Movatterモバイル変換


[0]ホーム

URL:


CN114660481A - Distributed SOC (system on chip) calculation and storage method - Google Patents

Distributed SOC (system on chip) calculation and storage method
Download PDF

Info

Publication number
CN114660481A
CN114660481ACN202210285785.6ACN202210285785ACN114660481ACN 114660481 ACN114660481 ACN 114660481ACN 202210285785 ACN202210285785 ACN 202210285785ACN 114660481 ACN114660481 ACN 114660481A
Authority
CN
China
Prior art keywords
soc
bcu
bmu
parameters
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210285785.6A
Other languages
Chinese (zh)
Other versions
CN114660481B (en
Inventor
刘志梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to CN202210285785.6ApriorityCriticalpatent/CN114660481B/en
Publication of CN114660481ApublicationCriticalpatent/CN114660481A/en
Application grantedgrantedCritical
Publication of CN114660481BpublicationCriticalpatent/CN114660481B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种分布式计算和存储SOC方法,该方法包括如下步骤:步骤1),电芯参数存储到BMU中,上电后将BMU的算法参数上传给BCU,步骤2),BCU每次上电时,BCU将本机的序列号同步到每一个模组中,BMU每次上电后将绑定的BCU的序列号发送给BCU;步骤3),BCU中只存一份电芯参数表,避免不断的增加电芯算法参数,可减少对MCU的FLASH空间的要求;步骤4),BCU实时同步电池总压和平均电流给BMU,BMU同步估算SOC。本发明能够提高SOC精度,降低更换电芯的SOC估算精度风险;能解决同一电芯型号,模组容量不一致的SOC精度问题,降低对售后更换模组的要求。

Figure 202210285785

The invention discloses a distributed computing and storage SOC method. The method includes the following steps: step 1), storing battery cell parameters in the BMU, uploading the algorithm parameters of the BMU to the BCU after power-on, step 2), the BCU every time When the power is first turned on, the BCU synchronizes the serial number of the local unit to each module, and the BMU sends the serial number of the bound BCU to the BCU after each power-on; step 3), only one battery cell is stored in the BCU The parameter table avoids the constant increase of cell algorithm parameters, which can reduce the requirements for the FLASH space of the MCU; Step 4), the BCU synchronizes the total battery voltage and average current to the BMU in real time, and the BMU estimates the SOC synchronously. The invention can improve the SOC accuracy and reduce the risk of SOC estimation accuracy for replacing the battery cells; it can solve the SOC accuracy problem of the same battery core model and inconsistent module capacity, and reduce the requirement for after-sales replacement modules.

Figure 202210285785

Description

Translated fromChinese
一种分布式计算和存储SOC方法A Distributed Computing and Storage SOC Method

技术领域technical field

本发明属于电池模组的技术领域,具体涉及一种电池模组的分布式计算和存储SOC方法。The invention belongs to the technical field of battery modules, and in particular relates to a distributed computing and SOC storage method for battery modules.

背景技术Background technique

现有多模组电池串联的产品应用中,通常会配BCU和BMU,其中BCU负责电池电量估算、总电压和电流采集、电池数据汇总和分析、上下电策略管理、对外交互等,其中用于电池电量估算的电池标定参数存放在BCU中,BCU通过采集回来的电流、温度、电压等,再结合电池标定的参数估算SOC,模组里面的BMU仅负责采集电池相关参数(如电压、温度等)以及和BCU通信;In the application of existing multi-module batteries in series, BCU and BMU are usually equipped. The BCU is responsible for battery power estimation, total voltage and current collection, battery data aggregation and analysis, power-on and power-off strategy management, and external interaction. The battery calibration parameters for battery power estimation are stored in the BCU. The BCU estimates the SOC through the collected current, temperature, voltage, etc., combined with the battery calibration parameters. The BMU in the module is only responsible for collecting battery-related parameters (such as voltage, temperature, etc. ) and communicate with the BCU;

然而,BCU的缺陷如下:However, the flaws of BCU are as follows:

1)BCU只能记录已知的电池电量标定参数,当同时出现多种不同电芯的模组时,BCU无法准确结合电池参数进行高精度估算SOC,此时对模组匹配度的要求很高,在实际应用中收到很大的匹配限制;1) The BCU can only record the known battery power calibration parameters. When a variety of modules with different battery cells appear at the same time, the BCU cannot accurately estimate the SOC in combination with the battery parameters. At this time, the requirements for the matching degree of the modules are very high. , received a large matching restriction in practical applications;

2)当系统需要更换个别模组时,由于现有模组和更换的模组存在一致性差异,比如现有模组已经使用过一段时间,而新替换的模组则是未使用过,BCU在无法识别的情况下只能沿用已知的参数,此时同样无法高精度估算SOC;2) When the system needs to replace individual modules, due to the consistency difference between the existing module and the replaced module, for example, the existing module has been used for a period of time, while the newly replaced module has not been used, BCU In the case of unrecognized conditions, only known parameters can be used, and SOC cannot be estimated with high accuracy at this time;

3)当项目中,同时使用多款电芯时,比如处于降本要求,电芯可能会被替换或更改电芯参数,此时BCU中需要支持多个电芯标定参数表,对BCU中的MCU的FLASH大小要求更高,需要对MCU投入更高的材料成本和研发成本;3) When multiple batteries are used at the same time in the project, such as the requirement of cost reduction, the batteries may be replaced or the parameters of the batteries may be changed. At this time, the BCU needs to support multiple battery calibration parameter tables. MCU's FLASH size requirements are higher, and higher material costs and R&D costs need to be invested in MCU;

4)当项目中,BCU的SOC估算出现失效时,整个系统的工作和状态都受到影响,比如无法预估当前的剩余使用时间或续航里程,无法合理的限功率等。4) When the SOC estimation of the BCU fails in the project, the work and status of the entire system are affected, for example, the current remaining usage time or cruising range cannot be estimated, and the power cannot be reasonably limited.

现有方案结合几种应用场景是无法准确估算SOC精度。The existing solution combined with several application scenarios cannot accurately estimate the SOC accuracy.

发明内容SUMMARY OF THE INVENTION

为解决上述问题,本发明的首要目的在于提供一种分布式计算和存储SOC方法,该方法能够提高SOC精度,降低更换电芯的SOC估算精度风险;并能解决同一电芯型号,模组容量不一致的SOC精度问题,降低对售后更换模组的要求。In order to solve the above problems, the primary purpose of the present invention is to provide a distributed computing and storage SOC method, which can improve SOC accuracy and reduce the risk of SOC estimation accuracy when replacing batteries; The problem of inconsistent SOC accuracy reduces the requirement for after-sales replacement modules.

本发明的另一目的在于提供一种分布式计算和存储SOC方法,该方法可以使用其他模组中存储的参数进行同步,利用系统冗余存储的方案,降低系统的存储失效风险;可以通过其他节点的SOC值进行诊断,避免单点失效。Another object of the present invention is to provide a distributed computing and storage SOC method, which can use parameters stored in other modules for synchronization, and use the system redundant storage scheme to reduce the storage failure risk of the system; The SOC value of the node is diagnosed to avoid single point failure.

为实现上述目的,本发明的技术方案如下。In order to achieve the above objects, the technical solutions of the present invention are as follows.

一种分布式计算和存储SOC方法,该方法包括如下步骤:A distributed computing and storage SOC method, the method comprises the following steps:

步骤1),电芯参数存储到BMU中,上电后将BMU的算法参数上传给BCU,Step 1), the cell parameters are stored in the BMU, and the algorithm parameters of the BMU are uploaded to the BCU after power-on,

如存储的是同款电芯时,BCU直接存储一份电芯参数作为SOC算法参数,当系统中存在多款电芯时,取性能最差的一款电芯作为SOC算法参数,可解决不同电芯的模组混用的问题;For example, when the same cell is stored, the BCU directly stores a cell parameter as the SOC algorithm parameter. When there are multiple cells in the system, the cell with the worst performance is taken as the SOC algorithm parameter, which can solve different problems. The problem of mixed use of battery modules;

步骤2),BCU每次上电时,BCU将本机的序列号同步到每一个模组中,BMU每次上电后将绑定的BCU的序列号发送给BCU;Step 2), each time the BCU is powered on, the BCU synchronizes the serial number of the machine to each module, and the BMU sends the bound BCU serial number to the BCU after each power-on;

BCU如果诊断到序列号和本身不一致,BCU则重新更新SOC值,并将BCU的序列号同步给BMU,此处可解决模组中间出现更换时SOC估算精度问题;If the BCU diagnoses that the serial number is inconsistent with itself, the BCU re-updates the SOC value, and synchronizes the serial number of the BCU to the BMU, which can solve the problem of SOC estimation accuracy when the module is replaced;

步骤3),BCU中只存一份电芯参数表,避免不断的增加电芯算法参数,可减少对MCU的FLASH空间的要求;Step 3), only one battery cell parameter table is stored in the BCU to avoid continuously increasing the cell algorithm parameters, which can reduce the requirement for the FLASH space of the MCU;

步骤4),BCU实时同步电池总压和平均电流给BMU,BMU同步估算SOC。Step 4), the BCU synchronizes the total battery voltage and average current to the BMU in real time, and the BMU estimates the SOC simultaneously.

由于BMU的算法参数时和模组直接绑定的,BMU可高精度估算SOC,BMU估算的SOC将发送给BCU,BCU结合自身估算的SOC和每一个BMU估算的SOC进行诊断,避免有一个SOC出现异常时,导致系统估算的SOC出现异常,通过冗余设计提高系统的可靠性;Since the algorithm parameters of the BMU are directly bound to the module, the BMU can estimate the SOC with high accuracy, and the SOC estimated by the BMU will be sent to the BCU. When an abnormality occurs, the SOC estimated by the system is abnormal, and the reliability of the system is improved through redundant design;

其中,电芯参数表包含项目信息,如项目编号,可实现算法参数和项目防呆的问题,避免错误的模组接入到系统中,导致系统滥用。Among them, the cell parameter table contains project information, such as the project number, which can realize the problem of algorithm parameters and project fool-proofing, and avoid the wrong module being connected to the system, resulting in system abuse.

进一步包括如下步骤:It further includes the following steps:

101,将SOC标定写入到BMU中,SOC标定参数需包含SOC算法标定参数和防呆参数,系统上电时,BCU先读取BMU的防呆数据,如果防呆数据匹配,则读取BMU的SOC标定参数,通过比较各个BMU的算法参数,找到最合适的一个参数表,并保存在BCU中;101. Write the SOC calibration into the BMU. The SOC calibration parameters must include the SOC algorithm calibration parameters and the fool-proof parameters. When the system is powered on, the BCU first reads the fool-proof data of the BMU. If the fool-proof data matches, it reads the BMU. By comparing the algorithm parameters of each BMU, find the most suitable parameter table and save it in the BCU;

102,BCU实时采集电流、总压以及通过CAN通信获取BMU采集的单体电压、温度等数据,实时计算SOC;102. The BCU collects the current and total voltage in real time, and obtains the data such as the voltage and temperature of the cell collected by the BMU through CAN communication, and calculates the SOC in real time;

BCU定时广播总压、电流、充放电状态等数据给各个BMU,BMU收到总压、电流和充放电状态后,实时估算BMU本模组内的SOC,并将SOC发送给BCU;The BCU regularly broadcasts data such as total voltage, current, and charge and discharge status to each BMU. After the BMU receives the total voltage, current, and charge and discharge status, it estimates the SOC in this module of the BMU in real time, and sends the SOC to the BCU;

103,BCU和BMU在实时估算SOC时,将实时运行的SOC参数,如剩余容量、SOC、循环次数等和SOC估算有关的实时更新的参数存储起来;103, when the BCU and the BMU estimate the SOC in real time, store the real-time running SOC parameters, such as the remaining capacity, the SOC, the number of cycles, etc., and the real-time updated parameters related to the SOC estimation;

104,BCU通过本机计算的SOC和各个模块的SOC进行比较诊断,判断SOC是否失效,如果失效则参考未失效的SOC值继续计算SOC,直到SOC估算恢复正常。104 , the BCU compares and diagnoses the SOC calculated by the local computer and the SOC of each module to determine whether the SOC fails. If it fails, it continues to calculate the SOC with reference to the SOC value that has not failed until the SOC estimation returns to normal.

本发明的技术效果如下:The technical effect of the present invention is as follows:

1)系统中出现多款电芯时,能够提高SOC精度,降低更换电芯的SOC估算精度风险;1) When there are multiple cells in the system, the SOC accuracy can be improved and the risk of SOC estimation accuracy of replacing cells can be reduced;

2)能解决同一电芯型号,模组容量不一致的SOC精度问题,降低对售后更换模组的要求;2) It can solve the SOC accuracy problem of the same cell type and inconsistent module capacity, and reduce the requirements for after-sales module replacement;

3)由于系统是分布式存储SOC标定参数,当有一个模组失效时,可以使用其他模组中存储的参数进行同步,利用系统冗余存储的方案,降低系统的存储失效风险;3) Since the system is a distributed storage of SOC calibration parameters, when one module fails, the parameters stored in other modules can be used for synchronization, and the redundant storage scheme of the system is used to reduce the risk of storage failure of the system;

4)由于BCU和各个BMU都会计算SOC,当有一个节点计算SOC异常时,可以通过其他节点的SOC值进行诊断,避免单点失效。4) Since the BCU and each BMU will calculate the SOC, when one node calculates the SOC abnormally, it can be diagnosed through the SOC values of other nodes to avoid single-point failure.

附图说明Description of drawings

图1是本发明所实现的通信组网示意图。FIG. 1 is a schematic diagram of a communication networking implemented by the present invention.

图2是本发明所实现的总流程图。Figure 2 is a general flow chart of the implementation of the present invention.

图3是本发明所实现的SOC参数同步流程图。FIG. 3 is a flow chart of SOC parameter synchronization realized by the present invention.

图4是本发明所实现的SOC诊断和修正SOC流程图。FIG. 4 is a flow chart of SOC diagnosis and SOC correction implemented by the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

本发明所实现的分布式计算和存储SOC方法,包括如下步骤:The distributed computing and storage SOC method realized by the present invention includes the following steps:

1)模组在出厂时将SOC标定写入到BMU中,并且模组的软件也支持SOC估算,SOC标定参数需包含SOC算法标定参数和防呆参数,系统上电时,BCU先读取BMU的防呆数据,如果防呆数据匹配,则读取BMU的SOC标定参数,通过比较各个BMU的算法参数,找到最合适的一个参数表,并保存在BCU中,同时BCU也支持SOC估算;1) The module writes the SOC calibration into the BMU when it leaves the factory, and the software of the module also supports SOC estimation. The SOC calibration parameters need to include SOC algorithm calibration parameters and fool-proof parameters. When the system is powered on, the BCU first reads the BMU If the fool-proof data matches, read the SOC calibration parameters of the BMU, find the most suitable parameter table by comparing the algorithm parameters of each BMU, and save it in the BCU, and the BCU also supports SOC estimation;

2)整个系统在运行过程中,BCU实时采集电流、总压以及通过CAN通信获取BMU采集的单体电压、温度等数据,实时计算SOC;BCU也定时广播总压、电流、充放电状态等数据给各个BMU,BMU收到总压、电流和充放电状态后,也实时估算BMU本模组内的SOC,并将SOC发送给BCU;2) During the operation of the whole system, the BCU collects the current and total voltage in real time, and obtains the data such as the voltage and temperature of the cell collected by the BMU through CAN communication, and calculates the SOC in real time; the BCU also regularly broadcasts the total voltage, current, charge and discharge status and other data. For each BMU, after the BMU receives the total voltage, current and charge and discharge status, it also estimates the SOC in the BMU module in real time, and sends the SOC to the BCU;

3)BCU和BMU在实时估算SOC时,将实时运行的SOC参数,如剩余容量、SOC、循环次数等和SOC估算有关的实时更新的参数存储起来;3) When the BCU and BMU estimate the SOC in real time, the real-time running SOC parameters, such as remaining capacity, SOC, cycle times, etc., and the real-time updated parameters related to the SOC estimation are stored;

4)BCU通过本机计算的SOC和各个模块的SOC进行比较诊断,判断SOC是否失效,如果失效则参考未失效的SOC值继续计算SOC,直到SOC估算恢复正常。4) The BCU compares and diagnoses the SOC calculated by the local computer and the SOC of each module to determine whether the SOC fails. If it fails, it continues to calculate the SOC with reference to the non-failed SOC value until the SOC estimation returns to normal.

如图1所示,BCU为电池控制电源,BMU为电池管理单元;As shown in Figure 1, the BCU is the battery control power supply, and the BMU is the battery management unit;

BCU负责总压、电流采集、充放电状态分析、上下电管理、外部设备通信、内网BMU管理等;BCU is responsible for total voltage, current acquisition, charge and discharge status analysis, power-on and power-off management, external device communication, intranet BMU management, etc.;

BMU负责电池单体电压、电池温度、电池均衡、BCU通信等功能。The BMU is responsible for battery cell voltage, battery temperature, battery balance, BCU communication and other functions.

如图2所示,系统流程为系统上电后,BCU先完成SOC参数同步流程,完成参数同步后,BCU实时读取BMU的数据,数据包括单体电压、电池温度、SOC、SOH、循环次数、剩余容量、满充可用容量等数据,BCU同时广播BCU的数据给BMU,数据包括总电压、总电流、充放电状态、SOC、SOH、循环次数、剩余容量、满充可用容量等数据;As shown in Figure 2, the system process is that after the system is powered on, the BCU first completes the SOC parameter synchronization process. After the parameter synchronization is completed, the BCU reads the BMU data in real time, including the cell voltage, battery temperature, SOC, SOH, and cycle times. , remaining capacity, full charge available capacity and other data, BCU broadcasts BCU data to BMU at the same time, the data includes total voltage, total current, charge and discharge status, SOC, SOH, cycle times, remaining capacity, full charge available capacity and other data;

图3所示,SOC参数同步流程说明如下:As shown in Figure 3, the SOC parameter synchronization process is described as follows:

1)系统上电后,BCU读取BMU的电芯参数中的项目编号,并使用项目编号作为SOC参数的防呆码,如果防呆码不匹配则报BMU不匹配故障;1) After the system is powered on, the BCU reads the item number in the battery cell parameters of the BMU, and uses the item number as the fool-proof code of the SOC parameter. If the fool-proof code does not match, it will report a BMU mismatch fault;

2)如果防呆码匹配,BCU进一步读取各个BMU存储的BCU的序列号,BCU使用读回来的序列号和自身的序列号比较,如果不一致则置ResetBcuSoc为TRUE,意味着BCU的SOC需要重新计算,BCU再将自身的序列号发送给此BMU,BMU存储起来;2) If the fool-proof code matches, the BCU further reads the serial number of the BCU stored by each BMU, and the BCU compares the read serial number with its own serial number. If it is inconsistent, it sets ResetBcuSoc to TRUE, which means that the SOC of the BCU needs to be reset. After calculation, the BCU sends its own serial number to the BMU, and the BMU stores it;

3)BCU再读取BMU中的电芯参数信息(该参数非电芯标定参数,此参数主要是电芯规格型号、标定参数有效性状态、性能等级);其中标定参数有效性主要是电芯标定参数的校验结果,校验正确则有效,反之无效,性能等级再设计阶段可知性能优劣;3) The BCU then reads the cell parameter information in the BMU (this parameter is not a cell calibration parameter, this parameter is mainly the cell specification model, calibration parameter validity status, performance level); the calibration parameter validity is mainly the cell The verification result of the calibration parameters is valid if the verification is correct, otherwise it is invalid, and the performance level can be known in the redesign stage of the performance level;

4)如果所有BMU的电芯型号一致,则读取BMU1的电芯参数作为BCU的SOC估算参数;4) If the cell models of all BMUs are the same, read the cell parameters of BMU1 as the SOC estimation parameters of the BCU;

5)如果不一致,再判断标定参数有效性,如果标定参数有效,则BCU从所有BMU的电芯型号中选择性能最差的参数作为BCU的SOC估算参数,用于降低SOC估算误差;5) If they are inconsistent, then judge the validity of the calibration parameters. If the calibration parameters are valid, the BCU selects the parameter with the worst performance from all BMU cell types as the SOC estimation parameter of the BCU to reduce the SOC estimation error;

6)如果标定参数无效,BCU从所有的BMU中查找同型号电芯,如果找到则同步参数给BMU,如果找不到,BCU将不参考该BMU的SOC值;6) If the calibration parameters are invalid, the BCU searches for the same type of battery cell from all the BMUs, and if it is found, it will synchronize the parameters to the BMU. If it is not found, the BCU will not refer to the SOC value of the BMU;

7)BCU再读取各个BMU的实时存储的参数,如SOH、SOC等,如果BMU的SOH≠BCU存储的该BMU的SOH或BMU的SOC和BCU的存储的该BMU的SOC误差超过10%,则置ResetBcuSoc为TRUE,意味着BCU的SOC需要重新计算;7) The BCU then reads the real-time stored parameters of each BMU, such as SOH, SOC, etc. If the SOH of the BMU ≠ the SOH of the BMU stored in the BCU or the SOC of the BMU and the SOC of the BMU stored in the BCU The error exceeds 10%, Then set ResetBcuSoc to TRUE, which means that the SOC of the BCU needs to be recalculated;

8)BCU如果判断ResetBcuSoc为TRUE,BCU则收集所有有效BMU的SOC通过加权的方式等到一个新的SOC,加权公式如下:8) If the BCU judges that ResetBcuSoc is TRUE, the BCU collects the SOCs of all valid BMUs and waits for a new SOC by weighting. The weighting formula is as follows:

SOC_new=K1*SOC1+K2*SOC2+Kn*SOCn,SOC_new=K1*SOC1+K2*SOC2+Kn*SOCn,

其中,n表示模组数量,K1+K2...+Kn=1。Among them, n represents the number of modules, K1+K2...+Kn=1.

SOC诊断和修正SOC流程如图4所示:The SOC diagnosis and correction SOC process is shown in Figure 4:

1)BCU诊断所有节点(包括所有BMU和BCU)变化值是否超过△SOC_Delta(如15%),所有节点的计算起始时间为同一时刻,理论上所有节点的变化率是很接近的,如果误差很大说明SOC计算可能存在异常;1) BCU diagnoses whether the change value of all nodes (including all BMU and BCU) exceeds △SOC_Delta (such as 15%). The calculation start time of all nodes is the same time. In theory, the change rates of all nodes are very close. It means that there may be an abnormality in the SOC calculation;

2)BCU诊断所有节点再这段时间内的SOC变化值△SOCn_Interval:2) The BCU diagnoses the SOC change value △SOCn_Interval of all nodes during this period:

△SOCn_Interval=|SOCn_New-SOCn_Previous|,n=N+1,N为N个模组;△SOCn_Interval=|SOCn_New-SOCn_Previous|, n=N+1, N is N modules;

3)BCU对所有有效节点的△SOCn_Interval求和取平均△SOCn_Average:3) The BCU sums the △SOCn_Interval of all valid nodes and takes the average △SOCn_Average:

△SOC_Average=(△SOC0_Interval+△SOC1_Interval+△SOCn_Interval)/n;△SOC_Average=(△SOC0_Interval+△SOC1_Interval+△SOCn_Interval)/n;

有效节点即没有诊断到SOC有异常的节点;A valid node is a node that has not been diagnosed with an abnormal SOC;

4)BCU计算△SOC_Average和所有节点的误差△SOCn_Err:4) BCU calculates △SOC_Average and the error △SOCn_Err of all nodes:

△SOCn_Err=|△SOC_Average-△SOCn_Interval|△SOCn_Err=|△SOC_Average-△SOCn_Interval|

5)如果△SOCn_Err>△SOC_Delta/2,则认为此节点的SOC估算存在异常,置位此节点的无效SOC节点,等待满充或者放空进行修正恢复;5) If △SOCn_Err>△SOC_Delta/2, it is considered that the SOC estimation of this node is abnormal, set the invalid SOC node of this node, and wait for full charging or emptying for correction and recovery;

△SOC_Delta/2为示例值,可根据实际情况调整;△SOC_Delta/2 is an example value, which can be adjusted according to the actual situation;

6)当无效节点处于满充状态时,修正该节点的SOC为100%,并取消所有节点的无效状态,让该模组重新参与系统SOC运算;6) When the invalid node is in a fully charged state, correct the SOC of the node to 100%, cancel the invalid state of all nodes, and let the module re-participate in the system SOC operation;

7)当无效节点处于放空状态时,修正该节点的SOC为0%,并取消所有节点的无效状态,让该模组重新参与系统SOC运算。7) When the invalid node is in the empty state, correct the SOC of the node to 0%, cancel the invalid state of all nodes, and let the module participate in the system SOC calculation again.

总之,本发明的优点如下:In a word, the advantages of the present invention are as follows:

1、本发明将电芯参数存储到每一个模组中,采用模组电芯参数同步给BCU的方式,可实现模组自由搭配时降低对SOC精度的影响;1. The present invention stores the battery cell parameters in each module, and adopts the method of synchronizing the battery cell parameters of the module to the BCU, which can reduce the impact on the SOC accuracy when the modules are freely matched;

2、本发明在诊断到某个节点的电芯标定参数丢失时,可从其他节点获取参数同重新同步到该节点上,避免因存储异常造成的参数丢失,通过分布式存储和恢复提高系统的容错性;2. When it is diagnosed that the cell calibration parameters of a certain node are lost, the present invention can obtain parameters from other nodes and re-synchronize them to the node, so as to avoid parameter loss caused by abnormal storage, and improve system performance through distributed storage and recovery. fault tolerance;

3、本发明采用分布式计算SOC,BMU计算的SOC和BCU计算的SOC相互诊断,冗余设计提高系统的可靠性,也可以在单点失效时不影响系统的工作,并能够快速修复SOC估算问题;3. The present invention adopts distributed computing SOC, SOC calculated by BMU and SOC calculated by BCU to diagnose each other, redundancy design improves the reliability of the system, also can not affect the work of the system in the event of a single point failure, and can quickly repair the SOC estimation question;

4、本发明还对电芯参数进行防呆,避免模组错误配对。4. The present invention also prevents the parameters of the battery cells from being fool-proof to avoid wrong pairing of modules.

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the present invention. Inside.

Claims (6)

Translated fromChinese
1.一种分布式计算和存储SOC方法,其特征在于该方法包括如下步骤:1. a distributed computing and storage SOC method, is characterized in that the method comprises the steps:步骤1),电芯参数存储到BMU中,上电后将BMU的算法参数上传给BCU,Step 1), the cell parameters are stored in the BMU, and the algorithm parameters of the BMU are uploaded to the BCU after power-on,步骤2),BCU每次上电时,BCU将本机的序列号同步到每一个模组中,BMU每次上电后将绑定的BCU的序列号发送给BCU;Step 2), each time the BCU is powered on, the BCU synchronizes the serial number of the machine to each module, and the BMU sends the bound BCU serial number to the BCU after each power-on;步骤3),BCU中只存一份电芯参数表,避免不断的增加电芯算法参数,可减少对MCU的FLASH空间的要求;Step 3), only one battery cell parameter table is stored in the BCU to avoid continuously increasing the cell algorithm parameters, which can reduce the requirement for the FLASH space of the MCU;步骤4),BCU实时同步电池总压和平均电流给BMU,BMU同步估算SOC。Step 4), the BCU synchronizes the total battery voltage and average current to the BMU in real time, and the BMU estimates the SOC simultaneously.2.如权利要求1所述的一种分布式计算和存储SOC方法,其特征在于该方法步骤1)中,如存储的是同款电芯时,BCU直接存储一份电芯参数作为SOC算法参数,当系统中存在多款电芯时,取性能最差的一款电芯作为SOC算法参数。2. A kind of distributed computing and storage SOC method as claimed in claim 1, it is characterized in that in this method step 1), if what is stored is the same battery cell, BCU directly stores a battery cell parameter as SOC algorithm parameter, when there are multiple cells in the system, the cell with the worst performance is taken as the SOC algorithm parameter.3.如权利要求2所述的一种分布式计算和存储SOC方法,其特征在于步骤2)中,BCU如果诊断到序列号和本身不一致,BCU则重新更新SOC值,并将BCU的序列号同步给BMU。3. a kind of distributed computing and storage SOC method as claimed in claim 2, it is characterized in that in step 2), if BCU diagnoses that serial number is inconsistent with itself, BCU then re-updates SOC value, and the serial number of BCU is updated again. Sync to BMU.4.如权利要求3所述的一种分布式计算和存储SOC方法,其特征在于进一步包括如下步骤:4. a kind of distributed computing and storage SOC method as claimed in claim 3 is characterized in that further comprising the steps:101,将SOC标定写入到BMU中,SOC标定参数需包含SOC算法标定参数和防呆参数,系统上电时,BCU先读取BMU的防呆数据,如果防呆数据匹配,则读取BMU的SOC标定参数,通过比较各个BMU的算法参数,找到最合适的一个参数表,并保存在BCU中;101. Write the SOC calibration into the BMU. The SOC calibration parameters must include the SOC algorithm calibration parameters and the fool-proof parameters. When the system is powered on, the BCU first reads the fool-proof data of the BMU. If the fool-proof data matches, it reads the BMU. By comparing the algorithm parameters of each BMU, find the most suitable parameter table and save it in the BCU;102,BCU实时采集电流、总压以及通过CAN通信获取BMU采集的单体电压、温度等数据,实时计算SOC;102. The BCU collects the current and total voltage in real time, and obtains the data such as the voltage and temperature of the cell collected by the BMU through CAN communication, and calculates the SOC in real time;103,BCU和BMU在实时估算SOC时,将实时运行的SOC参数,如剩余容量、SOC、循环次数等和SOC估算有关的实时更新的参数存储起来;103, when the BCU and the BMU estimate the SOC in real time, store the real-time running SOC parameters, such as the remaining capacity, the SOC, the number of cycles, etc., and the real-time updated parameters related to the SOC estimation;104,BCU通过本机计算的SOC和各个模块的SOC进行比较诊断,判断SOC是否失效,如果失效则参考未失效的SOC值继续计算SOC,直到SOC估算恢复正常。104 , the BCU compares and diagnoses the SOC calculated by the local computer and the SOC of each module to determine whether the SOC fails. If it fails, it continues to calculate the SOC with reference to the SOC value that has not failed until the SOC estimation returns to normal.5.如权利要求4所述的一种分布式计算和存储SOC方法,其特征在于步骤102中,BCU定时广播总压、电流、充放电状态等数据给各个BMU,BMU收到总压、电流和充放电状态后,实时估算BMU本模组内的SOC,并将SOC发送给BCU。5. a kind of distributed computing and storage SOC method as claimed in claim 4 is characterized in that in step 102, BCU regularly broadcasts data such as total voltage, current, charging and discharging state to each BMU, BMU receives total voltage, current After the state of charge and discharge, the SOC in the BMU module is estimated in real time, and the SOC is sent to the BCU.6.如权利要求5所述的一种分布式计算和存储SOC方法,其特征在于SOC参数同步流程如下:6. a kind of distributed computing and storage SOC method as claimed in claim 5 is characterized in that SOC parameter synchronization process is as follows:201)系统上电后,BCU读取BMU的电芯参数中的项目编号,并使用项目编号作为SOC参数的防呆码;201) After the system is powered on, the BCU reads the item number in the battery cell parameters of the BMU, and uses the item number as the foolproof code of the SOC parameter;202)如果防呆码匹配,BCU进一步读取各个BMU存储的BCU的序列号,BCU使用读回来的序列号和自身的序列号比较,如果不一致则置ResetBcuSoc为TRUE,BCU再将自身的序列号发送给此BMU,BMU进行存储;202) If the fool-proof code matches, the BCU further reads the serial number of the BCU stored in each BMU, and the BCU uses the read back serial number to compare with its own serial number. Send to this BMU, BMU will store;203)BCU再读取BMU中的电芯参数信息;其中标定参数有效性是电芯标定参数的校验结果,校验正确则有效,反之无效;203) The BCU then reads the cell parameter information in the BMU; the validity of the calibration parameters is the verification result of the cell calibration parameters, if the verification is correct, it is valid, otherwise it is invalid;204)如果所有BMU的电芯型号一致,则读取BMU1的电芯参数作为BCU的SOC估算参数;204) If the cell models of all BMUs are the same, read the cell parameters of BMU1 as the SOC estimation parameters of the BCU;205)如果不一致,再判断标定参数有效性,如果标定参数有效,则BCU从所有BMU的电芯型号中选择性能最差的参数作为BCU的SOC估算参数;205) If it is inconsistent, then judge the validity of the calibration parameters. If the calibration parameters are valid, the BCU selects the parameter with the worst performance from all the cell types of the BMU as the SOC estimation parameter of the BCU;206)如果标定参数无效,BCU从所有的BMU中查找同型号电芯,如果找到则同步参数给BMU,如果找不到,BCU将不参考该BMU的SOC值;206) If the calibration parameter is invalid, the BCU searches for the same type of battery from all BMUs, and if it is found, it will synchronize the parameters to the BMU. If it is not found, the BCU will not refer to the SOC value of the BMU;207)BCU再读取各个BMU的实时存储的参数,如果BMU的SOH≠BCU存储的该BMU的SOH或BMU的SOC和BCU的存储的该BMU的SOC误差超过10%,则置ResetBcuSoc为TRUE;207) The BCU reads the real-time stored parameters of each BMU again, and if the SOH of the BMU ≠ the SOH of the BCU stored in the BMU or the SOC of the BMU and the SOC of the BMU stored in the BCU, the SOC error of the BMU exceeds 10%, then set ResetBcuSoc to TRUE;208)BCU如果判断ResetBcuSoc为TRUE,BCU则收集所有有效BMU的SOC通过加权的方式等到一个新的SOC,加权公式如下:208) If the BCU judges that ResetBcuSoc is TRUE, the BCU collects the SOCs of all valid BMUs and waits for a new SOC by weighting. The weighting formula is as follows:SOC_new=K1*SOC1+K2*SOC2+Kn*SOCn,SOC_new=K1*SOC1+K2*SOC2+Kn*SOCn,其中,n表示模组数量,K1+K2...+Kn=1。Among them, n represents the number of modules, K1+K2...+Kn=1.
CN202210285785.6A2022-03-222022-03-22Distributed computing and storing SOC methodActiveCN114660481B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202210285785.6ACN114660481B (en)2022-03-222022-03-22Distributed computing and storing SOC method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202210285785.6ACN114660481B (en)2022-03-222022-03-22Distributed computing and storing SOC method

Publications (2)

Publication NumberPublication Date
CN114660481Atrue CN114660481A (en)2022-06-24
CN114660481B CN114660481B (en)2025-08-12

Family

ID=82031759

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202210285785.6AActiveCN114660481B (en)2022-03-222022-03-22Distributed computing and storing SOC method

Country Status (1)

CountryLink
CN (1)CN114660481B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103723051A (en)*2013-12-202014-04-16惠州市亿能电子有限公司State synchronizing and tracking method of distributed battery management system
CN104348205A (en)*2013-07-312015-02-11杭州锂软科技有限公司SOC-SOH (state of charge-state of health)-based distributed BMS (Battery Management System)
US20160137147A1 (en)*2014-11-172016-05-19Hyundai Autron Co., Ltd.Battery management system and method
CN108016310A (en)*2017-11-272018-05-11华中科技大学A kind of battery management system and its energy management method of Distributed logic formula
CN109606200A (en)*2018-12-192019-04-12江苏科达车业有限公司A kind of new energy car battery management system
CN110058177A (en)*2019-05-062019-07-26奇瑞新能源汽车技术有限公司A kind of power battery electricity SOC modification method
CN213782928U (en)*2020-12-032021-07-23芜湖楚睿智能科技有限公司Battery management system for energy storage of lithium battery
CN113759300A (en)*2021-11-102021-12-07深圳市聚能优电科技有限公司Performance test method and device of battery management unit
CN113848484A (en)*2021-09-092021-12-28华为数字能源技术有限公司 An energy storage system and parameter calibration method
CN114050633A (en)*2021-06-112022-02-15上海玫克生储能科技有限公司Dynamic management and control method and device for lithium battery energy storage system and electronic equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104348205A (en)*2013-07-312015-02-11杭州锂软科技有限公司SOC-SOH (state of charge-state of health)-based distributed BMS (Battery Management System)
CN103723051A (en)*2013-12-202014-04-16惠州市亿能电子有限公司State synchronizing and tracking method of distributed battery management system
US20160137147A1 (en)*2014-11-172016-05-19Hyundai Autron Co., Ltd.Battery management system and method
CN108016310A (en)*2017-11-272018-05-11华中科技大学A kind of battery management system and its energy management method of Distributed logic formula
CN109606200A (en)*2018-12-192019-04-12江苏科达车业有限公司A kind of new energy car battery management system
CN110058177A (en)*2019-05-062019-07-26奇瑞新能源汽车技术有限公司A kind of power battery electricity SOC modification method
CN213782928U (en)*2020-12-032021-07-23芜湖楚睿智能科技有限公司Battery management system for energy storage of lithium battery
CN114050633A (en)*2021-06-112022-02-15上海玫克生储能科技有限公司Dynamic management and control method and device for lithium battery energy storage system and electronic equipment
CN113848484A (en)*2021-09-092021-12-28华为数字能源技术有限公司 An energy storage system and parameter calibration method
CN113759300A (en)*2021-11-102021-12-07深圳市聚能优电科技有限公司Performance test method and device of battery management unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵熙等: "基于云平台的电池管理系统设计与实现", 《机械与电子》, no. 12, 24 December 2019 (2019-12-24), pages 51 - 55*

Also Published As

Publication numberPublication date
CN114660481B (en)2025-08-12

Similar Documents

PublicationPublication DateTitle
US8648568B2 (en)Backup power system management
US7911088B2 (en)Method and apparatus for monitoring energy storage devices
CN103728568B (en)Method detecting single lithium battery voltage
US8179094B2 (en)Device and method for improved battery condition learn cycle
CN109038712B (en)Liquid metal battery pack balance control method and fault-tolerant system
CN104101838A (en)Power cell system, and charge state and maximum charging and discharging power estimation methods thereof
CN105811487A (en)Battery set, automatic capacity calibration learning method for battery set and automatic capacity calibration learning system
JP2020109720A (en) Storage battery evaluation device, storage battery evaluation method, and storage battery evaluation system
CN108152746B (en) A method and system for detecting battery activity of a backup power pack
CN112909355A (en)Battery management system, processing device, battery management method and battery management and control system
JP7149836B2 (en) Power supply system, diagnostic equipment and uninterruptible power supply
CN115079026A (en)SOC automatic calibration method and device suitable for high-voltage energy storage system
CN112068015B (en)Health degree calculation method and device of power module and electronic equipment
KR20210035115A (en)Server cabinet backup power system and detection method
CN114660481A (en)Distributed SOC (system on chip) calculation and storage method
CN113567896B (en)Method, device and system for detecting faults of battery pack
WO2025112206A1 (en)Energy storage system and maintenance method therefor
US20230122667A1 (en)Method and apparatus for monitoring battery backup unit, server, and readable storage medium
CN115173514B (en)Energy storage battery management system, method and application
CN115832464A (en) Battery system troubleshooting method, device, computer equipment and medium
CN114730932B (en) Battery management device and method
CN110400422A (en)A kind of electric energy meter charging method
WO2019235956A1 (en)Smart battery system and method of smart battery system balancing
EP4414727B1 (en)Battery diagnosis apparatus and method for leakage current detection
CN118659492A (en) A method, device and equipment for charging and discharging battery packs of energy storage systems

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp