Movatterモバイル変換


[0]ホーム

URL:


CN114859607A - Superlens, manufacturing method thereof and display device - Google Patents

Superlens, manufacturing method thereof and display device
Download PDF

Info

Publication number
CN114859607A
CN114859607ACN202210442747.7ACN202210442747ACN114859607ACN 114859607 ACN114859607 ACN 114859607ACN 202210442747 ACN202210442747 ACN 202210442747ACN 114859607 ACN114859607 ACN 114859607A
Authority
CN
China
Prior art keywords
substrate
electrode layer
liquid crystal
dielectric
superlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210442747.7A
Other languages
Chinese (zh)
Inventor
周健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Technology Development Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Technology Development Co LtdfiledCriticalBOE Technology Group Co Ltd
Priority to CN202210442747.7ApriorityCriticalpatent/CN114859607A/en
Publication of CN114859607ApublicationCriticalpatent/CN114859607A/en
Priority to PCT/CN2023/090414prioritypatent/WO2023207926A1/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

The invention provides a superlens, a manufacturing method thereof and a display device. The superlens includes: a first substrate; a first electrode layer disposed at one side of the first substrate; the dielectric columns are arranged on one side, far away from the first substrate, of the first electrode layer at intervals, and the width of each dielectric column is gradually reduced in the extending direction from the center of the first substrate to the edge of the first substrate; the second electrode layer is arranged on one side, far away from the first substrate, of the dielectric column; the first liquid crystal is positioned on one side of the first electrode layer, which is far away from the first substrate, and is filled in gaps among the plurality of dielectric columns; and the second substrate is arranged on one side of the second electrode layer, which is far away from the first substrate. Therefore, the super lens can regulate and control the dynamic beam, can realize focusing, can capture cellulose particles by combining with the photophoresis force, and can realize space display by combining with a laser control system.

Description

Translated fromChinese
超透镜及其制作方法和显示装置Metalens, method for making the same, and display device

技术领域technical field

本发明涉及显示技术领域,具体的,涉及超透镜及其制作方法和显示装置。The present invention relates to the field of display technology, in particular, to a superlens, a method for making the same, and a display device.

背景技术Background technique

自由空间体显示,或在空间中创建发光图像点,这些显示技术可在稀薄的空气中成像,且在任意角度可视无裁切现象。因为边缘界限,“剪切现象”(通过人眼在不同的角度观察所显示的图像会存在差别,人眼并不能够在各个角度都观察到完整的图像,“剪切现象”即是指的人眼不能够观察到完整的图像的情况)限制了所有在二维表面对光进行调制的3D显示技术的应用,如全息显示、纳米光子阵列、等离子体显示等显示技术。虽然,目前的光泳体显示能够实现真三维显示的效果,但是整体器件体积相对较大。因此,目前亟需对现有的显示技术进行改进,以使器件能够实现空间体显示的基础上,进一步减小器件的体积,实现器件的集成化与小型化。Free-space volume displays, or the creation of glowing image points in space, these display technologies can be imaged in thin air and can be viewed from any angle without clipping. Because of edge boundaries, the "clipping phenomenon" (the displayed image will be different when viewed by the human eye at different angles, and the human eye cannot observe the complete image at all angles, and the "clipping phenomenon" refers to The fact that the human eye cannot observe a complete image) limits the application of all 3D display technologies that modulate light on two-dimensional surfaces, such as holographic displays, nanophotonic arrays, and plasmonic displays. Although the current photophoretic display can achieve the effect of true three-dimensional display, the overall device volume is relatively large. Therefore, there is an urgent need to improve the existing display technology so as to further reduce the volume of the device and realize the integration and miniaturization of the device on the basis of enabling the device to realize spatial volume display.

发明内容SUMMARY OF THE INVENTION

本发明是基于发明人对以下事实和问题的发现和认识做出的:The present invention is made based on the inventors' findings and understanding of the following facts and problems:

美国光学学会的显示技术组将“体积显示”定义为体积显示器的图像点与光散射(或吸收和生成)表面位于同一位置。目前,仅有感应等离子显示、改进空气显示、声悬浮显示在空间中被成功实现,但等离子显示未能展示RGB颜色;改进空气显示和声悬浮显示的机制太粗糙,与全息显示无法竞争。目前的光泳体显示能够实现真三维显示的效果,但是整体器件体积相对较大。发明人发现,可以利用液晶与介质柱形成超表面超表面结构以实现动态波束调控和聚焦功能,结合光泳力对纤维素粒子进行捕获以实现空间显示。The Optical Society's Display Technologies Group defines a "volume display" as a volume display where the image points are co-located with a light scattering (or absorbing and generating) surface. At present, only induction plasma display, improved air display, and acoustic levitation display have been successfully realized in space, but plasma display failed to display RGB colors; the mechanism of improved air display and acoustic levitation display is too rough to compete with holographic display. The current photophoretic display can achieve the effect of true three-dimensional display, but the overall device volume is relatively large. The inventors found that a metasurface metasurface structure can be formed by using liquid crystals and dielectric columns to achieve dynamic beam control and focusing functions, and cellulose particles can be captured in combination with photophoretic force to realize spatial display.

为了在至少在一定程度上解决相关技术中的技术问题之一,在本发明的一个方面,本发明提出了一种超透镜,所述超透镜包括:第一基板;第一电极层,所述第一电极层设置在所述第一基板的一侧;多个介质柱,多个所述介质柱间隔设置在所述第一电极层远离所述第一基板的一侧,在沿所述第一基板的中心向所述第一基板的边缘的延伸方向上,所述介质柱的宽度逐渐减小;第二电极层,所述第二电极层设置在所述介质柱远离所述第一基板的一侧;第一液晶,所述第一液晶位于所述第一电极层远离所述第一基板的一侧,且填充在多个所述介质柱之间的间隙中;第二基板,所述第二基板设置在所述第二电极层远离所述第一基板的一侧。由此,超透镜可以实现对动态波束的调控,并且可以实现聚焦,结合光泳力即可对纤维素粒子进行捕获,结合激光控制系统即可实现空间显示。In order to solve one of the technical problems in the related art at least to a certain extent, in one aspect of the present invention, the present invention provides a superlens, the superlens comprises: a first substrate; a first electrode layer, the The first electrode layer is arranged on one side of the first substrate; a plurality of dielectric pillars are arranged at intervals on the side of the first electrode layer away from the first substrate, along the first substrate. In the extending direction from the center of a substrate to the edge of the first substrate, the width of the dielectric column gradually decreases; the second electrode layer, the second electrode layer is disposed when the dielectric column is far from the first substrate one side; the first liquid crystal, the first liquid crystal is located on the side of the first electrode layer away from the first substrate, and is filled in the gaps between the plurality of the dielectric columns; the second substrate, the The second substrate is disposed on a side of the second electrode layer away from the first substrate. In this way, the metalens can realize the regulation of dynamic beams, and can realize focusing, cellulose particles can be captured in combination with photophoresis, and spatial display can be realized in combination with the laser control system.

根据本发明的实施例,所述超透镜进一步包括:第一配向膜,所述第一配向膜设置在所述第一液晶和所述第二电极层之间。由此,设置第一配向膜有利于提高超透镜的性能。According to an embodiment of the present invention, the metalens further includes: a first alignment film, the first alignment film being disposed between the first liquid crystal and the second electrode layer. Therefore, the provision of the first alignment film is beneficial to improve the performance of the superlens.

根据本发明的实施例,所述超透镜进一步包括:第三电极层,所述第三电极层设置在所述第二电极层和所述第一液晶之间;第二液晶,所述第二液晶位于所述第二电极层和所述第三电极层之间。由此,可以更好的实现超透镜对光束的调控和聚焦,更有利于实现空间显示。According to an embodiment of the present invention, the metalens further comprises: a third electrode layer, the third electrode layer is disposed between the second electrode layer and the first liquid crystal; a second liquid crystal, the second Liquid crystal is located between the second electrode layer and the third electrode layer. As a result, the control and focusing of the light beam by the superlens can be better achieved, which is more conducive to the realization of spatial display.

根据本发明的实施例,所述超透镜进一步包括:第二配向膜,所述第二配向膜设置在所述第一液晶和所述第三电极层之间。由此,设置第二配向膜可以使得超透镜具有更好的整体稳定性。According to an embodiment of the present invention, the superlens further includes: a second alignment film disposed between the first liquid crystal and the third electrode layer. Therefore, disposing the second alignment film can make the metalens have better overall stability.

根据本发明的实施例,所述超透镜进一步包括多个间隔设置的隔离柱,所述隔离柱设置所述第二电极层和所述第三电极层之间。由此,隔离柱可以起到良好的支撑作用,并且还能够使的第二液晶具有更好的稳定性。According to an embodiment of the present invention, the metalens further includes a plurality of spaced apart columns, the separation columns are arranged between the second electrode layer and the third electrode layer. Therefore, the spacer can play a good supporting role, and can also make the second liquid crystal have better stability.

根据本发明的实施例,所述介质柱满足以下条件的至少之一:所述介质柱的宽度为50nm~200nm;所述介质柱的高度为450nm~800nm;所述介质柱的材质包括氮化硅、氧化钛和氮化镓中的至少之一。由此,有利于进一步提高超透镜的性能。According to an embodiment of the present invention, the dielectric column satisfies at least one of the following conditions: the width of the dielectric column is 50 nm to 200 nm; the height of the dielectric column is 450 nm to 800 nm; the material of the dielectric column includes nitride At least one of silicon, titanium oxide and gallium nitride. Therefore, it is beneficial to further improve the performance of the metalens.

在本发明的另一方面,本发明提出了一种制作超透镜的方法,根据本发明的实施例,制作超透镜的方法包括:提供第一基板,并在所述第一基板的一侧形成第一电极层;在第一电极层远离所述第一基板的一侧形成多个间隔设置的介质柱,在沿所述第一基板的中心向所述第一基板的边缘的延伸方向上,所述介质柱的宽度逐渐减小;提供第二基板,并在所述第二基板的一侧形成第二电极层;将所述第一基板和所述第二基板对盒,使所述第一电极层位于所述第一基板和所述第二电极层之间,且所述第二电极层位于所述第二基板靠近所述第一基板的一侧;在所述第一电极层和所述第二电极层之间注入第一液晶,并使所述第一液晶填充在多个所述介质柱之间的间隙中。由此,利用上述方法制备得到的超透镜可以对动态波束进行良好的调控,并能够实现聚焦,还可以结合光泳力对纤维素粒子进行捕获,进一步的,将利用该方法制作得到的超透镜与激光控制系统结合可以实现空间显示;利用该方法制作超透镜有利于提高产品的良率。In another aspect of the present invention, the present invention provides a method for fabricating a superlens. According to an embodiment of the present invention, the method for fabricating a superlens includes: providing a first substrate, and forming on one side of the first substrate a first electrode layer; a plurality of dielectric columns arranged at intervals are formed on the side of the first electrode layer away from the first substrate, and in the extending direction from the center of the first substrate to the edge of the first substrate, The width of the dielectric column is gradually reduced; a second substrate is provided, and a second electrode layer is formed on one side of the second substrate; An electrode layer is located between the first substrate and the second electrode layer, and the second electrode layer is located on the side of the second substrate close to the first substrate; between the first electrode layer and the second electrode layer The first liquid crystal is injected between the second electrode layers, and the first liquid crystal is filled in the gaps between the plurality of the dielectric columns. Therefore, the metalens prepared by the above method can control the dynamic beam well, realize focusing, and can also capture the cellulose particles in combination with the photophoresis force. The combination of laser control system can realize spatial display; using this method to manufacture superlenses is beneficial to improve the yield of products.

根据本发明的实施例,在将所述第一基板和所述第二基板对盒之前,制作超透镜的方法进一步包括:在所述第二电极层远离所述第二基板的一侧形成第一配向膜。由此,可以通过设置第一配向膜提高超透镜的结构稳定性。According to an embodiment of the present invention, before assembling the first substrate and the second substrate, the method for fabricating a superlens further includes: forming a second electrode layer on a side of the second electrode layer away from the second substrate. an alignment film. Therefore, the structural stability of the metalens can be improved by providing the first alignment film.

根据本发明的实施例,制作超透镜的方法进一步包括:提供第三基板,并在所述第三基板的一侧形成第三电极层;将设置有所述第三电极层的所述第三基板与设置有所述介质柱的所述第一基板进行对盒;对所述第三基板进行刻蚀以除去所述第三基板;将设置有所述第二电极层的所述第二基板与设置有所述第三电极层的所述第一基板进行对盒;在所述第二电极层和所述第三电极层之间注入第二液晶。由此,设置第二液晶可以更好的实现超透镜对光束的调控。According to an embodiment of the present invention, the method for fabricating a superlens further includes: providing a third substrate, and forming a third electrode layer on one side of the third substrate; The substrate is boxed with the first substrate provided with the dielectric column; the third substrate is etched to remove the third substrate; the second substrate provided with the second electrode layer is performing cell assembling with the first substrate provided with the third electrode layer; and injecting a second liquid crystal between the second electrode layer and the third electrode layer. Therefore, setting the second liquid crystal can better realize the control of the light beam by the superlens.

根据本发明的实施例,在将所述第一基板和所述第三基板对盒之前,进一步包括:在所述第三电极层远离所述第三基板的一侧形成第二配向膜。由此,设置第二配向膜可以使得超透镜具有更好的结构稳定性。According to an embodiment of the present invention, before assembling the first substrate and the third substrate, the method further includes: forming a second alignment film on a side of the third electrode layer away from the third substrate. Therefore, disposing the second alignment film can make the metalens have better structural stability.

根据本发明的实施例,在将设置有所述第二电极层的所述第二基板与设置有所述第三电极层的所述第一基板进行对盒之前,制作超透镜的方法进一步包括:在所述第二电极层远离所述第二基板的一侧形成多个间隔设置的隔离柱。由此,可以进一步提高超透镜的结构稳定性。According to an embodiment of the present invention, before assembling the second substrate provided with the second electrode layer and the first substrate provided with the third electrode layer, the method for fabricating a superlens further includes : forming a plurality of spaced apart columns on the side of the second electrode layer away from the second substrate. Thereby, the structural stability of the metalens can be further improved.

在本发明的又一方面,本发明提出了一种显示装置,所述显示装置包括前面所述的超透镜或利用前面所述的方法制作的超透镜,由此,该显示装置具有前面所述的超透镜的全部特征以及优点,在此不再赘述。总的来说,该显示装置能够对光束进行良好的调控和聚焦。In yet another aspect of the present invention, the present invention provides a display device, the display device includes the aforementioned superlens or a superlens fabricated by the aforementioned method, whereby the display device has the aforementioned superlens All the features and advantages of the superlens will not be repeated here. In general, the display device can control and focus the light beam well.

根据本发明的实施例,所述显示装置进一步包括激光控制系统,所述激光控制系统与所述超透镜结合,进行实时位置信息和激光信息的同步。由此,该显示装置可以实现空间显示。According to an embodiment of the present invention, the display device further includes a laser control system, which is combined with the metalens to synchronize real-time position information and laser information. Thus, the display device can realize spatial display.

附图说明Description of drawings

图1显示了根据本发明一个实施例的超透镜的结构示意图;FIG. 1 shows a schematic structural diagram of a superlens according to an embodiment of the present invention;

图2显示了根据本发明另一个实施例的超透镜的结构示意图;FIG. 2 shows a schematic structural diagram of a superlens according to another embodiment of the present invention;

图3显示了根据本发明又一个实施例的超透镜的结构示意图;FIG. 3 shows a schematic structural diagram of a superlens according to yet another embodiment of the present invention;

图4显示了根据本发明又一个实施例的超透镜的结构示意图;FIG. 4 shows a schematic structural diagram of a superlens according to yet another embodiment of the present invention;

图5显示了根据本发明又一个实施例的超透镜的结构示意图;FIG. 5 shows a schematic structural diagram of a superlens according to yet another embodiment of the present invention;

图6显示了根据本发明又一个实施例的超透镜的结构示意图;6 shows a schematic structural diagram of a superlens according to yet another embodiment of the present invention;

图7显示了根据本发明一个实施例的超透镜沿BB’的截面图;Figure 7 shows a cross-sectional view of a metalens along BB' according to one embodiment of the present invention;

图8显示了本发明一个实施例中相位随介质柱直径变化的曲线图;Fig. 8 shows the graph of the phase change with the diameter of the dielectric column in one embodiment of the present invention;

图9显示了本发明一个实施例中光线透过率随介质柱直径变化的曲线图;FIG. 9 shows a graph of light transmittance as a function of the diameter of a dielectric column in an embodiment of the present invention;

图10显示了本发明一个实施例中相位随折射率变化的曲线图;Figure 10 shows a graph of phase versus refractive index in one embodiment of the present invention;

图11显示了一束光线经过本发明实施例的一个超透镜之后的波前的示意图;11 shows a schematic diagram of the wavefront of a beam of light after passing through a metalens according to an embodiment of the present invention;

图12显示了根据本发明一个实施例制作超透镜的方法流程图;Figure 12 shows a flow chart of a method for fabricating a superlens according to an embodiment of the present invention;

图13显示了根据本发明另一个实施例制作超透镜的方法流程图;Figure 13 shows a flowchart of a method for fabricating a superlens according to another embodiment of the present invention;

图14显示了根据本发明又一个实施例制作超透镜的方法流程图;Figure 14 shows a flow chart of a method for fabricating a superlens according to yet another embodiment of the present invention;

图15显示了根据本发明又一个实施例制作超透镜的方法流程图;Figure 15 shows a flowchart of a method for fabricating a superlens according to yet another embodiment of the present invention;

图16显示了根据本发明又一个实施例制作超透镜的方法流程图;Figure 16 shows a flowchart of a method for fabricating a superlens according to yet another embodiment of the present invention;

图17显示了根据本发明又一个实施例制作超透镜的方法流程图;Figure 17 shows a flow chart of a method for fabricating a superlens according to yet another embodiment of the present invention;

图18显示了纤维素粒子捕获以及动态图案显示的示意图;Figure 18 shows a schematic diagram of cellulose particle capture and dynamic pattern display;

图19显示了波束偏转示意图;Figure 19 shows a schematic diagram of beam steering;

图20显示了焦距随波前移动的示意图。Figure 20 shows a schematic diagram of the focal length moving with the wavefront.

附图标记说明:Description of reference numbers:

100:第一基板;200:第一电极层;300:介质柱;400:第二电极层;500:第一液晶;600:第二基板;700:第三电极层;800:第二液晶;900:隔离柱;10:第一配向膜;20:第二配向膜;30:第一封框胶;40:第二封框胶;50:第三基板;60:入射光束;70:纤维素粒子;80:图案;90:人眼。100: first substrate; 200: first electrode layer; 300: dielectric column; 400: second electrode layer; 500: first liquid crystal; 600: second substrate; 700: third electrode layer; 800: second liquid crystal; 900: spacer; 10: first alignment film; 20: second alignment film; 30: first sealant; 40: second sealant; 50: third substrate; 60: incident beam; 70: cellulose particle; 80: pattern; 90: human eye.

具体实施方式Detailed ways

下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。Embodiments of the present invention are described in detail below. The embodiments described below are exemplary, only for explaining the present invention, and should not be construed as limiting the present invention. If no specific technique or condition is indicated in the examples, the technique or condition described in the literature in the field or the product specification is used.

在本发明的一方面,本发明提出了一种超透镜,根据本发明的实施例,参考图1至图6,超透镜1000包括第一基板100、第一电极层200、多个介质柱300、第二电极层400、第一液晶500和第二基板600,其中,第一电极层200设置在第一基板100的一侧,多个介质柱300间隔设置在第一电极层200远离第一基板100的一侧,在沿第一基板100的中心向第一基板100的边缘的延伸方向上(相当于沿图1至图6中A向水平方向箭头所示的方向上),介质柱的宽度W逐渐减小,第二电极层400设置在介质柱300远离第一基板100的一侧,第一液晶500位于第一电极层200远离第一基板100的一侧,且填充在多个介质柱300之间的间隙中,第二基板600设置在第二电极层400远离第一基板100的一侧。由此,该超透镜可以实现对动态波束的调控,还可以实现聚焦,结合光泳力即可实现捕获纤维素粒子的功能,将该超透镜与激光控制系统结合即可实现空间显示。In one aspect of the present invention, the present invention provides a superlens. According to an embodiment of the present invention, referring to FIGS. 1 to 6 , thesuperlens 1000 includes afirst substrate 100 , afirst electrode layer 200 , and a plurality ofdielectric columns 300 . , thesecond electrode layer 400, the firstliquid crystal 500 and thesecond substrate 600, wherein thefirst electrode layer 200 is arranged on one side of thefirst substrate 100, and a plurality ofdielectric pillars 300 are arranged at intervals on thefirst electrode layer 200 away from thefirst electrode layer 200. On one side of thesubstrate 100, in the extending direction along the center of thefirst substrate 100 to the edge of the first substrate 100 (corresponding to the direction indicated by the horizontal arrow along A in FIGS. The width W gradually decreases, thesecond electrode layer 400 is disposed on the side of thedielectric column 300 away from thefirst substrate 100 , the firstliquid crystal 500 is located on the side of thefirst electrode layer 200 away from thefirst substrate 100 , and filled in a plurality of dielectrics In the gaps between thepillars 300 , thesecond substrate 600 is disposed on the side of thesecond electrode layer 400 away from thefirst substrate 100 . Therefore, the superlens can realize the regulation of dynamic beams, and can also realize focusing. Combined with the photophoresis force, the function of capturing cellulose particles can be realized, and the superlens can be combined with a laser control system to realize spatial display.

下面对本发明的超透镜可以实现对动态波束的调控和聚焦的原理进行说明:本发明中设置介质柱300的宽度W在沿第一基板100的中心向第一基板100的边缘的延伸方向上逐渐减小,图8示出了相位随介质柱直径变化的曲线图,图8中以介质柱为圆柱体为例示出了固定波长的光束在通过不同直径的介质柱之后的相位,由图8可知,介质柱直径越大,光束通过介质柱后的相位越大,相位延迟越大,光束(可参考图11)照射到超透镜300之后,由于中心位置的介质柱的宽度较大,光束移动较慢,而边缘位置的介质柱的宽度较小,光束移动较快,在沿中心向边缘延伸的方向上,光束移动速度逐渐增大,则可以形成类似图11中的抛物线形状的光波前L1,即可实现光束聚焦,而通过调节第一液晶500两端的电压则可以相应调节第一液晶500的晶轴方向,进而调节第一液晶500的折射率,相应的可以实现超透镜整体对动态光束的调控,使光波前位置发生变化,则动态波束经过超透镜之后的焦点会相应发生变化。第一液晶和介质柱可以对入射光束在x-y平面内的运动进行调控,也可以对入射光束在z方向(即垂直于x-y平面的方向)的运动进行调控,需要说明的是,第一液晶和介质柱不能同时调控x-y平面和z方向上的运动,由此,可以通过该超透镜对入射光束进行三维空间上的调控。The principle that the superlens of the present invention can realize the regulation and focusing of the dynamic beam will be described below: In the present invention, the width W of thedielectric column 300 is set to gradually extend along the center of thefirst substrate 100 to the edge of thefirst substrate 100. decrease, Figure 8 shows the graph of the phase change with the diameter of the dielectric cylinder. In Figure 8, the dielectric cylinder is used as an example to show the phase of the fixed wavelength beam after passing through the dielectric cylinder of different diameters. It can be seen from Figure 8 , the larger the diameter of the dielectric cylinder, the greater the phase of the beam after passing through the dielectric cylinder, and the greater the phase delay. After the beam (refer to Figure 11) is irradiated to thesuperlens 300, due to the larger width of the dielectric cylinder at the center position, the beam moves more rapidly. However, the width of the dielectric column at the edge is smaller, and the beam moves faster. In the direction extending from the center to the edge, the beam moving speed gradually increases, and a light wavefront L1 similar to the parabola in Figure 11 can be formed. By adjusting the voltage at both ends of the firstliquid crystal 500, the crystal axis direction of the firstliquid crystal 500 can be adjusted accordingly, and then the refractive index of the firstliquid crystal 500 can be adjusted accordingly. By adjusting and adjusting the position of the light wavefront, the focus of the dynamic beam after passing through the metalens will change accordingly. The first liquid crystal and the dielectric column can regulate the movement of the incident beam in the x-y plane, and can also regulate the movement of the incident beam in the z direction (that is, the direction perpendicular to the x-y plane). It should be noted that the first liquid crystal and the The movement in the x-y plane and the z direction cannot be controlled at the same time by the dielectric column, so the incident beam can be controlled in three-dimensional space through the superlens.

图9示出了介质柱为圆柱状,介质柱的材质为二氧化钛,高度为600nm,第一液晶为E7(折射率为1.5~1.7),在未施加电压的情况下(第一液晶的折射率保持1.5),介质柱的入射光为固定波长可见光的条件下,光线的透过率随介质柱的直径变化的曲线图,由图9可知当介质柱的直径设置在50nm~200nm的范围内时,光线的透过率均高于80%。Figure 9 shows that the dielectric column is cylindrical, the material of the dielectric column is titanium dioxide, the height is 600nm, the first liquid crystal is E7 (the refractive index is 1.5-1.7), and when no voltage is applied (the refractive index of the first liquid crystal is Keeping 1.5), under the condition that the incident light of the dielectric column is visible light with a fixed wavelength, the curve of the transmittance of the light changes with the diameter of the dielectric column, it can be seen from Figure 9 that when the diameter of the dielectric column is set in the range of 50nm ~ 200nm , the transmittance of light is higher than 80%.

图10示出了介质柱为圆柱状,介质柱的材质为二氧化钛、高度为600nm、直径为150nm,液晶盒厚为2.7微米,光线透过后的相位随液晶的折射率变化而变化的曲线图(随液晶的折射率由1.5变化至1.7的过程中光线透过后的相位),需要说明的是,图10中并没有对相位进行取整(即并未结合光波的周期为2π的运动规律调整纵坐标),由图10可知,可以通过调节液晶的电压使得液晶的折射率变化,并使得透过超透镜的光束的相位在0°~360°(对应0~2π弧度)的范围变化,从而可以调节任意光束的光波前,还能够设计光束聚焦或者偏轴聚焦。Figure 10 shows that the dielectric column is cylindrical, the dielectric column is made of titanium dioxide, the height is 600 nm, the diameter is 150 nm, and the thickness of the liquid crystal cell is 2.7 microns. As the refractive index of the liquid crystal changes from 1.5 to 1.7, the phase after the light passes through), it should be noted that the phase is not rounded in Fig. Coordinates), it can be seen from Figure 10 that the refractive index of the liquid crystal can be changed by adjusting the voltage of the liquid crystal, and the phase of the light beam passing through the superlens can be changed in the range of 0°~360° (corresponding to 0~2π radians), so that the Adjust the light wavefront of any beam, and can also design beam focusing or off-axis focusing.

根据本发明的一些实施例,参考图6,介质柱300的宽度W可以为50nm~200nm,例如W可以为50nm、60nm、80nm、100nm、120nm、150nm、180nm、200nm等,介质柱的宽度设置在上述范围内,介质柱具有良好的光线透过率,并且可以实现超透镜对入射光束在三维空间内的调控。需要说明的是,介质柱300的宽度W即是指介质柱300沿图6中向水平方向箭头所示方向上的尺寸,当介质柱300为圆柱状时,介质柱300的宽度W即是指的介质柱300的直径,当介质柱300为长方体(介质柱沿BB’的截面为正方形)时,介质柱300的宽度W即是指的介质柱沿BB’的截面的边长。图7为图1沿BB’的截面图,由图7也可以清楚的看到,在沿第一基板100的中心向第一基板100的边缘的延伸方向上,介质柱300的宽度逐渐减小。当然需要说明的是,超透镜沿BB’的截面可以为圆形(如图7所示出的),也可以为方形,只要能够使得介质柱在沿第一基板的中心向第一基板的边缘的延伸方向上,介质柱的宽度逐渐减小,可以实现对入射光束在三维空间的调控和聚焦即可。According to some embodiments of the present invention, referring to FIG. 6 , the width W of thedielectric column 300 may be 50 nm˜200 nm, for example, W may be 50 nm, 60 nm, 80 nm, 100 nm, 120 nm, 150 nm, 180 nm, 200 nm, etc. The width of the dielectric column is set Within the above range, the dielectric column has good light transmittance, and the superlens can control the incident beam in three-dimensional space. It should be noted that the width W of thedielectric column 300 refers to the dimension of thedielectric column 300 in the direction indicated by the horizontal arrow in FIG. 6 . When thedielectric column 300 is cylindrical, the width W of thedielectric column 300 refers to When themedium column 300 is a cuboid (the cross section of the medium column along BB' is a square), the width W of themedium column 300 refers to the side length of the cross section of themedium column 300 along BB'. FIG. 7 is a cross-sectional view along BB′ of FIG. 1 . It can also be clearly seen from FIG. 7 that the width of thedielectric column 300 gradually decreases along the extending direction from the center of thefirst substrate 100 to the edge of thefirst substrate 100 . . Of course, it should be noted that the cross-section of the superlens along BB' can be circular (as shown in FIG. 7 ) or square, as long as the dielectric column can be positioned along the center of the first substrate to the edge of the first substrate In the extending direction of , the width of the dielectric column gradually decreases, which can realize the regulation and focusing of the incident beam in three-dimensional space.

根据本发明的实施例,介质柱300的材质可以包括氮化硅、氧化钛和氮化镓等中的至少之一,例如,介质柱300可以由氮化硅、氧化钛或氮化镓等材质中的一种形成,介质柱300也可以由氮化硅、氧化钛和氮化镓等材质中的两种或多种形成,上述材质均具有良好的可见光透过率,有利于提升超透镜对入射光束的调控效果。According to an embodiment of the present invention, the material of thedielectric column 300 may include at least one of silicon nitride, titanium oxide, and gallium nitride. For example, thedielectric column 300 may be made of silicon nitride, titanium oxide, or gallium nitride. Thedielectric column 300 can also be formed of two or more of materials such as silicon nitride, titanium oxide, and gallium nitride. All of the above materials have good visible light transmittance, which is beneficial to improve the performance of the superlens. The control effect of the incident beam.

根据本发明的一些具体实施例,第一基板100和第二基板600的材质可以均为玻璃,对于玻璃的具体类型,本领域技术人员可以根据实际需要进行选择,只要第一基板100和第二基板600能够具有一定的强度并能提供良好的支撑作用即可。According to some specific embodiments of the present invention, the materials of thefirst substrate 100 and thesecond substrate 600 can be both glass. As for the specific type of glass, those skilled in the art can choose according to actual needs, as long as thefirst substrate 100 and thesecond substrate 600 are made of glass. Thesubstrate 600 can have a certain strength and can provide a good support function.

根据本发明的一些具体实施例,第一电极层200和第二电极层400的材质可以均为ITO(氧化铟锡),由此,第一电极层和第二电极层均具有较好的导电性,更有利于通过给液晶施加电压以调节液晶的折射率,进而便于实现超透镜对入射光束的调控。According to some specific embodiments of the present invention, the material of thefirst electrode layer 200 and thesecond electrode layer 400 may be ITO (Indium Tin Oxide), so that both the first electrode layer and the second electrode layer have good electrical conductivity It is more beneficial to adjust the refractive index of the liquid crystal by applying a voltage to the liquid crystal, thereby facilitating the control of the incident light beam by the superlens.

根据本发明的一些实施例,参考图2,超透镜1000可以进一步包括第一配向膜10,第一配向膜10设置在第一液晶500和第二电极层400之间,在该些实施例中,第一配向膜10的设置可以使得第一液晶500沿着第一配向膜10的沟槽(图2中未示出第一配向膜的沟槽)排列,使得第一液晶10具有更好的稳定性,从而有利于提高超透镜1000的整体稳定性。According to some embodiments of the present invention, referring to FIG. 2 , thesuperlens 1000 may further include afirst alignment film 10 disposed between the firstliquid crystal 500 and thesecond electrode layer 400 , in these embodiments , the arrangement of thefirst alignment film 10 can make the firstliquid crystal 500 align along the grooves of the first alignment film 10 (the grooves of the first alignment film are not shown in FIG. 2 ), so that the firstliquid crystal 10 has better stability, thereby helping to improve the overall stability of thesuperlens 1000 .

根据本发明的另一些实施例,参考图3,超透镜1000可以进一步包括第三电极层700和第二液晶800,其中,第三电极层700设置在第二电极层400和第一液晶500之间,第二液晶800位于第二电极层400和第三电极层700之间。在这种情况下,第一液晶和介质柱可以对入射光束在x-y平面的运动进行调控,而第二液晶可以对入射光束在z方向(即垂直于x-y平面的方向)的运动进行调控,从而可以更便于对入射光束进行三维空间上的运动。According to other embodiments of the present invention, referring to FIG. 3 , thesuperlens 1000 may further include athird electrode layer 700 and a secondliquid crystal 800 , wherein thethird electrode layer 700 is disposed between thesecond electrode layer 400 and the firstliquid crystal 500 During this time, the secondliquid crystal 800 is located between thesecond electrode layer 400 and thethird electrode layer 700 . In this case, the first liquid crystal and the dielectric column can regulate the movement of the incident beam in the x-y plane, and the second liquid crystal can regulate the movement of the incident beam in the z direction (ie, the direction perpendicular to the x-y plane), so that The movement of the incident beam in three-dimensional space can be facilitated.

根据本发明的一些具体实施例,第三电极层700的材质可以为ITO(氧化铟锡),由此,第三电极层也具有较好的导电性能,便于对液晶的折射率进行调节,进而便于利用超透镜调控入射光束在三维空间内的运动。According to some specific embodiments of the present invention, the material of thethird electrode layer 700 may be ITO (indium tin oxide). Therefore, the third electrode layer also has good electrical conductivity, which is convenient for adjusting the refractive index of the liquid crystal, and further It is convenient to use the superlens to control the movement of the incident beam in the three-dimensional space.

根据本发明的又一些实施例,参考图4至图6,超透镜1000可以进一步包括第二配向膜20,第二配向膜20设置在第一液晶500和第三电极层700之间,在这种情况下,第一液晶500可以沿着第二配向膜20的沟槽(图4至图6中未示出第二配向膜的沟槽)排列,使得第一液晶10具有良好的稳定性,此时,第一配向膜10则设置在第二电极层400和第二液晶800之间,使得第二液晶800可以沿着第一配向膜10的沟槽(图4至图6中未示出第一配向膜的沟槽)排列,进而使得第二液晶800具有更好的稳定性,从而更有利于提高超透镜1000的整体稳定性。According to still other embodiments of the present invention, referring to FIGS. 4 to 6 , thesuperlens 1000 may further include asecond alignment film 20 disposed between the firstliquid crystal 500 and thethird electrode layer 700 , where In this case, the firstliquid crystal 500 can be arranged along the grooves of the second alignment film 20 (the grooves of the second alignment film are not shown in FIG. 4 to FIG. 6 ), so that the firstliquid crystal 10 has good stability, At this time, thefirst alignment film 10 is disposed between thesecond electrode layer 400 and the secondliquid crystal 800, so that the secondliquid crystal 800 can follow the grooves of the first alignment film 10 (not shown in FIGS. 4 to 6 ). The grooves of the first alignment film) are arranged, so that the secondliquid crystal 800 has better stability, which is more conducive to improving the overall stability of thesuperlens 1000 .

根据本发明的一些实施例,第一配向膜10和第二配向膜20的材质可以均为PI(聚酰亚胺),通过对聚酰亚胺膜层进行摩擦(粗化)可以使得其表面形成沟槽,进而使得液晶沿着沟槽排列。According to some embodiments of the present invention, the material of thefirst alignment film 10 and thesecond alignment film 20 can be both PI (polyimide), and the surface of the polyimide film can be rubbed (roughened) The grooves are formed so that the liquid crystals are aligned along the grooves.

根据本发明的一些实施例,参考图5和图6,超透镜1000可以进一步包括多个间隔设置的隔离柱900,其中,隔离柱900设置第二电极层400和第三电极层700之间。由此,隔离柱可以起到良好的支撑作用,进而使得超透镜具有更好的整体稳定性。根据本发明的一些具体实施例,隔离柱900可以设置在第二电极层400远离第二基板600的表面上。根据本发明的另一些具体实施例,参考图5和图6,隔离柱900也可以设置在第一配向膜10远离第二基板600的表面上。According to some embodiments of the present invention, referring to FIGS. 5 and 6 , thesuperlens 1000 may further include a plurality of spaced apart posts 900 , wherein the isolation posts 900 are disposed between thesecond electrode layer 400 and thethird electrode layer 700 . Therefore, the isolation column can play a good supporting role, thereby making the metalens have better overall stability. According to some specific embodiments of the present invention, theisolation pillars 900 may be disposed on the surface of thesecond electrode layer 400 away from thesecond substrate 600 . According to other specific embodiments of the present invention, referring to FIG. 5 and FIG. 6 , theisolation pillars 900 may also be disposed on the surface of thefirst alignment film 10 away from thesecond substrate 600 .

根据本发明的一些具体实施例,参考图6,超透镜1000还可以进一步包括第一封框胶30和第二封框胶40,其中,第一封框胶30可以设置在第二配向膜20远离第二基板600的表面的边缘区域,第二封框胶40可以设置在边缘位置的隔离柱900的至少部分表面上,通过设置第一封框胶和第二封框胶,可以更好的约束第一液晶和第二液晶,从而可以进一步提高超透镜的整体稳定性。关于第一封框胶和第二封框胶的材质,本发明中不做特别限定,本领域技术人员可以根据实际需要进行选择和设置,只要第一封框胶和第二封框胶具有良好的粘结性能即可。需要说明的是,当不设置隔离柱时,第二封框胶40可以设置在第二电极层400或第一配向膜10远离第二基板600的表面上。According to some specific embodiments of the present invention, referring to FIG. 6 , thesuperlens 1000 may further include afirst sealant 30 and asecond sealant 40 , wherein thefirst sealant 30 may be disposed on thesecond alignment film 20 In the edge area away from the surface of thesecond substrate 600, thesecond frame sealant 40 can be disposed on at least part of the surface of theisolation column 900 at the edge position. By providing the first frame sealant and the second frame sealant, better Constraining the first liquid crystal and the second liquid crystal can further improve the overall stability of the metalens. The materials of the first and second sealants are not particularly limited in the present invention, and those skilled in the art can select and set them according to actual needs, as long as the first and second sealants have good adhesive properties. It should be noted that, when the isolation column is not provided, thesecond sealant 40 may be provided on the surface of thesecond electrode layer 400 or thefirst alignment film 10 away from thesecond substrate 600 .

根据本发明的一些实施例,参考图6,介质柱300的高度H1可以为450nm~800nm,例如H1可以为450nm、480nm、500nm、530nm、550nm、570nm、600nm、630nm、650nm、670nm、700nm、750nm、780nm、800nm等,由此,更有利于实现对入射光束的相位调节,并且不会显著增加介质柱的制作难度。According to some embodiments of the present invention, referring to FIG. 6 , the height H1 of thedielectric column 300 may be 450nm˜800nm, for example, H1 may be 450nm, 480nm, 500nm, 530nm, 550nm, 570nm, 600nm, 630nm, 650nm, 670nm, 750nm, 780nm, 800nm, etc., thus, it is more conducive to realize the phase adjustment of the incident beam, and will not significantly increase the difficulty of manufacturing the dielectric column.

根据本发明的一些实施例,第一液晶可以为E7(折射率为1.5~1.7)。根据本发明的一些实施例,参考图6,第一液晶500的高度(即第一液晶的盒厚)H2可以为2.7微米~8微米,例如可以为2.7微米、3微米、3.5微米、4微米、4.5微米、5微米、5.5微米、6微米、6.5微米、7微米、7.5微米、8微米等,由此,更有利于提升超透镜对入射光束的调控效果,并且,更有利于提高超透镜的整体稳定性。According to some embodiments of the present invention, the first liquid crystal may be E7 (refractive index is 1.5˜1.7). According to some embodiments of the present invention, referring to FIG. 6 , the height H2 of the first liquid crystal 500 (ie the cell thickness of the first liquid crystal) may be 2.7 μm˜8 μm, for example, may be 2.7 μm, 3 μm, 3.5 μm, 4 μm , 4.5 microns, 5 microns, 5.5 microns, 6 microns, 6.5 microns, 7 microns, 7.5 microns, 8 microns, etc., thus, it is more conducive to improve the control effect of the super lens on the incident beam, and it is more conducive to improving the super lens overall stability.

根据本发明的一些实施例,第二液晶也可以为E7(折射率为1.5~1.7)。根据本发明的一些实施例,第二液晶800的高度(即第二液晶的盒厚)也可以为2.7微米~8微米,由此,有利于进一步提升超透镜对入射光束的调控效果,并且,有利于进一步提高超透镜的整体稳定性。According to some embodiments of the present invention, the second liquid crystal may also be E7 (refractive index is 1.5˜1.7). According to some embodiments of the present invention, the height of the second liquid crystal 800 (that is, the cell thickness of the second liquid crystal) may also be 2.7 micrometers to 8 micrometers, thereby further improving the control effect of the superlens on the incident light beam, and, It is beneficial to further improve the overall stability of the superlens.

另外需要说明的是,本发明提出的超透镜还可以实现电光、磁光等效应的动态调制。In addition, it should be noted that the metalens proposed in the present invention can also realize dynamic modulation of electro-optical, magneto-optical and other effects.

总的来说,本发明提出的超透镜,可以实现动态调控空间内任意波前的方向调控,将波前调控与光束聚焦集成化在同一超透镜中,有利于器件的小型化,在将超透镜应用于三维空间显示时,可以显著减小显示装置的体积。In general, the superlens proposed in the present invention can realize the direction control of arbitrary wavefronts in the dynamic control space, and integrate the wavefront control and beam focusing in the same superlens, which is beneficial to the miniaturization of the device. When the lens is applied to three-dimensional space display, the volume of the display device can be significantly reduced.

在本发明的另一方面,本发明提出了一种制作超透镜的方法,根据本发明的实施例,参考图12,制作超透镜的方法包括:In another aspect of the present invention, the present invention provides a method for manufacturing a superlens. According to an embodiment of the present invention, referring to FIG. 12 , the method for manufacturing a superlens includes:

S100:提供第一基板100,并在第一基板100的一侧形成第一电极层200。S100 : providing thefirst substrate 100 and forming thefirst electrode layer 200 on one side of thefirst substrate 100 .

在该步骤中,提供第一基板100,并在第一基板100的一侧形成第一电极层200。根据本发明的一些具体实施例,第一电极层200可以通过溅射的方法形成在第一基板100的一侧表面上,由此,可以通过成熟的工艺形成第一电极层,有利于提高产品良率,并降低超透镜的制作成本。In this step, thefirst substrate 100 is provided, and thefirst electrode layer 200 is formed on one side of thefirst substrate 100 . According to some specific embodiments of the present invention, thefirst electrode layer 200 can be formed on one side surface of thefirst substrate 100 by a sputtering method, so that the first electrode layer can be formed by a mature process, which is beneficial to improve the product quality. yield and reduce the manufacturing cost of metalens.

关于第一基板100和第一电极层200的材质,已在前面做了介绍,在此不再赘述。The materials of thefirst substrate 100 and thefirst electrode layer 200 have been introduced above, and will not be repeated here.

S200:在第一电极层200远离第一基板100的一侧形成多个间隔设置的介质柱300。S200 : forming a plurality of spaceddielectric pillars 300 on the side of thefirst electrode layer 200 away from thefirst substrate 100 .

形成第一电极层200后,在第一电极层200远离第一基板100的一侧形成多个间隔设置的介质柱300,其中,在沿第一基板100的中心向第一基板100的边缘的延伸方向上,介质柱300的宽度逐渐减小。After thefirst electrode layer 200 is formed, a plurality of spaceddielectric pillars 300 are formed on the side of thefirst electrode layer 200 away from thefirst substrate 100 . In the extending direction, the width of thedielectric column 300 gradually decreases.

根据本发明的一些实施例,形成多个间隔设置的介质柱300的具体步骤包括:利用原子层沉积的方法在第一电极层200远离第一基板100的表面上形成整层的介质层,之后,在介质层远离第一基板的一侧旋涂PR胶(光刻胶),刻蚀得到多个间隔设置的介质柱300,除去剩余的PR胶。According to some embodiments of the present invention, the specific steps of forming the plurality of spaceddielectric pillars 300 include: forming an entire dielectric layer on the surface of thefirst electrode layer 200 away from thefirst substrate 100 by using an atomic layer deposition method, and then , spin-coating PR glue (photoresist) on the side of the dielectric layer away from the first substrate, etch to obtain a plurality ofdielectric pillars 300 arranged at intervals, and remove the remaining PR glue.

关于介质柱300的材质、尺寸等特征也已在前面做了详细的说明,在此不再赘述。Features such as the material and size of thedielectric column 300 have also been described in detail above, and will not be repeated here.

S300:提供第二基板600,并在第二基板600的一侧形成第二电极层400。S300 : providing thesecond substrate 600 and forming thesecond electrode layer 400 on one side of thesecond substrate 600 .

在该步骤中,提供第二基板600,并在第二基板600的一侧形成第二电极层400。需要说明的是步骤S300和步骤S100的顺序不做特别限定,可以先提供第一基板并在第一基板的一侧形成第一电极层,也可以先提供第二基板并在第二基板的一侧形成第二电极层,当然,上述步骤S300和步骤S100也可以同时进行。In this step, thesecond substrate 600 is provided, and thesecond electrode layer 400 is formed on one side of thesecond substrate 600 . It should be noted that the sequence of step S300 and step S100 is not particularly limited. The first substrate may be provided first and the first electrode layer may be formed on one side of the first substrate, or the second substrate may be provided first and a second substrate may be provided on one side of the second substrate. The second electrode layer is formed on the side. Of course, the above-mentioned steps S300 and S100 can also be performed simultaneously.

根据本发明的一些实施例,第二电极层400可以通过溅射的方法形成在第二基板600的表面上,由此,可以通过成熟的工艺形成第二电极层,有利于提高产品的良率并降低制作成本。According to some embodiments of the present invention, thesecond electrode layer 400 may be formed on the surface of thesecond substrate 600 by a sputtering method, whereby the second electrode layer may be formed by a mature process, which is beneficial to improve the yield of products and reduce production costs.

关于第二基板600和第二电极层400的材质也已在前面做了说明,在此不再赘述。The materials of thesecond substrate 600 and thesecond electrode layer 400 have also been described above, and will not be repeated here.

S400:将第一基板100和第二基板600对盒。S400: Assemble thefirst substrate 100 and thesecond substrate 600 into a box.

在该步骤中,将第一基板100和第二基板600对盒,如图12所示,使第一电极层200位于第一基板100和第二电极层400之间,且第二电极层400位于第二基板600靠近第一基板100的一侧。In this step, thefirst substrate 100 and thesecond substrate 600 are boxed together, as shown in FIG. 12 , so that thefirst electrode layer 200 is located between thefirst substrate 100 and thesecond electrode layer 400 , and thesecond electrode layer 400 It is located on the side of thesecond substrate 600 close to thefirst substrate 100 .

根据本发明的一些实施例,步骤S400可以是在真空条件下进行的。According to some embodiments of the present invention, step S400 may be performed under vacuum conditions.

S500:在第一电极层200和第二电极层400之间注入第一液晶500。S500 : injecting the firstliquid crystal 500 between thefirst electrode layer 200 and thesecond electrode layer 400 .

在该步骤中,在第一电极层200和第二电极层400之间注入第一液晶500,并使第一液晶500填充在多个介质柱300之间的间隙中。In this step, the firstliquid crystal 500 is injected between thefirst electrode layer 200 and thesecond electrode layer 400 , and the firstliquid crystal 500 is filled in the gaps between the plurality ofdielectric columns 300 .

利用上述方法制作得到的超透镜能够对入射光束在三维空间的运动进行调控,并实现对光束的聚焦,进而能够捕获纤维素粒子,再结合激光控制系统可以实现三维空间显示;上述方法操作简便,有利于提高产品的良率并且不会显著增加制作成本。The superlens fabricated by the above method can control the movement of the incident beam in the three-dimensional space, and realize the focusing of the beam, and then can capture the cellulose particles, and combined with the laser control system, the three-dimensional space display can be realized; the above method is easy to operate, It is beneficial to improve the yield of the product without significantly increasing the manufacturing cost.

根据本发明的一些实施例,参考图13,在将第一基板100和第二基板600对盒之前,制作超透镜的方法可以进一步包括:在第二电极层400远离第二基板600的一侧形成第一配向膜10。在该些实施例中,形成第一配向膜10之后,将设置有第一配向膜10的第二基板600与第一基板进行对盒,对盒之后,第一配向膜10设置在介质柱300和第二电极层400之间。根据本发明的一些具体实施例,第一配向膜10可以是通过旋涂的方法形成的,由此,利用成熟的工艺制作第一配向膜可以进一步提高产品的良率,并且第一配向膜的设置有利于提高超透镜的整体稳定性。According to some embodiments of the present invention, referring to FIG. 13 , before assembling thefirst substrate 100 and thesecond substrate 600 , the method for fabricating a superlens may further include: on a side of thesecond electrode layer 400 away from thesecond substrate 600 Thefirst alignment film 10 is formed. In these embodiments, after thefirst alignment film 10 is formed, thesecond substrate 600 provided with thefirst alignment film 10 is assembled with the first substrate. After the assembly, thefirst alignment film 10 is placed on thedielectric column 300 . and thesecond electrode layer 400 . According to some specific embodiments of the present invention, thefirst alignment film 10 may be formed by a spin coating method, thus, using a mature process to fabricate the first alignment film can further improve the yield of the product, and the first alignment film The setting is beneficial to improve the overall stability of the metalens.

根据本发明的另一些实施例,参考图14,制作超透镜的方法进一步包括:提供第三基板50,并在第三基板50的一侧形成第三电极层700;将设置有第三电极层700的第三基板50与设置有介质柱300的第一基板100进行对盒,对盒之后,对第三基板50进行刻蚀以除去第三基板50;将设置有第二电极层400的第二基板600与设置有第三电极层700的第一基板100进行对盒,并在第二电极层400和第三电极层700之间注入第二液晶800。需要说明的是,在该些实施例中,将设置有第三电极层700的第三基板50与设置有介质柱300的第一基板100进行对盒之后,在第二电极层400和第一电极层200之间注入第一液晶,之后,再对第三基板50进行刻蚀以除去第三基板50。根据本发明的实施例,第三基板50的材质也可以为玻璃,将第一基板100和第三基板50对盒之后,可用氢氟酸刻蚀第三基板50以除去第三基板50。According to other embodiments of the present invention, referring to FIG. 14 , the method for fabricating a superlens further includes: providing athird substrate 50, and forming athird electrode layer 700 on one side of thethird substrate 50; providing a third electrode layer Thethird substrate 50 of the The twosubstrates 600 are assembled with thefirst substrate 100 provided with thethird electrode layer 700 , and the secondliquid crystal 800 is injected between thesecond electrode layer 400 and thethird electrode layer 700 . It should be noted that, in these embodiments, after thethird substrate 50 provided with thethird electrode layer 700 and thefirst substrate 100 provided with thedielectric column 300 are assembled, thesecond electrode layer 400 and the first The first liquid crystal is injected between the electrode layers 200 , and then thethird substrate 50 is etched to remove thethird substrate 50 . According to an embodiment of the present invention, the material of thethird substrate 50 can also be glass. After thefirst substrate 100 and thethird substrate 50 are assembled together, thethird substrate 50 can be removed by etching thethird substrate 50 with hydrofluoric acid.

根据本发明的又一些实施例,参考图15,在将第一基板100和第三基板50对盒之前,制作超透镜的方法可以进一步包括:在第三电极层700远离第三基板50的一侧形成第二配向膜20。在该些实施例中,形成第二配向膜20之后,将设置有第二配向膜20的第三基板50与设置有介质柱300的隔离柱进行对盒。关于第二配向膜20的材质已在前面进行了描述,在此不再赘述。According to still other embodiments of the present invention, referring to FIG. 15 , before assembling thefirst substrate 100 and thethird substrate 50 , the method for fabricating a superlens may further include: at a position of thethird electrode layer 700 away from the third substrate 50 Asecond alignment film 20 is formed on the side. In these embodiments, after thesecond alignment film 20 is formed, thethird substrate 50 provided with thesecond alignment film 20 and the isolation column provided with thedielectric column 300 are assembled. The material of thesecond alignment film 20 has been described above and will not be repeated here.

根据本发明的又一些实施例,参考图16,在将设置有第二电极层400的第二基板600与设置有第三电极层700的第一基板100进行对盒之前,制作超透镜的方法进一步包括:在第二电极层400远离第二基板600的一侧形成多个间隔设置的隔离柱900。由此,通过隔离柱可以起到良好的支撑作用,有利于提高超透镜的整体稳定性。根据本发明的一些具体实施例,参考图16,第二电极层400远离第二基板600的一侧设置有第一配向膜10,多个间隔设置的隔离柱900可以设置在第一配向膜10远离第二基板600的一侧。According to further embodiments of the present invention, referring to FIG. 16 , before assembling thesecond substrate 600 provided with thesecond electrode layer 400 with thefirst substrate 100 provided with thethird electrode layer 700 , a method of fabricating a superlens The method further includes: forming a plurality of spacedisolation columns 900 on a side of thesecond electrode layer 400 away from thesecond substrate 600 . Therefore, the isolation column can play a good supporting role, which is beneficial to improve the overall stability of the superlens. According to some specific embodiments of the present invention, referring to FIG. 16 , the side of thesecond electrode layer 400 away from thesecond substrate 600 is provided with thefirst alignment film 10 , and a plurality of spaced apart posts 900 may be provided on the first alignment film 10 A side away from thesecond substrate 600 .

根据本发明的又一些实施例,参考图17,在将设置有介质柱300的第一基板100和设置有第三电极层700的第三基板50进行对盒之前,可以在第三电极层700远离第三基板50的一侧涂覆第一封装胶30,在一些实施例中,第一封框胶30可以涂覆在第二配向膜20远离第三基板50的一侧表面的边缘部分(如图17所示),通过第一封框胶30实现两部分的粘结,在将第一基板100和第三基板50对盒之后,可以对第一封框胶30进行紫外光固化,使两部分结构粘结牢固并实现封装;在将设置有第三电极层700的第一基板100和设置有隔离柱900的第二基板600进行对盒之前,可以在边缘部分的隔离柱的至少部分表面上涂覆第二封框胶40,通过第二封框胶40实现两部分的粘结,在将第一基板100和第二基板600对盒之后,可以对第二封框胶40进行紫外光固化,使两部分结构粘结牢固并实现封装。当然,在不设置隔离柱时,第二封框胶40可以形成在第二电极层400或第一介质层10远离第二基板600的表面的边缘区域。According to still other embodiments of the present invention, referring to FIG. 17 , before assembling thefirst substrate 100 provided with thedielectric pillars 300 and thethird substrate 50 provided with thethird electrode layer 700 , thethird electrode layer 700 may be Thefirst encapsulant 30 is coated on the side away from thethird substrate 50 . In some embodiments, thefirst sealant 30 may be coated on the edge portion of the side surface of thesecond alignment film 20 away from the third substrate 50 ( As shown in FIG. 17 ), the bonding of the two parts is realized by thefirst sealant 30. After thefirst substrate 100 and thethird substrate 50 are assembled, thefirst sealant 30 can be cured by ultraviolet light, so that the The two-part structure is firmly bonded and encapsulated; before thefirst substrate 100 provided with thethird electrode layer 700 and thesecond substrate 600 provided with theisolation pillars 900 are boxed, at least part of the isolation pillars in the edge portion can be Thesecond sealant 40 is coated on the surface, and the two parts are bonded by thesecond sealant 40. After thefirst substrate 100 and thesecond substrate 600 are assembled, thesecond sealant 40 can be subjected to ultraviolet light Light curing, the two-part structure is firmly bonded and encapsulated. Of course, when the isolation column is not provided, thesecond sealant 40 may be formed on the edge region of thesecond electrode layer 400 or thefirst dielectric layer 10 away from the surface of thesecond substrate 600 .

总的来说,通过本发明提出的方法制作得到的超透镜可以实现对入射光束在三维空间的调控和聚焦,进而能够实现捕获纤维素粒子的功能,并且,利用该方法制作超透镜有利于提高超透镜的良率。In general, the superlens fabricated by the method proposed in the present invention can realize the regulation and focusing of the incident beam in three-dimensional space, thereby realizing the function of capturing cellulose particles. The yield of the metalens.

在本发明的又一方面,本发明提出了一种显示装置,该显示装置包括前面所述的超透镜或利用前面所述的方法制作的超透镜。由此,该显示装置具有前面所述的超透镜所具有的全部特征以及优点,在此不再赘述。总的来说,该显示装置能够利用超透镜实现三维空间显示。In yet another aspect of the present invention, the present invention provides a display device comprising the aforementioned metalens or a metalens fabricated by the aforementioned method. Therefore, the display device has all the features and advantages of the metalens mentioned above, which will not be repeated here. In general, the display device can realize three-dimensional space display by using the metalens.

根据本发明的一些实施例,参考图18和图19,该显示装置除了包括超透镜1000,还可以进一步包括激光控制系统2000,激光控制系统2000与超透镜1000结合,进行实时位置信息和激光信息的同步。图18为纤维素粒子捕获以及动态图案显示示意图,该显示装置中,超透镜1000可以使通过其的入射光束60聚焦,并且,光束的焦点可以在三维空间移动,光束聚焦并照射到纤维素粒子70之后,纤维素粒子70受热不均一,光束会将纤维素粒子70聚焦起来,相当于光束将纤维素粒子70捕获在空间中,这就叫光泳力,超透镜1000控制光束的焦距移动的时候,纤维素粒子70就会相应移动,在纤维素粒子70移动的时候,通过激光控制系统2000将一束激光照射进来,激光和经超透镜1000聚焦的光束同样偏转了相同的位置,通过激光控制系统2000编辑好所要显示的图案,对应图案的像素一一通过激光控制系统2000照射到纤维素粒子70上,相当于激光控制系统2000编辑好的图案信息会对应每一个位置上的光束照射到纤维素粒子70上,然后纤维素粒子70会进行散射,纤维素粒子70散射在整个三维空间,纤维素粒子70的运动速度达到一定程度,基于人眼90的视觉残留(Persistenceof vision,POV),即可形成三维空间全色彩体成像,人眼90可以通过各个视角观察到编辑好的彩色图案80。According to some embodiments of the present invention, referring to FIGS. 18 and 19 , in addition to thesuperlens 1000 , the display device may further include alaser control system 2000 . Thelaser control system 2000 is combined with thesuperlens 1000 to perform real-time position information and laser information. synchronization. Figure 18 is a schematic diagram of cellulose particle capture and dynamic pattern display. In this display device, thesuperlens 1000 can focus theincident beam 60 passing through it, and the focus of the beam can move in three-dimensional space, and the beam is focused and irradiated to the cellulose particles. After 70, thecellulose particles 70 are heated unevenly, and the light beam will focus thecellulose particles 70, which is equivalent to capturing thecellulose particles 70 in space by the light beam. This is called photophoresis. When thesuperlens 1000 controls the focal length of the beam to move , thecellulose particles 70 will move accordingly. When thecellulose particles 70 move, a laser beam is irradiated by thelaser control system 2000, and the laser beam and the beam focused by thesuperlens 1000 are also deflected to the same position. Thesystem 2000 edits the pattern to be displayed, and the pixels corresponding to the pattern are irradiated to thecellulose particles 70 through thelaser control system 2000 one by one, which is equivalent to the pattern information edited by thelaser control system 2000. The light beam at each position is irradiated to the fiber. Then, thecellulose particles 70 will be scattered, thecellulose particles 70 will be scattered in the whole three-dimensional space, and the movement speed of thecellulose particles 70 will reach a certain level. Based on the persistence of vision (POV) of thehuman eye 90, that is A full color volume imaging in three-dimensional space can be formed, and the editedcolor pattern 80 can be observed by thehuman eye 90 through various viewing angles.

图19中示出了波束偏转示意图,本发明中以下面的公式(1)为光束调控的计算公式:Figure 19 shows a schematic diagram of beam deflection. In the present invention, the following formula (1) is used as the calculation formula for beam regulation:

Figure BDA0003614702360000111
Figure BDA0003614702360000111

其中,

Figure BDA0003614702360000112
x和y对应图19中超透镜的表面所在平面的坐标,而x’和y’对应的是图19中动态可调的焦点所在的平面的坐标,代表焦点相对于该平面上(0,0)点在x方向上的偏移量和在y方向上的偏移量,λi代表光线的波长,
Figure BDA0003614702360000113
为相位,当入射光束的波长一定时,通过焦点的坐标可以得出r’的值,焦距f为设定值,超透镜所在平面上焦点的坐标也可设定,r也可相应得出,进而可以得知相位
Figure BDA0003614702360000114
的值,通过调节超透镜各电极层的电压,即可使得光束聚焦在设定位置,同时,令像素单元的相位符合上述公式,以使激光控制系统发出的激光的焦点与超透镜的光束的焦点相同并呈现动态变化,则相应的可以使得编辑好的图像在三维空间显示出来。图19中则显示出了在动态可调的焦点所在的平面的焦点在y’方向上的偏移量分别为3微米、0微米、-3微米的聚焦效果图(图19最右侧示出了色卡),可以看出通过焦点位置可以使得图像相应变化。in,
Figure BDA0003614702360000112
x and y correspond to the coordinates of the plane where the surface of the metalens is located in Fig. 19, and x' and y' correspond to the coordinates of the plane where the dynamically adjustable focal point in Fig. 19 is located, representing the focal point relative to the plane (0,0) The offset of the point in the x direction and the offset in the y direction, λi represents the wavelength of the light,
Figure BDA0003614702360000113
is the phase, when the wavelength of the incident beam is constant, the value of r' can be obtained from the coordinates of the focal point, the focal length f is the set value, the coordinates of the focal point on the plane where the superlens is located can also be set, and r can also be obtained accordingly, to know the phase
Figure BDA0003614702360000114
By adjusting the voltage of each electrode layer of the superlens, the beam can be focused at the set position, and at the same time, the phase of the pixel unit is made to conform to the above formula, so that the focus of the laser emitted by the laser control system and the beam of the superlens are in line with each other. If the focus is the same and presents dynamic changes, the edited image can be displayed in three-dimensional space accordingly. Fig. 19 shows the focusing effect diagrams with the offsets of the focal point in the y' direction of the plane where the dynamically adjustable focal point is located by 3 microns, 0 microns, and -3 microns respectively (shown on the far right side of Fig. 19 ) Color card), it can be seen that the image can be changed accordingly through the focus position.

图20中则示出了焦距随波前移动的示意图,图20中,t为液晶盒的厚度(液晶盒厚),Δn为液晶和介质柱整体的折射率的变化量,波前对应L所在位置时焦距为f,而调整折射率之后,波前对应L’所在位置,此时的焦距为(f+Δf),也就是说,波前位置移动,则焦距就会相应移动。Figure 20 shows a schematic diagram of the focal length moving with the wavefront. In Figure 20, t is the thickness of the liquid crystal cell (the thickness of the liquid crystal cell), Δn is the change in the refractive index of the liquid crystal and the dielectric column as a whole, and the wavefront corresponds to where L is located. The focal length is f in position, and after adjusting the refractive index, the wavefront corresponds to the position of L', and the focal length at this time is (f+Δf), that is to say, the focal length will move accordingly if the position of the wavefront moves.

总的来说,本发明中,光束照射到纤维素粒子之后,光泳力占主导地位(且可能比散射力或梯度力大几个数量级),辐射效应引起纤维素粒子受热不均和热蠕变导致光泳力的产生,源自流体和气体介质中纤维素粒子的不均匀受热的光泳力通常是排斥性的,并且,光泳力试图将纤维素粒子推离最大光强度的区域,光束聚焦可以将纤维素粒子捕获,此时,激光照射到纤维素粒子上,通过超透镜可以调控纤维素粒子在三维空间内移动,随着纤维素粒子的移动,激光控制系统发出的激光会随着纤维素粒子移动,不断将对应的像素信号照射到纤维素粒子上,基于人眼的视觉残留,即可形成空间全色彩体成像。当然需要说明的是,也应设置超透镜中相应的液晶电压控制程序以便和激光控制系统进行匹配,从而实现任何图案在三维空间的显示,并且实现真三维显示设备的小型化。In general, in the present invention, after the light beam irradiates the cellulose particles, the photophoretic force dominates (and may be several orders of magnitude larger than the scattering force or gradient force), and the radiation effect causes the cellulose particles to be heated unevenly and thermally creep. This leads to the generation of photophoretic forces. Photophoretic forces originating from uneven heating of cellulose particles in fluid and gaseous media are usually repulsive and, as photophoretic forces try to push cellulose particles away from the region of maximum light intensity, beam focusing can The cellulose particles are captured. At this time, the laser is irradiated on the cellulose particles, and the movement of the cellulose particles in three-dimensional space can be regulated by the superlens. As the cellulose particles move, the laser emitted by the laser control system will follow the cellulose particles. Moving, and continuously irradiating the corresponding pixel signal to the cellulose particles, based on the visual residue of the human eye, a spatial full-color volume imaging can be formed. Of course, it should be noted that the corresponding liquid crystal voltage control program in the metalens should also be set to match the laser control system, so as to realize the display of any pattern in the three-dimensional space and realize the miniaturization of the true three-dimensional display device.

文中术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。The terms "first" and "second" herein are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.

在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”、“一些实施例”、“一些具体实施例”或“另一些具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, references to the terms "one embodiment," "another embodiment," "some embodiments," "some specific embodiments," or "other specific embodiments" and the like are meant to be combined with the description A particular feature, structure, material, or characteristic described by an example or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.

Claims (13)

Translated fromChinese
1.一种超透镜,其特征在于,包括:1. a superlens, is characterized in that, comprises:第一基板;a first substrate;第一电极层,所述第一电极层设置在所述第一基板的一侧;a first electrode layer, the first electrode layer is disposed on one side of the first substrate;多个介质柱,多个所述介质柱间隔设置在所述第一电极层远离所述第一基板的一侧,在沿所述第一基板的中心向所述第一基板的边缘的延伸方向上,所述介质柱的宽度逐渐减小;a plurality of dielectric pillars, the dielectric pillars are arranged at intervals on the side of the first electrode layer away from the first substrate, along the extension direction of the center of the first substrate to the edge of the first substrate , the width of the medium column gradually decreases;第二电极层,所述第二电极层设置在所述介质柱远离所述第一基板的一侧;a second electrode layer, the second electrode layer is disposed on the side of the dielectric column away from the first substrate;第一液晶,所述第一液晶位于所述第一电极层远离所述第一基板的一侧,且填充在多个所述介质柱之间的间隙中;a first liquid crystal, the first liquid crystal is located on a side of the first electrode layer away from the first substrate, and is filled in the gaps between the plurality of dielectric columns;第二基板,所述第二基板设置在所述第二电极层远离所述第一基板的一侧。A second substrate, the second substrate is disposed on the side of the second electrode layer away from the first substrate.2.根据权利要求1所述的超透镜,其特征在于,进一步包括:2. The metalens of claim 1, further comprising:第一配向膜,所述第一配向膜设置在所述第一液晶和所述第二电极层之间。a first alignment film, the first alignment film is disposed between the first liquid crystal and the second electrode layer.3.根据权利要求1所述的超透镜,其特征在于,进一步包括:3. The metalens of claim 1, further comprising:第三电极层,所述第三电极层设置在所述第二电极层和所述第一液晶之间;a third electrode layer, the third electrode layer is disposed between the second electrode layer and the first liquid crystal;第二液晶,所述第二液晶位于所述第二电极层和所述第三电极层之间。A second liquid crystal, the second liquid crystal is located between the second electrode layer and the third electrode layer.4.根据权利要求3所述的超透镜,其特征在于,进一步包括:4. The metalens of claim 3, further comprising:第二配向膜,所述第二配向膜设置在所述第二液晶和所述第二电极层之间。A second alignment film, the second alignment film is disposed between the second liquid crystal and the second electrode layer.5.根据权利要求3所述的超透镜,其特征在于,进一步包括多个间隔设置的隔离柱,所述隔离柱设置所述第二电极层和所述第三电极层之间。5 . The metalens according to claim 3 , further comprising a plurality of spaced apart columns, wherein the separation columns are arranged between the second electrode layer and the third electrode layer. 6 .6.根据权利要求1~5任一项所述的超透镜,其特征在于,所述介质柱满足以下条件的至少之一:6. The metalens according to any one of claims 1 to 5, wherein the dielectric column satisfies at least one of the following conditions:所述介质柱的宽度为50nm~200nm;The width of the dielectric column is 50nm-200nm;所述介质柱的高度为450nm~800nm;The height of the medium column is 450nm~800nm;所述介质柱的材质包括氮化硅、氧化钛和氮化镓中的至少之一。The material of the dielectric column includes at least one of silicon nitride, titanium oxide and gallium nitride.7.一种制作超透镜的方法,其特征在于,包括:7. A method of making a superlens, comprising:提供第一基板,并在所述第一基板的一侧形成第一电极层;providing a first substrate, and forming a first electrode layer on one side of the first substrate;在第一电极层远离所述第一基板的一侧形成多个间隔设置的介质柱,在沿所述第一基板的中心向所述第一基板的边缘的延伸方向上,所述介质柱的宽度逐渐减小;A plurality of spaced dielectric pillars are formed on the side of the first electrode layer away from the first substrate. In the extending direction from the center of the first substrate to the edge of the first substrate, the dielectric pillars width gradually decreases;提供第二基板,并在所述第二基板的一侧形成第二电极层;providing a second substrate, and forming a second electrode layer on one side of the second substrate;将所述第一基板和所述第二基板对盒,使所述第一电极层位于所述第一基板和所述第二电极层之间,且所述第二电极层位于所述第二基板靠近所述第一基板的一侧;The first substrate and the second substrate are assembled into boxes, so that the first electrode layer is located between the first substrate and the second electrode layer, and the second electrode layer is located in the second electrode layer. a side of the substrate close to the first substrate;在所述第一电极层和所述第二电极层之间注入第一液晶,并使所述第一液晶填充在多个所述介质柱之间的间隙中。A first liquid crystal is injected between the first electrode layer and the second electrode layer, and the first liquid crystal is filled in the gaps between the plurality of dielectric columns.8.根据权利要求7所述的方法,其特征在于,在将所述第一基板和所述第二基板对盒之前,进一步包括:在所述第二电极层远离所述第二基板的一侧形成第一配向膜。8 . The method according to claim 7 , wherein before assembling the first substrate and the second substrate into a box, the method further comprises: at a part of the second electrode layer far away from the second substrate. 9 . A first alignment film is formed on the side.9.根据权利要求7所述的方法,其特征在于,进一步包括:9. The method of claim 7, further comprising:提供第三基板,并在所述第三基板的一侧形成第三电极层;providing a third substrate, and forming a third electrode layer on one side of the third substrate;将设置有所述第三电极层的所述第三基板与设置有所述介质柱的所述第一基板进行对盒;assembling the third substrate provided with the third electrode layer and the first substrate provided with the dielectric column;对所述第三基板进行刻蚀以除去所述第三基板;etching the third substrate to remove the third substrate;将设置有所述第二电极层的所述第二基板与设置有所述第三电极层的所述第一基板进行对盒;assembling the second substrate provided with the second electrode layer and the first substrate provided with the third electrode layer;在所述第二电极层和所述第三电极层之间注入第二液晶。A second liquid crystal is injected between the second electrode layer and the third electrode layer.10.根据权利要求9所述的方法,其特征在于,在将所述第一基板和所述第三基板对盒之前,进一步包括:在所述第三电极层远离所述第三基板的一侧形成第二配向膜。10 . The method according to claim 9 , wherein before assembling the first substrate and the third substrate into a box, the method further comprises: at a part of the third electrode layer far away from the third substrate. 11 . A second alignment film is formed on the side.11.根据权利要求9或10所述的方法,其特征在于,在将设置有所述第二电极层的所述第二基板与设置有所述第三电极层的所述第一基板进行对盒之前,进一步包括:在所述第二电极层远离所述第二基板的一侧形成多个间隔设置的隔离柱。11. The method according to claim 9 or 10, wherein the second substrate provided with the second electrode layer and the first substrate provided with the third electrode layer are aligned Before the box, the method further includes: forming a plurality of spaced isolation columns on a side of the second electrode layer away from the second substrate.12.一种显示装置,其特征在于,包括权利要求1~6任一项所述的超透镜或利用权利要求7~11任一项所述的方法制作的超透镜。12 . A display device, characterized by comprising the metalens according to any one of claims 1 to 6 or the metalens produced by the method according to any one of claims 7 to 11 . 13 .13.根据权利要求12所述的显示装置,其特征在于,进一步包括激光控制系统,所述激光控制系统与所述超透镜结合,进行实时位置信息和激光信息的同步。13 . The display device according to claim 12 , further comprising a laser control system, the laser control system is combined with the metalens to synchronize real-time position information and laser information. 14 .
CN202210442747.7A2022-04-252022-04-25Superlens, manufacturing method thereof and display devicePendingCN114859607A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
CN202210442747.7ACN114859607A (en)2022-04-252022-04-25Superlens, manufacturing method thereof and display device
PCT/CN2023/090414WO2023207926A1 (en)2022-04-252023-04-24Superlens and manufacturing method therefor, and display apparatus

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210442747.7ACN114859607A (en)2022-04-252022-04-25Superlens, manufacturing method thereof and display device

Publications (1)

Publication NumberPublication Date
CN114859607Atrue CN114859607A (en)2022-08-05

Family

ID=82633489

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210442747.7APendingCN114859607A (en)2022-04-252022-04-25Superlens, manufacturing method thereof and display device

Country Status (2)

CountryLink
CN (1)CN114859607A (en)
WO (1)WO2023207926A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN115332938A (en)*2022-08-222022-11-11北京京东方技术开发有限公司 Laser transmitter and laser detection device
WO2023207926A1 (en)*2022-04-252023-11-02京东方科技集团股份有限公司Superlens and manufacturing method therefor, and display apparatus

Citations (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102243402A (en)*2011-07-132011-11-16深圳超多维光电子有限公司Liquid crystal lens grating and stereo display device thereof
CN203433171U (en)*2013-08-212014-02-12信利光电股份有限公司Zoom lens and camera module
CN103913879A (en)*2014-04-142014-07-09重庆卓美华视光电有限公司Liquid crystal lens, method for forming same and stereoscopic display device
CN104020625A (en)*2014-06-252014-09-03重庆卓美华视光电有限公司3D (Three Dimensional) optical splitter and three-dimensional display device
CN206002779U (en)*2016-09-142017-03-08合肥鑫晟光电科技有限公司Naked eye three-dimensional display device
CN106970483A (en)*2016-01-132017-07-21三星电子株式会社Tunable electro-optic wave filter
US20170277012A1 (en)*2016-03-252017-09-28Samsung Display Co., Ltd.Liquid crystal lens and display device including the same
CN107422570A (en)*2017-08-162017-12-01集美大学double-layer liquid crystal lens device and preparation method thereof
CN108873505A (en)*2018-07-272018-11-23京东方科技集团股份有限公司Liquid crystal lens, mould group, augmented reality equipment, glasses, display methods
CN110192145A (en)*2016-11-182019-08-30奇跃公司Liquid crystal diffraction device having nano-scale pattern and method of fabricating the same
CN111103739A (en)*2019-12-312020-05-05中国工程物理研究院流体物理研究所Electric control zoom plane lens
CN111290164A (en)*2020-03-312020-06-16京东方科技集团股份有限公司Transparent display panel, display device and glasses
CN111722423A (en)*2020-06-222020-09-29中国科学院上海光学精密机械研究所 Continuously Variable Focus Metalens Combining Liquid Crystals and Metasurfaces
CN111880347A (en)*2020-08-272020-11-03南京南辉智能光学感控研究院有限公司Terahertz lens with adjustable focal length and preparation method and application thereof
CN112099285A (en)*2020-11-032020-12-18南昌虚拟现实研究院股份有限公司Liquid crystal lens device and virtual reality zooming method
CN113467117A (en)*2021-07-062021-10-01南京大学Temperature-controlled vector vortex light beam detector, preparation method thereof and detection device
CN113504678A (en)*2021-07-222021-10-15北京京东方技术开发有限公司Lens, depth of field sensor, depth of field measuring system and manufacturing method of lens
CN113589535A (en)*2021-08-162021-11-02北京京东方技术开发有限公司Optical imaging system and head-mounted display device
CN113687515A (en)*2021-09-012021-11-23北京京东方技术开发有限公司Near-to-eye display device, preparation method and wearable equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN203858434U (en)*2014-04-142014-10-01重庆卓美华视光电有限公司Liquid crystal lens and three-dimensional display device
CN208384249U (en)*2018-07-272019-01-15京东方科技集团股份有限公司A kind of AR glasses
CN111399262B (en)*2020-04-272023-10-31南京南辉智能光学感控研究院有限公司Adjustable terahertz lens and preparation method and application thereof
CN212647221U (en)*2020-08-272021-03-02南京南辉智能光学感控研究院有限公司Terahertz lens with adjustable focal length
CN114859607A (en)*2022-04-252022-08-05北京京东方技术开发有限公司Superlens, manufacturing method thereof and display device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102243402A (en)*2011-07-132011-11-16深圳超多维光电子有限公司Liquid crystal lens grating and stereo display device thereof
CN203433171U (en)*2013-08-212014-02-12信利光电股份有限公司Zoom lens and camera module
CN103913879A (en)*2014-04-142014-07-09重庆卓美华视光电有限公司Liquid crystal lens, method for forming same and stereoscopic display device
CN104020625A (en)*2014-06-252014-09-03重庆卓美华视光电有限公司3D (Three Dimensional) optical splitter and three-dimensional display device
CN106970483A (en)*2016-01-132017-07-21三星电子株式会社Tunable electro-optic wave filter
US20170277012A1 (en)*2016-03-252017-09-28Samsung Display Co., Ltd.Liquid crystal lens and display device including the same
CN206002779U (en)*2016-09-142017-03-08合肥鑫晟光电科技有限公司Naked eye three-dimensional display device
CN110192145A (en)*2016-11-182019-08-30奇跃公司Liquid crystal diffraction device having nano-scale pattern and method of fabricating the same
CN107422570A (en)*2017-08-162017-12-01集美大学double-layer liquid crystal lens device and preparation method thereof
CN108873505A (en)*2018-07-272018-11-23京东方科技集团股份有限公司Liquid crystal lens, mould group, augmented reality equipment, glasses, display methods
CN111103739A (en)*2019-12-312020-05-05中国工程物理研究院流体物理研究所Electric control zoom plane lens
CN111290164A (en)*2020-03-312020-06-16京东方科技集团股份有限公司Transparent display panel, display device and glasses
CN111722423A (en)*2020-06-222020-09-29中国科学院上海光学精密机械研究所 Continuously Variable Focus Metalens Combining Liquid Crystals and Metasurfaces
CN111880347A (en)*2020-08-272020-11-03南京南辉智能光学感控研究院有限公司Terahertz lens with adjustable focal length and preparation method and application thereof
CN112099285A (en)*2020-11-032020-12-18南昌虚拟现实研究院股份有限公司Liquid crystal lens device and virtual reality zooming method
CN113467117A (en)*2021-07-062021-10-01南京大学Temperature-controlled vector vortex light beam detector, preparation method thereof and detection device
CN113504678A (en)*2021-07-222021-10-15北京京东方技术开发有限公司Lens, depth of field sensor, depth of field measuring system and manufacturing method of lens
CN113589535A (en)*2021-08-162021-11-02北京京东方技术开发有限公司Optical imaging system and head-mounted display device
CN113687515A (en)*2021-09-012021-11-23北京京东方技术开发有限公司Near-to-eye display device, preparation method and wearable equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. E. SMALLEY,ETALS: "A photophoretic-trap volumetric display", vol. 553, pages 486 - 490*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2023207926A1 (en)*2022-04-252023-11-02京东方科技集团股份有限公司Superlens and manufacturing method therefor, and display apparatus
CN115332938A (en)*2022-08-222022-11-11北京京东方技术开发有限公司 Laser transmitter and laser detection device

Also Published As

Publication numberPublication date
WO2023207926A1 (en)2023-11-02

Similar Documents

PublicationPublication DateTitle
US11086065B2 (en)Diffractive grating with variable diffraction efficiency and method for displaying an image
WO2023207926A1 (en)Superlens and manufacturing method therefor, and display apparatus
CN103631056B (en)Variable optical retarder
JP2023041678A (en)Improved manufacturing for virtual and augmented reality system and component
US11822190B2 (en)Spatial light modulator and method of forming the same
Lei et al.An electrically tunable plenoptic camera using a liquid crystal microlens array
US20190086699A1 (en)Display device and display method thereof
CN103217849B (en)A kind of focus adjustable liquid crystal microlens array
CN103076706B (en)Focal length adjustable liquid crystal micro-lens array
JP2004101885A (en)Liquid crystal lens and its driving method, and device
Peng et al.Metalens in improving imaging quality: advancements, challenges, and prospects for future display
CN109031811A (en)A kind of focal length and the variable liquid crystal optical device of phase-delay quantity
CN113687515A (en)Near-to-eye display device, preparation method and wearable equipment
TWI483004B (en) Electro-modulating liquid crystal lens group with central electrode
CN104076518A (en)Novel pixel structure for three-dimensional light field dynamic displaying
Yu et al.Large aperture liquid crystal lens array based on integrated composite electrodes for 2D/3D switchable displays
Zhang et al.Stacked high-resistance layer induced dual-focal liquid crystal microlens array for enhanced depth-of-field integral imaging 3D display
JP5205077B2 (en) Liquid crystal optical element
CN110737145A (en)Variable focus lens and display device
KR20140112271A (en)Spatial light modulator, apparatus for holography 3-dimensional display and method for modulating spatial light
CN108051936B (en)Display panel and driving method thereof, display device and driving method thereof
CN115685638A (en) Composite liquid crystal lens, preparation method, display device and display method
US20240027823A1 (en)Multi-focusing meta lens
US10156769B2 (en)Two-dimensional beam steering device
CN117872640A (en) A reflective spatial light modulator based on a metasurface and a manufacturing method thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp