




【技术领域】【Technical field】
本发明涉及一种材料内部损伤检测方法,具体涉及一种基于多源数据构建数字孪生模型的无损检测方法,属于无损检测技术领域。The invention relates to a material internal damage detection method, in particular to a nondestructive detection method for constructing a digital twin model based on multi-source data, and belongs to the technical field of nondestructive detection.
【背景技术】【Background technique】
为了能更好的检测材料内部损伤类型和精确定位损伤,超声无损检测方法被广泛地应用于复合材料构件的无损检测领域,其能很好地检测内部损伤。但是,超声无损检测方法在应用中仍具有一定的局限性,其存在对大构件损伤定位准确性不高、层状各项异性影响等问题。In order to better detect the internal damage type of materials and accurately locate the damage, ultrasonic nondestructive testing methods are widely used in the field of nondestructive testing of composite components, which can detect internal damage well. However, the ultrasonic nondestructive testing method still has certain limitations in its application, such as the low accuracy of damage location of large components and the influence of layered anisotropy.
因此,为解决上述问题,确有必要提供一种创新的基于多源数据构建数字孪生模型的无损检测方法,其可以对构件内部损伤精确定位以及判断损伤类型,及时发现并采取相应措施进行修复损坏,避免导致灾难性后果。Therefore, in order to solve the above problems, it is indeed necessary to provide an innovative non-destructive testing method for building a digital twin model based on multi-source data, which can accurately locate the internal damage of the component and judge the damage type, and timely detect and take corresponding measures to repair the damage. , to avoid catastrophic consequences.
【发明内容】[Content of the invention]
本发明的目的在于提供一种基于多源数据构建数字孪生模型的无损检测方法,其将CT扫描检测技术和相控阵超声检测图像3D化方法结合,能高效率且准确的实现对复合材料构件内部损伤类型判断和定位。The purpose of the present invention is to provide a non-destructive testing method for constructing a digital twin model based on multi-source data, which combines the CT scanning detection technology and the phased array ultrasonic detection image 3D method, which can efficiently and accurately realize the detection of composite material components. Internal damage type judgment and localization.
为实现上述目的,本发明采取的技术方案为:一种基于多源数据构建数字孪生模型的无损检测方法,其包括如下工艺步骤:In order to achieve the above object, the technical solution adopted in the present invention is: a nondestructive testing method for constructing a digital twin model based on multi-source data, which comprises the following process steps:
1),在复合材料板表面用铜丝分别在经纬纱两方向上进行标记,建立坐标;1), on the surface of the composite material board, use copper wire to mark the two directions of the warp and weft yarns respectively to establish coordinates;
2),从标记好的复合材料板上取一单元下来,通过CT扫描检测装置进行CT扫描,获取高分辨率图像;2), take a unit from the marked composite material board, carry out CT scanning through the CT scanning detection device, and obtain a high-resolution image;
3),图像分析:找出经纱和纬纱方向上重复的纤维结构即为元胞;3), image analysis: find out the repeated fiber structure in the warp and weft direction is the cell;
4),将标记好的试样进行相控阵超声扫描,获得的数据信息进行3D化处理,结合CT扫描模型进行对比,判断损伤的类型及位置的检测。4) Perform phased array ultrasonic scanning on the marked sample, and perform 3D processing on the obtained data information, and compare with the CT scan model to determine the detection of the type and location of damage.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述步骤1)中,铜丝以相同步长分别在经纬纱两方向上进行标记。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention further includes: in the step 1), the copper wires are respectively marked with the same length in the warp and weft directions.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述步骤2)中,CT扫描检测装置包括依次排布的放射源、操作台以及平板探测器;将取下来的单元紧贴固定在操作台上,经放射源的X射线扫描,由平板探测器获得试样内部的详细信息,最后用计算机信息处理和图像重建,以图像形式显示出来。