


技术领域technical field
本发明涉及振动噪声控制技术领域,是一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构。The invention relates to the technical field of vibration and noise control, and is an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance.
背景技术Background technique
振动控制对于许多工业门类的产品来说非常重要。交通运输、车辆、船舶、航空航天、电子机器等领域装备的振动将大大影响产品的竞争力。先进的振动控制技术在军事及民用领域都有着迫切的需求,人们一直在努力开发减少结构振动或机械振动的方法。Vibration control is very important for many industrial categories of products. The vibration of equipment in the fields of transportation, vehicles, ships, aerospace, electronic machines and other fields will greatly affect the competitiveness of products. There is an urgent need for advanced vibration control technology in both the military and civilian fields, and efforts have been made to develop methods to reduce structural or mechanical vibration.
利用薄壁结构几何参数的梯度变化制造的声学黑洞效应,可以使振动波在结构中的传播速度逐渐减小,其主要实现方法是将薄板结构厚度按一定幂函数规律裁剪,声学黑洞对波的聚集有宽频高效、实现方法简单灵活的特点,在薄壁结构的减振降噪、能量回收等应用有明显优势。压电分流阻尼是运用压电元件的正压电效应将机械能转化为电能,通过分流电路将能量消耗,从而实现结构振动控制,分流电路的电学元件对电能的消耗将影响减振降噪的效果。因此,设计分流电路是压电分流阻尼系统的关键。The acoustic black hole effect produced by the gradient change of the geometric parameters of the thin-walled structure can gradually reduce the propagation speed of the vibration wave in the structure. Aggregation has the characteristics of wide frequency, high efficiency, simple and flexible implementation method, and has obvious advantages in applications such as vibration reduction and noise reduction of thin-walled structures, and energy recovery. Piezoelectric shunt damping uses the positive piezoelectric effect of piezoelectric elements to convert mechanical energy into electrical energy, and consumes energy through a shunt circuit to achieve structural vibration control. . Therefore, designing the shunt circuit is the key to the piezoelectric shunt damping system.
发明内容SUMMARY OF THE INVENTION
本发明为将声学黑洞结构与压电分流阻尼的抑振效能结合,将分流电路中的电磁振荡效应和声学黑洞的波操纵效应与能量聚集效应结合,通过控制黑洞薄板的结构,以及设计压电分流电路,可以实现结构在特定的宽频内高效减振。本发明提供了一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构,本发明提供了以下技术方案:The invention combines the acoustic black hole structure with the vibration suppression effect of the piezoelectric shunt damping, and combines the electromagnetic oscillation effect in the shunt circuit and the wave manipulation effect of the acoustic black hole with the energy gathering effect. By controlling the structure of the black hole thin plate, and designing the piezoelectric The shunt circuit can realize the structure's high-efficiency vibration reduction in a specific broadband. The invention provides an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance, and the invention provides the following technical solutions:
一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构,所述结构包括:声学黑洞板、压电换能元件和压电分流电路;所述压电分流电路包括电容、电感和电阻;An acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance, the structure comprises: an acoustic black hole plate, a piezoelectric transducer element and a piezoelectric shunt circuit; the piezoelectric shunt circuit includes a capacitor, an inductance and a resistance;
所述声学黑洞板按幂函数规律裁剪的声学黑洞薄板,声学黑洞薄板的材料采用结构钢金属材料,声学黑洞薄板下表面粘贴压电换能元件,所述压电换能元件采用压电陶瓷,电阻与电感串联后,与电容并联接入压电换能元件和声学黑洞板。The acoustic black hole plate is an acoustic black hole thin plate that is cut according to the power function law, the material of the acoustic black hole thin plate is made of structural steel metal material, and the lower surface of the acoustic black hole thin plate is pasted with a piezoelectric transducer element, and the piezoelectric transducer element is made of piezoelectric ceramics, After the resistor and the inductor are connected in series, the piezoelectric transducer element and the acoustic black hole plate are connected in parallel with the capacitor.
优选地,声学黑洞板的薄壁结构几何参数呈梯度变化,变截面部分的中心在板上表面的中心,厚度变化通过下式表示:Preferably, the geometric parameters of the thin-walled structure of the acoustic black hole plate change in a gradient, the center of the variable section portion is at the center of the upper surface of the plate, and the thickness change is expressed by the following formula:
h(r)=er2+h0;h(r)=er2 +h0 ;
其中,r为沿变截面部分厚度增大方向的坐标,e是裁剪系数。Among them, r is the coordinate along the thickness-increasing direction of the variable section part, and e is the clipping coefficient.
优选地,声学黑洞板的厚度以一定的幂函数形式减小,当有振动波输入本结构中时,振动波的波速会随着厚度的减小逐渐减小;波速减小为零,减小了弯曲波的输出。Preferably, the thickness of the acoustic black hole plate decreases in the form of a certain power function. When a vibration wave is input into the structure, the wave speed of the vibration wave will gradually decrease with the decrease of the thickness; the output of bending waves.
优选地,压电分流电路中的电磁振荡的固有频率通过下式表示:Preferably, the natural frequency of the electromagnetic oscillation in the piezoelectric shunt circuit is represented by the following equation:
在固有频率附近,强迫振动响应将大幅衰减。Near the natural frequency, the forced vibration response will be greatly attenuated.
优选地,压电换能元件的半径与声学黑洞变截面半径相同,且为圆柱形,由PZT-5H制成。Preferably, the piezoelectric transducer element has the same radius as the variable section radius of the acoustic black hole, is cylindrical, and is made of PZT-5H.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明结构的厚度以一定的幂函数形式减小,当有振动波输入本结构中时,振动波的波速会随着厚度的减小逐渐减小,在理想的情况下波速可减小为零,大大减小了弯曲波的输出。分流电路中由于电感和电容的存在会产生电磁振荡,由于电磁振荡在声学黑洞压电结构中会产生带隙,分流电路中的电磁振荡的固有频率,在此频率附近,强迫振动响应将大幅衰减。本发明的宽频抑振装置可用于任何振动系统,不影响该振动系统的结构完整性。The thickness of the structure of the present invention is reduced in the form of a certain power function. When a vibration wave is input into the structure, the wave speed of the vibration wave will gradually decrease with the reduction of the thickness, and the wave speed can be reduced to zero under ideal conditions. , which greatly reduces the output of bending waves. Due to the existence of inductance and capacitance in the shunt circuit, electromagnetic oscillation will be generated. Since the electromagnetic oscillation will generate a band gap in the piezoelectric structure of the acoustic black hole, the natural frequency of the electromagnetic oscillation in the shunt circuit, around this frequency, the forced vibration response will be greatly attenuated. . The broadband vibration suppression device of the present invention can be used in any vibration system without affecting the structural integrity of the vibration system.
附图说明Description of drawings
图1为具有宽频抑振性能的声学黑洞压电分流阻尼复合结构剖面示意图;Figure 1 is a schematic cross-sectional view of an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance;
图2为图1的俯视图;Fig. 2 is the top view of Fig. 1;
图3为具有宽频抑振性能的声学黑洞压电分流阻尼复合结构与相同尺寸均匀板的振动传输响应曲线的对比图。Figure 3 is a comparison diagram of the vibration transmission response curves of the acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance and a uniform plate of the same size.
具体实施方式Detailed ways
以下结合具体实施例,对本发明进行了详细说明。The present invention is described in detail below with reference to specific embodiments.
具体实施例一:Specific embodiment one:
根据图1至图3所示,本发明为解决上述技术问题采取的具体优化技术方案是:本发明涉及一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构。As shown in FIGS. 1 to 3 , the specific optimized technical solution adopted by the present invention to solve the above technical problems is: the present invention relates to an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance.
一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构,所述结构包括:声学黑洞板1、压电换能元件2和压电分流电路3;所述压电分流电路包括电容4、电感5和电阻6;An acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance, the structure comprises: an acoustic black hole plate 1, a
所述声学黑洞板按幂函数规律裁剪的声学黑洞薄板,变截面部分的中心在板上表面的中心,声学黑洞薄板的材料采用结构钢金属材料,声学黑洞薄板下表面粘贴压电换能元件,所述压电换能元件采用压电陶瓷,电阻与电感串联后,与电容并联接入压电换能元件和声学黑洞板。The acoustic black hole plate is an acoustic black hole thin plate that is cut according to the power function law, the center of the variable cross-section part is at the center of the upper surface of the plate, the material of the acoustic black hole thin plate is made of structural steel metal material, and the lower surface of the acoustic black hole thin plate is pasted with piezoelectric transducer elements, The piezoelectric transducer element adopts piezoelectric ceramics, and after the resistor and the inductor are connected in series, the piezoelectric transducer element and the acoustic black hole plate are connected in parallel with the capacitor.
声学黑洞板的薄壁结构几何参数呈梯度变化,变截面部分的中心在板上表面的中心,厚度变化通过下式表示:The geometric parameters of the thin-walled structure of the acoustic black hole plate change in a gradient, the center of the variable section is at the center of the upper surface of the plate, and the thickness change is expressed by the following formula:
h(r)=er2+h0;h(r)=er2 +h0 ;
其中,r为沿变截面部分厚度增大方向的坐标,e是裁剪系数。Among them, r is the coordinate along the thickness-increasing direction of the variable section part, and e is the clipping coefficient.
声学黑洞板的厚度以一定的幂函数形式减小,当有振动波输入本结构中时,振动波的波速会随着厚度的减小逐渐减小;波速减小为零,减小了弯曲波的输出。The thickness of the acoustic black hole plate decreases in the form of a certain power function. When a vibration wave is input into the structure, the wave speed of the vibration wave will gradually decrease with the decrease of the thickness; the wave speed decreases to zero, which reduces the bending wave Output.
压电分流电路中的电磁振荡的固有频率通过下式表示:The natural frequency of electromagnetic oscillations in a piezoelectric shunt circuit is expressed by the following equation:
在固有频率附近,强迫振动响应将大幅衰减。Near the natural frequency, the forced vibration response will be greatly attenuated.
压电换能元件的半径与声学黑洞变截面半径相同,且为圆柱形,由PZT-5H制成。通过调节分流电路中电路元器件的电学参数,当振动波作用于声学黑洞压电分流阻尼复合结构时,激起声学黑洞板和粘贴于其下表面的压电换能元件产生弯曲变形,声学黑洞结构将振动能量聚集于变截面部分,由于正压电效应,变形后的压电片表面产生电压,在分流电路中产生剧烈的电磁谐振。同时,由于逆压电效应,谐振的压电分流结构对声学黑洞板施加反作用力,使得声学黑洞板的弯曲变形减弱,从而实现高效地抑制振动。不同裁剪指数、不同底面裁剪厚度会对结构弯曲波传播轨迹及能量聚集效应产生影响,不同的电路连接方式、电学参数会对电路复阻抗、带隙的频率及幅值产生影响,在使用本发明时可以根据需求选择合适的结构参数及电路参数。The radius of the piezoelectric transducer element is the same as the radius of the variable section of the acoustic black hole, and it is cylindrical, made of PZT-5H. By adjusting the electrical parameters of the circuit components in the shunt circuit, when the vibration wave acts on the acoustic black hole piezoelectric shunt damping composite structure, the acoustic black hole plate and the piezoelectric transducer elements pasted on its lower surface are excited to bend and deform. The structure concentrates the vibration energy in the variable section part. Due to the positive piezoelectric effect, a voltage is generated on the surface of the deformed piezoelectric sheet, and a violent electromagnetic resonance is generated in the shunt circuit. At the same time, due to the inverse piezoelectric effect, the resonant piezoelectric shunt structure exerts a reaction force on the acoustic black hole plate, so that the bending deformation of the acoustic black hole plate is weakened, so as to effectively suppress the vibration. Different clipping indices and different bottom surface clipping thicknesses will have an impact on the structural bending wave propagation trajectory and the energy gathering effect, and different circuit connection methods and electrical parameters will have an impact on the circuit complex impedance, the frequency and amplitude of the band gap. At the same time, the appropriate structural parameters and circuit parameters can be selected according to the needs.
下面结合具体实例对本发明的抑振效果进行详细说明:结构参数如下:声学黑洞板尺寸为a×b=300×200mm,h=7mm,h0=0.6mm,d=60mm。压电圆柱片尺寸为dh=0.7mm,半径与黑洞部分相同。电路参数为:C=1e-7F,L=0.01H,R=0.05Ω。The vibration suppression effect of the present invention will be described in detail below with reference to specific examples: the structural parameters are as follows: the size of the acoustic black hole plate is a×b=300×200mm, h=7mm,h0 =0.6mm, d=60mm. The size of the piezoelectric cylinder is dh=0.7mm, and the radius is the same as that of the black hole. The circuit parameters are: C=1e-7F, L=0.01H, R=0.05Ω.
自由边界条件下,在黑洞板的上表面中心点施压正弦激励位移,计算其下表面中心的传递特性曲线,波传播至声学黑洞时,其轨迹将逐渐向声学黑洞中心聚拢,实现波的聚集,将带有分流电路的压电材料与声学黑洞结构结合,如前所述,调节电路中电容、电感的值,可将带隙控制到理想频率。如图3,与相同尺寸的均匀薄板、同样在板上表面中心处施加正弦位移激励的传输响应曲线相比较,可以看到在声学黑洞压电分流阻尼复合结构的带隙处,波经过声学黑洞的能量聚集效应及RL-C电路中电磁振荡的作用,基本上都会被吸收,几乎没有任何弯曲振动位移传递,减振效果良好。Under the condition of free boundary, the sinusoidal excitation displacement is applied at the center point of the upper surface of the black hole plate, and the transfer characteristic curve of the center of its lower surface is calculated. When the wave propagates to the acoustic black hole, its trajectory will gradually converge to the center of the acoustic black hole, realizing the wave aggregation. , combining piezoelectric material with shunt circuit and acoustic black hole structure, as mentioned above, adjusting the value of capacitance and inductance in the circuit can control the band gap to the ideal frequency. As shown in Fig. 3, compared with the transmission response curve of a uniform thin plate of the same size and the sinusoidal displacement excitation is also applied at the center of the surface of the plate, it can be seen that at the band gap of the piezoelectric shunt damping composite structure of the acoustic black hole, the wave passes through the acoustic black hole. The energy gathering effect of the RL-C circuit and the effect of electromagnetic oscillation in the RL-C circuit will basically be absorbed, almost no bending vibration displacement is transmitted, and the vibration reduction effect is good.
以上所述仅是一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构的优选实施方式,一种具有宽频抑振性能的声学黑洞压电分流阻尼复合结构的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。The above is only a preferred embodiment of an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance, and the protection scope of an acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance is not limited to the above Embodiments, all technical solutions under this idea belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and changes without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210197379.4ACN114743530A (en) | 2022-03-01 | 2022-03-01 | Acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210197379.4ACN114743530A (en) | 2022-03-01 | 2022-03-01 | Acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance |
| Publication Number | Publication Date |
|---|---|
| CN114743530Atrue CN114743530A (en) | 2022-07-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210197379.4APendingCN114743530A (en) | 2022-03-01 | 2022-03-01 | Acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance |
| Country | Link |
|---|---|
| CN (1) | CN114743530A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115629628A (en)* | 2022-10-09 | 2023-01-20 | 北京航空航天大学 | A supersonic inlet flutter suppression device |
| CN119964530A (en)* | 2025-01-15 | 2025-05-09 | 汉江国家实验室 | A method and system for regulating the vibration characteristics of acoustic black hole structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106023979A (en)* | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | local resonance acoustic black hole structure |
| CN109346049A (en)* | 2018-11-29 | 2019-02-15 | 南京航空航天大学 | A Tunable Piezoelectric Phononic Crystal Plate Based on Acoustic Black Hole |
| CN110364138A (en)* | 2019-07-19 | 2019-10-22 | 桂林电子科技大学 | A double-layer sound insulation structure and control method based on shunt damping |
| CN110855182A (en)* | 2019-11-22 | 2020-02-28 | 桂林电子科技大学 | Energy harvesting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106023979A (en)* | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | local resonance acoustic black hole structure |
| CN109346049A (en)* | 2018-11-29 | 2019-02-15 | 南京航空航天大学 | A Tunable Piezoelectric Phononic Crystal Plate Based on Acoustic Black Hole |
| CN110364138A (en)* | 2019-07-19 | 2019-10-22 | 桂林电子科技大学 | A double-layer sound insulation structure and control method based on shunt damping |
| CN110855182A (en)* | 2019-11-22 | 2020-02-28 | 桂林电子科技大学 | Energy harvesting device |
| Title |
|---|
| 唐一璠,林书玉;: "《 LCR分流电路下压电声子晶体智能材料的带隙》", 《物理学报》, vol. 65, no. 16, 2 June 2016 (2016-06-02), pages 1 - 9* |
| 贺彦博;杜敬涛;: "混合压电分流电路作用下声子晶体杆振动带隙结构分析", 声学学报, vol. 40, no. 05, 15 September 2015 (2015-09-15), pages 615 - 624* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115629628A (en)* | 2022-10-09 | 2023-01-20 | 北京航空航天大学 | A supersonic inlet flutter suppression device |
| CN119964530A (en)* | 2025-01-15 | 2025-05-09 | 汉江国家实验室 | A method and system for regulating the vibration characteristics of acoustic black hole structure |
| Publication | Publication Date | Title |
|---|---|---|
| CN114743530A (en) | Acoustic black hole piezoelectric shunt damping composite structure with broadband vibration suppression performance | |
| CN105864350B (en) | A kind of beam array shape periodicity Piezoelectric anisotropy structural vibration reduction device and oscillation damping method | |
| EP1041717B1 (en) | Bulk acoustic wave resonator with improved lateral mode suppression | |
| CN110120794B (en) | Elastic wave device, high-frequency front-end circuit, and communication device | |
| WO2002103900A1 (en) | Thin-film piezoelectric resonator | |
| CN115425941A (en) | Resonator, filter and electronic device | |
| CN106921363B (en) | Film bulk acoustic resonator | |
| Cheng et al. | A current-flowing electromagnetic shunt damper for multi-mode vibration control ofcantilever beams | |
| CN107240390A (en) | A kind of magnetostriction sound absorption structure | |
| CN109103582A (en) | The nano-machine acoustic antennas and manufacturing method of film bulk acoustic resonator structure | |
| CN117650765B (en) | Resonators, filters and RF front-end modules | |
| GB2455749A (en) | Antenna using piezoelectric material | |
| CN109530197B (en) | Ultrasonic vibration method and ultrasonic vibration system for active matching of acoustic impedance | |
| CN218499120U (en) | Resonator, filter and electronic device | |
| CN116154466B (en) | A low-frequency mechanical magnetoelectric antenna based on cantilever beam structure | |
| EP4564667A1 (en) | Lamb wave resonator and preparation method therefor, filter, radio frequency module, and electronic device | |
| CN117200732A (en) | P (VDF-TrFE) film bulk acoustic resonator with single-side excitation electrode | |
| Zaitsev et al. | Hybrid acoustic waves in thin potassium niobate plates | |
| WO2011006277A1 (en) | Piezoelectric speaker adopting interdigital or spiral electrode | |
| Xu et al. | Simulation and research of piezoelectric film bulk acoustic resonator based on mason model | |
| Ma et al. | A VLF resonant antenna based on piezoelectric ceramics | |
| Li et al. | Non-reciprocal Electromagnetic Transmission and Reception Mechanisms of Magnetoelectric Acoustically Excited Antennas | |
| Jun et al. | The optimization of AT-cut quartz resonator with circular electrode | |
| Almgotir et al. | Harmonics elimination for DC/DC power supply based on piezoelectric filters | |
| CN101257287A (en) | Electrode Shape Design Method for Piezoelectric Crystal Resonator |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |