







技术领域technical field
本申请涉及光学测试技术领域,具体涉及一种AR成像系统的成像校正方法及装置。The present application relates to the technical field of optical testing, and in particular, to an imaging correction method and device for an AR imaging system.
背景技术Background technique
AR(Augmented Reality,增强现实)技术是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(例如视学信息、声音等),通过电脑等科学技术模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。增强现实技术不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。AR (Augmented Reality, Augmented Reality) technology is to superimpose the physical information (such as visual information, sound, etc.) that is difficult to experience in a certain time and space in the real world through computer and other scientific and technological simulations, and then superimpose it. Virtual information is applied to the real world and perceived by human senses, so as to achieve sensory experience beyond reality. Augmented reality technology not only displays real-world information, but also displays virtual information at the same time, and the two kinds of information complement and superimpose each other.
AR产品的投影系统都是由显示模组、光机、镜片及附属配件及支架组成,成像由显示模组透过光机将内容投射到镜片上,再由镜片反射到人眼,使人可以与虚拟影像交互,从而达到AR增强现实的功能。The projection system of AR products is composed of display module, optical machine, lens and accessory accessories and brackets. The imaging consists of the display module projecting the content on the lens through the optical machine, and then the lens reflects it to the human eye, so that people can Interact with virtual images to achieve the function of AR augmented reality.
可见,显示模组、光机及镜片结构的相对组装精度是决定AR成像效果的关键因素,显示模组、光机及镜片自身及装配的公差都会引起成像距的误差,此种情况下若长时间使用AR产品会导致用户出现视觉疲劳、眩晕等现象,所以成像距精确度会极大影响用户体验。It can be seen that the relative assembly accuracy of the display module, opto-mechanical and lens structure is the key factor determining the AR imaging effect. The tolerances of the display module, opto-mechanical and lens itself and assembly will cause the error of the imaging distance. Using AR products for a long time will cause users to experience visual fatigue and dizziness, so the accuracy of the imaging distance will greatly affect the user experience.
发明内容SUMMARY OF THE INVENTION
本申请的目的是提供一种AR成像系统的校正参数获取方法及装置,以对AR成像系统进行校正,提升用户体验。The purpose of this application is to provide a method and device for obtaining correction parameters of an AR imaging system, so as to correct the AR imaging system and improve user experience.
本申请第一方面提供一种AR成像系统的校正参数获取方法,包括:A first aspect of the present application provides a method for acquiring correction parameters of an AR imaging system, including:
所述AR成像系统包括沿光路设置的显示组件、光源、光机透镜模组、波导组件和成像透镜模组;The AR imaging system includes a display component, a light source, an optical-mechanical lens module, a waveguide component and an imaging lens module arranged along the optical path;
控制所述显示组件发出校正图像,由所述光源投影校正图像至所述光机透镜模组,再经由所述光机透镜模组缩扩束,再经由所述波导组件反射至所述成像透镜模组,再经由所述成像透镜模组聚焦至相机上成像;所述相机用于拍摄所述校正图像经过所述AR成像系统的成像;Controlling the display component to emit a corrected image, projecting the corrected image from the light source to the optical-mechanical lens module, then expanding the beam through the optical-mechanical lens module, and then reflecting to the imaging lens through the waveguide component module, and then focus on the camera for imaging through the imaging lens module; the camera is used to capture the imaging of the corrected image through the AR imaging system;
获取所述光机透镜模组和所述光源之间的当前距离z;Obtain the current distance z between the optical-mechanical lens module and the light source;
获取所述校正图像原始的长wL、宽hL,以及原始成像距zL;obtaining the original length wL , the width hL of the corrected image, and the original imaging distance zL ;
根据所述相机上的成像,确定所述校正图像的相机成像的长wC、宽hC、成像距zC;According to the imaging on the camera, determine the length wC , the width hC and the imaging distance zC of the camera imaging of the corrected image;
利用以下第一关系式计算得到所述当前距离z对应的校正参数,所述校正参数包括放大倍率α(z)与波导光路偏差β(z);The correction parameter corresponding to the current distance z is calculated by using the following first relational expression, and the correction parameter includes the magnification α(z) and the waveguide optical path deviation β(z);
所述第一关系式如下:The first relationship is as follows:
α(z)=wC/wL=hC/hL;α(z)=wC /wL =hC /hL ;
zC=α(z)*zL+β(z)。zC =α(z)*zL +β(z).
本申请第二方面提供一种AR成像系统的校正参数获取装置,所述装置包括:控制模块和获取模块;A second aspect of the present application provides a correction parameter acquisition device for an AR imaging system, the device includes: a control module and an acquisition module;
所述AR成像系统包括沿光路设置的显示组件、光源、光机透镜模组、波导组件和成像透镜模组;The AR imaging system includes a display component, a light source, an optical-mechanical lens module, a waveguide component and an imaging lens module arranged along the optical path;
所述控制模块,用于控制所述显示组件发出校正图像,由所述光源投影校正图像至所述光机透镜模组,再经由所述光机透镜模组缩扩束,再经由所述波导组件反射至所述成像透镜模组,再经由所述成像透镜模组聚焦至相机上成像;所述相机用于拍摄所述校正图像经过所述AR成像系统的成像;The control module is used to control the display component to send out a corrected image, project the corrected image from the light source to the optical-mechanical lens module, and then expand and contract the beam through the optical-mechanical lens module, and then pass through the waveguide The component is reflected to the imaging lens module, and then focused on the camera for imaging through the imaging lens module; the camera is used to capture the corrected image for imaging by the AR imaging system;
所述获取模块,用于执行以下步骤:The obtaining module is used to perform the following steps:
获取所述光机透镜模组和所述光源之间的当前距离z;Obtain the current distance z between the optical-mechanical lens module and the light source;
获取所述校正图像原始的长wL、宽hL,以及原始成像距zL;obtaining the original length wL , the width hL of the corrected image, and the original imaging distance zL ;
根据所述相机上的成像,确定所述校正图像的相机成像的长wC、宽hC、成像距zC;According to the imaging on the camera, determine the length wC , the width hC and the imaging distance zC of the camera imaging of the corrected image;
利用以下第一关系式计算得到所述当前距离z对应的校正参数,所述校正参数包括放大倍率α(z)与波导光路偏差β(z);The correction parameter corresponding to the current distance z is calculated by using the following first relational expression, and the correction parameter includes the magnification α(z) and the waveguide optical path deviation β(z);
所述第一关系式如下:The first relationship is as follows:
α(z)=wC/wL=hC/hL;α(z)=wC /wL =hC /hL ;
zC=α(z)*zL+β(z)。zC =α(z)*zL +β(z).
本申请提供的AR成像系统的校正参数获取方法及装置,在AR成像系统的出瞳处摆放相机模仿人眼,拍摄校正图像的成像,根据校正图像的成像能够得到AR成像系统的成像距校正参数与空间频率响应SFR,可以根据校正参数与SFR对AR成像系统进行校正,让AR成像系统投影的成像距符合用户直觉,提高AR成像系统与用户的虚拟影像交互品质,使用户拥有更强的沉浸感,提高用户体验。In the method and device for obtaining correction parameters of an AR imaging system provided by the present application, a camera is placed at the exit pupil of the AR imaging system to imitate the human eye, and an image of a corrected image is captured. According to the imaging of the corrected image, the imaging distance correction of the AR imaging system can be obtained. Parameter and spatial frequency response SFR, the AR imaging system can be corrected according to the correction parameters and SFR, so that the projected imaging distance of the AR imaging system conforms to the user's intuition, improves the interaction quality between the AR imaging system and the user's virtual image, and enables the user to have a stronger Immersion and improve user experience.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for purposes of illustrating preferred embodiments only and are not to be considered limiting of the application. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:
图1示出了本申请所提供的一种AR成像系统的示意图;FIG. 1 shows a schematic diagram of an AR imaging system provided by the present application;
图2示出了本申请所提供的一种AR成像系统的校正参数获取方法的流程图;FIG. 2 shows a flowchart of a method for acquiring correction parameters of an AR imaging system provided by the present application;
图3示出了本申请所提供的一种AR成像系统的校正参数获取原理示意图;FIG. 3 shows a schematic diagram of the principle of acquiring correction parameters of an AR imaging system provided by the present application;
图4示出了本申请所提供的一种AR成像系统的成像距变化的光路示意图;FIG. 4 shows a schematic diagram of the optical path of the imaging distance variation of an AR imaging system provided by the present application;
图5示出了本申请所提供的判断所述光机透镜模组是否离焦的流程图;Fig. 5 shows the flow chart of judging whether the optical-mechanical lens module is out of focus provided by the present application;
图6示出了本申请所提供的光机透镜模组对焦与离焦的光路示意图;Fig. 6 shows the optical path schematic diagram of focusing and defocusing of the optomechanical lens module provided by the present application;
图7示出了本申请所提供的光机透镜模组对焦与离焦的SFR值的对比图;FIG. 7 shows a comparison diagram of the SFR values of the opto-mechanical lens module provided by the application in focus and defocus;
图8示出了本申请所提供的一种AR成像系统的校正参数获取装置的示意图。FIG. 8 shows a schematic diagram of an apparatus for acquiring correction parameters of an AR imaging system provided by the present application.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure will be more thoroughly understood, and will fully convey the scope of the present disclosure to those skilled in the art.
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本申请所属领域技术人员所理解的通常意义。It should be noted that, unless otherwise specified, the technical or scientific terms used in this application should have the usual meanings understood by those skilled in the art to which this application belongs.
图1示出了本申请所提供的一种AR成像系统的示意图,如图1所示,所述AR成像系统包括沿光路设置的显示组件100、光源200、光机透镜模组300、波导组件400和成像透镜模组500。如图1所示,本申请还在待校正AR成像系统的出瞳处摆放相机模仿人眼,拍摄校正图像的成像。FIG. 1 shows a schematic diagram of an AR imaging system provided by the present application. As shown in FIG. 1 , the AR imaging system includes a
其中,波导组件400包括输入耦合光栅410、波导420和输出耦合光栅430。The
图2示出了本申请所提供的一种AR成像系统的校正参数获取方法的流程图,如图2所示,上述方法包括以下步骤:FIG. 2 shows a flowchart of a method for obtaining correction parameters of an AR imaging system provided by the present application. As shown in FIG. 2 , the above method includes the following steps:
S101、控制显示组件发出校正图像,由光源投影校正图像至光机透镜模组,再经由光机透镜模组缩扩束,再经由波导组件反射至成像透镜模组,再经由成像透镜模组聚焦至相机的上成像;S101. Control the display component to send out a corrected image, project the corrected image from the light source to the optical-mechanical lens module, expand the beam through the optical-mechanical lens module, reflect it to the imaging lens module through the waveguide component, and then focus through the imaging lens module to the upper image of the camera;
其中,相机用于拍摄校正图像经过AR成像系统的成像。Among them, the camera is used to take the corrected image to be imaged by the AR imaging system.
其中,校正图像可以采用刀口图像,当然也可以采用其它具有校正功能的图像,本申请对此不做限定。The correction image may use a knife edge image, and of course other images with a correction function may be used, which is not limited in this application.
S102、获取所述光机透镜模组300和所述光源200之间的当前距离z;S102, obtaining the current distance z between the optical-
S103、获取所述校正图像原始的长wL、宽hL,以及原始成像距zL;S103, obtaining the original length wL , the width hL of the corrected image, and the original imaging distance zL ;
其中,成像距为成像透镜模组500与相机成像之间的距离,原始成像距zL为待校正AR成像系统在校正前的成像距。The imaging distance is the distance between the
S104、根据所述相机上的成像,确定所述校正图像的相机成像的长wC、宽hC、成像距zC;S104. According to the imaging on the camera, determine the length wC , the width hC and the imaging distance zC of the camera imaging of the corrected image;
S105、利用以下第一关系式计算得到所述当前距离z对应的校正参数,所述校正参数包括放大倍率α(z)与波导光路偏差β(z);S105, using the following first relational expression to calculate and obtain the correction parameter corresponding to the current distance z, where the correction parameter includes the magnification α(z) and the waveguide optical path deviation β(z);
所述第一关系式如下:The first relationship is as follows:
α(z)=wC/wL=hC/hL;α(z)=wC /wL =hC /hL ;
zC=α(z)*zL+β(z)。zC =α(z)*zL +β(z).
上述第一关系式可以通过如下过程获得:The above-mentioned first relational expression can be obtained through the following process:
在校正AR成像系统之前,可以参照图3做相机的成像距校正。将光机透镜模组与相机对准光轴后,在暗室中输入光源刀口图像,在相机成像,并调整光机透镜模组的自动调焦模块(即使光机透镜模组发生位移,改变光机透镜模组与成像透镜模组之间的距离),得到不同距离下的刀口图像的放大倍率,定义出相机的标准成像距与刀口图像放大倍率的拟合曲线,即上述第一关系式。Before calibrating the AR imaging system, the imaging distance calibration of the camera can be done with reference to Figure 3. After aligning the optomechanical lens module with the camera on the optical axis, input the knife-edge image of the light source in the dark room, take an image on the camera, and adjust the automatic focusing module of the optomechanical lens module (even if the optomechanical lens module is displaced, changing the light The distance between the camera lens module and the imaging lens module), the magnification of the knife-edge image at different distances is obtained, and the fitting curve between the standard imaging distance of the camera and the magnification of the knife-edge image is defined, that is, the above-mentioned first relationship.
如图1所示,设光机透镜模组于光轴上,且光机透镜模组自动调焦于初始化位置z0,即光机透镜模组和光源之间的当前距离为z0,此时校正图像的相机成像的长、宽和成像距各为(wC0,hC0,zC0),则会有如下的关系:As shown in Figure 1, the optomechanical lens module is set on the optical axis, and the optomechanical lens module is automatically adjusted to the initialization position z0 , that is, the current distance between the optomechanical lens module and the light source is z0 . The length, width and imaging distance of the camera image of the time-corrected image are respectively (wC0 , hC0 , zC0 ), and there will be the following relationship:
α(z0)=wC0/wL=hC0/hL;zC0=α(z0)*zL+β(z0)。α(z0 )=wC0 /wL =hC0 /hL ; zC0 =α(z0 )*zL +β(z0 ).
通过以上关系式得到光机透镜模组在初始化位置z0对应的放大倍率α(z0)与波导光路偏差β(z0),最后将校正参数(α,β)回馈到光机透镜模组,完成初始化位置z0对应成像距的测量和校正。Through the above relationship, the magnification α(z0 ) corresponding to the initialization position z0 of the optical-mechanical lens module and the optical path deviation β(z0 ) of the waveguide are obtained, and finally the correction parameters (α, β) are fed back to the optical-mechanical lens module. , complete the measurement and correction of the imaging distance corresponding to the initialization position z0 .
在本申请的一些实施方式中,构建所述第一关系式的步骤包括:In some embodiments of the present application, the step of constructing the first relational expression includes:
多次改变所述光机透镜模组和所述光源之间的距离,每次的变化量为±Δz;Change the distance between the optical-mechanical lens module and the light source multiple times, and the amount of change each time is ±Δz;
记录每个Δz对应的校正参数;Record the correction parameters corresponding to each Δz;
根据每个Δz对应的校正参数构建所述第一关系式。The first relational expression is constructed according to the correction parameter corresponding to each Δz.
具体的,将上述校正初始化位置z0的过程加以拓展,如图4所示,改变光机透镜模组300和光源200之间的距离,变化量为±Δz,例如z0-Δz、z0-2Δz、z0-3Δz,记录每个变化量Δz对应的成像距与校正图像的放大倍率α(z)与波导光路偏差β(z),最终得到校正关系:zC=α(z)*zL+β(z)。通过将此校正关系回馈至光机透镜模组,完成成像距的校正,从而提高成像距精确度。Specifically, the above process of correcting the initialization position z0 is extended. As shown in FIG. 4 , the distance between the optical-
在本申请的一些实施方式中,上述AR成像系统的校正参数获取方法还可以包括步骤:计算所述校正图像的相机成像的空间频率响应SFR值;根据所述SFR值判断所述光机透镜模组是否离焦。In some embodiments of the present application, the above-mentioned method for obtaining correction parameters of an AR imaging system may further include the steps of: calculating a spatial frequency response SFR value of the camera imaging of the corrected image; judging the optical-mechanical lens model according to the SFR value Whether the group is out of focus.
SFR(Spatial Frequency Response,空间频率响应)主要是用于测量随着空间频率的线条增加对单一影像所造成的影响,是对整个成像系统解析力的评价,SFR的值越接近于1,说明成像系统的成像效果越好。SFR (Spatial Frequency Response) is mainly used to measure the impact on a single image with the increase of spatial frequency lines, and is an evaluation of the resolution of the entire imaging system. The closer the value of SFR is to 1, the more accurate the imaging. The imaging effect of the system is better.
具体的,如图5所示,根据所述SFR值判断所述光机透镜模组是否离焦的步骤包括:Specifically, as shown in FIG. 5 , the step of judging whether the optical-mechanical lens module is out of focus according to the SFR value includes:
S201、判断预设空间频率处所述校正图像的相机成像的SFR值是否小于标准SFR值;所述标准SFR值是指所述光机透镜模组对焦时在所述预设空间频率处的SFR值,是预先标定的;S201. Determine whether the SFR value of the camera imaging of the corrected image at a preset spatial frequency is less than a standard SFR value; the standard SFR value refers to the SFR at the preset spatial frequency when the optomechanical lens module is in focus value, which is pre-calibrated;
S202、若是,则确定所述光机透镜模组离焦;S202, if yes, then determine that the optical-mechanical lens module is out of focus;
S203、若否,则确定所述光机透镜模组对焦。S203. If no, determine that the opto-mechanical lens module is in focus.
具体的,通过分析校正图像的相机成像的SFR值,可以判断光机透镜模组的投影是否在聚焦平面上,也就是可以根据SFR值判断光机透镜模组离焦还是对焦。Specifically, by analyzing the SFR value of the camera image of the corrected image, it can be determined whether the projection of the optomechanical lens module is on the focal plane, that is, it can be determined whether the optomechanical lens module is out of focus or in focus according to the SFR value.
如图6所示,左图中光机透镜模组300为对焦,可以产生清晰的相机成像;右图中光机透镜模组300为离焦,相机成像比较模糊。As shown in FIG. 6 , the opto-
如图7所示,光机透镜模组离焦情况下,在预设空间频率处相机成像的SFR值与标准SFR值相比明显下降。例如,预设空间频率为0.25,如图7所示,在空间频率0.25处,光机透镜模组离焦的SFR值明显小于对焦的SFR值。As shown in Figure 7, when the optomechanical lens module is out of focus, the SFR value of the camera imaging at the preset spatial frequency is significantly lower than the standard SFR value. For example, the preset spatial frequency is 0.25. As shown in FIG. 7 , at the spatial frequency of 0.25, the SFR value of the defocusing of the optomechanical lens module is significantly smaller than the SFR value of the focusing.
本申请提供的AR成像系统的校正参数获取方法,在AR成像系统的出瞳处摆放相机模仿人眼,拍摄校正图像的成像,根据校正图像的成像能够得到AR成像系统的成像距校正参数与空间频率响应SFR,可以根据校正参数与SFR对AR成像系统进行校正,让AR成像系统投影的成像距符合用户直觉,提高AR成像系统与用户的虚拟影像交互品质,使用户拥有更强的沉浸感,提高用户体验。In the method for obtaining the correction parameters of the AR imaging system provided by this application, a camera is placed at the exit pupil of the AR imaging system to imitate the human eye, and the imaging of the corrected image is captured. According to the imaging of the corrected image, the imaging distance correction parameter of the AR imaging system and the The spatial frequency response SFR can correct the AR imaging system according to the correction parameters and SFR, so that the imaging distance projected by the AR imaging system conforms to the user's intuition, improves the interaction quality between the AR imaging system and the user's virtual image, and makes the user have a stronger sense of immersion , to improve the user experience.
本申请实施例还提供了一种与上述AR成像系统的校正参数获取方法相对应的AR成像系统的校正参数获取装置,如图8所示,该装置包括:控制模块101和获取模块102;The embodiment of the present application also provides a correction parameter acquisition device of an AR imaging system corresponding to the above-mentioned AR imaging system correction parameter acquisition method. As shown in FIG. 8 , the device includes: a
所述AR成像系统包括沿光路设置的显示组件、光源、光机透镜模组、波导组件和成像透镜模组;The AR imaging system includes a display component, a light source, an optical-mechanical lens module, a waveguide component and an imaging lens module arranged along the optical path;
所述控制模块101,用于控制所述显示组件发出校正图像,由所述光源投影校正图像至所述光机透镜模组,再经由所述光机透镜模组缩扩束,再经由所述波导组件反射至所述成像透镜模组,再经由所述成像透镜模组聚焦至相机上成像;The
所述获取模块102,用于执行以下步骤:The obtaining
获取所述光机透镜模组和所述光源之间的当前距离z;Obtain the current distance z between the optical-mechanical lens module and the light source;
获取所述校正图像原始的长wL、宽hL,以及原始成像距zL;obtaining the original length wL , the width hL of the corrected image, and the original imaging distance zL ;
根据所述相机上的成像,确定所述校正图像的相机成像的长wC、宽hC、成像距zC;According to the imaging on the camera, determine the length wC , the width hC and the imaging distance zC of the camera imaging of the corrected image;
利用以下第一关系式计算得到所述当前距离z对应的校正参数,所述校正参数包括放大倍率α(z)与波导光路偏差β(z);The correction parameter corresponding to the current distance z is calculated by using the following first relational expression, and the correction parameter includes the magnification α(z) and the waveguide optical path deviation β(z);
所述第一关系式如下:The first relationship is as follows:
α(z)=wC/wL=hC/hL;α(z)=wC /wL =hC /hL ;
zC=α(z)*zL+β(z)。zC =α(z)*zL +β(z).
在一种可能的实现方式中,所述获取模块102,还用于:In a possible implementation manner, the obtaining
多次改变所述光机透镜模组和所述光源之间的距离,每次的变化量为±Δz;Change the distance between the optical-mechanical lens module and the light source multiple times, and the amount of change each time is ±Δz;
记录每个Δz对应的校正参数;Record the correction parameters corresponding to each Δz;
根据每个Δz对应的校正参数对所述AR成像系统进行校正。The AR imaging system is corrected according to the correction parameters corresponding to each Δz.
在一种可能的实现方式中,所述获取模块102,还用于:In a possible implementation manner, the obtaining
计算所述校正图像的相机成像的空间频率响应SFR值;calculating the spatial frequency response SFR value of the camera imaging of the corrected image;
根据所述SFR值判断所述光机透镜模组是否离焦。Whether the optomechanical lens module is out of focus is determined according to the SFR value.
在一种可能的实现方式中,所述获取模块102,具体用于:In a possible implementation manner, the obtaining
判断预设空间频率处所述校正图像的相机成像的SFR值是否小于标准SFR值;所述标准SFR值是指所述光机透镜模组对焦时在所述预设空间频率处的SFR值;Determine whether the SFR value of the camera imaging of the corrected image at the preset spatial frequency is less than the standard SFR value; the standard SFR value refers to the SFR value at the preset spatial frequency when the optomechanical lens module is focused;
若是,则确定所述光机透镜模组离焦;If so, then determine that the optical-mechanical lens module is out of focus;
若否,则确定所述光机透镜模组对焦。If not, it is determined that the opto-mechanical lens module is in focus.
在一种可能的实现方式中,所述校正图像采用刀口图像。In a possible implementation manner, the correction image adopts a knife-edge image.
本申请提供的AR成像系统的校正参数获取装置,在AR成像系统的出瞳处摆放相机模仿人眼,拍摄校正图像的成像,根据校正图像的成像能够得到AR成像系统的成像距校正参数与空间频率响应SFR,可以根据校正参数与SFR对AR成像系统进行校正,让AR成像系统投影的成像距符合用户直觉,提高AR成像系统与用户的虚拟影像交互品质,使用户拥有更强的沉浸感,提高用户体验。In the device for obtaining correction parameters of an AR imaging system provided by this application, a camera is placed at the exit pupil of the AR imaging system to imitate the human eye, and the imaging of the corrected image is taken. According to the imaging of the corrected image, the correction parameters of the imaging distance of the AR imaging system and the The spatial frequency response SFR can correct the AR imaging system according to the correction parameters and SFR, so that the imaging distance projected by the AR imaging system conforms to the user's intuition, improves the interaction quality between the AR imaging system and the user's virtual image, and makes the user have a stronger sense of immersion , to improve the user experience.
需要说明的是:It should be noted:
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that the embodiments of the present application may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。Similarly, it is to be understood that in the above description of exemplary embodiments of the present application, various features of the present application are sometimes grouped together into a single embodiment, figure, or its description. This disclosure, however, should not be interpreted as reflecting an intention that the claimed application requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this application.
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art will understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. The modules or units or components in the embodiments may be combined into one module or unit or component, and further they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will appreciate that although some of the embodiments described herein include certain features, but not others, included in other embodiments, that combinations of features of different embodiments are intended to be within the scope of the present application within and form different embodiments. For example, in the following claims, any of the claimed embodiments may be used in any combination.
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的虚拟机的创建装置中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art should understand that, in practice, a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some or all components in the apparatus for creating a virtual machine according to the embodiments of the present application. The present application can also be implemented as an apparatus or apparatus program (eg, computer programs and computer program products) for performing part or all of the methods described herein. Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-described embodiments illustrate rather than limit the application, and alternative embodiments may be devised by those skilled in the art without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The application can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Under the conception of the present invention, the equivalent structural transformations made by the contents of the description and accompanying drawings of the present invention, or directly/indirectly applied in Other related technical fields are included within the scope of patent protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111660633.1ACN114441142B (en) | 2021-12-30 | 2021-12-30 | Method and device for obtaining correction parameters of AR imaging system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111660633.1ACN114441142B (en) | 2021-12-30 | 2021-12-30 | Method and device for obtaining correction parameters of AR imaging system |
| Publication Number | Publication Date |
|---|---|
| CN114441142Atrue CN114441142A (en) | 2022-05-06 |
| CN114441142B CN114441142B (en) | 2025-02-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111660633.1AActiveCN114441142B (en) | 2021-12-30 | 2021-12-30 | Method and device for obtaining correction parameters of AR imaging system |
| Country | Link |
|---|---|
| CN (1) | CN114441142B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115685485A (en)* | 2022-09-22 | 2023-02-03 | 歌尔光学科技有限公司 | A method, system and device for confirming the focus position of an optical module |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6410624A (en)* | 1987-07-02 | 1989-01-13 | Nikon Corp | Projection optical device |
| US5809381A (en)* | 1996-01-06 | 1998-09-15 | Canon Kabushiki Kaisha | Image-forming apparatus and magnification correction method using the same |
| JPH10261563A (en)* | 1997-03-18 | 1998-09-29 | Nikon Corp | Projection exposure method and apparatus |
| US6194697B1 (en)* | 1999-04-13 | 2001-02-27 | Hewlett-Packard Company | Calibration system for an imaging apparatus and method |
| JP2007072296A (en)* | 2005-09-08 | 2007-03-22 | Canon Inc | Image correction method for image correction for frequency response of image to display device |
| JP2011154104A (en)* | 2010-01-26 | 2011-08-11 | Casio Computer Co Ltd | View angle center deviation correction device and view angle deviation correction method |
| CN103576280A (en)* | 2012-07-31 | 2014-02-12 | 康耐视公司 | System and method for determining and controlling focal distance in vision system camera |
| US20170169612A1 (en)* | 2015-12-15 | 2017-06-15 | N.S. International, LTD | Augmented reality alignment system and method |
| CN107563987A (en)* | 2016-07-01 | 2018-01-09 | 北京疯景科技有限公司 | Demarcate the method and device of imaging difference |
| US20190227322A1 (en)* | 2018-01-25 | 2019-07-25 | Facebook Technologies, Llc | Light projection system including an optical assembly for correction of differential distortion |
| CN110160749A (en)* | 2019-06-05 | 2019-08-23 | 歌尔股份有限公司 | Calibrating installation and calibration method applied to augmented reality equipment |
| CN110650290A (en)* | 2019-10-12 | 2020-01-03 | 惠州市德赛自动化技术有限公司 | Active focusing adjustment method for camera |
| CN110780445A (en)* | 2018-11-12 | 2020-02-11 | 芋头科技(杭州)有限公司 | Method and system for active calibration of an assembled optical imaging system |
| US20200186786A1 (en)* | 2018-12-06 | 2020-06-11 | Novarad Corporation | Calibration for Augmented Reality |
| US10725302B1 (en)* | 2018-11-02 | 2020-07-28 | Facebook Technologies, Llc | Stereo imaging with Fresnel facets and Fresnel reflections |
| CN112040224A (en)* | 2020-08-31 | 2020-12-04 | 南昌欧菲晶润科技有限公司 | Method, medium and electronic device for verifying camera module performance test equipment |
| CN112326206A (en)* | 2020-11-06 | 2021-02-05 | 歌尔光学科技有限公司 | AR module binocular fusion detection device and detection method |
| US20210099691A1 (en)* | 2018-01-02 | 2021-04-01 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
| US20210141130A1 (en)* | 2019-11-12 | 2021-05-13 | Facebook Technologies, Llc | High-index waveguide for conveying images |
| CN113114905A (en)* | 2021-04-16 | 2021-07-13 | 广州立景创新科技有限公司 | Camera module, focusing adjustment system and focusing method |
| CN113124830A (en)* | 2021-04-09 | 2021-07-16 | 广州得尔塔影像技术有限公司 | Method and equipment for testing imaging optical gradient of camera module |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6410624A (en)* | 1987-07-02 | 1989-01-13 | Nikon Corp | Projection optical device |
| US5809381A (en)* | 1996-01-06 | 1998-09-15 | Canon Kabushiki Kaisha | Image-forming apparatus and magnification correction method using the same |
| JPH10261563A (en)* | 1997-03-18 | 1998-09-29 | Nikon Corp | Projection exposure method and apparatus |
| US6194697B1 (en)* | 1999-04-13 | 2001-02-27 | Hewlett-Packard Company | Calibration system for an imaging apparatus and method |
| JP2007072296A (en)* | 2005-09-08 | 2007-03-22 | Canon Inc | Image correction method for image correction for frequency response of image to display device |
| JP2011154104A (en)* | 2010-01-26 | 2011-08-11 | Casio Computer Co Ltd | View angle center deviation correction device and view angle deviation correction method |
| CN103576280A (en)* | 2012-07-31 | 2014-02-12 | 康耐视公司 | System and method for determining and controlling focal distance in vision system camera |
| US20170169612A1 (en)* | 2015-12-15 | 2017-06-15 | N.S. International, LTD | Augmented reality alignment system and method |
| CN107563987A (en)* | 2016-07-01 | 2018-01-09 | 北京疯景科技有限公司 | Demarcate the method and device of imaging difference |
| US20210099691A1 (en)* | 2018-01-02 | 2021-04-01 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
| US20190227322A1 (en)* | 2018-01-25 | 2019-07-25 | Facebook Technologies, Llc | Light projection system including an optical assembly for correction of differential distortion |
| US10725302B1 (en)* | 2018-11-02 | 2020-07-28 | Facebook Technologies, Llc | Stereo imaging with Fresnel facets and Fresnel reflections |
| CN110780445A (en)* | 2018-11-12 | 2020-02-11 | 芋头科技(杭州)有限公司 | Method and system for active calibration of an assembled optical imaging system |
| US20200186786A1 (en)* | 2018-12-06 | 2020-06-11 | Novarad Corporation | Calibration for Augmented Reality |
| CN110160749A (en)* | 2019-06-05 | 2019-08-23 | 歌尔股份有限公司 | Calibrating installation and calibration method applied to augmented reality equipment |
| WO2020244209A1 (en)* | 2019-06-05 | 2020-12-10 | 歌尔股份有限公司 | Calibration apparatus and method applied to augmented reality apparatus |
| CN110650290A (en)* | 2019-10-12 | 2020-01-03 | 惠州市德赛自动化技术有限公司 | Active focusing adjustment method for camera |
| US20210141130A1 (en)* | 2019-11-12 | 2021-05-13 | Facebook Technologies, Llc | High-index waveguide for conveying images |
| CN112040224A (en)* | 2020-08-31 | 2020-12-04 | 南昌欧菲晶润科技有限公司 | Method, medium and electronic device for verifying camera module performance test equipment |
| CN112326206A (en)* | 2020-11-06 | 2021-02-05 | 歌尔光学科技有限公司 | AR module binocular fusion detection device and detection method |
| CN113124830A (en)* | 2021-04-09 | 2021-07-16 | 广州得尔塔影像技术有限公司 | Method and equipment for testing imaging optical gradient of camera module |
| CN113114905A (en)* | 2021-04-16 | 2021-07-13 | 广州立景创新科技有限公司 | Camera module, focusing adjustment system and focusing method |
| Title |
|---|
| 原育凯;程仕东;裴云天;: "光学系统离焦对自动调焦评价函数的影响", 光电工程, no. 12, 28 December 2005 (2005-12-28)* |
| 范冰清;: "影响投影仪放大倍数正确性的主要因素", 上海计量测试, no. 06, 25 December 2012 (2012-12-25)* |
| 马世图: "面向增强现实显示应用的三维集成成像技术", 中国优秀硕士学位论文全文数据库(信息科技辑), vol. 2021, no. 06, 15 June 2021 (2021-06-15)* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115685485A (en)* | 2022-09-22 | 2023-02-03 | 歌尔光学科技有限公司 | A method, system and device for confirming the focus position of an optical module |
| Publication number | Publication date |
|---|---|
| CN114441142B (en) | 2025-02-11 |
| Publication | Publication Date | Title |
|---|---|---|
| US10997696B2 (en) | Image processing method, apparatus and device | |
| CN108012147B (en) | The virtual image of AR imaging system is away from test method and device | |
| JP6899002B2 (en) | Image processing methods, devices, computer-readable storage media and electronic devices | |
| AU2019309552B2 (en) | Method and data-processing system for synthesizing images | |
| US9691137B2 (en) | Radial distortion parameter acquiring method and apparatus | |
| CN1585619A (en) | eye wave front measurement device | |
| CN114788254B (en) | Auxiliary focusing method, device and system | |
| CN110160749A (en) | Calibrating installation and calibration method applied to augmented reality equipment | |
| JP6486055B2 (en) | Imaging apparatus, control method therefor, and program | |
| CN114339042B (en) | Image processing method and device based on multiple cameras, and computer-readable storage medium | |
| TW202206888A (en) | Galvanometer parameter adjusting method, device and equipment and readable storage medium | |
| WO2020110712A1 (en) | Inspection system, inspection method, and program | |
| JP2021027523A5 (en) | ||
| CN110072431B (en) | Determination of eye surface contour using multifocal corneal curvature measurements | |
| CN114441142A (en) | Method and device for acquiring correction parameters of AR imaging system | |
| JP2020501191A (en) | Optical system and diopter adjustment method | |
| JP2007322259A (en) | Edge detecting method, apparatus and program | |
| JP6755737B2 (en) | Distance measuring device, imaging device, and distance measuring method | |
| JP5224976B2 (en) | Image correction apparatus, image correction method, program, and recording medium | |
| CN114878144B (en) | Projection equipment calibration method, device, computer equipment and storage medium | |
| CN118015179A (en) | Three-dimensional light field display method, device, equipment and medium based on camera in-loop | |
| US12271993B2 (en) | Method for forming an image of an object, computer program product and image forming system for carrying out the method | |
| CN113052294B (en) | Method and configuration method for simulating a second camera objective lens and movie camera | |
| US20140354875A1 (en) | Image capturing apparatus and control method therefor | |
| CN118945477B (en) | A method, device and storage medium for adjusting consistency of multiple cameras of a spliced screen |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right | Effective date of registration:20221118 Address after:No. 500 Songling Road, Laoshan District, Qingdao City, Shandong Province, 266100 Applicant after:GOERTEK TECHNOLOGY Co.,Ltd. Address before:261000 plant 1, phase III, goer Photoelectric Industrial Park, No. 3999, Huixian Road, Yongchun community, Qingchi street, high tech Zone, Weifang City, Shandong Province Applicant before:GoerTek Optical Technology Co.,Ltd. | |
| GR01 | Patent grant | ||
| GR01 | Patent grant |