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention is further as follows: in the step 2), the CT scanning detection device includes a radiation source, an operating table and a flat panel detector arranged in sequence; The sticker is fixed on the operating table, and after the X-ray scanning of the radioactive source, the detailed information inside the sample is obtained by the flat panel detector, and finally it is displayed in the form of image by computer information processing and image reconstruction.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述操作台为旋转操作台,其能驱动标记试样转动,以实现各个角度CT扫描。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention further includes: the operating table is a rotary operating table, which can drive the marked sample to rotate, so as to realize CT scanning at various angles.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述步骤3)具体为:先观察复合材料板单元经纱方向内部纤维结构分布情况;再观察复合材料板单元纬纱方向内部纤维结构分布情况,分别找出经纱方向与纬纱方向内部的重复的纤维结构作为整个试样内部结构的元胞。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention is further as follows: the step 3) is specifically: first observe the distribution of the internal fiber structure in the warp direction of the composite material board unit; then observe the internal fiber structure of the composite material board unit in the weft direction. For the structure distribution, find the repeated fiber structures in the warp direction and the weft direction respectively as the cell of the internal structure of the whole sample.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述步骤4)具体为:将相控阵探头紧贴在标记试样的表面,两者接触之间使用流体耦合剂连接,扫描路径沿单一方向至完全覆盖整个扫查区域表面;相控阵探头发射和接收超声波信号,编码器将超声波信号转为电信号传送给探伤仪,最后将采集的数据信息进行3D化处理。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention is further: the step 4) is specifically: the phased array probe is closely attached to the surface of the marked sample, and the contact between the two is connected by a fluid coupling agent , the scanning path follows a single direction to completely cover the entire surface of the scanning area; the phased array probe transmits and receives ultrasonic signals, the encoder converts the ultrasonic signals into electrical signals and transmits them to the flaw detector, and finally the collected data information is processed in 3D.
本发明的基于多源数据构建数字孪生模型的无损检测方法进一步为:所述超声数据3D化处理具体如下:The nondestructive testing method for constructing a digital twin model based on multi-source data of the present invention is further as follows: the 3D processing of the ultrasonic data is as follows:
4-1),计算超声数据中采样点的实际物理位置x、y、z,计算公式如下:x=Δl·s;z=7.2·(m-1)+0.3·c;其中Δl表示扫描路径的步长,s表示位置指数,u表示声速,n表示采样点数,f表示采样频率,m表示沿z方向上某点的位置指数,c表示通道数;4-1), calculate the actual physical position x, y, z of the sampling point in the ultrasound data, and the calculation formula is as follows: x=Δl·s; z=7.2·(m-1)+0.3·c; where Δl represents the step size of the scanning path, s represents the position index, u represents the speed of sound, n represents the number of sampling points, f represents the sampling frequency, and m represents a point along the z direction The position index of , c represents the number of channels;
4-2),使用三维标量矩阵表示体积,该矩阵等价于由i、j、k索引的三维笛卡尔网格;计算该索引指数计算公式如下:4-2), use a three-dimensional scalar matrix to represent the volume, which is equivalent to a three-dimensional Cartesian grid indexed by i, j, and k; the formula for calculating the index index is as follows:
其中Ti、Tj、Tk分别表示x、y、z方向上网格的分辨率;where Ti , Tj , and Tk represent the resolution of the grid in the x, y, and z directions, respectively;
上述两个步骤将原始超声数据中的每个采样点映射到三维矩阵中,采用6db下降法对损伤大小进行量化,从而实现直接损伤识别、定位。The above two steps map each sampling point in the original ultrasound data into a three-dimensional matrix, and use the 6db descent method to quantify the damage size, thereby realizing direct damage identification and localization.
本发明的基于多源数据构建数字孪生模型的无损检测方法还可为:所述步骤4)中,对比验证的具体方法为:将超声扫描3D化处理的图像与CT扫描的图像进行坐标对齐,在图像中,对于试样中的同一个位置若只在3D化处理图像中视为损伤或只在CT扫描图像中视为损伤又或分别在两个图像中都视为损伤,即可断定试样该区域位置损伤。The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention can also be: in the step 4), the specific method of comparison and verification is: coordinate alignment of the 3D-processed image of the ultrasound scan and the image of the CT scan, In the image, if the same position in the sample is regarded as damage only in the 3D processed image, only in the CT scan image, or as damage in both images, it can be concluded that the sample is damaged. Regional location damage.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明的基于多源数据构建数字孪生模型的无损检测方法利用CT扫描检测技术,具有增强的缺陷检测以及定位能力,以及利用相控阵超声检测图像3D化方法来判断损伤类型和位置的方法,从而能高效率且准确的实现对复合材料构件内部损伤类型判断和定位。1. The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention utilizes CT scanning detection technology, has enhanced defect detection and positioning capabilities, and utilizes a phased array ultrasonic detection image 3D method to determine damage types and locations. The method can efficiently and accurately realize the judgment and location of the internal damage type of the composite material component.
2.本发明的基于多源数据构建数字孪生模型的无损检测方法可以揭示编织复合材料的精确几何结构,包括织物结构和初始制造缺陷,因此,可以方便地预测大型复合材料样件内部任何一处缺陷的类型以及精准确定该缺陷的位置,以及时发现并采取相应措施进行修复损坏,避免导致灾难性后果。2. The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention can reveal the precise geometric structure of the braided composite material, including the fabric structure and initial manufacturing defects, and therefore, can easily predict any place inside the large composite material sample The type of defect and the precise location of the defect can be found and taken to repair the damage in time to avoid catastrophic consequences.
3.本发明的基于多源数据构建数字孪生模型的无损检测方法可以方便地为各向异性材料指定材料方向,以便用于研究复合材料的力学性能。3. The non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention can conveniently specify material directions for anisotropic materials, so as to be used to study the mechanical properties of composite materials.
【附图说明】【Description of drawings】
图1是本发明的基于多源数据构建数字孪生模型的无损检测方法的整体流程图。FIG. 1 is an overall flow chart of the nondestructive testing method for constructing a digital twin model based on multi-source data of the present invention.
图2是本发明的步骤1)中铜丝标记试样的示意图。Fig. 2 is a schematic diagram of a copper wire marking sample in step 1) of the present invention.
图3是本发明的步骤2)中CT扫描检测装置的示意图。FIG. 3 is a schematic diagram of a CT scanning detection device in step 2) of the present invention.
图4是本发明的步骤3)中经纬纱方向内部纤维结构的示意图。4 is a schematic diagram of the internal fiber structure in the warp and weft direction in step 3) of the present invention.
图5是本发明的步骤4)中相控阵超声检测装置的示意图。FIG. 5 is a schematic diagram of a phased array ultrasonic testing device in step 4) of the present invention.
【具体实施方式】【Detailed ways】
请参阅说明书附图1至附图5所示,本发明为一种基于多源数据构建数字孪生模型的无损检测方法,其包括如下工艺步骤:Please refer to the accompanying
1),在复合材料板1表面用铜丝2分别在经纬纱两方向上进行标记,建立坐标。在本实施方式中,所述铜丝2以相同步长分别在经纬纱两方向上进行标记。1), the surface of the
2),从标记好的复合材料板1上取一单元6下来,通过CT扫描检测装置进行CT扫描,获取高分辨率图像。2), take a unit 6 from the marked
具体的说,所述CT扫描检测装置由依次排布的放射源3、操作台4以及平板探测器5等几部分组成。所述操作台4为旋转操作台,其能驱动标记试样6转动,以实现各个角度CT扫描。所述平板探测器5负责采集扫描数据。所述CT扫描检测装置可设置屏蔽设施,确保射线不外泄以及扫描过程的安全。Specifically, the CT scanning detection device is composed of several parts, such as a
将取下来的单元6紧贴固定在操作台4上,经放射源3的X射线扫描,由平板探测器5获得试样内部的详细信息,最后用计算机信息处理和图像重建,以图像形式显示出来。The removed unit 6 is closely fixed on the operating table 4, and after the X-ray scanning of the
3),图像分析:找出经纱和纬纱方向上重复的纤维结构即为元胞,即先观察复合材料板单元6经纱方向内部纤维结构分布情况;再观察复合材料板单元纬纱方向内部纤维结构分布情况,分别找出经纱方向与纬纱方向内部的重复的纤维结构作为整个试样内部结构的元胞,整个试样内部结构是基于此元胞在两方向上扩展组成的。3), image analysis: find out the repeated fiber structure in the warp and weft direction is the cell, that is, first observe the internal fiber structure distribution in the warp direction of the composite board unit 6; then observe the internal fiber structure distribution in the weft direction of the composite board unit In different cases, the repeated fiber structures in the warp direction and the weft direction are respectively found as the cell of the internal structure of the entire sample, and the entire internal structure of the sample is composed of the expansion of this cell in two directions.
4),将标记好的试样进行相控阵超声扫描,获得的数据信息进行3D化处理,结合CT扫描模型进行对比,判断损伤的类型及位置的检测。4) Perform phased array ultrasonic scanning on the marked sample, and perform 3D processing on the obtained data information, and compare with the CT scan model to determine the detection of the type and location of damage.
其中,所述相控阵超声扫描的方法如下:将相控阵探头9紧贴在标记试样6的表面,两者接触之间使用流体耦合剂连接,扫描路径沿单一方向至完全覆盖整个扫查区域表面。所述流体耦合剂为超声检测永耦合剂。相控阵探头9发射和接收超声波信号,编码器10将超声波信号转为电信号传送给探伤仪11,最后将采集的数据信息进行3D化处理。Wherein, the method of the phased array ultrasonic scanning is as follows: the
所述超声数据3D化处理具体过程如下:The specific process of the ultrasonic data 3D processing is as follows:
4-1),计算超声数据中采样点的实际物理位置x、y、z,计算公式如下:x=Δl·s;z=7.2·(m-1)+0.3·c;其中Δl表示扫描路径的步长,s表示位置指数,u表示声速,n表示采样点数,f表示采样频率,m表示沿z方向上某点的位置指数,c表示通道数;4-1), calculate the actual physical position x, y, z of the sampling point in the ultrasound data, and the calculation formula is as follows: x=Δl·s; z=7.2·(m-1)+0.3·c; where Δl represents the step size of the scanning path, s represents the position index, u represents the speed of sound, n represents the number of sampling points, f represents the sampling frequency, and m represents a point along the z direction The position index of , c represents the number of channels;
4-2),使用三维标量矩阵表示体积,该矩阵等价于由i、j、k索引的三维笛卡尔网格;计算该索引指数计算公式如下:4-2), use a three-dimensional scalar matrix to represent the volume, which is equivalent to a three-dimensional Cartesian grid indexed by i, j, and k; the formula for calculating the index index is as follows:
其中Ti、Tj、Tk分别表示x、y、z方向上网格的分辨率;where Ti , Tj , and Tk represent the resolution of the grid in the x, y, and z directions, respectively;
上述两个步骤将原始超声数据中的每个采样点映射到三维矩阵中,采用6db下降法对损伤大小进行量化,从而实现直接损伤识别、定位。The above two steps map each sampling point in the original ultrasound data into a three-dimensional matrix, and use the 6db descent method to quantify the damage size, thereby realizing direct damage identification and localization.
所述对比验证的具体方法为:将超声扫描3D化处理的图像与CT扫描的图像进行坐标对齐,在图像中,对于试样中的同一个位置若只在3D化处理图像中视为损伤或只在CT扫描图像中视为损伤又或分别在两个图像中都视为损伤,即可断定试样该区域位置损伤。The specific method for the comparison and verification is as follows: align the coordinates of the 3D-processed image of the ultrasound scan and the CT-scanned image. If it is regarded as damage in the CT scan image or as damage in both images, it can be concluded that the area of the sample is damaged.
综上所述,本发明的基于多源数据构建数字孪生模型的无损检测方法利用CT扫描检测技术,以增强的缺陷检测以及定位能力;利用相控阵超声检测图像3D化方法,来判断损伤类型和位置,从而能高效率且准确的实现对复合材料构件内部损伤类型判断和定位,以及时发现并采取相应措施进行修复损坏,避免导致灾难性后果。To sum up, the non-destructive testing method for constructing a digital twin model based on multi-source data of the present invention utilizes CT scanning detection technology to enhance defect detection and positioning capabilities; and utilizes the phased array ultrasonic detection image 3D method to determine the damage type. Therefore, it can efficiently and accurately realize the judgment and localization of the internal damage type of composite components, and timely find and take corresponding measures to repair the damage, so as to avoid catastrophic consequences.
以上的具体实施方式仅为本创作的较佳实施例,并不用以限制本创作,凡在本创作的精神及原则之内所做的任何修改、等同替换、改进等,均应包含在本创作的保护范围之内。The above specific embodiments are only preferred embodiments of this creation, and are not intended to limit this creation. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this creation shall be included in this creation. within the scope of protection.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210627217.XACN114910494B (en) | 2022-06-06 | A nondestructive testing method for building a digital twin model based on multi-source data |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210627217.XACN114910494B (en) | 2022-06-06 | A nondestructive testing method for building a digital twin model based on multi-source data |
| Publication Number | Publication Date |
|---|---|
| CN114910494Atrue CN114910494A (en) | 2022-08-16 |
| CN114910494B CN114910494B (en) | 2025-10-10 |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119687838A (en)* | 2024-12-03 | 2025-03-25 | 华中科技大学 | Component inner cavity size measurement method and system based on DR detection reconstruction three-dimensional imaging |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5806521A (en)* | 1996-03-26 | 1998-09-15 | Sandia Corporation | Composite ultrasound imaging apparatus and method |
| CN1469318A (en)* | 2002-07-20 | 2004-01-21 | 许水霞 | Three-dimensional ultrasonic imaging non-destructive inspection system |
| CN107037130A (en)* | 2017-06-09 | 2017-08-11 | 长春理工大学 | Monocular vision three-D ultrasonic nondestructive detection system and detection method |
| CN107330148A (en)* | 2017-05-27 | 2017-11-07 | 南京航空航天大学 | D braided composites hexahedron FEM model automatic generation method |
| CN108459088A (en)* | 2018-05-09 | 2018-08-28 | 北京领示科技有限公司 | A kind of three-dimensional conversion of phased-array ultrasonic signal data and fusion method |
| CN108717727A (en)* | 2018-05-29 | 2018-10-30 | 南京航空航天大学 | A kind of identification of D braided composites precursor structure and modeling method |
| CN110175982A (en)* | 2019-04-16 | 2019-08-27 | 浙江大学城市学院 | A kind of defect inspection method based on target detection |
| CN110264555A (en)* | 2019-05-05 | 2019-09-20 | 宜兴市新立织造有限公司 | One kind counting meso-mechanical model method for building up based on Micro-CT three-dimensional five-directional braiding |
| CN110320276A (en)* | 2019-07-23 | 2019-10-11 | 北京领示科技有限公司 | A kind of composite panel impact injury based on ultrasound and impact force quantitative approach |
| CN110765678A (en)* | 2019-09-20 | 2020-02-07 | 哈尔滨理工大学 | RVE model discretization method of three-dimensional four-way woven composite material |
| CN111325748A (en)* | 2020-03-20 | 2020-06-23 | 哈尔滨工业大学 | A non-destructive testing method for infrared thermal imaging based on convolutional neural network |
| CN112129791A (en)* | 2020-09-09 | 2020-12-25 | 武汉大学 | General in-situ experimental device based on rotary X-ray computed tomography |
| CN112179925A (en)* | 2020-09-18 | 2021-01-05 | 上海交通大学 | Three-dimensional nondestructive testing method for impact damage of composite material laminated plate |
| CN113312824A (en)* | 2021-06-16 | 2021-08-27 | 西北工业大学 | Mesomechanics-based unidirectional fiber composite material mechanical property prediction method |
| US20210349058A1 (en)* | 2020-03-30 | 2021-11-11 | Verifi Technologies, Llc | Ultrasonic system and method for evaluating a material |
| CN114549788A (en)* | 2022-03-02 | 2022-05-27 | 南京航空航天大学 | A 2.5D Modeling Method for Single Cell Geometric Model of Satin Weave Composites |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5806521A (en)* | 1996-03-26 | 1998-09-15 | Sandia Corporation | Composite ultrasound imaging apparatus and method |
| CN1469318A (en)* | 2002-07-20 | 2004-01-21 | 许水霞 | Three-dimensional ultrasonic imaging non-destructive inspection system |
| CN107330148A (en)* | 2017-05-27 | 2017-11-07 | 南京航空航天大学 | D braided composites hexahedron FEM model automatic generation method |
| CN107037130A (en)* | 2017-06-09 | 2017-08-11 | 长春理工大学 | Monocular vision three-D ultrasonic nondestructive detection system and detection method |
| CN108459088A (en)* | 2018-05-09 | 2018-08-28 | 北京领示科技有限公司 | A kind of three-dimensional conversion of phased-array ultrasonic signal data and fusion method |
| CN108717727A (en)* | 2018-05-29 | 2018-10-30 | 南京航空航天大学 | A kind of identification of D braided composites precursor structure and modeling method |
| CN110175982A (en)* | 2019-04-16 | 2019-08-27 | 浙江大学城市学院 | A kind of defect inspection method based on target detection |
| CN110264555A (en)* | 2019-05-05 | 2019-09-20 | 宜兴市新立织造有限公司 | One kind counting meso-mechanical model method for building up based on Micro-CT three-dimensional five-directional braiding |
| CN110320276A (en)* | 2019-07-23 | 2019-10-11 | 北京领示科技有限公司 | A kind of composite panel impact injury based on ultrasound and impact force quantitative approach |
| CN110765678A (en)* | 2019-09-20 | 2020-02-07 | 哈尔滨理工大学 | RVE model discretization method of three-dimensional four-way woven composite material |
| CN111325748A (en)* | 2020-03-20 | 2020-06-23 | 哈尔滨工业大学 | A non-destructive testing method for infrared thermal imaging based on convolutional neural network |
| US20210349058A1 (en)* | 2020-03-30 | 2021-11-11 | Verifi Technologies, Llc | Ultrasonic system and method for evaluating a material |
| CN112129791A (en)* | 2020-09-09 | 2020-12-25 | 武汉大学 | General in-situ experimental device based on rotary X-ray computed tomography |
| CN112179925A (en)* | 2020-09-18 | 2021-01-05 | 上海交通大学 | Three-dimensional nondestructive testing method for impact damage of composite material laminated plate |
| CN113312824A (en)* | 2021-06-16 | 2021-08-27 | 西北工业大学 | Mesomechanics-based unidirectional fiber composite material mechanical property prediction method |
| CN114549788A (en)* | 2022-03-02 | 2022-05-27 | 南京航空航天大学 | A 2.5D Modeling Method for Single Cell Geometric Model of Satin Weave Composites |
| Title |
|---|
| ANDRZEJ KATUNIN, ET AL.: ""Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography"", SENSORS, 27 March 2020 (2020-03-27), pages 1 - 28* |
| E. DILONARDO, ET AL.: "Inspection of Carbon Fibre Reinforced Polymers: 3D identification and quantification of components by X-ray CT", APPLIED COMPOSITE MATERIALS, vol. 29, 14 October 2021 (2021-10-14), pages 497 - 513, XP037814295, DOI: 10.1007/s10443-021-09976-x* |
| 何方成等: "航空用纤维增强聚合物基复合材料无损检测技术的应用与展望", 无损检测, vol. 40, no. 11, 10 November 2018 (2018-11-10), pages 29 - 41* |
| 李贺: "2微米激光激励碳纤维复合材料产生超声波的研究", 中国硕士学位论文全文数据库 (信息科技辑), 15 February 2018 (2018-02-15)* |
| 蒋福棠等: "金属基复合材料的超声与射线检测", 无损检测, vol. 36, no. 3, 21 July 2014 (2014-07-21), pages 44 - 46* |
| 赵洪宝等: "航空用碳纤维复合材料典型缺陷无损检测技术研究", 电子制作, no. 24, 22 December 2020 (2020-12-22), pages 35 - 37* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119687838A (en)* | 2024-12-03 | 2025-03-25 | 华中科技大学 | Component inner cavity size measurement method and system based on DR detection reconstruction three-dimensional imaging |
| CN119687838B (en)* | 2024-12-03 | 2025-08-29 | 华中科技大学 | Method and system for measuring component inner cavity dimensions based on DR detection and reconstruction of three-dimensional imaging |
| Publication | Publication Date | Title |
|---|---|---|
| CN107655971B (en) | Concrete structure surface and internal damage fine modeling method | |
| US6341153B1 (en) | System and method for portable nondestructive examination with realtime three-dimensional tomography | |
| CN108226290B (en) | A three-dimensional parameter extraction method for internal defects of parts based on ultrasonic phased array | |
| CN108844978B (en) | Novel method for detecting internal defects of honeycomb | |
| JP4959930B2 (en) | Method for reconstructing internal surface geometry | |
| CN103438824B (en) | A kind of large-scale wallboard class Components Digital quality determining method | |
| CN107255673A (en) | High temperature blade internal flaw three dimensional lossless detection method based on ultrasonic phase array | |
| CN108072674B (en) | A kind of gas turbine blades defect three dimension location method based on digital radial | |
| CN107037064A (en) | Damage of rock fracture based on CT dynamic scans is thin to see evolution three-dimensional reconstruction method | |
| CN106932416A (en) | Gas turbine blades internal flaw three-dimensional parameter extracting method based on digital radial | |
| Bullinger et al. | Laminographic inspection of large carbon fibre composite aircraft-structures at airbus | |
| CN106934856B (en) | Three-dimensional fault reconstruction and slice display method based on X-ray detection technology | |
| CN110286136B (en) | X-ray three-dimensional imaging method and system for basin-type insulator of in-service GIS (gas insulated switchgear) combined electrical apparatus | |
| Diemar et al. | X-ray micro-computed tomography for mechanical behaviour analysis of Automated Fiber Placement (AFP) laminates with integrated gaps and overlaps | |
| CN107806961B (en) | Turbine blade internal flaw barycentric coodinates detection method based on ultrasonic phased array technology | |
| CN114910494A (en) | A non-destructive testing method for building digital twin model based on multi-source data | |
| CN114839268A (en) | A three-dimensional imaging method of crack defects based on ultrasonic phased array data | |
| CN114910494B (en) | A nondestructive testing method for building a digital twin model based on multi-source data | |
| Fan et al. | A new damage estimation method for carbon fiber reinforced polymer based on electrical impedance tomography | |
| Odakura et al. | Advanced inspection technologies for nuclear power plants | |
| CN105321206B (en) | A kind of error compensating method of rotation axis deflection angle suitable for neutron chromatographic imaging system | |
| CN118211312A (en) | Rapid three-dimensional reconstruction method for welded bent pipe with flange joint | |
| JP2010185888A (en) | Radiation nondestructive inspection system and piping inspection method | |
| CN1584568A (en) | Defect drastic detecting method based on ray realtime image | |
| CN202512242U (en) | Apparatus expanding ultrasonic detection area and improving ultrasonic detection precision |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant |