Movatterモバイル変換


[0]ホーム

URL:


CN114815010B - Lens array for 3D suspension imaging and device thereof - Google Patents

Lens array for 3D suspension imaging and device thereof
Download PDF

Info

Publication number
CN114815010B
CN114815010BCN202210525285.5ACN202210525285ACN114815010BCN 114815010 BCN114815010 BCN 114815010BCN 202210525285 ACN202210525285 ACN 202210525285ACN 114815010 BCN114815010 BCN 114815010B
Authority
CN
China
Prior art keywords
lens array
lens
image source
front surface
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210525285.5A
Other languages
Chinese (zh)
Other versions
CN114815010A (en
Inventor
周延桂
申秋原
黎永耀
和河向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan UniversityfiledCriticalFoshan University
Priority to CN202210525285.5ApriorityCriticalpatent/CN114815010B/en
Publication of CN114815010ApublicationCriticalpatent/CN114815010A/en
Application grantedgrantedCritical
Publication of CN114815010BpublicationCriticalpatent/CN114815010B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a lens array for 3D suspension imaging and a device thereof, wherein the lens array comprises: a sphere fixing plate and a lens array subunit; the sphere fixed plate is provided with a clamping groove, and the lens array subunit is fixedly arranged on the sphere fixed plate through the clamping groove. The device comprises: an image source, a half-mirror and a lens array; the image source is used for generating image light energy; the semi-reflection semi-transparent mirror is used for changing the energy distribution of the image light; the lens array is used for returning the light energy reflected by the half-reflecting and half-transmitting mirror in the original direction; the image source is arranged on the horizontal plane, the half-reflecting semi-transparent mirror is arranged above the image source and is obliquely arranged at an angle of 45 degrees with the horizontal plane, and the lens array is arranged behind the image source and the half-reflecting semi-transparent lens. By using the invention, the resolution and stability of suspension imaging can be improved and the angle of view can be enlarged. The lens array and the device thereof for 3D suspension imaging can be widely applied to the field of suspension imaging.

Description

Translated fromChinese
一种用于3D悬浮成像的透镜阵列及其装置A lens array and device for 3D suspension imaging

技术领域Technical field

本发明涉及悬浮成像领域,尤其涉及一种用于3D悬浮成像的透镜阵列及其装置。The present invention relates to the field of suspension imaging, and in particular to a lens array and device for 3D suspension imaging.

背景技术Background technique

悬浮成像或无介质空中成像(显示)系统能提供亦真亦幻的视觉体验,具有广泛的应用前景。无接触显示的应用需求日益增加,如公共场所的电梯按钮、售票机、柜员机等场合,悬浮成像显示以及无接触空中操控的方式能更有利于保障公众健康,防止病毒传播。而悬浮成像系统则能很好契合这种应用场景。Suspension imaging or medium-free aerial imaging (display) systems can provide a visual experience that is both real and illusory, and have broad application prospects. The application demand for contactless displays is increasing day by day, such as in elevator buttons, ticket vending machines, teller machines in public places, etc. Suspended imaging displays and contactless aerial control methods can be more conducive to protecting public health and preventing the spread of viruses. The suspension imaging system can fit this application scenario very well.

目前有多种技术方案实现无介质空中悬浮成像。常用的方法是使用雾或水滴作为虚拟屏幕显示悬浮在空中的图像,然而,虚拟屏幕很容易受到气流的影响,浮动图像的质量会恶化。另一种方案是使用大型凸透镜或菲涅耳透镜在空气中漂浮2D/3D图像。然而,浮动图像存在失真、颜色偏差和视角受限等问题。一种方案是使用由多个反射器组成的二面角反射器阵列(DCRA)实现浮动显示,然而,它的视角有限,在浮动图像周围观察到明显的残像。还有一种方案利用商用回复反射器(反光膜/逆光膜)实现无介质空中成像,然而目前市面上销售的回复反射器是针对道路安全设计,其技术指标要求逆反光线具有一定的发散角,因此这导致了使用这些反光膜搭建的悬浮成像系统成像质量模糊,分辨率不高。There are currently a variety of technical solutions to achieve medium-free aerial suspension imaging. A common method is to use fog or water droplets as a virtual screen to display images suspended in the air. However, the virtual screen is easily affected by airflow, and the quality of the floating image will deteriorate. Another option is to use large convex or Fresnel lenses to float 2D/3D images in the air. However, floating images suffer from distortion, color deviation, and limited viewing angles. One solution is to use a dihedral reflector array (DCRA) consisting of multiple reflectors to achieve a floating display. However, its viewing angle is limited and obvious afterimages are observed around the floating image. There is also a solution to use commercial retro-reflectors (reflective films/retro-reflective films) to achieve medium-free aerial imaging. However, the retro-reflectors currently on the market are designed for road safety, and their technical specifications require that the retro-reflective light has a certain divergence angle, so This results in the blurred image quality and low resolution of the suspended imaging system built using these reflective films.

发明内容Contents of the invention

为了解决上述技术问题,本发明的目的是提供一种用于3D悬浮成像的透镜阵列及其装置,能够提高悬浮成像的分辨率和稳定性且扩大视场角。In order to solve the above technical problems, the purpose of the present invention is to provide a lens array and device for 3D suspension imaging, which can improve the resolution and stability of suspension imaging and expand the field of view.

本发明所采用的第一技术方案是:一种用于3D悬浮成像的透镜阵列,包括:球面固定板和透镜阵列次单元;所述球面固定板设有卡槽,所述透镜阵列次单元通过所述卡槽固定安装于所述球面固定板上。The first technical solution adopted by the present invention is: a lens array for 3D suspended imaging, including: a spherical fixed plate and a lens array sub-unit; the spherical fixed plate is provided with a slot, and the lens array sub-unit passes through The card slot is fixedly installed on the spherical fixing plate.

进一步,所述透镜阵列次单元包括透镜单元,所述透镜单元包括前表面、后表面和折射墙,所述前表面为透射面,所述后表面为反射面,所述折射墙设于所述前表面和所述后表面之间。Further, the lens array sub-unit includes a lens unit, the lens unit includes a front surface, a rear surface and a refraction wall, the front surface is a transmission surface, the rear surface is a reflection surface, the refraction wall is provided on the between the front surface and the back surface.

进一步,所述前表面和后表面均为球面,所述前表面与后表面共球心。Further, the front surface and the back surface are both spherical surfaces, and the front surface and the back surface share the same spherical center.

进一步,所述前表面的孔径小于后表面的孔径。Further, the pore diameter of the front surface is smaller than the pore diameter of the rear surface.

进一步,所述透镜单元的面型精度范围为1~10μm,表面精度范围为1~50nm。Furthermore, the surface accuracy range of the lens unit is 1-10 μm, and the surface accuracy range is 1-50 nm.

进一步,所述透镜单元的参数关系式如下:Further, the parameter relationship of the lens unit is as follows:

上式中,D1为前表面孔径,R1为前表面半径,R2为后表面半径,n为折射墙的折射率,k为1至8之间的任意值。In the above formula, D1 is the front surface aperture, R1 is the front surface radius, R2 is the rear surface radius, n is the refractive index of the refractive wall, and k is any value between 1 and 8.

本发明所采用的第二技术方案是:一种用于3D悬浮成像的装置,包括:The second technical solution adopted by the present invention is: a device for 3D suspension imaging, including:

图像源、半反半透镜和如上述透镜阵列;Image source, half-reflective half-mirror and lens array as mentioned above;

所述图像源用于产生图像光线能量;The image source is used to generate image light energy;

所述半反半透镜用于改变图像光线能量分布;The half-reflective half-mirror is used to change the image light energy distribution;

所述透镜阵列用于将半反半透镜反射过来的光线能量按原方向返回;The lens array is used to return the light energy reflected by the half mirror in the original direction;

所述图像源设置于水平面,所述半反半透镜设置于图像源的上方,与水平面呈45°倾斜设置,所述透镜阵列设置于所述图像源和所述半反半透镜的后方。The image source is disposed on a horizontal plane, the half-reflective half-lens is disposed above the image source and tilted at 45° to the horizontal plane, and the lens array is disposed behind the image source and the half-reflective half-lens.

进一步,所述透镜阵列的球心设置于观看位置。Further, the spherical center of the lens array is set at the viewing position.

本发明方法及系统的有益效果是:本发明首先通过设计一种用于3D悬浮成像的透镜阵列,该透镜单元的前表面为透射面,该后表面为反射面,实现入射光的原路折返;然后利用卡槽结构,将透镜阵列次单元拼接固定于球面固定板上,降低了加工难度和成本,提高了悬浮成像的稳定性;最后将透镜阵列应用于3D悬浮成像中,并将透镜阵列的球心设置于观看位置,扩大视场角且提高分辨率。The beneficial effects of the method and system of the present invention are: the present invention firstly designs a lens array for 3D suspension imaging. The front surface of the lens unit is a transmission surface and the rear surface is a reflection surface, so that the incident light can be retracted along its original path. ;Then using the slot structure, the lens array sub-units are spliced and fixed on the spherical fixed plate, which reduces the processing difficulty and cost and improves the stability of suspension imaging; finally, the lens array is used in 3D suspension imaging, and the lens array is The center of the sphere is set at the viewing position to expand the field of view and improve resolution.

附图说明Description of drawings

图1是本发明一种用于3D悬浮成像的透镜阵列的结构示意图;Figure 1 is a schematic structural diagram of a lens array used for 3D suspension imaging according to the present invention;

图2是本发明一种用于3D悬浮成像的装置的结构示意图;Figure 2 is a schematic structural diagram of a device for 3D suspension imaging according to the present invention;

图3是本发明具体实施例透镜阵列次单元的结构示意图;Figure 3 is a schematic structural diagram of a lens array subunit according to a specific embodiment of the present invention;

图4是本发明具体实施例透镜单元的结构示意图;Figure 4 is a schematic structural diagram of a lens unit according to a specific embodiment of the present invention;

图5是本发明具体实施例3D悬浮成像装置的结构示意图;Figure 5 is a schematic structural diagram of a 3D suspension imaging device according to a specific embodiment of the present invention;

图6是本发明具体实施例3D悬浮成像装置的平面结构示意图;Figure 6 is a schematic plan view of a 3D suspension imaging device according to a specific embodiment of the present invention;

图7是本发明具体实施例透镜单元参数设置示意图;Figure 7 is a schematic diagram of lens unit parameter settings according to a specific embodiment of the present invention;

图8是本发明具体实施例的透镜阵列与平面型透镜阵列的效果对比图。FIG. 8 is a comparative view of the effects of the lens array and the planar lens array according to the specific embodiment of the present invention.

附图标记如下:The reference numbers are as follows:

10、图像源;10. Image source;

20、半反半透镜;20. Semi-reflective and semi-lens;

30、透镜阵列;31、球面固定板;311、卡槽;32、透镜阵列次单元;33、透镜单元;331、前表面;332、后表面;333、折射墙;30. Lens array; 31. Spherical fixed plate; 311. Card slot; 32. Lens array sub-unit; 33. Lens unit; 331. Front surface; 332. Back surface; 333. Refraction wall;

40、子图像;40. Sub-image;

50、平面型透镜阵列。50. Planar lens array.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The step numbers in the following embodiments are only set for the convenience of explanation. The order between the steps is not limited in any way. The execution order of each step in the embodiments can be adapted according to the understanding of those skilled in the art. sexual adjustment.

参照图1、图3和图4,本发明提供了一种用于3D悬浮成像的透镜阵列,包括:球面固定板31和透镜阵列次单元32;球面固定板31设有卡槽311,透镜阵列次单元32通过卡槽311固定安装于球面固定板31上;透镜阵列次单元32包括透镜单元33,透镜单元33包括前表面331、后表面332和折射墙333,前表面331为透射面,后表面332为反射面,折射墙333设于前表面331和后表面332之间,折射墙333用于改变进入前表面331的光源的方向。Referring to Figures 1, 3 and 4, the present invention provides a lens array for 3D suspension imaging, including: a spherical fixed plate 31 and a lens array sub-unit 32; the spherical fixed plate 31 is provided with a slot 311, and the lens array The sub-unit 32 is fixedly installed on the spherical fixing plate 31 through the slot 311; the lens array sub-unit 32 includes a lens unit 33. The lens unit 33 includes a front surface 331, a rear surface 332 and a refractive wall 333. The front surface 331 is a transmission surface, and the rear surface 331 is a transmissive surface. The surface 332 is a reflective surface, and the refraction wall 333 is provided between the front surface 331 and the rear surface 332 . The refraction wall 333 is used to change the direction of the light source entering the front surface 331 .

其中,折射墙333可以采用PMMA、亚克力、玻璃和光学环氧树脂能材料,后表面可以进行镀膜呈反射面。Among them, the refractive wall 333 can be made of PMMA, acrylic, glass and optical epoxy resin materials, and the rear surface can be coated to form a reflective surface.

在进行应用时,如图4所示,入射光线从S1处进入,由于前表面331为透射面,所以入射光线的方向不会改变且将入射光线尽可能地打到透镜单元33的后表面332上,然后通过折射墙333改变了入射光线的方向,由于后表面332为反射面,可以将由前表面331折射来的光线实现关于入射光线对称地反射回前表面331处,最后光源从S2处射出。When applying, as shown in Figure 4, the incident light enters from S1. Since the front surface 331 is a transmission surface, the direction of the incident light will not change and the incident light will hit the rear surface 332 of the lens unit 33 as much as possible. on, and then changes the direction of the incident light through the refraction wall 333. Since the rear surface 332 is a reflective surface, the light refracted by the front surface 331 can be reflected back to the front surface 331 symmetrically with respect to the incident light, and finally the light source is emitted from S2 .

为了降低像差,如图4所示,将前表面331设置为球面,且该前表面331孔径大小的一半位置作为聚焦标准,即入射高度为孔径大小一半的一条平行光线经过该前表面331后将准确地聚焦在透镜阵列30单元后表面332的正中心。In order to reduce aberration, as shown in Figure 4, the front surface 331 is set as a spherical surface, and half the aperture size of the front surface 331 is used as the focus standard, that is, a parallel light with an incident height of half the aperture size passes through the front surface 331 The focus will be accurately centered on the rear surface 332 of the lens array 30 unit.

需要指出的是,前表面331也可以采用非球面或者自由曲面。It should be noted that the front surface 331 can also be an aspheric surface or a free-form surface.

为了实现回复反射功能,如图4所示,将后表面332设置成球面,且该后表面332的球心与前表面331的球面的球心重合。In order to realize the retroreflective function, as shown in FIG. 4 , the rear surface 332 is set as a spherical surface, and the spherical center of the rear surface 332 coincides with the spherical center of the spherical surface of the front surface 331 .

在进行应用时,由前表面331入射的光线聚焦到后表面332上时,由于该聚焦光线关于球面的法方向对称,因此入射光将经过后表面332对称地反射,使得反射光与原入射光的方向平行反向,实现回复反射功能。During application, when the light incident from the front surface 331 is focused on the rear surface 332, since the focused light is symmetrical about the normal direction of the sphere, the incident light will be symmetrically reflected by the rear surface 332, so that the reflected light is the same as the original incident light. The direction is parallel and opposite to realize the retro-reflective function.

需要指出的是,后表面332也可以采用非球面或者自由曲面。It should be noted that the rear surface 332 can also be an aspheric surface or a free-form surface.

参照图2,一种用于3D悬浮成像的装置,包括图像源10、半反半透镜20和上述透镜阵列30;Referring to Figure 2, a device for 3D suspension imaging includes an image source 10, a half mirror 20 and the above-mentioned lens array 30;

图像源10用于产生图像光线能量;The image source 10 is used to generate image light energy;

半反半透镜20用于改变图像光线能量分布;The half-reflective half-mirror 20 is used to change the image light energy distribution;

透镜阵列30用于将半反半透镜20反射过来的光线能量按原方向返回;The lens array 30 is used to return the light energy reflected by the half mirror 20 in the original direction;

图像源10设置于水平面,半反半透镜20设置于图像源10的上方,与水平面呈45°倾斜设置,透镜阵列30设置于图像源10和半反半透镜20的后方。The image source 10 is disposed on a horizontal plane, the half-reflective mirror 20 is disposed above the image source 10 and inclined at 45° to the horizontal plane, and the lens array 30 is disposed behind the image source 10 and the half-reflective mirror 20 .

在进行应用时,如图5和图6所示,将图像源10放置在水平位置,该图像源10可以由液晶显示屏、LED屏、静态图像或者3D实物组成;半反半透镜20置于图像源10上方,与水平面呈45°倾斜放置,该半反半透镜20对可见光波段实现50%光能反射和50%光能透射;透镜阵列30置于图像源10和半反半透镜20后方;图像源10发出的光线能量一半透过半反半透镜20向上传播,另一半光能反射到透镜阵列30上,经过透镜阵列30后按原方向返回,该光线透过半反半透镜20后将在图像源10关于半反半透镜20对称的空中位置形成子图像40的实像,从而实现悬浮显示效果。When applying, as shown in Figures 5 and 6, the image source 10 is placed in a horizontal position. The image source 10 can be composed of a liquid crystal display screen, an LED screen, a static image or a 3D object; the half-reflective half-mirror 20 is placed in a horizontal position. Above the image source 10 and placed at an angle of 45° to the horizontal plane, the half-reflective half-lens 20 achieves 50% light energy reflection and 50% light energy transmission for the visible light band; the lens array 30 is placed behind the image source 10 and the half-reflective half-lens 20 ; Half of the light energy emitted by the image source 10 propagates upward through the half-reflective mirror 20, and the other half of the light energy is reflected to the lens array 30. After passing through the lens array 30, it returns in the original direction. After passing through the half-reflective half-lens 20, the light will The symmetrical aerial position of the image source 10 with respect to the half mirror 20 forms a real image of the sub-image 40, thereby achieving a floating display effect.

进一步,为了扩大视场角和降低像差,如图2所示,该透镜阵列30的球心位置位于观看位置处。Furthermore, in order to enlarge the field of view and reduce aberrations, as shown in FIG. 2 , the spherical center position of the lens array 30 is located at the viewing position.

在进行应用时,从图像源10发出的光线,首先经过半反半透镜20的反射,依次打到透镜阵列30上,该光线经过透镜单元33的对称反射后按原方向返回,再经过半反半透镜20后到达成像位置即子图像40处,实现无介质的3D悬浮成像显示;其中,子图像40与图像源10关于半反半透镜20对称。During application, the light emitted from the image source 10 is first reflected by the semi-reflective mirror 20 and then hits the lens array 30 in sequence. The light returns in the original direction after being symmetrically reflected by the lens unit 33, and then passes through the semi-reflective The half-mirror 20 then reaches the imaging position, that is, the sub-image 40 , realizing a medium-free 3D floating imaging display; wherein the sub-image 40 and the image source 10 are symmetrical about the half-reflective half-mirror 20 .

为了更好地说明本发明提供的球形透镜阵列30的有益效果,参照图8,将本发明提供的球形透镜阵列30与平面型透镜阵列50进行对比,假设一般平面型透镜阵列50位于半反半透镜20右侧,如此,半反半透镜20和平面型透镜阵列50也可以构成常规的悬浮成像装置。假设从图像源10发出的一束光线a,经过半反半透镜20反射,反射光为a′,反射光a′与球形透镜单元33的光轴平行(夹角趋向于零);而a′如果直接按原方向继续传播到a″,光线a″与平面型透镜阵列50的光轴之间的夹角则为θ,虽然理论上回复反射器对不同入射角(与光轴的夹角)的光线能实现原路返回,但是按照像差理论,与光轴夹角越大的入射光将产生更大的像差,而像差是导致成像模糊的主要原因。要有效消除离轴像差,增加球形回复反射器(即球形透镜阵列30)的入射角度,必然要增加球形回复反射器的透镜单元33内部的表面数目,无疑会增加加工难度和成本。而从入射光a′和a″所对应的入射光角度可知,球形透镜阵列30比平面型透镜阵列50能更大限度地减少所需要的回复反射光的入射角度,在有效角度中(反射光线进入人眼的部分),甚至能将入射光的入射角降低至零。因此,该发明的球形透镜阵列30的结构能有效减少透镜单元33的离轴像差带来的图像分辨率下降,提高显示分辨率并降低加工成本和难度。In order to better illustrate the beneficial effects of the spherical lens array 30 provided by the present invention, refer to FIG. 8 to compare the spherical lens array 30 provided by the present invention with the planar lens array 50. It is assumed that the generally planar lens array 50 is located in the semi-reflective half. On the right side of the lens 20, in this way, the half-reflective half-mirror 20 and the planar lens array 50 can also constitute a conventional floating imaging device. Assume that a beam of light a emitted from the image source 10 is reflected by the half mirror 20, and the reflected light is a′. The reflected light a′ is parallel to the optical axis of the spherical lens unit 33 (the angle tends to zero); and a′ If it continues to propagate directly to a″ in the original direction, the angle between the light a″ and the optical axis of the planar lens array 50 is θ. Although theoretically, the retroreflector can respond to different incident angles (the angle with the optical axis). The light can return along the original path, but according to the aberration theory, the larger the angle between the incident light and the optical axis will produce greater aberration, and aberration is the main cause of blurred imaging. To effectively eliminate off-axis aberration and increase the incident angle of the spherical retroreflector (i.e., the spherical lens array 30), the number of surfaces inside the lens unit 33 of the spherical retroreflector must be increased, which will undoubtedly increase the processing difficulty and cost. It can be seen from the incident light angles corresponding to the incident light a′ and a″ that the spherical lens array 30 can reduce the required incident angle of the retroreflected light to a greater extent than the planar lens array 50. In the effective angle (reflected light The part that enters the human eye) can even reduce the incident angle of incident light to zero. Therefore, the structure of the spherical lens array 30 of the invention can effectively reduce the decrease in image resolution caused by the off-axis aberration of the lens unit 33 and improve Display resolution and reduce processing cost and difficulty.

另外,本发明公开了该球形回复反射器的模拟实验结果,其回复反射光线的发散角小于0.01度,不符合用于道路安全的反光膜标准,但是十分符合3D悬浮成像系统应用;实验证明,该球形回复反射器的工作角度达到60度以上,成像点像差在250μm以下,能实现大视场角和高分辨率的悬浮成像显示效果。In addition, the present invention discloses the simulation experiment results of the spherical retroreflector. The divergence angle of the retroreflective light is less than 0.01 degrees, which does not meet the reflective film standards for road safety, but is very consistent with the application of 3D suspension imaging systems; the experiment proves that, The working angle of the spherical retroreflector reaches more than 60 degrees, and the imaging point aberration is less than 250 μm, which can achieve a large field of view and high-resolution suspended imaging display effect.

本发明还公开了该透镜阵列30的制作方法,该透镜阵列30的制作可以采用一次成型的注塑工艺或者次单元平板透镜阵列30拼接的工艺实现。The present invention also discloses a method for manufacturing the lens array 30. The lens array 30 can be manufactured using a one-time injection molding process or a splicing process of sub-unit flat lens arrays 30.

采用一次成型注塑工艺的透镜阵列30是通过超精密CNC技术进行制作,首先根据透镜单元33参数关系式确定透镜单元33参数并制作透镜单元33,然后每个透镜单元33的光轴共同指向人眼观看位置,形成圆形透镜阵列30的整体结构,最后通过一次成型的方式加工出该透镜阵列30,利用光学塑料注塑成型的工艺形成一个整体的光学器件;由于该透镜阵列30的功能主要用于成像,因此每个透镜单元33的面型精度须达到1~10μm,表面精度需达到50纳米以下;对于一次成型的注塑工艺而言,加工的精度要求非常高,因此成本很难控制。The lens array 30 using a one-shot molding injection molding process is produced through ultra-precision CNC technology. First, the parameters of the lens unit 33 are determined according to the parameter relationship of the lens unit 33 and the lens unit 33 is produced. Then the optical axis of each lens unit 33 points to the human eye together. The viewing position forms the overall structure of the circular lens array 30. Finally, the lens array 30 is processed through one-time molding, and an integral optical device is formed using the optical plastic injection molding process; since the function of the lens array 30 is mainly used for For imaging, the surface accuracy of each lens unit 33 must reach 1 to 10 μm, and the surface accuracy must reach less than 50 nanometers. For the one-shot injection molding process, the processing accuracy is very high, so the cost is difficult to control.

如图1、图3和图7所示,以次单元平板透镜阵列30拼接的制作方法如下:As shown in Figures 1, 3 and 7, the splicing method of sub-unit flat lens array 30 is as follows:

首先,根据透镜单元33参数关系式确定透镜单元33参数并制作透镜单元33,其次,在一块平面上集成若干透镜单元33,形成一块面积较小的透镜阵列次单元32,然后根据人眼位置为球心,加工一块用于固定每个透镜阵列次单元32的球面固定板31,球面固定板31可以用金属或塑料材料制备,主要对透镜阵列次单元32起支撑和固定作用,使得每一个透镜阵列次单元32的中心光轴指向人眼所在位置,最后按图3所示的方式依次排满平面透镜阵列次单元32。这种制备方法要求每一个透镜阵列次单元32的长宽尺寸较小,应控制在透镜阵列次单元32的长度/宽度对球心所张的角度应小于1-3度,此时透镜阵列次单元32上的各个透镜单元33的光轴可以近似看做指向球心。First, determine the parameters of the lens unit 33 according to the parameter relational expression of the lens unit 33 and make the lens unit 33. Secondly, integrate several lens units 33 on a plane to form a lens array sub-unit 32 with a smaller area. Then, according to the position of the human eye, The center of the sphere is processed with a spherical fixing plate 31 for fixing each lens array sub-unit 32. The spherical fixing plate 31 can be made of metal or plastic material and mainly supports and fixes the lens array sub-unit 32 so that each lens The central optical axis of the array sub-unit 32 points to the position of the human eye, and finally the plane lens array sub-units 32 are arranged in sequence as shown in FIG. 3 . This preparation method requires that the length and width of each lens array sub-unit 32 should be small, and should be controlled so that the angle between the length/width of the lens array sub-unit 32 and the center of the sphere should be less than 1-3 degrees. At this time, the lens array sub-unit 32 The optical axis of each lens unit 33 on the unit 32 can be approximately regarded as pointing toward the center of the sphere.

透镜单元33各个参数关系设置如图7所示,透镜单元33的参数关系式如下:The parameter relationship settings of the lens unit 33 are shown in Figure 7. The parameter relationship formula of the lens unit 33 is as follows:

上式中,D1为前表面331孔径,R1为前表面331半径,R2为后表面332半径,n为折射墙333的折射率,k为1至8之间的任意值。In the above formula, D1 is the aperture of the front surface 331 , R1 is the radius of the front surface 331 , R2 is the radius of the back surface 332 , n is the refractive index of the refractive wall 333 , and k is any value between 1 and 8.

其中,D1的取值约在50μm-500μm之间,D2可以选取为D1的1.5-3倍,透镜单元33参数关系式可以通过适当选取的方式确定各个参数。Among them, the value of D1 is approximately between 50 μm and 500 μm, D2 can be selected to be 1.5-3 times of D1 , and the parameter relationship formula of the lens unit 33 can determine each parameter through appropriate selection.

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a detailed description of the preferred implementation of the present invention, but the present invention is not limited to the embodiments. Those skilled in the art can also make various equivalent modifications or substitutions without violating the spirit of the present invention. , these equivalent modifications or substitutions are included in the scope defined by the claims of this application.

Claims (3)

Translated fromChinese
1.一种用于3D悬浮成像的透镜阵列,其特征在于,包括:球面固定板和透镜阵列次单元;所述球面固定板设有卡槽,所述透镜阵列次单元通过所述卡槽固定安装于所述球面固定板上;1. A lens array for 3D suspended imaging, characterized in that it includes: a spherical fixed plate and a lens array sub-unit; the spherical fixed plate is provided with a slot, and the lens array sub-unit is fixed through the slot Installed on the spherical fixed plate;所述透镜阵列次单元包括透镜单元,所述透镜单元包括前表面、后表面和折射墙,所述前表面为透射面,所述后表面为反射面,所述折射墙设于所述前表面和所述后表面之间;The lens array sub-unit includes a lens unit. The lens unit includes a front surface, a rear surface and a refractive wall. The front surface is a transmissive surface, the rear surface is a reflective surface, and the refractive wall is provided on the front surface. and between said rear surface;所述前表面和后表面均为球面,所述前表面与后表面共球心;The front surface and the rear surface are both spherical, and the front surface and the rear surface share the center of the sphere;所述前表面的孔径小于后表面的孔径;The pore diameter of the front surface is smaller than the pore diameter of the rear surface;所述透镜单元的面型精度范围为1~10μm,表面精度范围为1~50nm;The surface accuracy range of the lens unit is 1 to 10 μm, and the surface accuracy range is 1 to 50 nm;所述透镜单元的参数关系式如下:The parameter relationship of the lens unit is as follows:上式中,D1为前表面孔径,R1为前表面半径,R2为后表面半径,n为折射墙的折射率,k为1至8之间的任意值。In the above formula, D1 is the front surface aperture, R1 is the front surface radius, R2 is the rear surface radius, n is the refractive index of the refractive wall, and k is any value between 1 and 8.2.一种用于3D悬浮成像的装置,其特征在于,包括:2. A device for 3D suspension imaging, characterized by comprising:图像源、半反半透镜和如权利要求1中所述的用于3D悬浮成像的透镜阵列;Image source, half-reflective half-mirror and lens array for 3D suspension imaging as claimed in claim 1;所述图像源用于产生图像光线能量;The image source is used to generate image light energy;所述半反半透镜用于改变图像光线能量分布;The half-reflective half-mirror is used to change the image light energy distribution;所述透镜阵列用于将半反半透镜反射过来的光线能量按原方向返回;The lens array is used to return the light energy reflected by the half mirror in the original direction;所述图像源设置于水平面,所述半反半透镜设置于图像源的上方,与水平面呈45°倾斜设置,所述透镜阵列设置于所述图像源和所述半反半透镜的后方。The image source is disposed on a horizontal plane, the half-reflective half-lens is disposed above the image source and tilted at 45° to the horizontal plane, and the lens array is disposed behind the image source and the half-reflective half-lens.3.根据权利要求2所述一种用于3D悬浮成像的装置,其特征在于,所述透镜阵列的球心设置于观看位置。3. A device for 3D suspension imaging according to claim 2, characterized in that the spherical center of the lens array is set at the viewing position.
CN202210525285.5A2022-05-152022-05-15Lens array for 3D suspension imaging and device thereofActiveCN114815010B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202210525285.5ACN114815010B (en)2022-05-152022-05-15Lens array for 3D suspension imaging and device thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210525285.5ACN114815010B (en)2022-05-152022-05-15Lens array for 3D suspension imaging and device thereof

Publications (2)

Publication NumberPublication Date
CN114815010A CN114815010A (en)2022-07-29
CN114815010Btrue CN114815010B (en)2024-02-09

Family

ID=82514424

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210525285.5AActiveCN114815010B (en)2022-05-152022-05-15Lens array for 3D suspension imaging and device thereof

Country Status (1)

CountryLink
CN (1)CN114815010B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN115857191A (en)*2022-12-072023-03-28武汉华星光电技术有限公司Display device
CN115826251B (en)*2023-02-232023-05-02沂普光电(天津)有限公司VR lens structure and VR display system
CN120065547B (en)*2025-04-252025-08-26河南百合特种光学研究院有限公司 A desktop floating display system and design method

Citations (31)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB9807767D0 (en)*1998-04-091998-06-10Central Research Lab LtdApparatus for displaying an image suspended in space
JPH10186276A (en)*1996-12-261998-07-14Konica CorpThree dimensional image display device
CN1713003A (en)*2005-08-122005-12-28哈尔滨工业大学 Maxwell micro-hemispherical array reflector
JP2006267940A (en)*2005-03-252006-10-05Keizo FujiokaStereoscopic projection device
CN103197428A (en)*2013-04-162013-07-10佛山市英视通电子科技有限公司Naked eye stereoscopic image display optical device based on arc-shaped backlight and lens
KR101430907B1 (en)*2013-04-242014-08-18전자부품연구원Interactive 3-dimensional image display apparatus
CN106773087A (en)*2017-01-092017-05-31中国科学技术大学A kind of floating integration imaging 3 d display device
CN107622741A (en)*2017-10-132018-01-23北京眸合科技有限公司A kind of air suspension display system
JP2018031925A (en)*2016-08-252018-03-01パナソニックIpマネジメント株式会社Aerial display device
CN108107598A (en)*2017-12-252018-06-01佛山科学技术学院A kind of curved surface bore hole 3D display device
CN108181712A (en)*2016-12-082018-06-19未来(北京)黑科技有限公司For the system being imaged in the air
CN108181716A (en)*2016-12-082018-06-19未来(北京)黑科技有限公司For the system being imaged in the air
US10012841B1 (en)*2017-01-052018-07-03Looking Glass Factory, Inc.Advanced retroreflecting aerial displays
CN108389531A (en)*2018-02-282018-08-10北京眸合科技有限公司A kind of air suspension display system
CN108802984A (en)*2018-06-062018-11-13北京邮电大学A kind of air suspension display system
CN109272881A (en)*2018-12-062019-01-25佛山科学技术学院 LED display layout structure and its application
CN209167806U (en)*2018-11-192019-07-26申秋原A kind of Floating 3D imaging system
JP2019207370A (en)*2018-05-302019-12-05日本カーバイド工業株式会社Image display device
CN110989195A (en)*2019-11-262020-04-10深圳奥比中光科技有限公司Three-dimensional image suspension display system and method
CN111065957A (en)*2017-08-232020-04-24Pcms控股公司 Light field image engine method and apparatus for generating projected 3D light fields
CN111240038A (en)*2020-03-102020-06-05像航(上海)科技有限公司Retroreflection floating imaging system and manufacturing method of retroreflection mirror
CN111338177A (en)*2020-04-172020-06-26荆门市探梦科技有限公司Reflective geometric holographic display system
GB202013563D0 (en)*2018-02-022020-10-14Interesting Av LtdApparatus and method for combining two image sources
JP2020197672A (en)*2019-06-052020-12-10株式会社小糸製作所Image display device
CN113391459A (en)*2021-04-282021-09-14北京邮电大学Suspended three-dimensional display equipment based on turn-back suspended device array
CN113703162A (en)*2020-05-202021-11-26现代自动车株式会社Device for displaying floating image and vehicle display module comprising same
CN113759564A (en)*2020-06-042021-12-07浙江棱镜全息科技有限公司 Air imaging device for automobile and human-computer interaction vehicle auxiliary system
CN113777798A (en)*2020-06-102021-12-10浙江棱镜全息科技有限公司 Air imaging device for advertising display system and interactive advertising display system
CN215494383U (en)*2021-07-162022-01-11彼博股份有限公司Curved surface integrated imaging 3D display
CN114002861A (en)*2021-10-142022-02-01北京航空航天大学 A depth-enhanced integrated imaging 3D display device
CN114217441A (en)*2021-12-222022-03-22深圳创维新世界科技有限公司Aerial suspension display module and system thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7136031B2 (en)*2000-12-182006-11-14Byoungho LeeReflecting three-dimensional display system
WO2018043673A1 (en)*2016-08-312018-03-08国立大学法人宇都宮大学Display device and method for displaying aerial image

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH10186276A (en)*1996-12-261998-07-14Konica CorpThree dimensional image display device
GB9807767D0 (en)*1998-04-091998-06-10Central Research Lab LtdApparatus for displaying an image suspended in space
JP2006267940A (en)*2005-03-252006-10-05Keizo FujiokaStereoscopic projection device
CN1713003A (en)*2005-08-122005-12-28哈尔滨工业大学 Maxwell micro-hemispherical array reflector
CN103197428A (en)*2013-04-162013-07-10佛山市英视通电子科技有限公司Naked eye stereoscopic image display optical device based on arc-shaped backlight and lens
KR101430907B1 (en)*2013-04-242014-08-18전자부품연구원Interactive 3-dimensional image display apparatus
JP2018031925A (en)*2016-08-252018-03-01パナソニックIpマネジメント株式会社Aerial display device
CN108181712A (en)*2016-12-082018-06-19未来(北京)黑科技有限公司For the system being imaged in the air
CN108181716A (en)*2016-12-082018-06-19未来(北京)黑科技有限公司For the system being imaged in the air
US10012841B1 (en)*2017-01-052018-07-03Looking Glass Factory, Inc.Advanced retroreflecting aerial displays
CN106773087A (en)*2017-01-092017-05-31中国科学技术大学A kind of floating integration imaging 3 d display device
CN111065957A (en)*2017-08-232020-04-24Pcms控股公司 Light field image engine method and apparatus for generating projected 3D light fields
CN107622741A (en)*2017-10-132018-01-23北京眸合科技有限公司A kind of air suspension display system
CN108107598A (en)*2017-12-252018-06-01佛山科学技术学院A kind of curved surface bore hole 3D display device
GB202013563D0 (en)*2018-02-022020-10-14Interesting Av LtdApparatus and method for combining two image sources
CN108389531A (en)*2018-02-282018-08-10北京眸合科技有限公司A kind of air suspension display system
JP2019207370A (en)*2018-05-302019-12-05日本カーバイド工業株式会社Image display device
CN108802984A (en)*2018-06-062018-11-13北京邮电大学A kind of air suspension display system
CN209167806U (en)*2018-11-192019-07-26申秋原A kind of Floating 3D imaging system
CN109272881A (en)*2018-12-062019-01-25佛山科学技术学院 LED display layout structure and its application
JP2020197672A (en)*2019-06-052020-12-10株式会社小糸製作所Image display device
CN110989195A (en)*2019-11-262020-04-10深圳奥比中光科技有限公司Three-dimensional image suspension display system and method
CN111240038A (en)*2020-03-102020-06-05像航(上海)科技有限公司Retroreflection floating imaging system and manufacturing method of retroreflection mirror
CN111338177A (en)*2020-04-172020-06-26荆门市探梦科技有限公司Reflective geometric holographic display system
CN113703162A (en)*2020-05-202021-11-26现代自动车株式会社Device for displaying floating image and vehicle display module comprising same
CN113759564A (en)*2020-06-042021-12-07浙江棱镜全息科技有限公司 Air imaging device for automobile and human-computer interaction vehicle auxiliary system
CN113777798A (en)*2020-06-102021-12-10浙江棱镜全息科技有限公司 Air imaging device for advertising display system and interactive advertising display system
CN113391459A (en)*2021-04-282021-09-14北京邮电大学Suspended three-dimensional display equipment based on turn-back suspended device array
CN215494383U (en)*2021-07-162022-01-11彼博股份有限公司Curved surface integrated imaging 3D display
CN114002861A (en)*2021-10-142022-02-01北京航空航天大学 A depth-enhanced integrated imaging 3D display device
CN114217441A (en)*2021-12-222022-03-22深圳创维新世界科技有限公司Aerial suspension display module and system thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Improved resolution for aerial imaging by retro‑refection with two transparent spheres;Kazuaki Takiyama 等;Laser Display and Lighting Conference;122-133*
Improvement of a floating 3D light field display based on a telecentric retroreflector and an optimized 3D image source;Xin Gao 等;Optics Express;40125-40145*
悬浮光场显示光学系统优化技术研究;高超;中国博士学位论文全文数据库信息科技辑;I138-149*

Also Published As

Publication numberPublication date
CN114815010A (en)2022-07-29

Similar Documents

PublicationPublication DateTitle
CN114815010B (en)Lens array for 3D suspension imaging and device thereof
CN102096194B (en)A kind of optical transmission projection type three-dimensional helmet display
CN108957750A (en)Optical system wears display equipment and intelligent glasses
JP2020501203A (en) A system for imaging in the air
CN107065181B (en)Optical system of virtual reality equipment
CN110515208A (en) short distance optics
JP5496166B2 (en) Display device
CN111399321A (en)Small-size projection optical assembly and projection optical system suitable for near-eye display
WO2021139725A1 (en)Near-to-eye display apparatus
TWI798853B (en)Augmented reality display device
CN106773061B (en)Near-eye display optical system
CN116974082A (en)Near-to-eye display optical device with adjustable diopter
US12222502B2 (en)Optical system, display apparatus, and smart glasses
WO2022083337A1 (en)Optical film and optical imaging system
WO2024193151A1 (en)Three-dimensional display device and system
CN112147786A (en)Augmented reality display system
EP4479679A1 (en)Hybrid waveguide to maximize coverage in field of view (fov)
CN110109255B (en) Structure based on optical waveguide to expand AR field of view and reduce optical machine size
US20250053020A1 (en)Optical system and display apparatus
TWI769783B (en)Optical module and near-eye display device thereof
CN107272203B (en)Refractive, diffractive and reflective head-mounted display optical system
CN211577658U (en)Projection stereoscopic display device based on double-layer double-refraction cylindrical lens
JP2004061906A (en)Two-dimensional optical scanner and video display device
CN111258167A (en)Projection stereoscopic display device based on double-layer double-refraction cylindrical lens
JP7733949B2 (en) Splice display device for floating images and multi-layer display device including the same

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CP03Change of name, title or address
CP03Change of name, title or address

Address after:528200 No. 33, Guangyun Road, Shishan town, Nanhai District, Foshan City, Guangdong Province

Patentee after:Foshan University

Country or region after:China

Address before:528200 No. 33, Guangyun Road, Shishan town, Nanhai District, Foshan City, Guangdong Province

Patentee before:FOSHAN University

Country or region before:China


[8]ページ先頭

©2009-2025 Movatter.jp