



技术领域technical field
本发明涉及一种加速放电装置,特别涉及一种可符合国际电工委员会的规范的加速放电装置。The invention relates to an accelerated discharge device, in particular to an accelerated discharge device that can meet the specifications of the International Electrotechnical Commission.
背景技术Background technique
国际电工委员会(International Electrotechnical Commission,IEC)已订定全新安全标准IEC 62368-1第二版,其将于2020年12月20日强制生效,并取代现行的IEC60950标准。The International Electrotechnical Commission (IEC) has formulated the second edition of the new safety standard IEC 62368-1, which will come into force on December 20, 2020 and replace the current IEC60950 standard.
根据IEC 62368-1第二版的规范,若在正常条件下将装置的外部输入电源移除,则装置的输入电位必须在2秒内放电至60V;反之,若在非正常条件下将装置的外部输入电源移除,则装置的输入电位须在2秒内放电至120V。然而,传统的电源供应器却往往无法达到前述规范。有鉴于此,势必要提出一种全新的解决方案,以克服现有技术所面临的缺陷。According to the specification of the second edition of IEC 62368-1, if the external input power of the device is removed under normal conditions, the input potential of the device must be discharged to 60V within 2 seconds; When the external input power is removed, the input potential of the device must be discharged to 120V within 2 seconds. However, conventional power supplies often fail to meet the aforementioned specifications. In view of this, it is necessary to propose a brand-new solution to overcome the defects faced by the prior art.
发明内容Contents of the invention
在优选实施例中,本发明提出一种加速放电装置,包括:一第一并联式电感元件,根据一第一输入电位来产生一第一控制电位;一第二并联式电感元件,根据一第二输入电位来产生一第二控制电位;一第一电容器,耦接于该第一并联式电感元件和该第二并联式电感元件之间;一噪声抑制元件,降低该第一并联式电感元件和该第二并联式电感元件之间的互相干扰;一单向元件,限制该第一控制电位和该第二控制电位于单一传递方向;一第一放电电路,耦接于该第一并联式电感元件和该第二并联式电感元件之间;一第二放电电路;一第一切换器,根据该第一控制电位来选择性地将该第一并联式电感元件经由该第二放电电路耦接至大地;以及一第二切换器,根据该第二控制电位来选择性地将该第二并联式电感元件经由该第二放电电路耦接至该大地。In a preferred embodiment, the present invention proposes an accelerated discharge device, comprising: a first parallel inductive element, which generates a first control potential according to a first input potential; a second parallel inductive element, which generates a first control potential according to a first Two input potentials are used to generate a second control potential; a first capacitor is coupled between the first parallel inductive element and the second parallel inductive element; a noise suppression element is used to reduce the first parallel inductive element and the mutual interference between the second parallel inductive element; a unidirectional element, which limits the first control potential and the second control potential to be in a single transmission direction; a first discharge circuit, coupled to the first parallel Between the inductance element and the second parallel inductance element; a second discharge circuit; a first switch, selectively coupling the first parallel inductance element through the second discharge circuit according to the first control potential connected to the ground; and a second switcher selectively coupling the second parallel inductive element to the ground through the second discharge circuit according to the second control potential.
附图说明Description of drawings
图1是显示根据本发明一实施例所述的加速放电装置的示意图。FIG. 1 is a schematic diagram showing an accelerated discharge device according to an embodiment of the present invention.
图2是显示根据本发明一实施例所述的加速放电装置的示意图。FIG. 2 is a schematic diagram showing an accelerated discharge device according to an embodiment of the present invention.
图3是显示根据本发明一实施例所述的断电测试模式中加速放电装置的第一输入电位的波形图。FIG. 3 is a waveform diagram showing a first input potential of the accelerating discharge device in the power-off test mode according to an embodiment of the present invention.
图4是显示根据本发明一实施例所述的断电测试模式中加速放电装置的第一输入电位的波形图。FIG. 4 is a waveform diagram showing a first input potential of the accelerating discharge device in the power-off test mode according to an embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100,200:加速放电装置100, 200: accelerated discharge device
110,210:第一并联式电感元件110, 210: the first parallel inductance element
120,220:第二并联式电感元件120, 220: the second parallel inductance element
130,230:噪声抑制元件130, 230: noise suppression components
140,240:单向元件140, 240: Unidirectional elements
150,250:第一放电电路150, 250: the first discharge circuit
160,260:第一切换器160, 260: first switcher
170,270:第二切换器170, 270: second switcher
180,280:第二放电电路180, 280: the second discharge circuit
199,299:大地199, 299: Earth
290:桥式整流器290: Bridge Rectifier
C1:第一电容器C1: first capacitor
C2:第二电容器C2: second capacitor
D1:第一二极管D1: first diode
D2:第二二极管D2: second diode
D3:第三二极管D3: third diode
D4:第四二极管D4: fourth diode
D5:第五二极管D5: fifth diode
D6:第六二极管D6: sixth diode
D7:第七二极管D7: seventh diode
D8:第八二极管D8: eighth diode
L1:第一电感器L1: first inductor
L2:第二电感器L2: Second inductor
L3:第三电感器L3: Third inductor
L4:第四电感器L4: Fourth inductor
M1:第一晶体管M1: first transistor
M2:第二晶体管M2: second transistor
N1:第一节点N1: the first node
N2:第二节点N2: second node
N3:第三节点N3: the third node
N4:第四节点N4: the fourth node
N5:第五节点N5: fifth node
N6:第六节点N6: sixth node
N7:第七节点N7: seventh node
N8:第八节点N8: eighth node
N9:第九节点N9: ninth node
N10:第十节点N10: tenth node
NIN1:第一输入节点NIN1: first input node
NIN2:第二输入节点NIN2: second input node
R1:第一电阻器R1: first resistor
R2:第二电阻器R2: second resistor
R3:第三电阻器R3: third resistor
R4:第四电阻器R4: Fourth resistor
T1:第一放电时间T1: first discharge time
T2:第二放电时间T2: second discharge time
VIN1:第一输入电位VIN1: the first input potential
VIN2:第二输入电位VIN2: second input potential
VC1:第一控制电位VC1: first control potential
VC2:第二控制电位VC2: second control potential
VSS:接地电位VSS: ground potential
具体实施方式Detailed ways
为让本发明的目的、特征和优点能更明显易懂,下文特举出本发明的具体实施例,并配合附图,作详细说明如下。In order to make the purpose, features and advantages of the present invention more comprehensible, specific embodiments of the present invention are listed below and described in detail with accompanying drawings.
在说明书及权利要求当中使用了某些词汇来指称特定的元件。本领域技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。本说明书及权利要求并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在通篇说明书及权利要求当中所提及的“包含”及“包括”一词为开放式的用语,故应解释成“包含但不仅限定于”。“大致”一词则是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,达到所述基本的技术效果。此外,“耦接”一词在本说明书中包含任何直接及间接的电性连接手段。因此,若文中描述一第一装置耦接至一第二装置,则代表该第一装置可直接电性连接至该第二装置,或经由其它装置或连接手段而间接地电性连接至该第二装置。Certain terms are used in the description and claims to refer to particular elements. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. The specification and claims do not use the difference in name as a way to distinguish components, but use the difference in function of components as a criterion for distinguishing. The words "comprising" and "comprising" mentioned throughout the specification and claims are open-ended terms, so they should be interpreted as "including but not limited to". The term "approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. In addition, the term "coupled" in this specification includes any direct and indirect electrical connection means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. Two devices.
图1是显示根据本发明一实施例所述的加速放电装置100的示意图。例如,加速放电装置100可应用于一电源供应器,但亦不仅限于此。如图1所示,加速放电装置100包括:一第一电容器C1、一第一并联式电感元件110、一第二并联式电感元件120、一噪声抑制元件130、一单向元件140、一第一放电电路150、一第一切换器160、一第二切换器170,以及一第二放电电路180。必须注意的是,虽然未显示于图1中,但加速放电装置100还可包括其他元件,例如:一稳压器或(且)一负反馈电路。FIG. 1 is a schematic diagram showing an
第一并联式电感元件110是根据一第一输入电位VIN1来产生一第一控制电位VC1。第二并联式电感元件120是根据一第二输入电位VIN2来产生一第二控制电位VC2。第一输入电位VIN1和第二输入电位VIN2皆可来自一外部输入电源,其中第一输入电位VIN1和第二输入电位VIN2之间可形成具有任意频率和任意振幅的一交流电压。例如,此交流电压的频率可约为50Hz或60Hz,而交流电压的方均根值可约由90V至264V,但亦不仅限于此。第一电容器C1是耦接于第一并联式电感元件110和第二并联式电感元件120之间。噪声抑制元件130是用于降低第一并联式电感元件110和第二并联式电感元件120之间的互相干扰。单向元件140是用于限制第一控制电位VC1和第二控制电位VC2于单一传递方向。第一放电电路150是耦接于第一并联式电感元件110和第二并联式电感元件120之间。第一切换器160是根据第一控制电位VC1来选择性地将第一并联式电感元件110经由第二放电电路180耦接至大地199。大地199可指地球,或指耦接至地球的任一接地路径,其并非属于加速放电装置100的内部元件。例如,若第一控制电位VC1为高逻辑电平(例如:逻辑“1”),则第一切换器160即将第一并联式电感元件110经由第二放电电路180耦接至大地199(亦即,第一切换器160可近似于一短路路径);反之,若第一控制电位VC1为低逻辑电平(例如:逻辑“0”),则第一切换器160不会将第一并联式电感元件110经由第二放电电路180耦接至大地199(亦即,第一切换器160可近似于一开路路径)。第二切换器170是根据第二控制电位VC2来选择性地将第二并联式电感元件120经由第二放电电路180耦接至大地199。例如,若第二控制电位VC2为高逻辑电平,则第二切换器170即将第二并联式电感元件120经由第二放电电路180耦接至大地199(亦即,第二切换器170可近似于一短路路径);反之,若第二控制电位VC2为低逻辑电平,则第二切换器170不会将第二并联式电感元件120经由第二放电电路180耦接至大地199(亦即,第二切换器170可近似于一开路路径)。根据实际测量结果,这种设计方式可在外部输入电源被移除时(或第一输入电位VIN1和第二输入电位VIN2皆消失时)大幅提升加速放电装置100的整体放电速度,以符合IEC 62368-1第二版的规范。The first
以下实施例将介绍加速放电装置100的详细结构及操作方式。必须理解的是,这些附图和叙述仅为举例,而非用于限制本发明的范围。The following embodiments will introduce the detailed structure and operation of the accelerated
图2是显示根据本发明一实施例所述的加速放电装置200的示意图。在图2的实施例中,加速放电装置200具有一第一输入节点NIN1和一第二输入节点NIN2,并包括一第一电容器C1、一第一并联式电感元件210、一第二并联式电感元件220、一噪声抑制元件230、一单向元件240、一第一放电电路250、一第一切换器260、一第二切换器270,以及一第二放电电路280。加速放电装置200的第一输入节点NIN1和第二输入节点NIN2可由一外部输入电源处分别接收一第一输入电位VIN1和一第二输入电位VIN2,其中第一输入电位VIN1和第二输入电位VIN2之间可形成具有任意频率和任意振幅的一交流电压。FIG. 2 is a schematic diagram showing an
第一电容器C1的第一端是耦接至第一输入节点NIN1,而第一电容器C1的第二端是耦接至第二输入节点NIN2。A first terminal of the first capacitor C1 is coupled to the first input node NIN1 , and a second terminal of the first capacitor C1 is coupled to the second input node NIN2 .
第一并联式电感元件210包括一第一电感器L1和一第二电感器L2。第一电感器L1的第一端是耦接至第一输入节点NIN1,而第一电感器L1的第二端是耦接至一第一节点N1以输出一第一控制电位VC1。第二电感器L2的第一端是耦接至第一输入节点NIN1,而第二电感器L2的第二端是耦接至第一节点N1。The first
第二并联式电感元件220包括一第三电感器L3和一第四电感器L4。第三电感器L3的第一端是耦接至第二输入节点NIN2,而第三电感器L3的第二端是耦接至一第二节点N2以输出一第二控制电位VC2。第四电感器L4的第一端是耦接至第二输入节点NIN2,而第四电感器L4的第二端是耦接至第二节点N2。在一些实施例中,第三电感器L3是与第二电感器L2形成于同一铁芯上,使得第三电感器L3和第二电感器L2两者互相耦合。The second
噪声抑制元件230包括一第一二极管D1和一第二二极管D2。第一二极管D1的阳极是耦接至第一输入节点NIN1,而第一二极管D1的阴极是耦接至一第三节点N3。第二二极管D2的阳极是耦接至第二输入节点NIN2,而第二二极管D2的阴极是耦接至第三节点N3。在一些实施例中,噪声抑制元件230可用于防止电压噪声或电流噪声于第二电感器L2和第三电感器L3之间进行传递,即使此二者是形成于同一铁芯上。The
单向元件240包括一第三二极管D3和一第四二极管D4。第三二极管D3的阳极是耦接至第一节点N1以接收第一控制电位VC1,而第三二极管D3的阴极是耦接至一第四节点N4。第四二极管D4的阳极是耦接至第二节点N2以接收第二控制电位VC2,而第四二极管D4的阴极是耦接至一第五节点N5。在一些实施例中,第三二极管D3可限制第一控制电位VC1仅能由第一节点N1传送往第四节点N4,而第四二极管D4可限制第二控制电位VC2仅能由第二节点N2传送往第五节点N5。亦即,单向元件240可避免第一控制电位VC1和第二控制电位VC2意外回灌至第一并联式电感元件210和第二并联式电感元件220。The one-
第一放电电路250包括一第一电阻器R1和一第二电阻器R2。第一电阻器R1的第一端是耦接至第一节点N1,而第一电阻器R1的第二端是耦接至一第六节点N6。第二电阻器R2的第一端是耦接至第二节点N2,而第二电阻器R2的第二端是耦接至第六节点N6。The first discharge circuit 250 includes a first resistor R1 and a second resistor R2. A first end of the first resistor R1 is coupled to the first node N1, and a second end of the first resistor R1 is coupled to a sixth node N6. A first end of the second resistor R2 is coupled to the second node N2, and a second end of the second resistor R2 is coupled to the sixth node N6.
第一切换器260包括一第一晶体管M1。第一晶体管M1可为一N型金属氧化物半导体场效晶体管。第一晶体管M1的控制端是耦接至第四节点N4(可间接地接收第一控制电位VC1),第一晶体管M1的第一端是耦接至一第七节点N7,而第一晶体管M1的第二端是耦接至第一节点N1。在一些实施例中,若第一控制电位VC1为高逻辑电平,则第一晶体管M1即被使能;反之,若第一控制电位VC1为低逻辑电平,则第一晶体管M1即被禁能。The
第二切换器270包括一第二晶体管M2。第二晶体管M2可为一N型金属氧化物半导体场效晶体管。第二晶体管M2的控制端是耦接至第五节点N5(可间接地接收第二控制电位VC2),第二晶体管M2的第一端是耦接至一第八节点N8,而第二晶体管M2的第二端是耦接至第二节点N2。在一些实施例中,若第二控制电位VC2为高逻辑电平,则第二晶体管M2即被使能;反之,若第二控制电位VC2为低逻辑电平,则第二晶体管M2即被禁能。The
第二放电电路280包括一第二电容器C2、一第三电阻器R3,以及一第四电阻器R4。第二电容器C2的第一端是耦接至第七节点N7,而第二电容器C2的第二端是耦接至第八节点N8。第三电阻器R3的第一端是耦接至第七节点N7,而第三电阻器R3的第二端是耦接至一第九节点N9。第九节点N9还可耦接至大地299。大地299可指地球,或指耦接至地球的任一接地路径,其并非属于加速放电装置200的内部元件。第四电阻器R4的第一端是耦接至第八节点N8,而第四电阻器R4的第二端是耦接至第九节点N9。The
在一些实施例中,加速放电装置200还包括一桥式整流器290。桥式整流器290包括一第五二极管D5、一第六二极管D6、一第七二极管D7,以及一第八二极管D8。第五二极管D5的阳极是耦接至一接地电位VSS(例如:0V),而第五二极管D5的阴极是耦接至第一节点N1。第六二极管D6的阳极是耦接至接地电位VSS,而第六二极管D6的阴极是耦接至第二节点N2。第七二极管D7的阳极是耦接至第一节点N1,而第七二极管D7的阴极是耦接至一第十节点N10。第八二极管D8的阳极是耦接至第二节点N2,而第八二极管D8的阴极是耦接至第十节点N10。必须注意的是,桥式整流器290仅为一选用元件,在其他实施例中亦可由加速放电装置200中移除。另外,若省略桥式整流器290,则第一节点N1或(且)第二节点N2亦可直接或间接地耦接至接地电位VSS。In some embodiments, the accelerating
在一些实施例中,加速放电装置200的操作原理可如下列所述。在一初始模式中,加速放电装置200尚未接收到第一输入电位VIN1和第二输入电位VIN2,故第一晶体管M1和第二晶体管M2均为禁能状态。在一正常操作模式中,加速放电装置200已接收到第一输入电位VIN1和第二输入电位VIN2,故第一电容器C1会开始存储能量,第一并联式电感元件210和第二并联式电感元件220会各自形成一电流路径,而第一晶体管M1和第二晶体管M2则会轮流被使能。详细而言,若第一输入电位VIN1为正值(亦即,高于接地电位VSS),则第一电容器C1上一部分的能量将会经由第一放电电路250释放至接地电位VSS,而第一电容器C1上另一部分的能量将会经由使能的第一晶体管M1和第二放电电路280释放至大地299。反之,若第二输入电位VIN2为正值,则第一电容器C1上一部分的能量将会经由第一放电电路250释放至接地电位VSS,而第一电容器C1上另一部分的能量将会经由使能的第二晶体管M2和第二放电电路280释放至大地299。在一断电测试模式中,对应的外部输入电源会被移除(或是第一输入电位VIN1和第二输入电位VIN2皆消失),此时第一电容器C1所存储的能量仍可通过前述的放电路径进行释放。必须注意的是,由于同时使用第一并联式电感元件210、第二并联式电感元件220、第一放电电路250,以及第二放电电路280,故加速放电装置200的整体放电时间将能大幅缩短。In some embodiments, the operation principle of the accelerated
图3是显示根据本发明一实施例所述的断电测试模式中加速放电装置200的第一输入电位VIN1的波形图。若在正常条件下将外部输入电源移除,则第一输入电位VIN1(或第二输入电位VIN2)由一高电位电平(例如:交流电压264V,或是直流电压370V)下降至60V所花费的一第一放电时间T1约为1.315秒,其小于IEC 62368-1第二版所规范的2秒。FIG. 3 is a waveform diagram showing the first input potential VIN1 of the accelerating
图4是显示根据本发明一实施例所述的断电测试模式中加速放电装置200的第一输入电位VIN1的波形图。若在非正常条件下(亦即,加速放电装置200的任一元件被设定为开路或短路)将外部输入电源移除,则第一输入电位VIN1(或第二输入电位VIN2)由一高电位电平(例如:交流电压264V,或是直流电压370V)下降至120V所花费的一第二放电时间T2约为0.79秒,其亦小于IEC 62368-1第二版所规范的2秒。FIG. 4 is a waveform diagram showing the first input potential VIN1 of the accelerating
在一些实施例中,加速放电装置200的元件参数可如下列所述。第一电容器C1的电容值可介于0.327μF至0.333μF之间,优选为0.33μF。第二电容器C2的电容值可介于0.99μF至1.01μF之间,优选为1μF。第一电感器L1的电感值可介于6.31mH至6.97mH之间,优选为6.64mH。第二电感器L2的电感值可介于6.31mH至6.97mH之间,优选为6.64mH。第三电感器L3的电感值可介于6.31mH至6.97mH之间,优选为6.64mH。第四电感器L4的电感值可介于6.31mH至6.97mH之间,优选为6.64mH。第一电阻器R1的电阻值可介于1.317MΩ至1.343MΩ之间,优选为1.33MΩ。第二电阻器R2的电阻值可介于1.317MΩ至1.343MΩ之间,优选为1.33MΩ。第三电阻器R3的电阻值可介于198KΩ至202KΩ之间,优选为200KΩ。第四电阻器R4的电阻值可介于198KΩ至202KΩ之间,优选为200KΩ。以上参数范围是根据多次实验结果而得出,其有助于最小化加速放电装置200的整体放电时间。In some embodiments, the component parameters of the accelerating
本发明提出一种新颖的加速放电装置,其包括并联式电感元件和双重放电电路的设计。根据实际测量结果,使用前述设计的加速放电装置可大幅缩短其整体放电时间,且无论在正常条件或非正常条件下均能符合IEC 62368-1第二版的规范,故其很适合应用于各种各式的电子装置当中。The present invention proposes a novel accelerated discharge device, which includes a parallel inductance element and a double discharge circuit design. According to the actual measurement results, using the accelerated discharge device designed above can greatly shorten its overall discharge time, and it can meet the specifications of the second edition of IEC 62368-1 under normal or abnormal conditions, so it is very suitable for various applications. various electronic devices.
值得注意的是,以上所述的电位、电流、电阻值、电感值、电容值,以及其余元件参数均非为本发明的限制条件。设计者可以根据不同需要调整这些设定值。本发明的加速放电装置并不仅限于第1-4图所图示的状态。本发明可以仅包括图1-图4的任何一或多个实施例的任何一或多项特征。换言的,并非所有图示的特征均须同时实施于本发明的加速放电装置当中。虽然本发明的实施例是使用金属氧化物半导体场效晶体管为例,但本发明并不仅限于此,本技术领域人士可改用其他种类的晶体管,例如:接面场效晶体管,或是鳍式场效晶体管等等,而不致于影响本发明的效果。It should be noted that the potential, current, resistance value, inductance value, capacitance value, and other component parameters mentioned above are not limiting conditions of the present invention. Designers can adjust these settings according to different needs. The accelerated discharge device of the present invention is not limited to the states shown in FIGS. 1-4. The present invention may only include any one or more features of any one or more of the embodiments of FIGS. 1-4 . In other words, not all the illustrated features must be implemented in the accelerated discharge device of the present invention at the same time. Although the embodiment of the present invention uses metal-oxide-semiconductor field-effect transistors as an example, the present invention is not limited thereto, and those skilled in the art can use other types of transistors, such as: junction field-effect transistors, or fin-type field effect transistors, etc., without affecting the effect of the present invention.
在本说明书以及权利要求中的序数,例如“第一”、“第二”、“第三”等等,彼此之间并没有顺序上的先后关系,其仅用于标示区分两个具有相同名字的不同元件。The ordinal numbers in this specification and claims, such as "first", "second", "third", etc., have no sequential relationship with each other, and are only used to mark and distinguish two terms with the same name. of different components.
本发明虽以优选实施例公开如上,然其并非用以限定本发明的范围,任何熟习此项技艺者,在不脱离本发明的精神和范围内,当可做些许的变动与润饰,因此本发明的保护范围当视后附的权利要求所界定者为准。Although the present invention is disclosed as above with preferred embodiments, it is not intended to limit the scope of the present invention. Anyone skilled in this art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention shall prevail as defined by the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010488706.2ACN113765349B (en) | 2020-06-02 | 2020-06-02 | accelerated discharge device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010488706.2ACN113765349B (en) | 2020-06-02 | 2020-06-02 | accelerated discharge device |
| Publication Number | Publication Date |
|---|---|
| CN113765349A CN113765349A (en) | 2021-12-07 |
| CN113765349Btrue CN113765349B (en) | 2023-05-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010488706.2AActiveCN113765349B (en) | 2020-06-02 | 2020-06-02 | accelerated discharge device |
| Country | Link |
|---|---|
| CN (1) | CN113765349B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0872004A1 (en)* | 1995-06-05 | 1998-10-21 | Powervar, Inc. | Transformerless conditioning of a power distribution system |
| TW201023509A (en)* | 2008-12-11 | 2010-06-16 | Ind Tech Res Inst | ESD clamp circuit applied to power amplifier |
| CN201966817U (en)* | 2010-11-19 | 2011-09-07 | Tcl王牌电器(惠州)有限公司 | Alternating current voltage sampling and shutdown capacitor discharging circuit |
| TW201138253A (en)* | 2010-04-22 | 2011-11-01 | Leadtrend Tech Corp | Discharging module applied in a switched-mode power supply and method thereof |
| CN108933519A (en)* | 2017-05-22 | 2018-12-04 | 伟诠电子股份有限公司 | Control circuit and method for detecting power receiving state and discharging capacitor voltage according to the detected state |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8450988B2 (en)* | 2010-10-05 | 2013-05-28 | Maxim Integrated Products, Inc. | Systems and methods for controlling inductive energy in DC-DC converters |
| TWI479764B (en)* | 2012-12-17 | 2015-04-01 | Niko Semiconductor Co Ltd | Low power bleeder circuit and ac converter having the same |
| TWI511433B (en)* | 2013-12-20 | 2015-12-01 | Niko Semiconductor Co Ltd | Power conversion apparatus and control chip thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0872004A1 (en)* | 1995-06-05 | 1998-10-21 | Powervar, Inc. | Transformerless conditioning of a power distribution system |
| TW201023509A (en)* | 2008-12-11 | 2010-06-16 | Ind Tech Res Inst | ESD clamp circuit applied to power amplifier |
| TW201138253A (en)* | 2010-04-22 | 2011-11-01 | Leadtrend Tech Corp | Discharging module applied in a switched-mode power supply and method thereof |
| CN201966817U (en)* | 2010-11-19 | 2011-09-07 | Tcl王牌电器(惠州)有限公司 | Alternating current voltage sampling and shutdown capacitor discharging circuit |
| CN108933519A (en)* | 2017-05-22 | 2018-12-04 | 伟诠电子股份有限公司 | Control circuit and method for detecting power receiving state and discharging capacitor voltage according to the detected state |
| Publication number | Publication date |
|---|---|
| CN113765349A (en) | 2021-12-07 |
| Publication | Publication Date | Title |
|---|---|---|
| TWI646767B (en) | Power control device and power control system | |
| JP2012039852A (en) | Method, apparatus, and system for protecting supply nodes from electrostatic discharge | |
| TW202349837A (en) | Power supply device with fast discharge function | |
| TWI718029B (en) | Accelerating discharge device | |
| TW202119745A (en) | Boost converter | |
| TWI740686B (en) | Boost converter for reducing total harmonic distortion | |
| TWI726758B (en) | Power supply device for eliminating ringing effect | |
| CN113765349B (en) | accelerated discharge device | |
| TWI751518B (en) | Charging device supporting power delivery | |
| TWI731675B (en) | Power supply device for eliminating ringing effect | |
| TWI699082B (en) | Power supply device | |
| TW202343946A (en) | Power supply device | |
| TWI704756B (en) | Boost converter | |
| TWI717838B (en) | Power supply device | |
| CN113938014B (en) | Power supplies that eliminate ringing | |
| TWI736275B (en) | Power supply device for over current protection | |
| TWI837644B (en) | Power supply device | |
| TW202143626A (en) | Power supply device with dynamic output | |
| TW202131614A (en) | Boost converter | |
| TWI806548B (en) | Boost converter | |
| TWI844373B (en) | Power supply device with low switching loss | |
| CN113644823B (en) | Power supply device for eliminating ringing effect | |
| TWI715464B (en) | Buck converter | |
| TWI886000B (en) | Power supply device with high output stability | |
| TW202347935A (en) | Power supply device |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |