











技术领域technical field
本发明涉及通信技术领域,尤其涉及一种信号处理装置及方法。The present invention relates to the field of communication technology, in particular to a signal processing device and method.
背景技术Background technique
随着无线通信技术的发展,对于将至少一种频率的基带信号进行放大并射频发射的信号处理装置的需求越大越大。With the development of wireless communication technology, the demand for a signal processing device that amplifies a baseband signal of at least one frequency and transmits a radio frequency is greater and greater.
传统的对信号进行放大的信号处理装置为了应对这一境况,在将至少一种频率的基带信号进行处理得到放大信号的过程中,存在功放效率低的问题。In order to cope with this situation, the traditional signal processing device for amplifying signals has the problem of low power amplifier efficiency in the process of processing baseband signals of at least one frequency to obtain amplified signals.
发明内容Contents of the invention
本发明实施例的主要目的是提出一种信号处理装置及方法,旨在实现一功放效率高的信号处理装置。The main purpose of the embodiments of the present invention is to provide a signal processing device and method, aiming at realizing a signal processing device with high power amplification efficiency.
为实现上述目的,本发明实施例提供了信号处理装置,所述信号处理装置包括:基带信号输入模块、信号分离模块、信号调制模块和双频段功率放大器;To achieve the above object, an embodiment of the present invention provides a signal processing device, the signal processing device includes: a baseband signal input module, a signal separation module, a signal modulation module and a dual-band power amplifier;
所述基带信号输入模块包括N个信号输入端和N个信号输出端,所述基带信号输入模块的N个所述信号输入端用于输入N种基带信号,其中,N种所述基带信号的频率种类大于或等于1且小于或等于N,所述N为大于或等于1的整数;The baseband signal input module includes N signal input terminals and N signal output terminals, and the N signal input terminals of the baseband signal input module are used to input N kinds of baseband signals, wherein the N kinds of baseband signals The frequency category is greater than or equal to 1 and less than or equal to N, where N is an integer greater than or equal to 1;
所述信号分离模块包括K1个第一信号分离单元和K2个第二信号分离单元,其中,所述K1为整数,所述K2为整数,且所述K1和所述K2的取值之和等于所述N的取值;The signal separation module includes K1 first signal separation units and K2 second signal separation units, wherein the K1 is an integer, the K2 is an integer, and the sum of the values of K1 and K2 is equal to The value of N;
所述K1大于或等于1,且所述K2大于或等于1时,所述第一信号分离单元的信号输入端与所述基带信号输入模块的信号输出端连接,所述第一信号分离单元用于对第Ni种所述基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,其中所述综合基带信号模值为至少一种所述基带信号的模值之和;所述第二信号分离单元的信号输入端与所述基带信号输入模块的信号输出端连接,所述第二信号分离单元用于对第Nj种所述基带信号的参数按照固有改变量进行改变得到两种分解信号;其中所述Ni为大于或等于1且小于或等于N的整数,所述Nj为大于或等于1且小于或等于N的整数,所述参数包括振幅和/或相位;When the K1 is greater than or equal to 1, and the K2 is greater than or equal to 1, the signal input end of the first signal separation unit is connected to the signal output end of the baseband signal input module, and the first signal separation unit uses The parameters of the Ni-th baseband signal are changed according to the amount of change determined by the integrated baseband signal modulus to obtain two decomposed signals with the same amplitude and opposite phases, wherein the integrated baseband signal modulus is at least one of the baseband The sum of the modulus values of the signal; the signal input end of the second signal separation unit is connected to the signal output end of the baseband signal input module, and the second signal separation unit is used for the parameters of the Njth baseband signal Change according to the inherent change to obtain two kinds of decomposition signals; wherein the Ni is an integer greater than or equal to 1 and less than or equal to N, the Nj is an integer greater than or equal to 1 and less than or equal to N, and the parameters include amplitude and/or phase;
所述信号调制模块的信号输入端与所述信号分离模块的信号输出端连接,所述信号调制模块用于将2N种所述分解信号中转换为合成模拟信号;The signal input end of the signal modulation module is connected to the signal output end of the signal separation module, and the signal modulation module is used to convert 2N kinds of the decomposed signals into synthetic analog signals;
所述双频段功率放大器的信号输入端与所述信号调制模块的信号输出端连接,所述双频段功率放大器用于放大所述合成模拟信号并输出;The signal input end of the dual-band power amplifier is connected to the signal output end of the signal modulation module, and the dual-band power amplifier is used to amplify the synthesized analog signal and output it;
或者,所述K1为0或者所述K2为0时,所述信号处理装置还包括通道性能补偿模块,所述通道性能补偿模块包括2N个通道性能补偿单元,所述通道性能补偿单元的信号输入端与所述信号分离模块的信号输出端连接,所述通道性能补偿单元的信号输出端与所述信号调制模块的信号输入端连接,所述通道性能补偿单元用于补偿分立器件对所述分解信号的参数产生的差异。Alternatively, when the K1 is 0 or the K2 is 0, the signal processing device further includes a channel performance compensation module, the channel performance compensation module includes 2N channel performance compensation units, and the signal input of the channel performance compensation unit end is connected to the signal output end of the signal separation module, the signal output end of the channel performance compensation unit is connected to the signal input end of the signal modulation module, and the channel performance compensation unit is used to compensate the discrete device for the decomposition The parameters of the signal produce the difference.
为实现上述目的,本发明实施例还提供了一种信号处理方法,通过上述技术方案中任意所述的信号处理装置实现。To achieve the above object, an embodiment of the present invention further provides a signal processing method, which is implemented by any signal processing device described in the above technical solutions.
本发明实施例提供的信号处理装置可以实现对至少一种频率的基带信号进行放大并将高功率的放大信号输出。其中,信号处理装置中的信号分离模块同时包括第一信号分离单元和第二信号分离单元的技术方案,在降低信号分离模块和整个信号处理装置构架的复杂度的基础上,既可以通过第二信号分离单元按照基带信号的参数的固有改变量对同一种基带信号的参数进行改变得到两种分解信号,又可以对同一种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,提高了信号处理装置对于基带信号的参数的改变量的改变精度,从而降低了不同基带信号得到的分解信号的参数产生的差异,以保证进入双频段功率放大器的合成模拟信号的参数相匹配,进而优化了双频段功率放大器输出的放大信号的线性指标,提高了信号处理装置的功放效率。信号处理装置中的信号分离模块仅包括第一信号分离单元或者第二信号分离单元的技术方案,通过通道性能补偿单元补偿分立器件对分解信号的参数产生的差异,降低了分立器件的离散型对分解信号的参数产生的差异,以保证进入双频段功率放大器的合成模拟信号的参数相匹配,进而优化了双频段功率放大器输出的放大信号的线性指标,提高了信号处理装置的功放效率。The signal processing device provided by the embodiment of the present invention can amplify a baseband signal of at least one frequency and output a high-power amplified signal. Wherein, the signal separation module in the signal processing device includes the technical solution of the first signal separation unit and the second signal separation unit at the same time, on the basis of reducing the complexity of the signal separation module and the structure of the entire signal processing device, both can pass the second The signal separation unit changes the parameters of the same baseband signal according to the inherent change of the parameters of the baseband signal to obtain two kinds of decomposed signals, and can change the parameters of the same baseband signal according to the change amount determined by the integrated baseband signal modulus to obtain two kinds of decomposition signals. A decomposed signal with the same amplitude and opposite phase improves the accuracy of the signal processing device for the change of the parameter of the baseband signal, thereby reducing the difference in the parameters of the decomposed signal obtained from different baseband signals, so as to ensure that it can enter the dual-band power amplifier. The parameters of the synthesized analog signal are matched, thereby optimizing the linear index of the amplified signal output by the dual-band power amplifier, and improving the power amplification efficiency of the signal processing device. The signal separation module in the signal processing device only includes the technical solution of the first signal separation unit or the second signal separation unit, and the channel performance compensation unit compensates the difference in the parameters of the decomposed signal caused by the discrete device, reducing the discrete effect of the discrete device. The difference generated by decomposing the parameters of the signal ensures that the parameters of the synthesized analog signal entering the dual-band power amplifier match, thereby optimizing the linearity index of the amplified signal output by the dual-band power amplifier and improving the power amplifier efficiency of the signal processing device.
附图说明Description of drawings
图1a是本发明实施例提供的一种信号处理装置的结构示意图;Fig. 1a is a schematic structural diagram of a signal processing device provided by an embodiment of the present invention;
图1b是本发明实施例提供的另一种信号处理装置的结构示意图;Fig. 1b is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图1c是本发明实施例提供的又一种信号处理装置的结构示意图;Fig. 1c is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图2是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 2 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图3是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 3 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图4是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 4 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图5是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 5 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图6是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 6 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图7是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 7 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图8是时延控制单元的结构示意图;FIG. 8 is a schematic structural diagram of a delay control unit;
图9是本发明实施例提供的又一种信号处理装置的结构示意图;FIG. 9 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention;
图10是本发明实施例提供的又一种信号处理装置的结构示意图。Fig. 10 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。In the following description, use of suffixes such as 'module', 'part' or 'unit' for denoting elements is only to facilitate description of the present invention and has no specific meaning by itself. Therefore, 'module', 'part' or 'unit' may be used in combination.
正如上述技术背景技术中所述,传统的对信号进行放大的信号处理装置在将至少一种频率的基带信号进行处理得到放大信号的过程中,存在功放效率低的问题。究其原因,现有技术中信号处理装置先对基带信号进行分解,得到分解信号,然后通过双频功率放大器输出放大的模拟信号,在保证对基带信号的振幅和/或相位进行改变得到分解信号的过程中,要么是在为了实现对于基带信号的振幅和/或相位的改变量精准控制,导致器件复杂度过高;要么是器件复杂度不高,但是对于基带信号的振幅和/或相位的该变量的精准度不高,上述情况均会造成进入信号处理装置的双频段功率放大器的合成模拟信号的参数不匹配,存在功放效率低的问题。As mentioned above in the technical background, the conventional signal processing device for amplifying signals has the problem of low power amplifier efficiency in the process of processing baseband signals of at least one frequency to obtain amplified signals. The reason is that in the prior art, the signal processing device first decomposes the baseband signal to obtain the decomposed signal, and then outputs the amplified analog signal through the dual-frequency power amplifier, and then changes the amplitude and/or phase of the baseband signal to obtain the decomposed signal In the process, either in order to achieve precise control of the amplitude and/or phase of the baseband signal, the device complexity is too high; or the device complexity is not high, but for the amplitude and/or phase of the baseband signal The precision of this variable is not high, and the above-mentioned situation will cause the parameter mismatch of the synthetic analog signal entering the dual-band power amplifier of the signal processing device, and there is a problem of low power amplifier efficiency.
针对上述技术问题,本发明实施例提供了如下技术方案,旨在实现一功放效率高的信号处理装置。In view of the above technical problems, embodiments of the present invention provide the following technical solutions, aiming at realizing a signal processing device with high power amplification efficiency.
图1a是本发明实施例提供的一种信号处理装置的结构示意图。参见图1a,该信号处理装置包括:基带信号输入模块1、信号分离(Signal Component Separetion,SCS)模块2、信号调制模块3和双频段功率放大器4;基带信号输入模块1包括N个信号输入端1a和N个信号输出端1b,基带信号输入模块1的N个信号输入端1a用于输入N种基带信号,其中,N种基带信号的频率种类大于或等于1且小于或等于N,N为大于或等于1的整数;信号分离模块2包括K1个第一信号分离单元20和K2个第二信号分离单元21,其中,K1为整数,K2为整数,且K1和K2的取值之和等于N的取值;Fig. 1a is a schematic structural diagram of a signal processing device provided by an embodiment of the present invention. Referring to Fig. 1 a, the signal processing device includes: a baseband
所述K1大于或等于1,且所述K2大于或等于1时,第一信号分离单元20的信号输入端20a与基带信号输入模块1的信号输出端1b连接,第一信号分离单元20用于对第Ni种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,其中综合基带信号模值为至少一种基带信号的模值之和;第二信号分离单元21的信号输入端21a与基带信号输入模块1的信号输出端1b连接,第二信号分离单元21用于对第Nj种基带信号的参数按照固有改变量进行改变得到两种分解信号;其中,Ni为大于或等于1且小于或等于N的整数,Nj为大于或等于1且小于或等于N的整数,参数包括振幅和/或相位;信号调制模块3的信号输入端3a与信号分离模块2的信号输出端连接,信号调制模块3用于将2N种分解信号转换为合成模拟信号;双频段功率放大器(Power Amplifier,PA)4的信号输入端与信号调制模块3的信号输出端3b连接,双频段功率放大器4用于放大合成模拟信号并输出;When said K1 is greater than or equal to 1, and said K2 is greater than or equal to 1, the
或者,K1为0或者K2为0时,信号处理装置还包括通道性能补偿模块5,通道性能补偿模块5包括2N个通道性能补偿单元50,通道性能补偿单元50的信号输入端50a与信号分离模块2的信号输出端连接,通道性能补偿单元50的信号输出端50b与信号调制模块3的信号输入端3a连接,通道性能补偿单元50用于补偿分立器件对分解信号的参数产生的差异。Or, when K1 is 0 or K2 is 0, the signal processing device also includes a channel
示例性的,图1a示出了K1取值为1,且K2取值为1时的信号处理装置的结构示意图。图1b示出了K1取值为2,且K2取值为0时的信号处理装置的结构示意图。图1c示出了K1取值为0,且K2取值为2时的信号处理装置的结构示意图。本发明实施例对于图1a中第一信号分离单元20和第二信号分离单元21的数量不作具体限定,对于图1b中第一信号分离单元20的数量不作具体限定,对于图1c中第二信号分离单元21的数量不作具体限定。且图1a示出的信号处理装置,当N的取值为1时,信号处理装置可以实现对一种频率的基带信号进行放大并输出。或者,当N的取值大于1时,N种所述基带信号的频率为1种时,信号处理装置可以实现对多个一种频率的基带信号进行放大并输出。对于图1a、图1b和图1c示出的信号处理装置,当N的取值大于或等于2时,且N种所述基带信号的频率大于1种时,信号处理装置可以实现对至少两种频率的基带信号进行放大并输出。Exemplarily, FIG. 1 a shows a schematic structural diagram of a signal processing device when K1 takes a value of 1 and K2 takes a value of 1. FIG. 1 b shows a schematic structural diagram of a signal processing device when K1 takes a value of 2 and K2 takes a value of 0. FIG. 1 c shows a schematic structural diagram of a signal processing device when K1 takes a value of 0 and K2 takes a value of 2. The embodiment of the present invention does not specifically limit the number of the first
具体的,基带信号输入模块1包括N个信号输入端1a和N个信号输出端1b,以信号处理装置对于N种基带信号的接入。Specifically, the baseband
信号分离模块2对N种基带信号的参数进行改变得到2N种分解信号的原理如下:The principle of
其中,第一信号分离单元20用于对第Ni种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号的原理如下:Wherein, the first
综合基带信号模值与基带信号的参数改变量之间存在预先设定的映射关系,数量不同的基带信号的模值以及某一种基带信号的模值不同时可以确定不同的综合基带信号模值,不同的综合基带信号模值可以确定出基带信号的参数的不同改变量。第一信号分离单元20针对同一种基带信号可以得到两种振幅相同且相位相反的分解信号。例如,第一信号分离单元20以第Ni种基带信号的模值作为综合基带信号模值确定对第Ni种基带信号的参数的改变量,进而由第Ni种基带信号得到两种分解信号,这两种分解信号是振幅相同且相位相反的信号。或者,第一信号分离单元20可以根据第Ni种基带信号的模值以及其它基带信号中的至少一种的模值之和来确定对第Ni种基带信号的参数的改变量,进而由第Ni种基带信号得到两种分解信号。第一信号分离单元20用于对第Ni种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,并通过第一信号分离单元20的信号输出端20b输出。There is a preset mapping relationship between the integrated baseband signal modulus and the parameter change of the baseband signal. When the modulus values of different baseband signals and the modulus values of a certain baseband signal are different, different integrated baseband signal moduli can be determined. , different modulus values of the integrated baseband signal can determine different changes in the parameters of the baseband signal. The first
第二信号分离单元21用于对第Nj种基带信号的参数按照固有改变量进行改变得到两种分解信号的原理如下:The second
第二信号分离单元21按照基带信号的参数的固有改变量对第Nj种基带信号的参数进行改变得到两种分解信号,这两种分解信号的参数可以相同,也可以不同。第二信号分离单元21用于对第Nj种基带信号的参数按照固有改变量进行改变得到两种分解信号,并通过第二信号分离单元21的信号输出端21b输出。需要说明的是,Ni和Nj的取值可以相同,可以不同。The second
针对图1a示出的方案,信号分离模块2同时包括第一信号分离单元20和第二信号分离单元21,以实现信号分离模块2将两种基带信号分离得到4种分解信号。当第一信号分离单元20的数量大于1,和/或,第二信号分离单元21的数量大于1时,信号分离模块2将N种基带信号分离得到2N种分解信号,其中N大于或等于2。由于第一信号分离单元20可以实现对第Ni种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,其内部结构比较复杂,通常需要乘法器、存储有查询表格的存储器并且还需要取模电路的配合来得到综合基带信号模值。因此,上述信号分离模块2相对仅仅包括第一信号分离单元20的信号分离模块2,降低了信号分离模块2和整个信号处理装置构架的复杂度,从而降低了分立器件的离散型对分解信号的参数产生的差异,以保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而优化了双频段功率放大器4输出的放大信号的线性指标,提高了信号处理装置的功放效率。上述信号分离模块2相对仅仅包括第二信号分离单元21的信号分离模块2,既可以通过第二信号分离单元21按照基带信号的参数的固有改变量对第Nj种基带信号的参数进行改变得到两种分解信号,又可以对第Ni种基带信号的参数综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,提高了信号处理装置对于基带信号的参数的改变量的改变精度,从而降低了不同基带信号得到的分解信号的参数产生的差异,以保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而优化了双频段功率放大器4输出的放大信号的线性指标,提高了信号处理装置的功放效率。For the scheme shown in FIG. 1 a , the
针对图1b和图1c示出的方案,信号分离模块2仅仅包括第一信号分离单元20,或者,仅仅包括第二信号分离单元21,信号分离模块5通过通道性能补偿单元50补偿分立器件对分解信号的参数产生的差异,降低了分立器件的离散型对分解信号的参数产生的差异,以保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而优化了双频段功率放大器4输出的放大信号的线性指标,提高了信号处理装置的功放效率。图1b中第一信号分离单元20的数量大于1,图1c中第二信号分离单元21的数量大于1时,以实现信号分离模块2将N种基带信号分离得到2N种分解信号,其中N大于或等于2。For the solution shown in FIG. 1b and FIG. 1c, the
本发明实施例提供的技术方案,信号处理装置可以实现对至少一种频率的基带信号进行放大并将高功率的放大信号输出。其中,信号处理装置中的信号分离模块2同时包括第一信号分离单元20和第二信号分离单元21的技术方案,在降低信号分离模块2和整个信号处理装置构架的复杂度的基础上,既可以通过第二信号分离单元21按照基带信号的参数的固有改变量对同一种基带信号的参数进行改变得到两种分解信号,又可以对同一种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,提高了信号处理装置对于基带信号的参数的改变量的改变精度,从而降低了不同基带信号得到的分解信号的参数产生的差异,以保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而优化了双频段功率放大器4输出的放大信号的线性指标,提高了信号处理装置的功放效率。信号处理装置中的信号分离模块2仅包括第一信号分离单元20或者第二信号分离单元21的技术方案,通过通道性能补偿单元50补偿分立器件对分解信号的参数产生的差异,降低了分立器件的离散型对分解信号的参数产生的差异,以保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而优化了双频段功率放大器4输出的放大信号的线性指标,提高了信号处理装置的功放效率。According to the technical solution provided by the embodiments of the present invention, the signal processing device can amplify baseband signals of at least one frequency and output high-power amplified signals. Wherein, the
为了进一步提高同时包括第一信号分离单元20和第二信号分离单元21的信号处理装置的功放效率,本发明实施例还提供了如下技术方案:In order to further improve the power amplification efficiency of the signal processing device including the first
图2是本发明实施例提供的另一种信号处理装置的结构示意图。在上述技术方案的基础上,参见图2,K1大于或等于1,且K2大于或等于1时,信号处理装置还包括通道性能补偿模块5。Fig. 2 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. On the basis of the above technical solution, referring to FIG. 2 , when K1 is greater than or equal to 1, and K2 is greater than or equal to 1, the signal processing device further includes a channel
具体的,信号处理装置中的信号分离模块2同时包括第一信号分离单元20和第二信号分离单元21的技术方案,在降低信号分离模块2和整个信号处理装置构架的复杂度的基础上,既可以通过第二信号分离单元21按照基带信号的参数的固有改变量对同一种基带信号的参数进行改变得到两种分解信号,又可以对同一种基带信号的参数按照综合基带信号模值确定的改变量进行改变得到两种振幅相同且相位相反的分解信号,提高了信号处理装置对于基带信号的参数的改变量的改变精度,并且通过通道性能补偿单元50补偿分立器件对分解信号的参数产生的差异,降低了分立器件的离散型对分解信号的参数产生的差异,以进一步保证进入双频段功率放大器4的合成模拟信号的参数相匹配,进而进一步优化了双频段功率放大器4输出的放大信号的线性指标,进一步提高了信号处理装置的功放效率。Specifically, the
下面具体细化第一信号分离单元20的具体结构。以图2示出的信号处理装置为例对第一信号分离单元20的结构进行细化,得到图3示出的本发明实施例提供的又一种信号处理装置的结构示意图。The specific structure of the first
在上述技术方案的基础上,参见图3,第一信号分离单元20包括存储有第一查询表格的第一存储器201、第一乘法器202、存储有第二查询表格的第二存储器203和第二乘法器204,其中,第一查询表格(Lookup Table,LUT)包括M组参数的变化量,第二查询表格包括M组参数的变化量,M为大于或等于1的整数;第一乘法器202的第一信号输入端202a与第一存储器201的信号输出端201a连接,第一乘法器202的第二信号输入端202b与基带信号输入模块1的信号输出端1b连接,第一乘法器202的信号输出端202c作为第一信号分离单元20的信号输出端20b;第二乘法器204的第一信号输入端204a与第二存储器203的信号输出端203a连接,第二乘法器204的第二信号输入端204b与基带信号出入模块1的信号输出端1b连接,第二乘法器204的信号输出端204c作为第一信号分离单元20的信号输出端20b;信号处理装置还包括取模电路6;取模电路6的信号输入端6a与基带信号输入模块1的至少一个信号输出端1b连接,取模电路6用于对至少一种基带信号进行取模处理,得到综合基带信号模值,其中,综合基带信号模值为至少一种基带信号的模值之和;取模电路6的信号输出端6b分别与第一存储器201的信号输入端201b和第二存储器203的信号输入端203b连接,第一存储器201用于根据综合基带信号模值确定与第一乘法器202对应的参数的变化量,第二存储器203用于根据基带信号模值确定与第二乘法器204对应的参数的变化量;第一乘法器202用于对第Ni种基带信号的参数按照与第一乘法器202对应的参数的变化量进行改变得到第一分解信号,第二乘法器204用于对第Ni种基带信号的参数按照与第二乘法器204对应的参数的变化量进行改变得到第二分解信号。On the basis of the above technical solution, referring to FIG. 3 , the first signal separation unit 20 includes a first memory 201 storing a first lookup table, a first multiplier 202, a second memory 203 storing a second lookup table, and a first Two multipliers 204, wherein the first lookup table (Lookup Table, LUT) includes the variation of M groups of parameters, the second lookup table includes the variation of M groups of parameters, and M is an integer greater than or equal to 1; the first multiplier The first signal input terminal 202a of 202 is connected with the signal output terminal 201a of the first memory 201, the second signal input terminal 202b of the first multiplier 202 is connected with the signal output terminal 1b of the baseband signal input module 1, and the first multiplier 202 The signal output terminal 202c of the first signal separation unit 20 is used as the signal output terminal 20b; the first signal input terminal 204a of the second multiplier 204 is connected with the signal output terminal 203a of the second memory 203, and the second signal output terminal 203a of the second multiplier 204 The signal input terminal 204b is connected to the signal output terminal 1b of the baseband signal input and output module 1, and the signal output terminal 204c of the second multiplier 204 is used as the signal output terminal 20b of the first signal separation unit 20; the signal processing device also includes a modulo circuit 6; The signal input terminal 6a of the modulo circuit 6 is connected to at least one signal output port 1b of the baseband signal input module 1, and the modulo circuit 6 is used to perform modulo processing on at least one baseband signal to obtain a comprehensive baseband signal modulus value, wherein, The integrated baseband signal modulus value is the sum of the modulus values of at least one baseband signal; the signal output end 6b of the modulo-taking circuit 6 is connected with the signal input end 201b of the first memory 201 and the signal input end 203b of the second memory 203 respectively, the second A memory 201 is used to determine the variation of the parameter corresponding to the first multiplier 202 according to the integrated baseband signal modulus, and the second memory 203 is used to determine the variation of the parameter corresponding to the second multiplier 204 according to the baseband signal modulus; The first multiplier 202 is used to change the parameter of the Ni-th baseband signal according to the variation of the parameter corresponding to the first multiplier 202 to obtain the first decomposed signal, and the second multiplier 204 is used to change the Ni-th baseband signal. The parameters are changed according to the change amount of the parameter corresponding to the
示例性的,图3中取模电路6的信号输入端6a与基带信号输入模块1的一个信号输出端1b连接,取模电路6用于对一种基带信号进行取模处理,得到综合基带信号模值,其中,综合基带信号模值为一种基带信号的模值。但是本发明实施例中,并不限定取模电路6的信号输入端6a与信号输入模块1连接的信号输出端1b的数量。Exemplarily, in Fig. 3, the
具体的,取模电路6将综合基带信号模值发送给第一存储器201和第二存储器203,第一存储器201根据综合基带信号模值找到第一乘法器202对应的参数的变化量,第一乘法器202用于对第Ni种基带信号的参数按照与第一乘法器202对应的参数的变化量进行改变得到第一分解信号。第二存储器203根据综合基带信号模值找到与第二乘法器204对应的参数的变化量,第二乘法器204用于对第Ni种基带信号的参数按照与第二乘法器204对应的参数的变化量进行改变得到第二分解信号。其中,与第一乘法器202对应的参数的变化量和与第二乘法器204对应的参数的变化量的差异,以实现第一分解信号和第二分解信号时两种振幅相同且相位相反的信号。Specifically, the modulo circuit 6 sends the integrated baseband signal modulus to the
可选的,第一存储器201内包括控制单元,控制单元根据综合基带信号模值,发出选择信号,找到第一乘法器202对应的参数的变化量。第二存储器203内包括控制单元,控制单元根据综合基带信号模值,发出选择信号,找到第二乘法器204对应的参数的变化量。Optionally, the
可知的,双频功率放大器在饱和区时,可以对输入信号进行线性放大,放大倍数精准可控。如果双频功率放大器的线性度不高,会导致双频段功率放大器4输出的放大信号与输入信号的非线性失真。在本实施例中,对至少一种频率的基带信号进行放大并输出的信号处理装置,在保证信号处理装置对双频段功率放大器4输出的放大信号具有一定效率的基础上,为了进一步提高信号处理装置的线性度,本发明实施例还提供的如下技术方案:It can be seen that when the dual-frequency power amplifier is in the saturation region, it can linearly amplify the input signal, and the amplification factor is precise and controllable. If the linearity of the dual-band power amplifier is not high, it will cause nonlinear distortion between the amplified signal output by the dual-
图4是本发明实施例提供的又一种信号处理装置的结构示意图。图5是本发明实施例提供的又一种信号处理装置的结构示意图。在上述技术方案的基础上,参见图4和图5,基带信号输入模块1包括N个数字预失真单元10;取模电路6包括P个取模单元60,当P等于1时;信号处理装置还包括一个多路信号选择单元70,多路信号选择单元70的第一信号输入端70a与数字预失真单元10的信号输入端10a连接,多路信号选择单元70的第二信号输入端70b与数字预失真单元10的信号输出端10b连接,多路信号选择单元70的信号输出端70c与取模单元60的信号输入端60a连接,取模单元60用于根据基带信号得到综合基带信号的模值,取模单元60的信号输出端60b分别和第一存储器201的信号输入端201b和第二存储器203的信号输入端203b连接。Fig. 4 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. Fig. 5 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. On the basis of the above technical solution, referring to Fig. 4 and Fig. 5, the baseband
或者,当P大于1,且小于或等于N时;信号处理装置还包括P个多路信号选择单元70和第一信号合成单元71;多路信号选择单元70的第一信号输入端70a与数字预失真单元10的信号输入端10a连接,多路信号选择单元70的第二信号输入端70b与数字预失真单元10的信号输出端10b连接,多路信号选择单元70的信号输出端70c与取模单元60的信号输入端连接,取模单元60用于根据基带信号得到基带信号的模值;第一信号合成单元71的信号输入端71a与取模单元60的信号输出端60b连接,第一信号合成单元71用于将至少一种基带信号的模值进行求和处理,得到综合基带信号模值,第一信号合成单元71的信号输出端71b分别和第一存储器201的信号输入端201b和第二存储器203的信号输入端203b连接。Or, when P is greater than 1 and less than or equal to N; the signal processing device also includes P multiple
具体的,本实施例提供的信号处理装置,基带信号输入模块1采用N个数字预失真(Digital Predistortion,DPD)单元10对N种基带信号分别进行预失真处理,在保证信号处理装置对双频段功率放大器4输出的放大信号具有一定效率的基础上,为了进一步了提高信号处理装置的线性度。示例性的,第一信号合成单元71为加法器,但是本发明实施例对于第一合成单元71的具体器件选择并不限定与此。Specifically, in the signal processing device provided in this embodiment, the baseband
需要说明的是,图4中的多路信号选择单元70可以选择进入数字预失真单元10之前的基带信号发送给取模单元60,也可以选择数字预失真单元10处理之后的基带信号发送给取模单元60。示例性的,图4中仅仅示出多路信号选择单元70与一个数字预失真单元10的信号输入端10a或者信号输出端10b连接,也可以与两个或者多个数字预失真单元10的信号输入端10a或者信号输出端10b连接,本发明实施例对此不作限定。即多路信号选择单元70可以选择进入任何一个数字预失真单元10之前的基带信号发送给取模单元60,也可以选择任何一个数字预失真单元10处理之后的基带信号发送给取模单元60。It should be noted that the multi-channel
具体的,P的取值为1时,取模单元60根据一种基带信号进行取模处理,得到综合基带信号模值,第一存储器201根据综合基带信号模值找到第一乘法器202对应的参数的变化量,第一乘法器202用于对第Ni种基带信号的参数按照与第一乘法器202对应的参数的变化量进行改变得到第一分解信号。第二存储器203根据综合基带信号模值找到与第二乘法器204对应的参数的变化量,第二乘法器204用于对第Ni种基带信号的参数按照与第二乘法器204对应的参数的变化量进行改变得到第二分解信号。Specifically, when the value of P is 1, the
图5示出的信号处理装置中,多路信号选择单元70和取模单元60的数量不再局限是一个,每个取模单元60根据一种基带信号进行取模处理,多个取模单元60可以得到多种基带信号的模值,第一信号合成单元71可以将多种基带信号的模值进行求和处理得到综合基带信号模值。第一存储器201根据综合基带信号模值找到第一乘法器202对应的参数的变化量,第一乘法器202用于对第Ni种基带信号的参数按照与第一乘法器202对应的参数的变化量进行改变得到第一分解信号。第二存储器203根据综合基带信号模值找到与第二乘法器204对应的参数的变化量,第二乘法器204用于对第Ni种基带信号的参数按照与第二乘法器204对应的参数的变化量进行改变得到第二分解信号。In the signal processing device shown in Fig. 5, the number of multi-channel
为了根据双频段功率放大器4输出的放大信号的功率来调整信号分离模块2对N种基带信号的参数进行改变得到2N种分解信号的过程,本发明实施例还提供了如下技术方案:In order to adjust the
图6是本发明实施例提供的又一种信号处理装置的结构示意图。图7是本发明实施例提供的又一种信号处理装置的结构示意图。在上述技术方案的基础上,参见图6和图7,信号处理装置还包括耦合器72、功率检测单元73和自适应参数提取单元74;耦合器72的信号输入端72a与双频段功率放大器4的信号输出端连接,耦合器72的第一信号输出端72b与天线连接;功率检测单元73的信号输入端73a与耦合器72的第二信号输出端72c连接,用于检测双频段功率放大器4输出的放大信号的功率;自适应参数提取单元74的信号输入端74a与功率检测单元73的信号输出端73b连接,自适应参数提取单元包括2*K1个信号输出端74b,第一存储器201的控制端201c与自适应参数提取单元74的信号输出端74b连接,第二存储器203的控制端203c与自适应参数提取单元74的信号输出端74b连接,自适应参数提取单元74用于根据双频段功率放大器4输出的放大信号的功率与预设功率的数值关系,调整第一存储器201的信号输出端201a输出的参数的变化量,以及第二存储器203的信号输出端203a输出的参数的变化量。Fig. 6 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. Fig. 7 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. On the basis of the above technical solution, referring to Fig. 6 and Fig. 7, the signal processing device also includes a coupler 72, a power detection unit 73 and an adaptive parameter extraction unit 74; The signal output end of the coupler 72 is connected, the first signal output end 72b of the coupler 72 is connected with the antenna; the signal input end 73a of the power detection unit 73 is connected with the second signal output end 72c of the coupler 72, for detecting the dual-band power amplifier 4 The power of the amplified signal of output; The signal input end 74a of adaptive parameter extraction unit 74 is connected with the signal output end 73b of power detection unit 73, and adaptive parameter extraction unit comprises 2*K1 signal output end 74b, and the first memory 201 The control terminal 201c is connected with the signal output terminal 74b of the adaptive parameter extraction unit 74, the control terminal 203c of the second memory 203 is connected with the signal output terminal 74b of the adaptive parameter extraction unit 74, and the adaptive parameter extraction unit 74 is used for according to the dual frequency band The numerical relationship between the power of the amplified signal output by the power amplifier 4 and the preset power, adjust the variation of the parameter output by the signal output terminal 201a of the first memory 201, and the variation of the parameter output by the signal output terminal 203a of the second memory 203 .
具体的,功率检测单元73用于检测双频段功率放大器4输出的放大信号的功率,自适应参数提取单元74用于根据双频段功率放大器4输出的放大信号的功率与预设功率的数值关系,发出调整信号,第一存储器201基于调整信号调整第一存储器201的信号输出端201a输出的参数的变化量;第二存储器203基于调整信号调整第二存储器203的信号输出端203a输出的参数的变化量,进而实现对第一信号分离单元20得到两种分解信号的参数的改变量的调整。上述技术方案实现了在保证双频段功率放大器4输出的放大信号的功率和预设功率相等的基础上,对至少一种频率的基带信号进行放大,提高了信号处理装置的功放效率。Specifically, the
下面具体细化第二信号分离单元21的结构。在上述技术方案的基础上,参见图4-图7,第二信号分离单元21包括第一振幅和相位调整器210以及第二振幅和相位调整器211,第一振幅和相位调整器210的信号输入端210a与基带信号输入模块1的信号输出端(即图中的数字预失真单元10的信号输出端10b)连接,第一振幅和相位调整器210用于对第Nj种基带信号的参数按照第一固有分改变量进行改变得到第三分解信号;第二振幅和相位调整器211的信号输入端211a与基带信号输入模块1的信号输出端连接,第二振幅和相位调整器211用于对第Nj种基带信号的参数按照第二固有分改变量进行改变得到第四分解信号。The structure of the second
具体的,第一振幅和相位调整器210按照基带信号的参数的固有改变量对第Nj种基带信号的参数进行改变得到第三分解信号,第二振幅和相位调整器211用于对第Nj种基带信号的参数按照第二固有分改变量进行改变得到第四分解信号,这两种分解信号的参数可以相同,也可以不同。第一振幅和相位调整器210将第三分解信号通过第一振幅和相位调整器210的信号输出端210b输出,第二振幅和相位调整器211将第四分解信号通过第二振幅和相位调整器211的信号输出端211b输出。Specifically, the first amplitude and
为了实现信号同步输入到双频段功率放大器4,本发明实施例还提供了如下技术方案:In order to realize that the signal is synchronously input to the dual-
在上述技术方案的基础上,结合图1a-图3,并参见图4-图7,该信号处理装置还包括时延控制模块,时延控制模块包括2N个时延控制单元80;时延控制单元80的信号输入端80a与信号分离模块2的信号输出端连接,或者,时延控制单元80的信号输入端与通道性能补偿单元50的信号输出端连接;时延控制单元80的信号输出端80b与信号调制模块3的信号输入端连接,时延控制单元80用于将分解信号同步输入至双频段功率放大器4的信号输入端。On the basis of the above technical solution, in conjunction with Fig. 1a-Fig. 3, and referring to Fig. 4-Fig. 7, the signal processing device also includes a time delay control module, which includes 2N time
具体的,至少一种频率的基带信号经过信号处理装置的处理到达双频段功率放大器4的信号输入端之前,可能会存在信号的不同步,本实施例提供的技术方案,时延控制单元80的设置可以保证合成模拟信号同步进入双频段功率放大器4,进而提高了信号处理装置的功放效率。Specifically, before the baseband signal of at least one frequency reaches the signal input terminal of the dual-
可选的,时延控制单元80可以通过常用时延控制电路,通过控制对于信号的采样点的时间间隔来实现不同信号的同步性。Optionally, the time
需要说明的是,时延控制单元80的信号输入端80a直接与信号分离模块2的信号输出端连接的技术方案是针对图1a示出的方案的进一步改进。时延控制单元80的信号输入端80a直接与通道性能补偿单元50的信号输出端50b连接,针对图1b、图1c和图2示出的方案的进一步改进。It should be noted that the technical solution that the
下面对于时延控制单元80的结构进行进一步细化。The structure of the
图8为时延控制单元的结构示意图。在上述技术方案的基础上,结合图1a-图7,并参见图8,时延控制单元80包括粗时延控制子单元801和精时延控制子单元802,粗时延控制子单元801的信号输入端801a与信号分离模块2的信号输出端连接,或者,粗时延控制子单元801的信号输入端801a与通道性能补偿单元50的信号输出端50b连接;精时延控制子单元802的信号输入端802a与粗时延控制子单元801的信号输出端801b连接,精时延控制子单元802的信号输出端802b与信号调制模块3的信号输入端连接,其中,粗时延控制子单元801对分解信号同步输入至双频段功率放大器的信号输入端的控制精确程度小于精时延控制子单元802对分解信号同步输入至双频段功率放大器4的信号输入端的控制精确程度。FIG. 8 is a schematic structural diagram of a delay control unit. On the basis of the above technical solution, with reference to Fig. 1a-Fig. 7, and referring to Fig. 8, the
需要说明的是,粗时延控制子单元801的信号输入端801a直接与信号分离模块2的信号输出端连接的技术方案是针对图1a示出的方案的进一步改进。粗时延控制子单元801的信号输入端801a直接与通道性能补偿单元50的信号输出端50b连接,针对图1b、图1c和图2示出的方案的进一步改进。It should be noted that the technical solution that the
具体的,时延控制单元80可以通过常用时延控制电路,通过控制对于信号的采样点的时间间隔来实现不同信号的同步性。粗时延控制子单元801对于信号的采样点的时间间隔大于精时延控制子单元802对于信号的采样点的时间间隔,以实现粗时延控制子单元801对分解信号同步输入至双频段功率放大器的信号输入端的控制精确程度小于精时延控制子单元802对分解信号同步输入至双频段功率放大器4的信号输入端的控制精确程度。本实施例提供的技术方案,通过粗时延控制子单元801和精时延控制子单元802共同完成对分解信号的同步性进行控制,提高了控制精度,以及信号处理装置的功放效率。Specifically, the time
下面进一步细化信号调制模块3的具体构成。The specific composition of the
图9是本发明实施例提供的又一种信号处理装置的结构示意图。图10是本发明实施例提供的又一种信号处理装置的结构示意图。在上述技术方案的基础上,结合体1-图7,并参见图9和图10,N等于1时,信号调制模块3包括第一数字模拟转换(Digital-AnalogConvertor,DAC)单元30和第二数字模拟转换单元31;第一数字模拟转换单元30的信号输入端30a作为信号调制模块3的信号输入端,第一数字模拟转换单元30的信号输出端30b作为信号调制模块3的信号输出端,第一数字模拟转换单元30用于将两种分解信号中的一种转换为模拟信号;第二数字模拟转换单元31的信号输入端31a作为信号调制模块3的信号输入端,第二数字模拟转换单元31的信号输出端31b作为信号调制模块3的信号输出端,第二数字模拟转换单元31用于将两种分解信号中的另一种转换为模拟信号。Fig. 9 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. Fig. 10 is a schematic structural diagram of another signal processing device provided by an embodiment of the present invention. On the basis of the above-mentioned technical solution, the combination 1-Fig. 7, and referring to Fig. 9 and Fig. 10, when N is equal to 1, the
结合体1-图3,并参见图4-图7,N大于或等于2时,信号调制模块包括第一数字模拟转换单元30、第二数字模拟转换单元31、第二信号合成单元32和第三信号合成单元33;第二信号合成单元32的信号输入端32a作为信号调制模块3的信号输入端,第一数字模拟转换单元30的信号输入端30a与第二信号合成单元32的信号输出端32b连接,第二信号合成单元32的信号输出端32b作为信号调制模块3的信号输出端;第二信号合成单元32用于将2N种分解信号中的N种分解信号合成为第一合成信号;第三信号合成单元33的信号输入端33a作为信号调制模块3的信号输入端,第二数字模拟转换单元31的信号输入端31a与第三信号合成单元33的信号输出端33b连接,第三信号合成单元33的信号输出端33b作为信号调制模块3的信号输出端;第三信号合成单元33用于将2N种分解信号中的另外N种分解信号合成为第二合成信号;第一数字模拟转换单元30用于将第一合成信号转换为第一合成模拟信号;第二数字模拟转换单元31用于将第二合成信号转换为第二合成模拟信号。Combination 1-Figure 3, and referring to Figure 4-Figure 7, when N is greater than or equal to 2, the signal modulation module includes a first digital-to-analog conversion unit 30, a second digital-to-analog conversion unit 31, a second signal synthesis unit 32 and a first Three signal synthesis unit 33; The signal input terminal 32a of the second signal synthesis unit 32 is used as the signal input terminal of the signal modulation module 3, the signal input terminal 30a of the first digital-to-analog conversion unit 30 and the signal output terminal of the second signal synthesis unit 32 32b connection, the signal output end 32b of the second signal synthesis unit 32 is used as the signal output end of the signal modulation module 3; The second signal synthesis unit 32 is used to synthesize the N kinds of decomposition signals in the 2N kinds of decomposition signals into the first composite signal; The signal input end 33a of the third signal synthesis unit 33 is used as the signal input end of the signal modulation module 3, and the signal input end 31a of the second digital-to-analog conversion unit 31 is connected with the signal output end 33b of the third signal synthesis unit 33, and the third signal The signal output terminal 33b of the synthesis unit 33 is used as the signal output terminal of the signal modulation module 3; the third signal synthesis unit 33 is used to synthesize other N kinds of decomposition signals in the 2N kinds of decomposition signals into the second synthesis signal; the first digital-to-analog conversion The unit 30 is used to convert the first composite signal into a first composite analog signal; the second digital-to-analog conversion unit 31 is used to convert the second composite signal into a second composite analog signal.
示例性的,第二信号合成单元32和第三信号合成单元33为加法器,但是本发明实施例对于第二信号合成单元32和第三信号合成单元33的具体器件选择并不限定与此。Exemplarily, the second
具体的,图9和图10示出的信号处理装置,基带信号为一种,第一数字模拟转换单元30用于将两种分解信号中的一种转换为模拟信号;第二数字模拟转换单元31用于将两种分解信号中的另一种转换为模拟信号。图4-图7示出的信号处理装置,第二信号合成单元32用于将2N种分解信号中的N种分解信号合成为第一合成信号,第三信号合成单元33用于将2N种分解信号中的另外N种分解信号合成为第二合成信号,第一数字模拟转换单元30用于将第一合成信号转换为第一合成模拟信号;第二数字模拟转换单元31用于将第二合成信号转换为第二合成模拟信号。上述技术方案实现了信号调制模块3用于将2N种分解信号转换为合成模拟信号,进而实现信号处理装置可以对至少一种频率的基带信号进行放大并将高功率的放大信号输出。需要说明的是,双频段功率放大器4是模拟器件,只能对模拟信号进行放大处理,因此,第一数字模拟转换单元30用于将第一合成信号转换为第一合成模拟信号,第二数字模拟转换单元31用于将第二合成信号转换为第二合成模拟信号,便于双频段功率放大器4的输入端输入第一合成模拟信号和第二合成模拟信号,之后对其进行放大,并输出。Specifically, in the signal processing device shown in Figure 9 and Figure 10, there is one type of baseband signal, and the first digital-to-
为了将双频段功率放大器4输出的放大信号的频率和通过天线发射的频率相同,本发明实施例还提供了如下技术方案;In order to make the frequency of the amplified signal output by the dual-
在上述技术方案的基础上,结合图1a-图3,并参见图4-图7以及图9和图10,该信号处理装置还包括频率调节模块,频率调节模块包括2N个频率调节单元90,频率调节单元90的信号输入端90a与信号分离模块2的信号输出端连接,或者,频率调节单元90的信号输入端90a与通道性能补偿单元50的信号输出端50b连接;频率调节单元90的信号输出端90b与信号调制模块3的信号输入端连接,频率调节单元90用于将分解信号的频率调节至预设中频频率。On the basis of the above technical solution, with reference to Fig. 1a-Fig. 3, and referring to Fig. 4-Fig. The
需要说明的是,频率调节模块包括2N个频率调节单元90,频率调节单元90的信号输入端90a直接与信号分离模块2的信号输出端连接的技术方案是针对图1a示出的方案的进一步改进。频率调节单元90的信号输入端90a直接与通道性能补偿单元50的信号输出端50b连接的技术方案是针对图1b、图1c和图2示出的方案的进一步改进。It should be noted that the frequency adjustment module includes 2N
具体的,频率调节单元90可以将分解信号的频率调高或者调低,将分解信号的频率和预设中频频率相同。Specifically, the
本发明实施例还提供了一种信号处理方法,该方法通过上述技术方案中的信号处理装置俩实现,本实施例提供的信号处理方法的实现原理和技术效果与上述实施例类似,此处不再赘述。The embodiment of the present invention also provides a signal processing method, which is implemented by the signal processing device in the above technical solution. The implementation principle and technical effect of the signal processing method provided by this embodiment are similar to those of the above embodiment, and are not described here. Let me repeat.
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。Those of ordinary skill in the art can understand that all or some of the steps in the methods disclosed above, the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。In a hardware implementation, the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit . Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). As known to those of ordinary skill in the art, the term computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer. In addition, as is well known to those of ordinary skill in the art, communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
以上参照附图说明了本发明的优选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, and the scope of rights of the present invention is not limited thereto. Any modifications, equivalent replacements and improvements made by those skilled in the art without departing from the scope and essence of the present invention shall fall within the scope of rights of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110181839.XACN114448452B (en) | 2021-02-09 | 2021-02-09 | signal processing device |
| PCT/CN2022/070575WO2022170898A1 (en) | 2021-02-09 | 2022-01-06 | Signal processing apparatus and method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110181839.XACN114448452B (en) | 2021-02-09 | 2021-02-09 | signal processing device |
| Publication Number | Publication Date |
|---|---|
| CN114448452A CN114448452A (en) | 2022-05-06 |
| CN114448452Btrue CN114448452B (en) | 2022-11-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110181839.XAActiveCN114448452B (en) | 2021-02-09 | 2021-02-09 | signal processing device |
| Country | Link |
|---|---|
| CN (1) | CN114448452B (en) |
| WO (1) | WO2022170898A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109150213A (en)* | 2018-09-26 | 2019-01-04 | 西安烽火电子科技有限责任公司 | A kind of digital pre-distortion system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5990738A (en)* | 1998-06-19 | 1999-11-23 | Datum Telegraphic Inc. | Compensation system and methods for a linear power amplifier |
| US7366252B2 (en)* | 2004-01-21 | 2008-04-29 | Powerwave Technologies, Inc. | Wideband enhanced digital injection predistortion system and method |
| CN100563225C (en)* | 2005-05-27 | 2009-11-25 | 华为技术有限公司 | Universal device for predistortion processing of baseband digital signals |
| CN103891137B (en)* | 2013-06-27 | 2016-08-10 | 华为技术有限公司 | A multi-band power amplifier |
| US9306506B1 (en)* | 2014-11-24 | 2016-04-05 | Analog Devices Global | Apparatus and methods for dual loop power amplifier digital pre-distortion systems |
| CN104980174B (en)* | 2015-06-30 | 2018-02-06 | 上海华为技术有限公司 | A kind of two-band dual input power amplifier emitter |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109150213A (en)* | 2018-09-26 | 2019-01-04 | 西安烽火电子科技有限责任公司 | A kind of digital pre-distortion system |
| Publication number | Publication date |
|---|---|
| CN114448452A (en) | 2022-05-06 |
| WO2022170898A1 (en) | 2022-08-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107078698B (en) | Doherty power amplifier with tunable input network | |
| CN1223080C (en) | Load envelope following amplifier system | |
| US6275685B1 (en) | Linear amplifier arrangement | |
| CN1169309C (en) | Adaptive Predistortion Transmitter | |
| US20060199553A1 (en) | Integrated transceiver with envelope tracking | |
| CN101908861B (en) | Transmitter, method for lowering signal distortion, and method for generating predistortion parameters | |
| JP2002534829A (en) | Multi-frequency transmitter using pre-distortion and transmission method | |
| JP4903718B2 (en) | Multi-mode compatible polar modulation transmitter and multi-mode wireless communication method | |
| US20110235748A1 (en) | Active antenna array having analogue transmitter linearisation and a method for predistortion of radio signals | |
| CN1649258A (en) | Multiband Lookup Table Predistorter | |
| CN1957526A (en) | Amplifier linearization using non-linear predistortion | |
| US6937669B2 (en) | Digital predistortion system for linearizing a power amplifier | |
| US20110095820A1 (en) | Method for pre-distorting a power amplifier and the circuit thereof | |
| CN105634415A (en) | Digital predistortion system and method used for amplifying signal | |
| EP1833214A1 (en) | A method and system for out of band predistortion linearization | |
| US20040247040A1 (en) | Electromagnetic wave transmitter systems, methods and articles of manufacture | |
| CN114448452B (en) | signal processing device | |
| CN101645864A (en) | LINC transmitter based on self-adapted peak clipping | |
| WO2015188578A1 (en) | Nonlinear system distortion correction device and method | |
| CN1196255C (en) | Amplifier | |
| KR20230165135A (en) | Doherty power amplifier system | |
| US8971828B2 (en) | Predistortion device, method for predistortion, and transmitter/receiver system that reuse an analog receiving circuit in a half duplexing system and a full duplexing system, and that reduce the requirement on the analog receiving circuit | |
| CN113765529B (en) | A power amplifier transmitter | |
| CN1164025C (en) | Feedforward linear power amplification method and device using pilot frequency | |
| CN104300916A (en) | Signal processing circuit and signal processing method |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | Effective date of registration:20250807 Address after:No. 1, Mulong Middle Road, Jiangning Street, Jiangning District, Nanjing, Jiangsu 210000 Patentee after:ZTE Intelligent Technology Nanjing Co.,Ltd. Country or region after:China Address before:518057 Nanshan District science and Technology Industrial Park, Guangdong high tech Industrial Park, ZTE building Patentee before:ZTE Corp. Country or region before:China | |
| TR01 | Transfer of patent right |