,可根据下列计算式执行操作:Specifically, in the case of obtaining multiple initial parameters, the operation can be performed according to the following calculation formula:
其中,n/N表示在Logistic映射中当前的迭代次数,frc表示保留精度。Among them, n/N represents the current number of iterations in the logistic map, and frc represents the retention accuracy.
另外,请参考上述的计算式,在其它的实施方式中,通过设置可实现对生成的每个Logistic映射混沌序列进行向下取整。In addition, please refer to the above calculation formula, in other embodiments, by setting It is possible to round down each generated Logistic map chaotic sequence.
此外,系统初始值μ和第二预设次数k可以是预先设置的。在一个实施方式中,系统初始值μ为4,第二预设次数k为1024。在其它的实施方式中,系统初始值μ和第二预设次数k也可以根据Logistic映射的混沌特性来确定。In addition, the system initial value μ and the second preset number of times k may be preset. In one embodiment, the initial value μ of the system is 4, and the second preset number of times k is 1024. In other embodiments, the system initial value μ and the second preset number of times k may also be determined according to the chaotic characteristics of the Logistic mapping.
请参考图7,在某些实施方式中,步骤S270,包括:Referring to FIG. 7, in some embodiments, step S270 includes:
步骤S271:将多个Logistic映射混沌序列逐个地进行依次对接处理,生成组合混沌加密序列Xn;Step S271: performing sequential docking processing on multiple Logistic mapping chaotic sequences one by one to generate a combined chaotic encryption sequence Xn;
步骤S272:对组合混沌加密序列Xn进行门限判断以生成混沌二进制流Sn;Step S272: Perform threshold judgment on the combined chaotic encryption sequence Xn to generate a chaotic binary stream Sn;
步骤S273:将一维数组Yn与混沌二进制流Sn进行整合加密,以获取加密后的传输数据。Step S273: Integrate and encrypt the one-dimensional array Yn and the chaotic binary stream Sn to obtain encrypted transmission data.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于将多个Logistic映射混沌序列逐个地进行依次对接处理,生成组合混沌加密序列Xn;及用于对组合混沌加密序列Xn进行门限判断以生成混沌二进制流Sn;及用于将一维数组Yn与混沌二进制流Sn进行整合加密,以获取加密后的传输数据。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于将多个Logistic映射混沌序列逐个地进行依次对接处理,生成组合混沌加密序列Xn;及用于对组合混沌加密序列Xn进行门限判断以生成混沌二进制流Sn;及用于将一维数组Yn与混沌二进制流Sn进行整合加密,以获取加密后的传输数据。Specifically, it may be that the
如此,可实现对传输数据的加密。In this way, encryption of the transmitted data can be achieved.
根据上述关于Logistic映射的计算式,可依次得到多个Logistic映射混沌序列。具体地,在这样的一个实施方式中,每个Logistic映射混沌序列的字节长度为k(bits),Logistic映射混沌序列的数量为(512*512*8)/k,在将(512*512*8)/k个Logistic映射混沌序列按迭代次序逐个进行对接,可最终得到字节长度为(512*512*8)bits的组合混沌加密序列Xn。According to the above calculation formula about the Logistic map, a plurality of Logistic map chaotic sequences can be obtained in turn. Specifically, in such an embodiment, the byte length of each Logistic mapping chaotic sequence is k (bits), and the number of Logistic mapping chaotic sequences is (512*512*8)/k. *8)/k Logistic mapping chaotic sequences are docked one by one in an iterative order, and finally a combined chaotic encryption sequence Xn with a byte length of (512*512*8) bits can be obtained.
可以理解,根据对组合混沌加密序列Xn的不同需求,可对Logistic映射混沌序列的字节长度和生成数量进行调整。在这样的一个实施方式中,生成的每个Logistic映射混沌序列的字节长度为2k(bits),Logistic映射混沌序列的数量为(512*512*8)/2k,使得生成的组合混沌加密序列Xn的字节长度为(512*512*8)bits。It can be understood that, according to different requirements for the combined chaotic encryption sequence Xn, the byte length and generation quantity of the Logistic mapping chaotic sequence can be adjusted. In such an embodiment, the byte length of each generated Logistic mapping chaotic sequence is 2k (bits), and the number of Logistic mapping chaotic sequences is (512*512*8)/2k, so that the generated combined chaotic encryption sequence The byte length of Xn is (512*512*8) bits.
在某些实施方式中,步骤S272,包括:In some embodiments, step S272 includes:
在组合混沌加密序列Xn中将大于预设值的数值替换为预设的第一数值,在组合混沌加密序列Xn中将小于等于预设值的数值替换为预设的第二数值,以使得组合混沌加密序列Xn被转化为混沌二进制流Sn。In the combined chaotic encryption sequence Xn, the value greater than the preset value is replaced with the preset first value, and in the combined chaotic encryption sequence Xn, the value less than or equal to the preset value is replaced with the preset second value, so that the combination The chaotic encrypted sequence Xn is transformed into a chaotic binary stream Sn.
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,多导联心电信号获取装置110用于在组合混沌加密序列Xn中将大于预设值的数值替换为预设的第一数值,在组合混沌加密序列Xn中将小于等于预设值的数值替换为预设的第二数值,以使得组合混沌加密序列Xn被转化为混沌二进制流Sn。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,可以是多导联心电信号获取装置110的第一控制器111用于在组合混沌加密序列Xn中将大于预设值的数值替换为预设的第一数值,在组合混沌加密序列Xn中将小于等于预设值的数值替换为预设的第二数值,以使得组合混沌加密序列Xn被转化为混沌二进制流Sn。Specifically, it may be that the
如此,可实现对将组合混沌加密序列Xn转化为二进制形式的数据以及后续加密。In this way, the data of converting the combined chaotic encryption sequence Xn into binary form and subsequent encryption can be realized.
具体地,请结合图8,在这样的一个实施方式中,预设值为0.5,第一数值为1,第二数值为0。在生成组合混沌加密序列Xn的情况下,可对组合混沌加密序列Xn中的每一个定点数进行门限判断,将大于0.5的定点数替换为1,以及将小于0.5的定点数替换为0,使得相应的定点数被替换为二进制数,从而可得到对应组合混沌加密序列Xn的混沌二进制流Sn,其具体操作如下:Specifically, referring to FIG. 8 , in such an embodiment, the preset value is 0.5, the first value is 1, and the second value is 0. In the case of generating the combined chaotic encryption sequence Xn, threshold judgment can be performed on each fixed-point number in the combined chaotic encryption sequence Xn, and the fixed-point number greater than 0.5 is replaced by 1, and the fixed-point number less than 0.5 is replaced by 0, so that The corresponding fixed-point numbers are replaced by binary numbers, so that the chaotic binary stream Sn corresponding to the combined chaotic encryption sequence Xn can be obtained. The specific operations are as follows:
在确定混沌二进制流Sn的情况下,可对混沌二进制流Sn和一维数组Yn进行逐位异或加密,得到加密序列Zn,再根据加密序列Zn生成传输数据。其具体操作如下:When the chaotic binary stream Sn is determined, the chaotic binary stream Sn and the one-dimensional array Yn can be XOR-encrypted bit by bit to obtain the encrypted sequence Zn, and then the transmission data can be generated according to the encrypted sequence Zn. Its specific operation is as follows:
请再结合图4,根据生成的混沌二进制流Sn,可对应确定所选取的保留精度是否适于对一维数组Yn进行加密,进而可对保留精度进行重新选取。Please refer to FIG. 4 again, according to the generated chaotic binary stream Sn, it can be determined correspondingly whether the selected reserved precision is suitable for encrypting the one-dimensional array Yn, and then the reserved precision can be reselected.
另外,在其它的实施方式中,可根据具体情况对预设值、第一数值、第二数值进行调整,从而可使得组合混沌加密序列Xn可被转换为相应的十进制、十六进制数据。In addition, in other embodiments, the preset value, the first value, and the second value can be adjusted according to specific conditions, so that the combined chaotic encryption sequence Xn can be converted into corresponding decimal and hexadecimal data.
在某些实施方式中,加密方法包括:In some embodiments, the encryption method includes:
信号中继装置130对传输数据解密,以获取多个心电信号。The
本发明实施方式提供的加密方法可通过本发明实施方式提供的心电监测系统100来实现。具体地,请结合图2,信号中继装置130用于对传输数据解密,以获取多个心电信号。具体地,可以是信号中继装置130的第二控制器131用于对传输数据解密,以获取多个心电信号。The encryption method provided by the embodiment of the present invention can be implemented by the
具体地,在这样的一个实施方式中,信号中继装置130和多导联心电信号获取装置110存储有相同的初始参数,信号中继装置130在接收到包括加密序列Zn的传输数据的情况下,可通过存储的相同的初始参数以及相同的混沌系统生成相同的混沌二进制流Sn,进而可使得信号中继装置130根据混沌二进制流Sn和加密序列Zn进行逐位异或得到一维数组Yn,再根据一维数组Yn来得到多导联心电信号获取装置110获取到的所有心电信号。Specifically, in such an embodiment, the
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In the description of this specification, reference is made to the terms "one embodiment," "some embodiments," "some embodiments," "exemplary embodiments," "examples," "specific examples," or "some examples," etc. The description means that a particular feature, structure, material or characteristic described in connection with an embodiment or example is included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110235274.9ACN115021886A (en) | 2021-03-03 | 2021-03-03 | Encryption method and ECG monitoring system |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110235274.9ACN115021886A (en) | 2021-03-03 | 2021-03-03 | Encryption method and ECG monitoring system |
Publication Number | Publication Date |
---|---|
CN115021886Atrue CN115021886A (en) | 2022-09-06 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110235274.9APendingCN115021886A (en) | 2021-03-03 | 2021-03-03 | Encryption method and ECG monitoring system |
Country | Link |
---|---|
CN (1) | CN115021886A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119138871A (en)* | 2024-11-11 | 2024-12-17 | 济南农智信息科技有限公司 | Rapid calculation system and method for heart rate and electrocardio |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021902A1 (en)* | 2008-03-27 | 2011-01-27 | Keimyung University Industry Academic Cooperation Foundation | Real-time electrocardiogram monitoring system and method, patch-type electrocardiograph, telecommunication apparatus |
CN107669262A (en)* | 2017-10-31 | 2018-02-09 | 王量弘 | Multi-lead Telediagnosis of Electrocardiogram Signals and monitor system and method based on SVM and WLT |
CN111683369A (en)* | 2020-06-04 | 2020-09-18 | 重庆邮电大学 | Hierarchical Digital Chaos Encryption Method for Body Area Network Data Transmission |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021902A1 (en)* | 2008-03-27 | 2011-01-27 | Keimyung University Industry Academic Cooperation Foundation | Real-time electrocardiogram monitoring system and method, patch-type electrocardiograph, telecommunication apparatus |
CN107669262A (en)* | 2017-10-31 | 2018-02-09 | 王量弘 | Multi-lead Telediagnosis of Electrocardiogram Signals and monitor system and method based on SVM and WLT |
CN111683369A (en)* | 2020-06-04 | 2020-09-18 | 重庆邮电大学 | Hierarchical Digital Chaos Encryption Method for Body Area Network Data Transmission |
Title |
---|
SHENGWEN FAN: "A Hybrid Chaotic Encryption Scheme for Wireless Body Area Networks", IEEE ACCESS, 7 October 2020 (2020-10-07), pages 183411 - 183429, XP011816288, DOI: 10.1109/ACCESS.2020.3029263* |
王世通: "医用计算机原理", 31 August 1989, 光明日报出版社, pages: 6 - 2* |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119138871A (en)* | 2024-11-11 | 2024-12-17 | 济南农智信息科技有限公司 | Rapid calculation system and method for heart rate and electrocardio |
CN119138871B (en)* | 2024-11-11 | 2025-01-17 | 深圳市永康达电子科技有限公司 | Rapid calculation system and method for heart rate and electrocardio |
Publication | Publication Date | Title |
---|---|---|
CN107220923B (en) | Digital picture feedback encryption method based on image network | |
CN112311524B (en) | An Image Encryption Method Based on New Chaos Mapping and Compressed Sensing | |
CN112035695B (en) | A spatial data encryption method suitable for mobile terminals | |
CN114584278B (en) | Data homomorphic encryption method and device, data transmission method and device | |
CN113098675B (en) | Binary data encryption system and method based on polynomial complete homomorphism | |
CN111404952B (en) | Transformer substation data encryption transmission method and device, computer equipment and storage medium | |
CN112906043A (en) | Image encryption method based on chaotic mapping and chaotic S-box substitution | |
CN111464296A (en) | Sequence cipher generation method, data encryption method and data decryption method | |
Preethi et al. | A high secure medical image storing and sharing in cloud environment using hex code cryptography method—secure genius | |
CN116243887B (en) | Software random number generation method and device | |
CN107590843B (en) | The image encryption method of the reversible cellular automata of two dimension based on construction | |
CN115021886A (en) | Encryption method and ECG monitoring system | |
CN112994887B (en) | A communication encryption method and system suitable for power Internet of Things terminals | |
Oktivasari et al. | Analysis of ecg image file encryption using ecdh and aes-gcm algorithm | |
CN115622795A (en) | File encryption method based on chaotic encryption algorithm, electronic equipment and storage medium | |
EP4156598A1 (en) | Challenge-response pair generation apparatus and method based on puf | |
CN115001647A (en) | Encryption method and electrocardiogram monitoring system | |
CN117955751B (en) | Electronic equipment abnormal data detection method and system based on Internet of things | |
Adedeji et al. | Assessment of encryption and decryption schemes for secure data transmission in healthcare systems | |
Krentz et al. | Secure self-seeding with power-up SRAM states | |
Abbassi et al. | An enhanced ECA/Chaotic-based PRNG: Hardware design and Implementation | |
Boulemtafes et al. | PReDIHERO–Privacy-Preserving remote deep learning inference based on homomorphic encryption and reversible obfuscation for enhanced client-side overhead in pervasive health monitoring | |
CN116094688A (en) | Security control method, device and system based on homomorphic encryption | |
CN113438079A (en) | Hybrid encryption method for low-voltage Internet of things sensing terminal and intelligent electric meter | |
CN114244517A (en) | Data encryption and signature method and device, computer equipment and storage medium |
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |