Movatterモバイル変換


[0]ホーム

URL:


CN113739700B - Method for adjusting orthogonal axis system of coordinate measuring instrument - Google Patents

Method for adjusting orthogonal axis system of coordinate measuring instrument
Download PDF

Info

Publication number
CN113739700B
CN113739700BCN202111081855.8ACN202111081855ACN113739700BCN 113739700 BCN113739700 BCN 113739700BCN 202111081855 ACN202111081855 ACN 202111081855ACN 113739700 BCN113739700 BCN 113739700B
Authority
CN
China
Prior art keywords
axis
bearing
error
rotating shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111081855.8A
Other languages
Chinese (zh)
Other versions
CN113739700A (en
Inventor
陈源
张和君
廖学文
章智伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chotest Technology Inc
Original Assignee
Chotest Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chotest Technology IncfiledCriticalChotest Technology Inc
Priority to CN202311385944.0ApriorityCriticalpatent/CN117433415A/en
Priority to CN202311394815.8Aprioritypatent/CN117433416A/en
Publication of CN113739700ApublicationCriticalpatent/CN113739700A/en
Application grantedgrantedCritical
Publication of CN113739700BpublicationCriticalpatent/CN113739700B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention provides a method for adjusting an orthogonal axis system of a coordinate measuring instrument, which comprises the following steps: and if the different-surface error is smaller than a second preset value, adjusting the relative positions of the axis of the first rotating shaft and the second rotating shaft based on the vertical error to reduce the different-surface error, and repeatedly adjusting the vertical error to enable the vertical error to be smaller than the first preset value and repeatedly adjusting the different-surface error to enable the different-surface error to be smaller than the second preset value. Thus, the vertical error and out-of-plane error of the orthogonal axis system of the coordinate measuring device can be reduced.

Description

Translated fromChinese
坐标测量仪器的正交轴系统的调校方法Calibration Method of Orthogonal Axis System of Coordinate Measuring Instrument

技术领域technical field

本公开大体涉及一种智能制造装备产业,具体涉及一种坐标测量仪器的正交轴系统的调校方法。The present disclosure generally relates to an intelligent manufacturing equipment industry, and specifically relates to a method for adjusting an orthogonal axis system of a coordinate measuring instrument.

背景技术Background technique

在精密工业以及测量领域,人们在对大型机器进行装配的时候,经常需要通过精密仪器(例如激光测量仪器)对组装的目标物进行测试以提高装配精度,同时在完成机器的组装后,也需要对机器进行校准,且在装配过程中,除了对目标物或者目标物上的某个目标点进行三维坐标测量,还需要对目标物品或目标点的运动情况进行测量,也即,对它们的姿态进行检测,因此需要一种可以在三维坐标基础上,还能完成六个自由度测量的仪器。由此就出现了通过坐标测量仪器对目标物或者目标点进行姿态测量的测量方式。坐标测量仪器的测量精度主要取决于角度和距离的测量精度,为了提高坐标测量仪器的测量精度,需要保证坐标测量仪器中的正交轴系统(至少包括水平轴和俯仰轴)的异面误差和垂直误差。由此,针对坐标测量仪器的正交轴系统的异面误差和垂直误差的测量方法和调校方法显得非常重要。In the field of precision industry and measurement, when assembling large machines, people often need to test the assembled target objects through precision instruments (such as laser measuring instruments) to improve the assembly accuracy. Calibrate the machine, and during the assembly process, in addition to measuring the three-dimensional coordinates of the target or a target point on the target, it is also necessary to measure the movement of the target or the target point, that is, their posture Therefore, an instrument that can complete six-degree-of-freedom measurement on the basis of three-dimensional coordinates is needed. As a result, a measurement method of measuring the attitude of the target object or target point through a coordinate measuring instrument has emerged. The measurement accuracy of the coordinate measuring instrument mainly depends on the measurement accuracy of angle and distance. In order to improve the measurement accuracy of the coordinate measuring instrument, it is necessary to ensure the out-of-plane error and vertical error. Therefore, the measurement method and adjustment method for the out-of-plane error and vertical error of the orthogonal axis system of the coordinate measuring instrument are very important.

专利文献(CN106705821A)中公开了一种回转轴系正交性测量方法及装置,该装置将两个标准球分别安装在俯仰旋转轴两端,通过调整标准球的球心与俯仰旋转轴轴线同轴,再测量两个标准球在同一方向上的最低或最高位置进而确定轴系正交性。然而,利用上述回转轴系正交性测量方法及装置,虽然能够得到两轴系正交测量结果,但是调整两个标准球的球心与俯仰轴的轴线同轴的过程中会引入误差。此外,两个标准球最低或者最高位置的测量也会引入误差。这两种误差的引入会对轴系正交性测量结果的准确度产生较大的影响。同时该方法无法获得异面误差。The patent document (CN106705821A) discloses a method and device for measuring the orthogonality of the rotary shaft system. In the device, two standard balls are respectively installed at both ends of the pitch rotating shaft. axis, and then measure the lowest or highest position of the two standard spheres in the same direction to determine the orthogonality of the axis system. However, using the above-mentioned method and device for measuring the orthogonality of the rotary axis system, although the orthogonal measurement results of the two axis systems can be obtained, errors will be introduced during the process of adjusting the center of the two standard spheres to be coaxial with the axis of the pitch axis. In addition, the measurement of the lowest or highest position of the two standard balls will also introduce errors. The introduction of these two kinds of errors will have a greater impact on the accuracy of the measurement results of the shafting orthogonality. At the same time, this method cannot obtain out-of-plane errors.

发明内容Contents of the invention

本发明有鉴于上述现有技术的状况而提出,其目的在于提供一种能够降低异面误差和垂直误差的坐标测量仪器的正交轴系统的调校方法。The present invention is proposed in view of the above-mentioned state of the prior art, and its purpose is to provide a method for adjusting the orthogonal axis system of a coordinate measuring instrument that can reduce out-of-plane errors and vertical errors.

为此,本发明提供了一种坐标测量仪器的正交轴系统的调校方法,所述坐标测量仪器包括具有第一旋转轴的第一旋转装置和设置于所述第一旋转装置并具有第二旋转轴的第二旋转装置,所述第二旋转装置能够围绕所述第一旋转装置旋转,所述正交轴系统由所述第一旋转轴和所述第二旋转轴构成,其特征在于,包括:测量所述第一旋转轴的轴线和所述第二旋转轴的轴线的垂直误差,所述垂直误差反映所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的角度,测量所述垂直误差时,利用与所述第一旋转轴的轴线间隔第一预设距离的第一截面截取所述第二旋转轴以获得第一虚拟截面,旋转所述第一旋转轴以使所述第二旋转轴旋转第一预设角度,利用所述第一截面截取所述第二旋转轴以获得第二虚拟截面,基于所述第一虚拟截面和所述第二虚拟截面的几何中心的位置计算所述垂直误差,若所述垂直误差不小于第一预设值,基于所述垂直误差调整所述第一旋转轴的轴线和所述第二旋转轴的相对位置以降低所述垂直误差,测量所述第一旋转轴的轴线和所述第二旋转轴的轴线的异面误差,所述异面误差反映所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离,若所述异面误差小于第二预设值,基于所述垂直误差调整所述第一旋转轴的轴线和所述第二旋转轴的相对位置以降低所述异面误差,重复调整所述垂直误差以使所述垂直误差小于所述第一预设值,重复调整所述异面误差以使所述异面误差小于所述第二预设值。To this end, the present invention provides a method for calibrating the orthogonal axis system of a coordinate measuring instrument, the coordinate measuring instrument includes a first rotating device having a first rotating shaft and a first rotating device arranged on the first rotating device and having a second A second rotating device with two rotating shafts, the second rotating device can rotate around the first rotating device, the orthogonal axis system is composed of the first rotating shaft and the second rotating shaft, characterized in that , comprising: measuring the vertical error between the axis of the first rotating shaft and the axis of the second rotating shaft, the vertical error reflecting the difference between the axis of the first rotating shaft and the axis of the second rotating shaft Angle, when measuring the vertical error, the first section of the second rotation axis is intercepted by a first preset distance from the axis of the first rotation axis to obtain a first virtual section, and the first rotation axis is rotated rotating the second rotation axis by a first preset angle, using the first section to intercept the second rotation axis to obtain a second virtual section, based on the first virtual section and the second virtual section The position of the geometric center calculates the vertical error, and if the vertical error is not less than a first preset value, adjust the relative position of the axis of the first rotation axis and the second rotation axis based on the vertical error to reduce the The vertical error measures the out-of-plane error between the axis of the first rotating shaft and the axis of the second rotating shaft, and the out-of-plane error reflects the axis of the first rotating shaft and the axis of the second rotating shaft distance between, if the out-of-plane error is less than a second preset value, adjust the relative position of the axis of the first rotation axis and the second rotation axis based on the vertical error to reduce the out-of-plane error, The vertical error is repeatedly adjusted to make the vertical error smaller than the first preset value, and the different-plane error is repeatedly adjusted to make the different-plane error smaller than the second preset value.

在这种情况下,能够在组装第一旋转轴和第二旋转轴时,测量并调整垂直误差,从而能够降低垂直误差,进而能够提高坐标测量仪器的测量精度。同时,由于在测量第一虚拟截面和第二虚拟截面时,使用了相同的截面截取第二旋转轴,由此能够获得在同一平面内的第一虚拟截面和第二虚拟截面,能够在测量第一虚拟截面和第二虚拟截面的几何中心时减少测头(例如三坐标测量仪的测头)在水平方向的移动,进而能够降低测量时引入的误差。同时,能够在调整垂直误差后进一步调整异面误差,进而能够提高坐标测量仪器的测量精度。同时,由于在调整异面误差时对第二旋转轴的移动幅度较小,从而降低了大幅移动第二旋转轴与第一旋转轴的相对位置对垂直误差的影响。重复调整异面误差和垂直误差能够进一步降低移动第二旋转轴与第一旋转轴的相对位置对垂直误差和异面误差的影响。In this case, the vertical error can be measured and adjusted when the first rotating shaft and the second rotating shaft are assembled, so that the vertical error can be reduced, and the measurement accuracy of the coordinate measuring instrument can be improved. At the same time, since the same section is used to intercept the second rotation axis when measuring the first virtual section and the second virtual section, the first virtual section and the second virtual section in the same plane can be obtained, and the second virtual section can be measured when measuring the first virtual section. The geometric centers of the first virtual section and the second virtual section reduce the movement of the measuring head (such as the measuring head of a three-coordinate measuring machine) in the horizontal direction, thereby reducing errors introduced during measurement. At the same time, the out-of-plane error can be further adjusted after the vertical error is adjusted, thereby improving the measurement accuracy of the coordinate measuring instrument. At the same time, since the range of movement of the second rotation axis is relatively small when adjusting the out-of-plane error, the influence of the relative position of the second rotation axis and the first rotation axis on the vertical error is reduced. Repeatedly adjusting the out-of-plane error and the vertical error can further reduce the influence of moving the relative position of the second rotation axis and the first rotation axis on the vertical error and the out-of-plane error.

另外,在本发明所涉及的调校方法中,可选地,测量所述异面误差时,利用与所述第一旋转轴的轴线间隔第二预设距离的第二截面截取所述第二旋转轴以获得第三虚拟截面,旋转所述第一旋转轴以使所述第二旋转轴旋转第一预设角度,利用所述第二截面截取所述第二旋转轴以获得第四虚拟截面,基于所述第三虚拟截面和所述第四虚拟截面的几何中心计算所述异面误差,获得第三虚拟截面时,所述第二旋转轴与所述第二截面之间具有第二预设角度。在这种情况下,可以令第三虚拟截面和第四虚拟截面的几何中心的距离大于或等于第一旋转轴的轴线和第二旋转轴的轴线之间的距离的两倍,由此能够利用更大的数值反映第一旋转轴的轴线和第二旋转轴的轴线之间的距离,提高测量精度。In addition, in the calibration method involved in the present invention, optionally, when measuring the out-of-plane error, the second section is intercepted with a second preset distance from the axis of the first rotation shaft. rotating the axis to obtain a third virtual section, rotating the first axis of rotation to rotate the second axis of rotation by a first preset angle, and using the second section to intercept the second axis of rotation to obtain a fourth virtual section , calculating the out-of-plane error based on the geometric centers of the third virtual section and the fourth virtual section, and when obtaining the third virtual section, there is a second predetermined distance between the second rotation axis and the second section set angle. In this case, the distance between the geometric centers of the third virtual section and the fourth virtual section can be greater than or equal to twice the distance between the axis of the first rotation shaft and the axis of the second rotation shaft, thereby being able to utilize A larger value reflects the distance between the axis of the first rotation axis and the axis of the second rotation axis, improving measurement accuracy.

另外,在本发明所涉及的调校方法中,可选地,所述第二旋转装置包括第一支承部和第二支承部,所述第二旋转轴可旋转地设置在所述第一支承部与所述第二支承部之间。在这种情况下,能够令第二旋转轴沿第二方向旋转。In addition, in the calibration method involved in the present invention, optionally, the second rotating device includes a first supporting part and a second supporting part, and the second rotating shaft is rotatably arranged on the first supporting part. part and the second support part. In this case, the second rotation shaft can be rotated in the second direction.

另外,在本发明所涉及的调校方法中,可选地,所述第二旋转装置还包括设置在所述第一支承部的第一轴承和设置在所述第二支承部的第二轴承,所述第二旋转轴通过所述第一轴承和所述第二轴承安装于所述第二旋转装置。在这种情况下,能够提高第二旋转轴旋转时的稳定性,并且由于第一轴承的轴心和第二轴承的轴心所在的直线即第二旋转轴的轴线,由此能够通过调整第一轴承和第二轴承的位置控制第二旋转轴的姿态。In addition, in the calibration method involved in the present invention, optionally, the second rotating device further includes a first bearing arranged on the first support part and a second bearing arranged on the second support part , the second rotating shaft is mounted on the second rotating device through the first bearing and the second bearing. In this case, the stability when the second rotating shaft rotates can be improved, and since the axis of the second rotating shaft is the straight line where the shaft center of the first bearing and the shaft center of the second bearing are located, it is possible to adjust the The position of the first bearing and the second bearing controls the attitude of the second rotating shaft.

另外,在本发明所涉及的调校方法中,可选地,若所述垂直误差不小于所述第一预设值,调整所述第一轴承与所述第一支承部的相对位置或所述第二轴承与所述第二支承部的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的角度。在这种情况下,能够有效降低垂直误差。In addition, in the calibration method involved in the present invention, optionally, if the vertical error is not less than the first preset value, the relative position or the relative position between the first bearing and the first support part is adjusted. The relative position of the second bearing and the second supporting part is adjusted to adjust the angle between the axis of the first rotating shaft and the axis of the second rotating shaft. In this case, the vertical error can be effectively reduced.

另外,在本发明所涉及的调校方法中,可选地,若所述异面误差不小于所述第二预设值,调整所述第一轴承与所述第一支承部的相对位置和所述第二轴承与所述第二支承部的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离。在这种情况下,能够减少异面误差。In addition, in the calibration method involved in the present invention, optionally, if the out-of-plane error is not less than the second preset value, adjust the relative position and The relative position of the second bearing and the second supporting part is to adjust the distance between the axis of the first rotating shaft and the axis of the second rotating shaft. In this case, out-of-plane errors can be reduced.

另外,在本发明所涉及的调校方法中,可选地,所述第一轴承包括第一定位螺钉,所述第一定位螺钉配置为将所述第一轴承定位于第一支承部,所述第二轴承包括第二定位螺钉,所述第二定位螺钉配置为将所述第二轴承定位于第二支承部。在这种情况下,能够通过拧紧第一定位螺钉将第一轴承定位,并且能够通过松开第一定位螺钉已对第一轴承的位置进行调整。同时,能够通过拧紧第二定位螺钉将第二轴承定位,并且能够通过松开第二定位螺钉已对第二轴承的位置进行调整。In addition, in the adjustment method involved in the present invention, optionally, the first bearing includes a first positioning screw, and the first positioning screw is configured to position the first bearing on the first supporting part, so The second bearing includes a second set screw configured to position the second bearing on the second support portion. In this case, the first bearing can be positioned by tightening the first set screw, and the position of the first bearing can be adjusted by loosening the first set screw. At the same time, the second bearing can be positioned by tightening the second positioning screw, and the position of the second bearing can be adjusted by loosening the second positioning screw.

另外,在本发明所涉及的调校方法中,可选地,调整所述第一轴承与所述第一支承部的相对位置时,松开所述第一定位螺钉并基于所述垂直误差或所述异面误差对所述第一轴承进行调整,并在调整所述第一轴承与所述第一支承部的相对位置后,拧紧所述第一定位螺钉;调整所述第二轴承与所述第二支承部的相对位置时,松开所述第二定位螺钉并基于所述垂直误差或所述异面误差对所述第二轴承进行调整,并在调整所述第二轴承与所述第二支承部的相对位置后,拧紧所述第二定位螺钉。在这种情况下,能够通过拧紧第一定位螺钉将第一轴承定位,并且能够通过松开第一定位螺钉已对第一轴承的位置进行调整。同时,能够通过拧紧第二定位螺钉将第二轴承定位,并且能够通过松开第二定位螺钉已对第二轴承的位置进行调整。In addition, in the calibration method involved in the present invention, optionally, when adjusting the relative position of the first bearing and the first supporting part, the first positioning screw is loosened and based on the vertical error or The out-of-plane error adjusts the first bearing, and after adjusting the relative position between the first bearing and the first supporting part, tighten the first positioning screw; adjust the second bearing and the When adjusting the relative position of the second supporting part, loosen the second positioning screw and adjust the second bearing based on the vertical error or the out-of-plane error, and adjust the second bearing and the After the relative position of the second supporting part, tighten the second set screw. In this case, the first bearing can be positioned by tightening the first set screw, and the position of the first bearing can be adjusted by loosening the first set screw. At the same time, the second bearing can be positioned by tightening the second positioning screw, and the position of the second bearing can be adjusted by loosening the second positioning screw.

另外,在本发明所涉及的调校方法中,可选地,当所述垂直误差小于所述第一预设值并且所述异面误差小于所述第二预设值时,对所述第一轴承和所述第二轴承进行固定。在这种情况下,能够固定调校后的垂直误差和异面误差,并固定第一旋转轴和第二旋转轴的相对位置关系。In addition, in the calibration method involved in the present invention, optionally, when the vertical error is smaller than the first preset value and the out-of-plane error is smaller than the second preset value, the first A bearing is fixed to the second bearing. In this case, the adjusted vertical error and out-of-plane error can be fixed, and the relative positional relationship between the first rotation axis and the second rotation axis can be fixed.

另外,在本发明所涉及的调校方法中,可选地,若所述异面误差不小于所述第二预设值,调整所述第二旋转装置与所述第一旋转装置的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离。在这种情况下,能够避免调整第一轴承和第二轴承是对垂直误差的影响。In addition, in the calibration method involved in the present invention, optionally, if the out-of-plane error is not less than the second preset value, adjust the relative position between the second rotating device and the first rotating device to adjust the distance between the axis of the first rotating shaft and the axis of the second rotating shaft. In this case, the influence of adjusting the first bearing and the second bearing on the vertical error can be avoided.

根据本发明,能够提供一种能够降低异面误差和垂直误差的坐标测量仪器的正交轴系统的调校方法。According to the present invention, it is possible to provide a method for adjusting the orthogonal axis system of a coordinate measuring instrument capable of reducing out-of-plane errors and vertical errors.

附图说明Description of drawings

现在将仅通过参考附图的例子进一步详细地解释本发明的实施例,其中:Embodiments of the invention will now be explained in further detail by way of example only with reference to the accompanying drawings, in which:

图1是示出了本公开所涉及的坐标测量仪器的示意图。FIG. 1 is a schematic diagram showing a coordinate measuring instrument related to the present disclosure.

图2是示出了本公开所涉及的坐标测量仪器的第二旋转装置的示意图。FIG. 2 is a schematic diagram showing a second rotating device of the coordinate measuring instrument according to the present disclosure.

图3是示出了本公开所涉及的坐标测量仪器的第二旋转轴和光学主体连接时的示意图。FIG. 3 is a schematic diagram illustrating the connection between the second rotation axis and the optical body of the coordinate measuring instrument according to the present disclosure.

图4是示出了本公开所涉及的未安装第二旋转轴时的正交轴系统的立体示意图。FIG. 4 is a schematic perspective view showing the orthogonal axis system when the second rotation axis is not installed according to the present disclosure.

图5是示出了本公开所涉及的已安装第二旋转轴时的正交轴系统的立体示意图。FIG. 5 is a schematic perspective view showing the orthogonal axis system when the second rotation axis is installed according to the present disclosure.

图6是示出了本公开所涉及的调校方法的流程图。FIG. 6 is a flow chart illustrating a calibration method involved in the present disclosure.

图7是示出了本公开所涉及的测量第一虚拟截面的几何中心的空间坐标的示意图。FIG. 7 is a schematic diagram showing the spatial coordinates of the geometric center of the first virtual cross-section measured according to the present disclosure.

图8是示出了本公开所涉及的测量第二虚拟截面的几何中心的空间坐标的示意图。FIG. 8 is a schematic diagram showing the spatial coordinates of the geometric center of the second virtual cross-section measured according to the present disclosure.

图9是示出了本公开所涉及的测量第三虚拟截面的几何中心的空间坐标的示意图。FIG. 9 is a schematic diagram showing the spatial coordinates of the geometric center of the measurement third virtual section involved in the present disclosure.

图10是示出了本公开所涉及的测量第四虚拟截面的几何中心的空间坐标的示意图。FIG. 10 is a schematic diagram showing the spatial coordinates of the geometric center of the measurement fourth virtual section involved in the present disclosure.

具体实施方式Detailed ways

以下,参考附图,详细地说明本发明的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are given to the same components, and repeated descriptions are omitted. In addition, the drawings are only schematic diagrams, and the ratio of dimensions between components, the shape of components, and the like may be different from the actual ones.

需要说明的是,本发明中的术语“包括”和“具有”以及它们的任何变形,例如所包括或所具有的一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括或具有没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "comprising" and "having" and any variations thereof in the present invention, such as a process, method, system, product or device that includes or has a series of steps or units, are not necessarily limited to the clearly listed instead, may include or have other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.

另外,在本发明的下面描述中涉及的小标题等并不是为了限制本发明的内容或范围,其仅仅是作为阅读的提示作用。这样的小标题既不能理解为用于分割文章的内容,也不应将小标题下的内容仅仅限制在小标题的范围内。In addition, the subheadings and the like involved in the following description of the present invention are not intended to limit the content or scope of the present invention, but are only used as reminders for reading. Such subtitles can neither be understood as used to divide the content of the article, nor should the content under the subtitle be limited to the scope of the subtitle.

本实施方式涉及一种坐标测量仪器的正交轴系统的调校方法,坐标测量仪器是一种用于跟踪辅助测量装置并测量辅助测量装置的空间坐标和姿态的坐标测量仪器。“坐标测量仪器”也可以称为“坐标测量装置”,“辅助测量装置”也可以称为“姿态靶球”、“姿态靶标”、“靶标”或者“靶球”。“坐标测量仪器的正交轴系统的调校方法”也可以称为“调校方法”。通过本实施方式所涉及的坐标测量仪器,能够跟踪靶球然后测量靶球的空间坐标和姿态。This embodiment relates to a calibration method of an orthogonal axis system of a coordinate measuring instrument. The coordinate measuring instrument is a coordinate measuring instrument used to track an auxiliary measuring device and measure the space coordinates and attitude of the auxiliary measuring device. A "coordinate measuring instrument" may also be called a "coordinate measuring device", and an "auxiliary measuring device" may also be called an "attitude target ball", "attitude target", "target" or "target ball". The "calibration method of an orthogonal axis system of a coordinate measuring instrument" may also be referred to as a "calibration method". With the coordinate measuring instrument according to this embodiment, it is possible to track a target ball and then measure the space coordinates and attitude of the target ball.

本实施方式所涉及的一种坐标测量仪器的正交轴系统的调校方法中,坐标测量仪器包括具有第一旋转轴的第一旋转装置和设置于第一旋转装置并具有第二旋转轴的第二旋转装置,第二旋转装置能够绕着第一旋转装置旋转,正交轴系统由第一旋转轴和第二旋转轴构成。In the method for calibrating the orthogonal axis system of a coordinate measuring instrument according to this embodiment, the coordinate measuring instrument includes a first rotating device with a first rotating shaft and a The second rotating device is capable of rotating around the first rotating device, and the orthogonal axis system is composed of the first rotating shaft and the second rotating shaft.

在一些示例中,调校方法可以包括:测量第一旋转轴的轴线和第二旋转轴的轴线的垂直误差,垂直误差反映第一旋转轴的轴线和第二旋转轴的轴线之间的角度,测量垂直误差时,利用与第一旋转轴的轴线间隔第一预设距离的第一截面截取第二旋转轴以获得第一虚拟截面,旋转第一旋转轴以使第二旋转轴旋转第一预设角度,利用第一截面截取第二旋转轴以获得第二虚拟截面,基于第一虚拟截面和第二虚拟截面的几何中心的位置计算垂直误差,若垂直误差不小于第一预设值,基于垂直误差调整第一旋转轴的轴线和第二旋转轴的相对位置以降低垂直误差。在这种情况下,能够在组装第一旋转轴和第二旋转轴时,测量并调整垂直误差,从而能够降低垂直误差,进而能够提高坐标测量仪器的测量精度。同时,由于在测量第一虚拟截面和第二虚拟截面时,使用了相同的截面截取第二旋转轴,由此能够获得在同一平面内的第一虚拟截面和第二虚拟截面,能够在测量第一虚拟截面和第二虚拟截面的几何中心时减少测头(例如三坐标测量仪的测头)在水平方向的移动,进而能够降低测量时引入的误差。In some examples, the calibration method may include: measuring a vertical error between an axis of the first rotating shaft and an axis of the second rotating shaft, where the vertical error reflects an angle between the axis of the first rotating shaft and the axis of the second rotating shaft, When measuring the vertical error, the first section of the second rotation axis is intercepted by a first preset distance from the axis of the first rotation axis to obtain a first virtual section, and the first rotation axis is rotated so that the second rotation axis is rotated by the first preset distance. Set the angle, use the first section to intercept the second rotation axis to obtain the second virtual section, calculate the vertical error based on the positions of the geometric centers of the first virtual section and the second virtual section, if the vertical error is not less than the first preset value, based on The vertical error adjusts the relative position of the axis of the first rotation axis and the second rotation axis to reduce the vertical error. In this case, the vertical error can be measured and adjusted when the first rotating shaft and the second rotating shaft are assembled, so that the vertical error can be reduced, and the measurement accuracy of the coordinate measuring instrument can be improved. At the same time, since the same section is used to intercept the second rotation axis when measuring the first virtual section and the second virtual section, the first virtual section and the second virtual section in the same plane can be obtained, and the second virtual section can be measured when measuring the first virtual section. The geometric centers of the first virtual section and the second virtual section reduce the movement of the measuring head (such as the measuring head of a three-coordinate measuring machine) in the horizontal direction, thereby reducing errors introduced during measurement.

在一些示例中,测量第一旋转轴的轴线和第二旋转轴的轴线的异面误差,异面误差反映第一旋转轴的轴线和第二旋转轴的轴线之间的距离,若异面误差小于第二预设值,基于垂直误差调整第一旋转轴的轴线和第二旋转轴的相对位置以降低异面误差。在这种情况下,能够在调整垂直误差后进一步调整异面误差,进而能够提高坐标测量仪器的测量精度。同时,由于在调整异面误差时对第二旋转轴的移动幅度较小,从而降低了大幅移动第二旋转轴与第一旋转轴的相对位置对垂直误差的影响。In some examples, the out-of-plane error of the axis of the first rotating shaft and the axis of the second rotating shaft is measured, and the out-of-plane error reflects the distance between the axis of the first rotating shaft and the axis of the second rotating shaft, if the out-of-plane error If it is smaller than the second preset value, the relative position of the axis of the first rotation axis and the second rotation axis is adjusted based on the vertical error to reduce the out-of-plane error. In this case, the out-of-plane error can be further adjusted after the vertical error is adjusted, thereby improving the measurement accuracy of the coordinate measuring instrument. At the same time, since the range of movement of the second rotation axis is relatively small when adjusting the out-of-plane error, the influence of the relative position of the second rotation axis and the first rotation axis on the vertical error is reduced.

在一些示例中,可以重复调整垂直误差以使垂直误差小于第一预设值,重复调整异面误差以使异面误差小于第二预设值。在这种情况下,能够进一步降低移动第二旋转轴与第一旋转轴的相对位置对垂直误差和异面误差的影响。In some examples, the vertical error can be repeatedly adjusted to make the vertical error smaller than a first preset value, and the different-plane error can be repeatedly adjusted to make the different-plane error smaller than a second preset value. In this case, the influence of moving the relative position of the second rotation axis and the first rotation axis on the vertical error and the out-of-plane error can be further reduced.

以下,结合附图,对本实施方式所涉及的调校方法进行详细说明。Hereinafter, the calibration method according to this embodiment will be described in detail with reference to the drawings.

图1是示出了本公开所涉及的坐标测量仪器的示意图。图2是示出了本公开所涉及的坐标测量仪器的第二旋转装置的示意图。图3是示出了本公开所涉及的坐标测量仪器的第二旋转轴和光学主体连接时的示意图。图4是示出了本公开所涉及的未安装第二旋转轴时的正交轴系统的立体示意图。图5是示出了本公开所涉及的已安装第二旋转轴时的正交轴系统的立体示意图。FIG. 1 is a schematic diagram showing a coordinate measuring instrument related to the present disclosure. FIG. 2 is a schematic diagram showing a second rotating device of the coordinate measuring instrument according to the present disclosure. FIG. 3 is a schematic diagram illustrating the connection between the second rotation axis and the optical body of the coordinate measuring instrument according to the present disclosure. FIG. 4 is a schematic perspective view showing the orthogonal axis system when the second rotation axis is not installed according to the present disclosure. FIG. 5 is a schematic perspective view showing the orthogonal axis system when the second rotation axis is installed according to the present disclosure.

在一些示例中,如图1所示,坐标测量仪器1可以包括第一旋转装置10、第二旋转装置20和光学主体30。In some examples, as shown in FIG. 1 , the coordinate measuring instrument 1 may include a first rotating device 10 , a second rotating device 20 and an optical body 30 .

在一些示例中,第一旋转装置10可以设置有第一旋转轴11(未图示)。在一些示例中,第一旋转轴11可以称为方位轴或水平旋转轴。在一些示例中,第一旋转轴11可以沿第一方向旋转,优选地,第一方向可以为水平方向。In some examples, the first rotating device 10 may be provided with a first rotating shaft 11 (not shown). In some examples, the first rotation axis 11 may be referred to as an azimuth axis or a horizontal rotation axis. In some examples, the first rotating shaft 11 can rotate along a first direction, preferably, the first direction can be a horizontal direction.

在一些示例中,如图1所示,第二旋转装置20设置于第一旋转装置10。在一些示例中,第二旋转装置20可以设置于第一旋转装置10,在这种情况下,第二旋转装置20能够在第一旋转轴11的带动下沿第一方向旋转。In some examples, as shown in FIG. 1 , the second rotating device 20 is disposed on the first rotating device 10 . In some examples, the second rotating device 20 can be disposed on the first rotating device 10 , in this case, the second rotating device 20 can rotate along the first direction driven by the first rotating shaft 11 .

在一些示例中,如图2和图4所示,第二旋转装置20可以并具有第二旋转轴23。在一些示例中,第二旋转轴23可以称为俯仰轴或俯仰旋转轴。在一些示例中,第二旋转轴23可以沿第二方向旋转,在一些示例中,第一旋转轴11的旋转方向可以与第二旋转轴23的旋转方向正交,优选地,第二方向可以为竖直方向。在一些示例中,光学主体30可以设置于第二旋转装置20的第二旋转轴23。在这种情况下,光学主体30能够在第一旋转轴11的带动下沿第一方向旋转,并且光学主体30能够在第二旋转轴23的带动下沿第二方向旋转。In some examples, as shown in FIGS. 2 and 4 , the second rotating device 20 can and has a second rotating shaft 23 . In some examples, the second axis of rotation 23 may be referred to as a pitch axis or a pitch rotation axis. In some examples, the second rotation shaft 23 can rotate in a second direction. In some examples, the rotation direction of the first rotation shaft 11 can be orthogonal to the rotation direction of the second rotation shaft 23. Preferably, the second direction can be for the vertical direction. In some examples, the optical body 30 can be disposed on the second rotation axis 23 of the second rotation device 20 . In this case, the optical main body 30 can rotate along the first direction driven by the first rotating shaft 11 , and the optical main body 30 can rotate along the second direction driven by the second rotating shaft 23 .

在一些示例中,如图2和图5所示,第二旋转装置20还可以包括第一支承部21和第二支承部22,第二旋转轴23可旋转地设置在第一支承部21与第二支承部22之间。在这种情况下,能够令第二旋转轴23沿第二方向旋转。In some examples, as shown in FIG. 2 and FIG. 5 , the second rotating device 20 may further include a first supporting portion 21 and a second supporting portion 22, and a second rotating shaft 23 is rotatably arranged between the first supporting portion 21 and the second supporting portion 22. between the second supporting parts 22 . In this case, the second rotation shaft 23 can be rotated in the second direction.

在一些示例中,第二旋转装置20也可以只包括第一支承部21,并且第二旋转轴23可旋转地设置在第一支承部21。在这种情况下,能够只使用第一支承部21支承第二旋转轴23,从而简化了第二旋转装置20的结构。In some examples, the second rotating device 20 may also only include the first supporting portion 21 , and the second rotating shaft 23 is rotatably disposed on the first supporting portion 21 . In this case, only the first support portion 21 can be used to support the second rotation shaft 23 , thereby simplifying the structure of the second rotation device 20 .

在一些示例中,如图2所示,第二旋转装置20还可以包括设置在第一支承部21的第一轴承211和设置在第二支承部22的第二轴承221,第二旋转轴23通过第一轴承211和第二轴承221安装于第二旋转装置20。在这种情况下,能够提高第二旋转轴23旋转时的稳定性,并且由于第一轴承211的轴心和第二轴承221的轴心所在的直线即第二旋转轴23的轴线,由此能够通过调整第一轴承211和第二轴承221的位置控制第二旋转轴23的姿态。In some examples, as shown in FIG. 2 , the second rotating device 20 may further include a first bearing 211 disposed on the first supporting portion 21 and a second bearing 221 disposed on the second supporting portion 22 , the second rotating shaft 23 It is attached to the second rotating device 20 via the first bearing 211 and the second bearing 221 . In this case, the stability when the second rotating shaft 23 rotates can be improved, and since the axis of the second rotating shaft 23 is the line where the axis center of the first bearing 211 and the axis center of the second bearing 221 are located, thus The posture of the second rotating shaft 23 can be controlled by adjusting the positions of the first bearing 211 and the second bearing 221 .

在一些示例中,第一轴承211可以包括第一定位螺钉(未图示),第一定位螺钉配置为将第一轴承211定位于第一支承部21,第二轴承221可以包括第二定位螺钉(未图示),第二定位螺钉配置为将第二轴承221定位于第二支承部22。在这种情况下,能够通过拧紧第一定位螺钉将第一轴承211定位,并且能够通过松开第一定位螺钉以对第一轴承211的位置进行调整。同时,能够通过拧紧第二定位螺钉将第二轴承221定位,并且能够通过松开第二定位螺钉以对第二轴承221的位置进行调整。In some examples, the first bearing 211 may include a first set screw (not shown), the first set screw is configured to position the first bearing 211 on the first supporting portion 21, and the second bearing 221 may include a second set screw. (not shown), the second positioning screw is configured to position the second bearing 221 on the second supporting portion 22 . In this case, the first bearing 211 can be positioned by tightening the first positioning screw, and the position of the first bearing 211 can be adjusted by loosening the first positioning screw. At the same time, the second bearing 221 can be positioned by tightening the second positioning screw, and the position of the second bearing 221 can be adjusted by loosening the second positioning screw.

在一些示例中,第一支承部21可以包括第一夹块(未图示),在一些示例中,第一夹块可以将第一轴承211定位于第一支承部21。例如,第一夹块可以包括夹持部,并将第一轴承211与第一支承部21夹持在一起。In some examples, the first supporting part 21 may include a first clamping block (not shown), and in some examples, the first clamping block may position the first bearing 211 on the first supporting part 21 . For example, the first clamping block may include a clamping portion, and clamp the first bearing 211 and the first supporting portion 21 together.

在一些示例中,第二支承部22可以包括第二夹块(未图示),在一些示例中,第二夹块可以将第二轴承221定位于第二支承部22。例如,第二夹块可以包括夹持部,并将第二轴承221与第二支承部22夹持在一起。In some examples, the second supporting part 22 may include a second clamping block (not shown), and in some examples, the second clamping block may position the second bearing 221 on the second supporting part 22 . For example, the second clamping block may include a clamping portion, and clamp the second bearing 221 and the second supporting portion 22 together.

在一些示例中,如图3所示,在光学主体座31的两个侧面的几何中心可以具有开孔,开孔的大小可以与第二旋转轴23的直径相匹配。在这种情况下,能够令第二旋转轴23穿过光学主体座31,从而第二旋转轴23能够带动光学主体座31一起旋转,同时,这样光束能够通过第二旋转轴23进入光学主体座31,从而能够令光束很好地通过多个光学元件的几何中心,提高光能的利用率并且便于光束的调节。In some examples, as shown in FIG. 3 , there may be holes at the geometric centers of the two sides of the optical main body seat 31 , and the size of the holes may match the diameter of the second rotating shaft 23 . In this case, the second rotating shaft 23 can pass through the optical main body seat 31, so that the second rotating shaft 23 can drive the optical main body seat 31 to rotate together, and at the same time, the light beam can enter the optical main body seat through the second rotating shaft 23 31, so that the light beam can well pass through the geometric centers of multiple optical elements, improve the utilization rate of light energy and facilitate the adjustment of the light beam.

在一些示例中,如图3所示,第二旋转轴23可以包括突起部231,突起部231可以是从第二旋转轴23的侧面向外延伸的突起,并且突起部231可以与光学主体座31的侧面相配合。在这种情况下,能够对光学主体座31进行定位。In some examples, as shown in FIG. 3 , the second rotating shaft 23 may include a protrusion 231, which may be a protrusion extending outward from the side of the second rotating shaft 23, and the protrusion 231 may be seated with the optical body. 31 sides to match. In this case, the optical body mount 31 can be positioned.

在一些示例中,能够对第二旋转轴23的径向圆跳动进行测量,并对径向圆跳动小于第二预设阈值的第二旋转轴23进行装配,在一些示例中,第二预设阈值可以小于5微米,例如预设值可以为2微米、2.5微米、2.8微米、3微米、3.4微米、4微米、4.5微米、5微米。在这种情况下,能够提高光学主体座31与第二旋转轴23的位置精度。In some examples, the radial circular runout of the second rotating shaft 23 can be measured, and the second rotating shaft 23 can be assembled with a radial circular runout smaller than a second preset threshold, in some examples, the second preset The threshold value may be less than 5 microns, for example, the preset value may be 2 microns, 2.5 microns, 2.8 microns, 3 microns, 3.4 microns, 4 microns, 4.5 microns, 5 microns. In this case, the positional accuracy of the optical body base 31 and the second rotation shaft 23 can be improved.

图6是示出了本公开所涉及的正交轴系统的正交性的调校方法的流程图。在一些示例中,如图6所示,调校方法的可以包括:测量垂直误差(步骤S100)、调整垂直误差(步骤S200)、测量异面误差(步骤S300)、调整异面误差(步骤S400)、重复调整垂直误差以使垂直误差小于第一预设值(步骤S500)、重复调整异面误差以使异面误差小于第二预设值(步骤S600)。FIG. 6 is a flow chart illustrating a method for adjusting the orthogonality of the orthogonal axis system according to the present disclosure. In some examples, as shown in FIG. 6 , the calibration method may include: measuring vertical error (step S100), adjusting vertical error (step S200), measuring different-plane error (step S300), adjusting different-plane error (step S400 ), repeatedly adjusting the vertical error to make the vertical error smaller than the first preset value (step S500), and repeatedly adjusting the different-plane error to make the different-plane error smaller than the second preset value (step S600).

在步骤S100中,可以测量第一旋转轴11的轴线和第二旋转轴23的轴线的垂直误差。In step S100 , the vertical error of the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 may be measured.

在一些示例中,垂直误差可以用于反映第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度。In some examples, the vertical error may be used to reflect the angle between the axis of the first rotation shaft 11 and the axis of the second rotation shaft 23 .

在一些示例中,垂直误差可以是第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度。在一些示例中,由于第一旋转轴11的轴线和第二旋转轴23的轴线不在同一平面内,第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度可以是将第一旋转轴11的轴线平移至第二旋转轴23的轴线所在平面后,第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度。In some examples, the vertical error may be the angle between the axis of the first rotation shaft 11 and the axis of the second rotation shaft 23 . In some examples, since the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 are not in the same plane, the angle between the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 may be the first The angle between the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 after the axis of the rotating shaft 11 is translated to the plane where the axis of the second rotating shaft 23 is located.

在一些示例中,垂直误差可以是第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度减90度。在这种情况下,能够更加直观地表示第一旋转轴11的轴线和第二旋转轴23的轴线的垂直误差。在一些示例中,垂直误差可以是第二旋转轴23两端的竖直方向上的距离,竖直方向可以是指第一旋转轴11的轴线的方向。在这种情况下,能够通过同种方式表示第一旋转轴11的轴线和第二旋转轴23的轴线的垂直误差,进而能够基于测量的方式选择便于计算的方式表示垂直误差。In some examples, the vertical error may be the angle between the axis of the first rotation shaft 11 and the axis of the second rotation shaft 23 minus 90 degrees. In this case, the vertical error between the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 can be expressed more intuitively. In some examples, the vertical error may be the distance in the vertical direction between the two ends of the second rotation shaft 23 , and the vertical direction may refer to the direction of the axis of the first rotation shaft 11 . In this case, the vertical error of the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 can be expressed in the same way, and then the vertical error can be expressed in a way that is convenient for calculation based on the measurement method.

图7是示出了本公开所涉及的测量第一虚拟截面S1的几何中心的空间坐标的示意图。图8是示出了本公开所涉及的测量第二虚拟截面S2的几何中心的空间坐标的示意图。FIG. 7 is a schematic diagram showing the spatial coordinates of the geometric center of the first virtual section S1 measured according to the present disclosure. FIG. 8 is a schematic diagram showing the spatial coordinates of measuring the geometric center of the second virtual section S2 involved in the present disclosure.

在一些示例中,如图7和图8所示,测量垂直误差时,可以利用与第一旋转轴11的轴线间隔第一预设距离的第一截面A截取第二旋转轴23以获得第一虚拟截面S1,旋转第一旋转轴11以使第二旋转轴23旋转第一预设角度,利用第一截面A截取第二旋转轴23以获得第二虚拟截面S2,基于第一虚拟截面S1和第二虚拟截面S2的几何中心的位置计算垂直误差。In some examples, as shown in FIG. 7 and FIG. 8 , when measuring the vertical error, the second rotation axis 23 can be intercepted by using the first section A at a first preset distance from the axis of the first rotation axis 11 to obtain the first Virtual section S1, rotate the first rotation axis 11 to rotate the second rotation axis 23 by a first preset angle, use the first section A to intercept the second rotation axis 23 to obtain a second virtual section S2, based on the first virtual section S1 and The position of the geometric center of the second virtual section S2 calculates the vertical error.

在一些示例中,测量垂直误差时,可以将坐标测量仪器1放置于承载面4上,承载面4的水平度可以小于于第一预设阈值。在一些示例中,第一预设阈值可以为1微米至8微米。例如,第一预设阈值可以为1微米、2微米、3微米、4微米、5微米、6微米、7微米或8微米等。In some examples, when measuring the vertical error, the coordinate measuring instrument 1 may be placed on the bearing surface 4, and the horizontality of the bearing surface 4 may be smaller than a first preset threshold. In some examples, the first preset threshold may be 1 micron to 8 microns. For example, the first preset threshold may be 1 micron, 2 microns, 3 microns, 4 microns, 5 microns, 6 microns, 7 microns, or 8 microns.

在一些示例中,第一旋转轴11与承载面4之间可以保持一定的垂直度。由此,能够提高调校方法的准确性。在一些示例中,第一旋转轴11与承载面4之间的垂直度越小,测量结果的误差越小。In some examples, a certain degree of perpendicularity can be maintained between the first rotating shaft 11 and the carrying surface 4 . Thus, the accuracy of the calibration method can be improved. In some examples, the smaller the perpendicularity between the first rotation axis 11 and the bearing surface 4 is, the smaller the error of the measurement result is.

在一些示例中,第一截面A截取第二旋转轴23以获得第一虚拟截面S1时,第一截面A可以与第一旋转轴11的轴线间隔第一预设距离,在一些示例中,第一预设距离小于第二旋转轴23的长度的一半。In some examples, when the first section A intercepts the second rotation axis 23 to obtain the first virtual section S1, the first section A may be separated from the axis of the first rotation axis 11 by a first preset distance. A preset distance is less than half of the length of the second rotating shaft 23 .

在一些示例中,第一截面A截取第二旋转轴23以获得第一虚拟截面S1时,可以利用测量仪41获得第一虚拟截面S1各个测量点(第一测量点)的空间坐标。In some examples, when the first section A intercepts the second rotation axis 23 to obtain the first virtual section S1 , the measuring instrument 41 can be used to obtain the spatial coordinates of each measurement point (first measurement point) of the first virtual section S1 .

在一些示例中,第一截面A可以垂直于承载面4,在这种情况下,利用测量仪41获得第一虚拟截面S1各个测量点(第一测量点)的空间坐标时,测量仪41可以在一个平面内移动,由此能够减少测量仪41的在一个方向上的自由度,从而能够减少测量仪41在该方向移动时引入误差,进而能够提高测量精度。In some examples, the first section A may be perpendicular to the bearing surface 4. In this case, when the measuring instrument 41 is used to obtain the spatial coordinates of each measuring point (first measuring point) of the first virtual section S1, the measuring instrument 41 may Moving in one plane can reduce the degree of freedom of the measuring instrument 41 in one direction, thereby reducing errors introduced by the measuring instrument 41 when moving in this direction, thereby improving measurement accuracy.

在一些示例中,坐标测量仪器1可以是三坐标测量仪41,三坐标测量仪41可以是一种具有可作三个方向移动的探测器。In some examples, the coordinate measuring instrument 1 may be a three-coordinate measuring instrument 41, and the three-coordinate measuring instrument 41 may be a detector capable of moving in three directions.

在一些示例中,坐标测量仪器1可以通过支架42安装于承载面4上。In some examples, the coordinate measuring instrument 1 can be installed on the bearing surface 4 through a bracket 42 .

在一些示例中,三坐标测量仪41可以采用接触式测量方式。在另外一些示例中,三坐标测量仪41也可以采用非接触式测量方式。在这种情况下,由于三坐标测量仪41的测量具有较高的准确度和便捷性,能够提高测量效率。In some examples, the three-coordinate measuring instrument 41 may adopt a contact measurement method. In some other examples, the three-coordinate measuring instrument 41 may also adopt a non-contact measurement method. In this case, since the measurement by the three-coordinate measuring instrument 41 has high accuracy and convenience, the measurement efficiency can be improved.

在一些示例中,可以通过测量仪41获取第一虚拟截面S1的多个第一测量点的空间坐标。例如,可以将测量仪41的探针在第一截面A内饶第一虚拟截面S1旋转一周,并测量第一虚拟截面S1边缘的多个第一测量点的空间坐标。也可以将测量仪41的探针在第一截面A内饶第一虚拟截面S1旋转多周,并测量第一虚拟截面S1边缘的多个第一测量点的空间坐标。在这种情况下,能够获得第一虚拟截面S1的多个第一测量点的空间坐标,进而能够通过多个第一测量点的空间坐标获得第一虚拟截面S1几何中心的空间坐标。In some examples, the spatial coordinates of a plurality of first measurement points of the first virtual section S1 may be acquired by the measuring instrument 41 . For example, the probe of the surveying instrument 41 may be rotated around the first virtual section S1 within the first section A for one revolution, and the spatial coordinates of multiple first measurement points on the edge of the first virtual section S1 may be measured. It is also possible to rotate the probe of the surveying instrument 41 multiple times around the first virtual section S1 within the first section A, and measure the spatial coordinates of multiple first measurement points on the edge of the first virtual section S1. In this case, the spatial coordinates of the multiple first measurement points of the first virtual section S1 can be obtained, and then the spatial coordinates of the geometric center of the first virtual section S1 can be obtained through the spatial coordinates of the multiple first measurement points.

在一些示例中,多个第一测量点可以包括至少5个第一测量点,例如,第一测量点的个数可以为5个、6个、7个、8个、9个、10个、20个或50个等。在这种情况下,能够得到足够的第一测量点以获得第一虚拟截面S1的几何中心的空间坐标,并能够减小该空间坐标的求定误差。In some examples, the plurality of first measurement points may include at least 5 first measurement points, for example, the number of first measurement points may be 5, 6, 7, 8, 9, 10, 20 or 50 etc. In this case, sufficient first measurement points can be obtained to obtain the spatial coordinates of the geometric center of the first virtual section S1, and the determination error of the spatial coordinates can be reduced.

在一些示例中,如上所述,可以旋转第一旋转轴11以使第二旋转轴23旋转第一预设角度,并利用第一截面A截取第二旋转轴23以获得第二虚拟截面S2。在一些示例中,第一预设角度可以为180°的奇数倍。在这种情况下,能够获得第二虚拟截面S2。在一些示例中,通过第一截面A获取第二虚拟截面S2的几何中心的空间坐标与过第一截面A获取第一虚拟截面S1的几何中心的空间坐标的方式类似,在此不再赘述。In some examples, as described above, the first rotation axis 11 can be rotated to rotate the second rotation axis 23 by a first preset angle, and the second rotation axis 23 can be intercepted by using the first section A to obtain the second virtual section S2. In some examples, the first preset angle may be an odd multiple of 180°. In this case, the second virtual section S2 can be obtained. In some examples, obtaining the spatial coordinates of the geometric center of the second virtual section S2 through the first section A is similar to obtaining the spatial coordinates of the geometric center of the first virtual section S1 through the first section A, which will not be repeated here.

在一些示例中,可以基于第一虚拟截面S1和第二虚拟截面S2的几何中心的位置计算垂直误差。在一些示例中,可以基于第一虚拟截面S1和第二虚拟截面S2的几何中心之间的距离获得垂直误差。In some examples, the vertical error may be calculated based on the positions of the geometric centers of the first virtual section S1 and the second virtual section S2. In some examples, the vertical error may be obtained based on the distance between the geometric centers of the first virtual section S1 and the second virtual section S2.

在一些示例中,可以获得第一旋转轴11的轴线到第一截面A的距离,并基于第一旋转轴11的轴线到第一截面A的距离以及基于第一虚拟截面S1和第二虚拟截面S2的几何中心之间的距离获得垂直误差。In some examples, the distance from the axis of the first rotating shaft 11 to the first section A can be obtained, based on the distance from the axis of the first rotating shaft 11 to the first section A and based on the first virtual section S1 and the second virtual section The distance between the geometric centers of S2 obtains the vertical error.

在步骤S200中,可以调整垂直误差。若垂直误差不小于第一预设值,调整第一轴承211与第一支承部21的相对位置或第二轴承221与第二支承部22的相对位置以调整第一旋转轴11的轴线和第二旋转轴23的轴线之间的角度。在这种情况下,能够有效降低垂直误差。In step S200, the vertical error can be adjusted. If the vertical error is not less than the first preset value, adjust the relative position between the first bearing 211 and the first supporting part 21 or the relative position between the second bearing 221 and the second supporting part 22 to adjust the axis of the first rotating shaft 11 and the second The angle between the axes of the two rotating shafts 23 . In this case, the vertical error can be effectively reduced.

在一些示例中,调整第一轴承211与第一支承部21的相对位置时,可以松开第一定位螺钉并基于垂直误差或异面误差对第一轴承211进行调整,并在调整第一轴承211与第一支承部21的相对位置后,拧紧第一定位螺钉。在一些示例中,调整第二轴承221与第二支承部22的相对位置时,松开第二定位螺钉并基于垂直误差或异面误差对第二轴承221进行调整,并在调整第二轴承221与第二支承部22的相对位置后,拧紧第二定位螺钉。在这种情况下,能够通过调整第一轴承211和/或第二轴承221的位置调整第一旋转轴11和第二旋转轴23的位置关系。In some examples, when adjusting the relative position of the first bearing 211 and the first supporting part 21, the first set screw can be loosened and the first bearing 211 can be adjusted based on the vertical error or the out-of-plane error, and when adjusting the first bearing 211 and the relative position of the first support part 21, tighten the first positioning screw. In some examples, when adjusting the relative position of the second bearing 221 and the second supporting part 22, loosen the second set screw and adjust the second bearing 221 based on the vertical error or the out-of-plane error, and adjust the second bearing 221 After the relative position with the second supporting part 22, tighten the second positioning screw. In this case, the positional relationship between the first rotating shaft 11 and the second rotating shaft 23 can be adjusted by adjusting the positions of the first bearing 211 and/or the second bearing 221 .

在一些示例中,若垂直误差不小于第一预设值,可以在第一旋转轴11的轴线的方向上调整第一轴承211或第二轴承221的位置。在一些示例中,若垂直误差为第二旋转轴23两端的竖直方向上的距离,并且垂直误差为5微米,可以将第一轴承211(或第二轴承221)在竖直方向移动5微米,在这种情况下,能够根据垂直误差调整第一轴承211(或第二轴承221)的位置以降低垂直误差。In some examples, if the vertical error is not less than the first preset value, the position of the first bearing 211 or the second bearing 221 can be adjusted in the direction of the axis of the first rotating shaft 11 . In some examples, if the vertical error is the distance in the vertical direction between the two ends of the second rotating shaft 23, and the vertical error is 5 microns, the first bearing 211 (or the second bearing 221) can be moved in the vertical direction by 5 microns , in this case, the position of the first bearing 211 (or the second bearing 221 ) can be adjusted according to the vertical error to reduce the vertical error.

在步骤S300中,可以测量异面误差。In step S300, out-of-plane errors may be measured.

图9是示出了本公开所涉及的测量第三虚拟截面S3的几何中心的空间坐标的示意图。图10是示出了本公开所涉及的测量第四虚拟截面S4的几何中心的空间坐标的示意图。FIG. 9 is a schematic diagram showing the spatial coordinates of the geometric center of the measurement third virtual section S3 involved in the present disclosure. FIG. 10 is a schematic diagram showing the spatial coordinates of the geometric center of the measurement fourth virtual section S4 involved in the present disclosure.

在一些示例中,异面误差反映第一旋转轴11的轴线和第二旋转轴23的轴线之间的距离。在一些示例中,异面误差可以是将第一旋转轴11的轴线平移至第二旋转轴23的轴线所在的平面的平移距离。在一些示例中,异面误差可以是第二旋转轴23的轴线与第二截面B的交点(也即第三虚拟截面S3的几何中心)和第一旋转轴11旋转180°的奇数倍后第二旋转轴23的轴线与第二截面B的交点(也即第四虚拟截面S4的几何中心)之间的距离。In some examples, the out-of-plane error reflects the distance between the axis of the first rotation shaft 11 and the axis of the second rotation shaft 23 . In some examples, the out-of-plane error may be a translational distance for translating the axis of the first rotation shaft 11 to the plane where the axis of the second rotation shaft 23 is located. In some examples, the out-of-plane error may be the intersection point of the axis of the second rotating shaft 23 and the second section B (that is, the geometric center of the third virtual section S3) and an odd multiple of the first rotating shaft 11 rotated by 180°. The distance between the axis of the two rotation axes 23 and the intersection point of the second section B (that is, the geometric center of the fourth virtual section S4).

在一些示例中,如图9和图10所示,测量异面误差时,可以利用与第一旋转轴11的轴线间隔第二预设距离的第二截面B截取第二旋转轴23以获得第三虚拟截面S3。将第一旋转轴11旋转第一预设角度后,可以利用第二截面B截取第二旋转轴23以获得第四虚拟截面S4。In some examples, as shown in FIGS. 9 and 10 , when measuring the out-of-plane error, the second section B of the axis of the first rotation axis 11 at a second preset distance can be used to intercept the second rotation axis 23 to obtain the second section B. Three virtual sections S3. After the first rotation axis 11 is rotated by a first preset angle, the second section B can be used to intercept the second rotation axis 23 to obtain a fourth virtual section S4.

在一些示例中,测量异面误差时,可以将坐标测量仪器1放置于承载面4上,承载面4的水平度可以小于于第一预设阈值。In some examples, when measuring the out-of-plane error, the coordinate measuring instrument 1 may be placed on the carrying surface 4, and the levelness of the carrying surface 4 may be smaller than a first preset threshold.

在一些示例中,第二截面B截取第二旋转轴23以获得第三虚拟截面S3时,可以利用测量仪41获得第三虚拟截面S3各个测量点(第三测量点)的空间坐标。In some examples, when the second section B intercepts the second rotation axis 23 to obtain the third virtual section S3, the measuring instrument 41 can be used to obtain the spatial coordinates of each measurement point (third measurement point) of the third virtual section S3.

在一些示例中,第二截面B可以垂直于承载面4,在这种情况下,利用测量仪41获得第三虚拟截面S3各个测量点(第三测量点)的空间坐标时,测量仪41可以在一个平面内移动,由此能够减少测量仪41的在一个方向上的自由度,从而能够减少测量仪41在该方向移动时引入误差,进而能够提高测量精度。In some examples, the second section B can be perpendicular to the bearing surface 4. In this case, when the measuring instrument 41 is used to obtain the spatial coordinates of each measuring point (third measuring point) of the third virtual section S3, the measuring instrument 41 can Moving in one plane can reduce the degree of freedom of the measuring instrument 41 in one direction, thereby reducing errors introduced by the measuring instrument 41 when moving in this direction, thereby improving measurement accuracy.

在一些示例中,可以通过测量仪41获取第三虚拟截面S3的多个第三测量点的空间坐标。例如,可以将测量仪41的探针在第二截面B内饶第三虚拟截面S3旋转一周,并测量第三虚拟截面S3边缘的多个第三测量点的空间坐标。也可以将测量仪41的探针在第一截面A内饶第三虚拟截面S3旋转多周,并测量第三虚拟截面S3边缘的多个第三测量点的空间坐标。在这种情况下,能够获得第一虚拟截面S1的多个第三测量点的空间坐标,进而能够通过多个第三测量点的空间坐标获得第三虚拟截面S3几何中心的空间坐标。In some examples, the spatial coordinates of multiple third measurement points of the third virtual section S3 can be acquired by the measuring instrument 41 . For example, the probe of the surveying instrument 41 can be rotated around the third virtual section S3 inside the second section B for one revolution, and the spatial coordinates of multiple third measurement points on the edge of the third virtual section S3 can be measured. It is also possible to rotate the probe of the surveying instrument 41 multiple times around the third virtual section S3 inside the first section A, and measure the spatial coordinates of multiple third measurement points on the edge of the third virtual section S3. In this case, the spatial coordinates of multiple third measurement points of the first virtual section S1 can be obtained, and then the spatial coordinates of the geometric center of the third virtual section S3 can be obtained through the spatial coordinates of the multiple third measurement points.

在一些示例中,多个第三测量点可以包括至少5个第三测量点,例如,第三测量点的个数可以为5个、6个、7个、8个、9个、10个、20个或50个等。在这种情况下,能够得到足够的第三测量点以获得第三虚拟截面S3的几何中心的空间坐标,并能够减小该空间坐标的求定误差。In some examples, the plurality of third measurement points may include at least 5 third measurement points, for example, the number of third measurement points may be 5, 6, 7, 8, 9, 10, 20 or 50 etc. In this case, enough third measurement points can be obtained to obtain the spatial coordinates of the geometric center of the third virtual section S3, and the determination error of the spatial coordinates can be reduced.

在一些示例中,可以旋转第一旋转轴11以使第二旋转轴23旋转第一预设角度,并利用第二截面B截取第二旋转轴23以获得第四虚拟截面S4。如上所述,第一预设角度可以为180°的奇数倍。In some examples, the first rotation axis 11 may be rotated to rotate the second rotation axis 23 by a first preset angle, and the second rotation axis 23 may be intercepted by the second section B to obtain a fourth virtual section S4. As mentioned above, the first preset angle may be an odd multiple of 180°.

在一些示例中,通过第二截面B获取第四虚拟截面S4的几何中心的空间坐标与过第二截面B获取第三虚拟截面S3的几何中心的空间坐标的方式类似,在此不再赘述。In some examples, obtaining the spatial coordinates of the geometric center of the fourth virtual section S4 through the second section B is similar to obtaining the spatial coordinates of the geometric center of the third virtual section S3 through the second section B, which will not be repeated here.

在一些示例中,获得第三虚拟截面S3和第四虚拟截面S4的几何中心的空间坐标后,可以基于第三虚拟截面S3和第四虚拟截面S4的几何中心计算异面误差。具体而言,可以计算第三虚拟截面S3和第四虚拟截面S4的几何中心之间的距离作为异面误差。In some examples, after the spatial coordinates of the geometric centers of the third virtual section S3 and the fourth virtual section S4 are obtained, the out-of-plane error may be calculated based on the geometric centers of the third virtual section S3 and the fourth virtual section S4. Specifically, the distance between the geometric centers of the third virtual section S3 and the fourth virtual section S4 can be calculated as the out-of-plane error.

在一些示例中,获得第三虚拟截面S3时,第二旋转轴23与第二截面B之间具有第二预设角度。在一些示例中,第二预设角度可以是不大于90°的任意角度。例如,第二预设角度可以为20°、30°、45°、或90°等。在这种情况下,可以令第三虚拟截面S3和第四虚拟截面S4的几何中心的距离大于或等于第一旋转轴11的轴线和第二旋转轴23的轴线之间的距离的两倍,由此能够利用更大的数值反映第一旋转轴11的轴线和第二旋转轴23的轴线之间的距离,提高测量精度。In some examples, there is a second preset angle between the second rotation axis 23 and the second section B when the third virtual section S3 is obtained. In some examples, the second preset angle may be any angle not greater than 90°. For example, the second preset angle may be 20°, 30°, 45°, or 90° and so on. In this case, the distance between the geometric centers of the third virtual section S3 and the fourth virtual section S4 may be greater than or equal to twice the distance between the axis of the first rotation shaft 11 and the axis of the second rotation shaft 23, Therefore, a larger value can be used to reflect the distance between the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 , thereby improving the measurement accuracy.

在步骤S400中,可以对异面误差进行调整。In step S400, the out-of-plane error can be adjusted.

在一些示例中,若异面误差不小于第二预设值,可以调整第一轴承211与第一支承部21的相对位置和第二轴承221与第二支承部22的相对位置以调整第一旋转轴11的轴线和第二旋转轴23的轴线之间的距离。在这种情况下,能够减少异面误差。In some examples, if the out-of-plane error is not less than the second preset value, the relative position between the first bearing 211 and the first supporting part 21 and the relative position between the second bearing 221 and the second supporting part 22 can be adjusted to adjust the first The distance between the axis of the rotating shaft 11 and the axis of the second rotating shaft 23 . In this case, out-of-plane errors can be reduced.

在一些示例中,若异面误差是将第一旋转轴11的轴线平移至第二旋转轴23的轴线所在的平面的平移距离,则可以直接根据异面误差获得第一轴承211与第二轴承221需要调整的距离,例如异面误差为5微米,则可以同时调整第一轴承211和第二轴承221,并令第一轴承211和第二轴承221沿着与第一旋转轴11的轴线和第二旋转轴23的轴线正交的方向移动5微米。In some examples, if the out-of-plane error is the translation distance from the axis of the first rotating shaft 11 to the plane where the axis of the second rotating shaft 23 is located, the first bearing 211 and the second bearing can be obtained directly according to the out-of-plane error 221 needs to adjust the distance, for example, if the out-of-plane error is 5 microns, then the first bearing 211 and the second bearing 221 can be adjusted at the same time, and the first bearing 211 and the second bearing 221 can be adjusted along the axis with the first rotating shaft 11 and The direction perpendicular to the axis of the second rotation shaft 23 was moved by 5 micrometers.

在一些示例中,异面误差是第二旋转轴23的轴线与第二截面B的交点(也即第三虚拟截面S3的几何中心)和第一旋转轴11旋转180°的奇数倍后第二旋转轴23的轴线与第二截面B的交点(也即第四虚拟截面S4的几何中心)之间的距离。则可以基于异面误差计算第一旋转轴11的轴线平移至第二旋转轴23的轴线所在的平面的平移距离,并对第一轴承211和第二轴承221的位置进行调整。In some examples, the out-of-plane error is the intersection of the axis of the second rotating shaft 23 and the second section B (that is, the geometric center of the third virtual section S3) and the second odd multiple of the first rotating shaft 11 rotating 180°. The distance between the axis of the rotating shaft 23 and the intersection point of the second section B (that is, the geometric center of the fourth virtual section S4). Then the translation distance from the axis of the first rotating shaft 11 to the plane where the axis of the second rotating shaft 23 is located can be calculated based on the out-of-plane error, and the positions of the first bearing 211 and the second bearing 221 can be adjusted.

在一些示例中,可以使用另一种方式调整第一旋转轴11的轴线与第二旋转轴23的轴线的距离进行调整。例如,在一些示例中,若异面误差不小于第二预设值,调整第二旋转装置20与第一旋转装置10的相对位置以调整第一旋转轴11的轴线和第二旋转轴23的轴线之间的距离。具体而言,第二旋转装置20可以通过平移机构(未图示)与第一旋转轴11接合,平移机构具有滑轨,并且可以通过调整平移机构以使第二旋转装置20沿着滑轨方向与第一旋转轴11(第一旋转装置10)相对移动。在这种情况下,能够避免调整第一轴承211和第二轴承221是对垂直误差的影响。In some examples, another method may be used to adjust the distance between the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 . For example, in some examples, if the out-of-plane error is not less than the second preset value, adjust the relative position of the second rotating device 20 and the first rotating device 10 to adjust the axis of the first rotating shaft 11 and the axis of the second rotating shaft 23 distance between axes. Specifically, the second rotating device 20 can be engaged with the first rotating shaft 11 through a translation mechanism (not shown), the translation mechanism has a sliding rail, and the second rotating device 20 can be aligned along the sliding rail direction It moves relative to the first rotating shaft 11 (first rotating device 10). In this case, the influence of adjusting the first bearing 211 and the second bearing 221 on the vertical error can be avoided.

在步骤S500中,可以重复调整垂直误差以使垂直误差小于第一预设值。在步骤S600中,重复调整异面误差以使异面误差小于第二预设值。在这种情况下,能够降低调整垂直误差和异面误差时引入的其他误差对正交轴系统的影响,提高调校方法的精确度。In step S500, the vertical error may be adjusted repeatedly so that the vertical error is smaller than a first preset value. In step S600 , the different-plane error is repeatedly adjusted so that the different-plane error is smaller than a second preset value. In this case, the influence of other errors introduced when adjusting the vertical error and the out-of-plane error on the orthogonal axis system can be reduced, and the accuracy of the adjustment method can be improved.

在一些示例中,当垂直误差小于第一预设值并且异面误差小于第二预设值时,对第一轴承211和第二轴承221进行固定。在这种情况下,能够固定调校后的垂直误差和异面误差,并固定第一旋转轴11和第二旋转轴23的相对位置关系。In some examples, when the vertical error is smaller than a first preset value and the out-of-plane error is smaller than a second preset value, the first bearing 211 and the second bearing 221 are fixed. In this case, the adjusted vertical error and out-of-plane error can be fixed, and the relative positional relationship between the first rotation axis 11 and the second rotation axis 23 can be fixed.

以上在具体实施方式中描述了本发明的各种实施例。尽管这些描述直接描述了上述实施例,但是应该理解的是,本领域技术人员可以想到对这里示出和描述的特定实施例的修改和/或变形。落入本说明书范围内的任何这样的修改或变形也意图包括在其中。除非特别指出,否则发明人的意图是说明书和权利要求书中的词语和短语被赋予普通技术人员的普通和习惯的含义。Various embodiments of the invention are described above in the detailed description. Although these descriptions directly describe the above-described embodiments, it is to be understood that modifications and/or variations to the specific embodiments shown and described herein may occur to those skilled in the art. Any such modifications or variations that fall within the scope of this description are also intended to be embraced therein. Unless otherwise indicated, it is the inventor's intent that the words and phrases in the specification and claims be given the ordinary and customary meanings of those of ordinary skill.

已经呈现了本申请人在提交本申请时已知的本发明的各种实施例的以上描述,并且旨在用于说明和描述的目的。本说明并非旨在穷尽本发明,也不将本发明限制于所公开的确切形式,并且根据上述教导可以进行许多修改和变形。所描述的实施例用于解释本发明的原理及其实际应用,并且使得本领域的其他技术人员能够以各种实施例以及适合于预期的特定用途的各种修改来利用本发明。因此,旨在本发明不限于公开的用于实现本发明所披露的特定实施例。The foregoing description of various embodiments of the invention that are known to the applicant at the time of filing the application has been presented, and is intended for purposes of illustration and description. This description is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching. The described embodiments serve to explain the principles of the invention and its practical application, and to enable others skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed for carrying out this invention.

虽然已经示出和描述了本发明的特定实施例,但是对于本领域技术人员而言显而易见的是,基于本发明的教导,可以做出变形和修改而不偏离本发明及其更广泛的方面,因此所附权利要求将在其范围内涵盖在本发明的真实精神和范围内的所有这些改变和修改。本领域技术人员将理解,一般而言,本发明中使用的术语一般意图为“开放”术语(例如术语“包括”应被解释为“包括但不限于”,术语“具有”应被解释为“至少具有”,术语“包括”应被解释为“包括但不限于”等)。While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based on the teachings of the invention, that changes and modifications may be made without departing from this invention and its broader aspects, The appended claims are therefore to cover within their scope all such changes and modifications as are within the true spirit and scope of this invention. Those skilled in the art will understand that, generally speaking, the terms used in the present invention are generally intended to be "open" terms (for example, the term "comprising" should be interpreted as "including but not limited to", the term "having" should be interpreted as " having at least", the term "comprising" should be interpreted as "including but not limited to", etc.).

Claims (10)

Translated fromChinese
1.一种坐标测量仪器的正交轴系统的调校方法,所述坐标测量仪器包括具有第一旋转轴的第一旋转装置和设置于所述第一旋转装置并具有第二旋转轴的第二旋转装置,所述第二旋转装置能够围绕所述第一旋转装置旋转,所述正交轴系统由所述第一旋转轴和所述第二旋转轴构成,其特征在于,包括:测量所述第一旋转轴的轴线和所述第二旋转轴的轴线的垂直误差,所述垂直误差反映所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的角度,测量所述垂直误差时,利用与所述第一旋转轴的轴线间隔第一预设距离的第一截面截取所述第二旋转轴以获得第一虚拟截面,旋转所述第一旋转轴以使所述第二旋转轴旋转第一预设角度,利用所述第一截面截取所述第二旋转轴以获得第二虚拟截面,基于所述第一虚拟截面和所述第二虚拟截面的几何中心的位置计算所述垂直误差,若所述垂直误差不小于第一预设值,基于所述垂直误差调整所述第一旋转轴的轴线和所述第二旋转轴的相对位置以降低所述垂直误差,测量所述第一旋转轴的轴线和所述第二旋转轴的轴线的异面误差,所述异面误差反映所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离,测量所述异面误差时,利用与所述第一旋转轴的轴线间隔第二预设距离的第二截面截取所述第二旋转轴以获得第三虚拟截面,旋转所述第一旋转轴以使所述第二旋转轴旋转第一预设角度,利用所述第二截面截取所述第二旋转轴以获得第四虚拟截面,基于所述第三虚拟截面和所述第四虚拟截面的几何中心计算所述异面误差,若所述异面误差不小于第二预设值,基于所述异面误差调整所述第一旋转轴的轴线和所述第二旋转轴的相对位置以降低所述异面误差,重复调整所述垂直误差以使所述垂直误差小于所述第一预设值,重复调整所述异面误差以使所述异面误差小于所述第二预设值。1. A calibration method for an orthogonal axis system of a coordinate measuring instrument, the coordinate measuring instrument comprising a first rotating device having a first rotating shaft and a first rotating device having a second rotating shaft arranged on the first rotating device Two rotating devices, the second rotating device can rotate around the first rotating device, the orthogonal axis system is composed of the first rotating shaft and the second rotating shaft, characterized in that it includes: The vertical error of the axis of the first rotating shaft and the axis of the second rotating shaft, the vertical error reflects the angle between the axis of the first rotating shaft and the axis of the second rotating shaft, and the measurement of the When there is a vertical error, the first section of the second rotation axis is intercepted by a first preset distance from the axis of the first rotation axis to obtain a first virtual section, and the first rotation axis is rotated so that the first rotation axis The two rotation axes are rotated by a first preset angle, and the second rotation axis is intercepted by the first section to obtain a second virtual section, which is calculated based on the positions of the geometric centers of the first virtual section and the second virtual section For the vertical error, if the vertical error is not less than a first preset value, adjust the relative position of the axis of the first rotation axis and the second rotation axis based on the vertical error to reduce the vertical error, and measure an out-of-plane error of the axis of the first rotating shaft and the axis of the second rotating shaft, the out-of-plane error reflecting the distance between the axis of the first rotating shaft and the axis of the second rotating shaft, When measuring the out-of-plane error, the second section of the second rotation axis is intercepted by a second preset distance from the axis of the first rotation axis to obtain a third virtual section, and the first rotation axis is rotated to rotating the second axis of rotation by a first preset angle, intercepting the second axis of rotation with the second section to obtain a fourth virtual section, based on the geometry of the third virtual section and the fourth virtual section The center calculates the out-of-plane error, and if the out-of-plane error is not less than a second preset value, adjusts the relative position of the axis of the first rotation axis and the second rotation axis based on the out-of-plane error to reduce the out-of-plane error. the different-plane error, repeatedly adjusting the vertical error so that the vertical error is smaller than the first preset value, and repeatedly adjusting the different-plane error so that the different-plane error is smaller than the second preset value.2.根据权利要求1所述的调校方法,其特征在于:2. The adjustment method according to claim 1, characterized in that:获得第三虚拟截面时,所述第二旋转轴与所述第二截面之间具有第二预设角度。When obtaining the third virtual section, there is a second preset angle between the second rotation axis and the second section.3.根据权利要求1所述的调校方法,其特征在于:3. The adjustment method according to claim 1, characterized in that:所述第二旋转装置包括第一支承部和第二支承部,所述第二旋转轴可旋转地设置在所述第一支承部与所述第二支承部之间。The second rotation device includes a first support portion and a second support portion, and the second rotation shaft is rotatably provided between the first support portion and the second support portion.4.根据权利要求3所述的调校方法,其特征在于:4. The adjustment method according to claim 3, characterized in that:所述第二旋转装置还包括设置在所述第一支承部的第一轴承和设置在所述第二支承部的第二轴承,所述第二旋转轴通过所述第一轴承和所述第二轴承安装于所述第二旋转装置。The second rotating device further includes a first bearing provided on the first support part and a second bearing provided on the second support part, and the second rotating shaft passes through the first bearing and the first bearing. Two bearings are installed on the second rotating device.5.根据权利要求4所述的调校方法,其特征在于:5. The adjustment method according to claim 4, characterized in that:若所述垂直误差不小于所述第一预设值,调整所述第一轴承与所述第一支承部的相对位置或所述第二轴承与所述第二支承部的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的角度。If the vertical error is not less than the first preset value, adjust the relative position between the first bearing and the first support part or the relative position between the second bearing and the second support part to adjust the The angle between the axis of the first rotation shaft and the axis of the second rotation shaft.6.根据权利要求4所述的调校方法,其特征在于:6. The adjustment method according to claim 4, characterized in that:若所述异面误差不小于所述第二预设值,调整所述第一轴承与所述第一支承部的相对位置和所述第二轴承与所述第二支承部的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离。If the out-of-plane error is not less than the second preset value, adjust the relative position between the first bearing and the first support part and the relative position between the second bearing and the second support part to adjust The distance between the axis of the first rotation shaft and the axis of the second rotation shaft.7.根据权利要求5或6所述的调校方法,其特征在于:7. The adjustment method according to claim 5 or 6, characterized in that:所述第一轴承包括第一定位螺钉,所述第一定位螺钉配置为将所述第一轴承定位于第一支承部,所述第二轴承包括第二定位螺钉,所述第二定位螺钉配置为将所述第二轴承定位于第二支承部。The first bearing includes a first set screw configured to position the first bearing on the first support portion, the second bearing includes a second set screw configured to In order to position the second bearing on the second supporting part.8.根据权利要求7所述的调校方法,其特征在于:8. The adjustment method according to claim 7, characterized in that:调整所述第一轴承与所述第一支承部的相对位置时,松开所述第一定位螺钉并基于所述垂直误差或所述异面误差对所述第一轴承进行调整,并在调整所述第一轴承与所述第一支承部的相对位置后,拧紧所述第一定位螺钉;When adjusting the relative position between the first bearing and the first supporting part, loosen the first positioning screw and adjust the first bearing based on the vertical error or the out-of-plane error, and adjust After the relative position of the first bearing and the first supporting part is adjusted, tighten the first positioning screw;调整所述第二轴承与所述第二支承部的相对位置时,松开所述第二定位螺钉并基于所述垂直误差或所述异面误差对所述第二轴承进行调整,并在调整所述第二轴承与所述第二支承部的相对位置后,拧紧所述第二定位螺钉。When adjusting the relative position between the second bearing and the second supporting part, loosen the second positioning screw and adjust the second bearing based on the vertical error or the out-of-plane error, and adjust After the relative position of the second bearing and the second supporting part is reached, the second positioning screw is tightened.9.根据权利要求4所述的调校方法,其特征在于:9. The adjustment method according to claim 4, characterized in that:当所述垂直误差小于所述第一预设值并且所述异面误差小于所述第二预设值时,对所述第一轴承和所述第二轴承进行固定。When the vertical error is smaller than the first preset value and the out-of-plane error is smaller than the second preset value, the first bearing and the second bearing are fixed.10.根据权利要求3所述的调校方法,其特征在于:10. The adjustment method according to claim 3, characterized in that:若所述异面误差不小于所述第二预设值,调整所述第二旋转装置与所述第一旋转装置的相对位置以调整所述第一旋转轴的轴线和所述第二旋转轴的轴线之间的距离。If the out-of-plane error is not less than the second preset value, adjust the relative position of the second rotating device to the first rotating device to adjust the axis of the first rotating shaft and the second rotating shaft the distance between the axes.
CN202111081855.8A2020-12-252021-09-15Method for adjusting orthogonal axis system of coordinate measuring instrumentActiveCN113739700B (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
CN202311385944.0ACN117433415A (en)2020-12-252021-09-15Orthogonal axis system of coordinate measuring instrument
CN202311394815.8ACN117433416A (en)2020-12-252021-09-15Method for calibrating orthogonal axis system and coordinate measuring device

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
CN202011566649.1ACN112556579A (en)2020-12-252020-12-25Six-degree-of-freedom space coordinate position and attitude measuring device
CN20201156664912020-12-25

Related Child Applications (2)

Application NumberTitlePriority DateFiling Date
CN202311385944.0ADivisionCN117433415A (en)2020-12-252021-09-15Orthogonal axis system of coordinate measuring instrument
CN202311394815.8ADivisionCN117433416A (en)2020-12-252021-09-15Method for calibrating orthogonal axis system and coordinate measuring device

Publications (2)

Publication NumberPublication Date
CN113739700A CN113739700A (en)2021-12-03
CN113739700Btrue CN113739700B (en)2023-09-01

Family

ID=75033069

Family Applications (19)

Application NumberTitlePriority DateFiling Date
CN202011566649.1AWithdrawnCN112556579A (en)2020-12-252020-12-25Six-degree-of-freedom space coordinate position and attitude measuring device
CN202310606577.6AActiveCN116399232B (en)2020-12-252021-07-23Coordinate measuring apparatus for maintaining thermal balance
CN202110839684.4AActiveCN113432534B (en)2020-12-252021-07-23Coordinate measuring instrument considering thermodynamic load balance
CN202121696879.XUActiveCN215217505U (en)2020-12-252021-07-23Laser tracker with attitude camera
CN202110839682.5AActiveCN113340205B (en)2020-12-252021-07-23Coordinate measuring instrument
CN202310601382.2AActiveCN116399231B (en)2020-12-252021-07-23Thermal balancing module for coordinate measuring instrument
CN202121702821.1UActiveCN215217506U (en)2020-12-252021-07-23Laser tracker
CN202211371781.6AActiveCN115540758B (en)2020-12-252021-07-23Coordinate measuring device
CN202211371760.4APendingCN115523838A (en)2020-12-252021-07-23Optical body for distance measurement of a target ball
CN202211345444.XAActiveCN115597489B (en)2020-12-252021-09-15Distance measuring system
CN202122239940.4UActiveCN215984384U (en)2020-12-252021-09-15Ranging system with polarization maintaining optical fiber
CN202211345415.3AActiveCN115540757B (en)2020-12-252021-09-15Distance measuring system for improving measuring accuracy
CN202311385944.0APendingCN117433415A (en)2020-12-252021-09-15Orthogonal axis system of coordinate measuring instrument
CN202111081855.8AActiveCN113739700B (en)2020-12-252021-09-15Method for adjusting orthogonal axis system of coordinate measuring instrument
CN202311394815.8APendingCN117433416A (en)2020-12-252021-09-15Method for calibrating orthogonal axis system and coordinate measuring device
CN202111081868.5AActiveCN113566710B (en)2020-12-252021-09-15 Ranging system with optical switch
CN202210333868.8AActiveCN114838658B (en)2020-12-252021-09-18Optical path system for improving beam combining precision
CN202111112195.5AActiveCN113686245B (en)2020-12-252021-09-18Ranging system with polarization maintaining optical fiber
CN202210333866.9AActiveCN115014196B (en)2020-12-252021-09-18Distance measuring system for absolute distance measurement

Family Applications Before (13)

Application NumberTitlePriority DateFiling Date
CN202011566649.1AWithdrawnCN112556579A (en)2020-12-252020-12-25Six-degree-of-freedom space coordinate position and attitude measuring device
CN202310606577.6AActiveCN116399232B (en)2020-12-252021-07-23Coordinate measuring apparatus for maintaining thermal balance
CN202110839684.4AActiveCN113432534B (en)2020-12-252021-07-23Coordinate measuring instrument considering thermodynamic load balance
CN202121696879.XUActiveCN215217505U (en)2020-12-252021-07-23Laser tracker with attitude camera
CN202110839682.5AActiveCN113340205B (en)2020-12-252021-07-23Coordinate measuring instrument
CN202310601382.2AActiveCN116399231B (en)2020-12-252021-07-23Thermal balancing module for coordinate measuring instrument
CN202121702821.1UActiveCN215217506U (en)2020-12-252021-07-23Laser tracker
CN202211371781.6AActiveCN115540758B (en)2020-12-252021-07-23Coordinate measuring device
CN202211371760.4APendingCN115523838A (en)2020-12-252021-07-23Optical body for distance measurement of a target ball
CN202211345444.XAActiveCN115597489B (en)2020-12-252021-09-15Distance measuring system
CN202122239940.4UActiveCN215984384U (en)2020-12-252021-09-15Ranging system with polarization maintaining optical fiber
CN202211345415.3AActiveCN115540757B (en)2020-12-252021-09-15Distance measuring system for improving measuring accuracy
CN202311385944.0APendingCN117433415A (en)2020-12-252021-09-15Orthogonal axis system of coordinate measuring instrument

Family Applications After (5)

Application NumberTitlePriority DateFiling Date
CN202311394815.8APendingCN117433416A (en)2020-12-252021-09-15Method for calibrating orthogonal axis system and coordinate measuring device
CN202111081868.5AActiveCN113566710B (en)2020-12-252021-09-15 Ranging system with optical switch
CN202210333868.8AActiveCN114838658B (en)2020-12-252021-09-18Optical path system for improving beam combining precision
CN202111112195.5AActiveCN113686245B (en)2020-12-252021-09-18Ranging system with polarization maintaining optical fiber
CN202210333866.9AActiveCN115014196B (en)2020-12-252021-09-18Distance measuring system for absolute distance measurement

Country Status (3)

CountryLink
EP (1)EP4180760A4 (en)
CN (19)CN112556579A (en)
WO (1)WO2022135480A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112556579A (en)*2020-12-252021-03-26深圳市中图仪器股份有限公司Six-degree-of-freedom space coordinate position and attitude measuring device
CN113390343B (en)*2021-06-282023-05-30上海工程技术大学 A space pose detection device and method for a cooperative target
CN113777619B (en)*2021-09-152023-08-22深圳市中图仪器股份有限公司Distance measuring device with adjusting base
CN114396901A (en)*2021-11-182022-04-26深圳市中图仪器股份有限公司Space coordinate measuring instrument
CN114136343B (en)*2021-12-032024-03-26中国人民解放军63660部队Measurement method for dynamic pointing error of attitude stable tracking platform
CN114415147B (en)*2021-12-302025-08-08深圳市中图仪器股份有限公司 Laser beam adjustment mechanism with multiple degrees of freedom
CN114509005B (en)*2022-02-252023-06-23深圳市中图仪器股份有限公司Coordinate measuring device with automatic target recognition function and recognition method thereof
CN114942014B (en)*2022-04-152023-10-31中国科学院微电子研究所 Direct laser tracker, target tracking recovery method, equipment and storage medium
CN115200502A (en)*2022-06-292022-10-18爱佩仪智能装备有限公司 An integrated laser tracking measurement device and measurement method based on artificial intelligence
CN115583320A (en)*2022-10-142023-01-10江南造船(集团)有限责任公司Positioning assembly, ship butt-joint vehicle and relative position positioning system of ship butt-joint vehicle
CN115876152B (en)*2022-11-212025-09-09中国航空工业集团公司北京长城计量测试技术研究所Instrument for simultaneously carrying out coordinate tracking measurement and high-precision collimation posture measurement
CN116381715B (en)*2022-12-122025-08-01深圳市中图仪器股份有限公司Method for acquiring position and orientation of target
CN117331091A (en)*2022-12-122024-01-02深圳市中图仪器股份有限公司Auxiliary measuring device
CN116379925A (en)*2022-12-122023-07-04深圳市中图仪器股份有限公司Six-dimensional laser tracking measurement system with active back tracking function
TWI849657B (en)*2022-12-292024-07-21致茂電子股份有限公司Six degrees of freedom aligning equipment and calibration thereof
CN117824733A (en)*2023-09-252024-04-05深圳市中图仪器股份有限公司Guide rail structure with self-adaptive deviation adjusting function
CN118483984B (en)*2024-05-072025-04-08星辰光电科技(苏州)有限公司Automatic testing method and system for satellite-to-ground laser communication control performance
CN119687829B (en)*2024-12-232025-06-17中国航空工业集团公司北京长城计量测试技术研究所Tracking scanning measurement integrated system, tracking scanning measurement method and platform
CN119756221B (en)*2024-12-232025-07-18中国航空工业集团公司北京长城计量测试技术研究所 A tracking scanning measurement system and platform
CN119756477A (en)*2024-12-272025-04-04北京航空航天大学 A laser test monitoring system based on image vision
CN120252510B (en)*2025-05-272025-09-02中国科学院长春光学精密机械与物理研究所Visual measuring instrument and measuring method for solving position and posture of spatial target
CN120521526B (en)*2025-07-252025-09-19广西新发展交通集团有限公司 High-precision monitoring equipment for large deformation of tunnel surrounding rock based on laser interferometry

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19934931C1 (en)*1999-07-262000-12-28Zeiss Carl Jena GmbhHorizontal and vertical setting device for theodolite or tachymeter telescope uses precision horizontal and vertical setting drive lying in different planes and controlled by coaxial setting shafts
CN204027529U (en)*2014-07-072014-12-17中国电子科技集团公司第五十三研究所Based on the biaxial stabilization turntable error of perpendicularity pick-up unit of autocollimator
CN106705821A (en)*2015-07-312017-05-24北京航天计量测试技术研究所Rotary axis system orthogonality measuring method and device
CN108469782A (en)*2018-02-082018-08-31西南交通大学A kind of installation error discrimination method based on rotary shaft composition error measured value
CN109500619A (en)*2017-09-152019-03-22大隈株式会社The numerical control device and numerical control method of lathe
CN110806182A (en)*2019-10-302020-02-18河海大学 High-precision optical extensometer and measurement method based on telecentric lens
CN111993159A (en)*2020-08-272020-11-27江苏科技大学In-place non-contact detection method for shaft workpieces

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19522262C2 (en)*1995-06-201997-05-22Zeiss Carl Jena Gmbh Heterodyne interferometer arrangement
CN1095536C (en)*1999-08-202002-12-04清华大学Instrument for measuring shift and vibration of object by polarized light interference of optical fibre
AU2003223173A1 (en)*2002-02-142003-09-04Faro Technologies, Inc.Portable coordinate measurement machine with integrated line laser scanner
CN100590421C (en)*2003-06-192010-02-17麻省理工学院System and method for phase measurement
EP2405285B1 (en)*2003-09-052014-03-05Faro Technologies, Inc.Self-compensating laser tracker
JP2007132727A (en)*2005-11-092007-05-31Canon Inc Interference measurement device
AU2007204542B2 (en)*2006-01-132013-12-05Leica Geosystems AgCoordinate measurement instrument
US7742174B2 (en)*2006-07-172010-06-22Bioptigen, Inc.Methods, systems and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using continuous phase modulation and related phase modulators
WO2008107715A2 (en)*2007-03-052008-09-12Absolute Robotics LimitedDetermining positions
EP2142878B1 (en)*2007-04-302018-09-26Renishaw PLCAnalogue probe with temperature control and method of operation
CN101231343B (en)*2008-02-202010-12-15北京理工大学Apparatus for measuring parallelism of laser rangefinder sighting and receiving axes based on liquid crystal modulation
JP5124424B2 (en)*2008-11-172013-01-23株式会社キーエンス Optical displacement meter
CN101533096B (en)*2009-04-232010-07-14哈尔滨工业大学 Dual-frequency laser ranging method and device based on polarization state control and wavelength synthesis
JP2012530908A (en)*2009-06-232012-12-06ライカ・ジオシステムズ・アクチェンゲゼルシャフト Coordinate measuring device
WO2011016857A2 (en)*2009-08-052011-02-10Elliott James CEquipment and system for structure inspection and monitoring
US8659749B2 (en)*2009-08-072014-02-25Faro Technologies, Inc.Absolute distance meter with optical switch
CN101738167A (en)*2010-01-262010-06-16北京航空航天大学Resonant cavity frequency stabilization-based absolute distance measurement system and implementing method thereof
EP2381269A1 (en)*2010-04-132011-10-26Leica Geosystems AGCoordinate measuring device with automated targeting
DE102010016862B3 (en)*2010-05-102011-09-22Precitec Optronik Gmbh Material processing device with in-situ measurement of the machining distance
CN101907443B (en)*2010-06-232012-03-07清华大学Displacement measuring device for movable mutual inductor of energy balance
JP5504068B2 (en)*2010-06-232014-05-28Dmg森精機株式会社 Displacement detector
CN102004326B (en)*2010-10-222012-12-19福州高意通讯有限公司Depolarization delay device
GB2497910B (en)*2010-10-252013-10-09Faro Tech IncAutomated warm-up and stability check for laser trackers
JP2014516409A (en)*2011-04-152014-07-10ファロ テクノロジーズ インコーポレーテッド Improved position detector for laser trackers.
DE112012002486B4 (en)*2011-06-142015-10-15Faro Technologies, Inc. Automated and accelerated warm-up and stability check for laser tracker
CN102353963A (en)*2011-07-152012-02-15于晋龙Distance measuring system for optical domain based dual-loop optoelectronic oscillators
CN102426027B (en)*2011-09-052013-10-02南京德朔实业有限公司Inner optical system control and switching apparatus for laser range finder
EP2607843A1 (en)*2011-12-202013-06-26Leica Geosystems AGLaser-based coordinate measuring device with a fixed-free bearing system
JP2015534055A (en)*2012-09-192015-11-26ファロ テクノロジーズ インコーポレーテッド How to use a handheld device to select, lock on, and track a retroreflector using a laser tracker
DE112012007096B4 (en)*2012-11-012019-01-03Trimble Ab Tracker unit and method in a tracker unit
US9036134B2 (en)*2013-02-122015-05-19Faro Technologies, Inc.Multi-mode optical measurement device and method of operation
US9746560B2 (en)*2013-02-122017-08-29Faro Technologies, Inc.Combination scanner and tracker device having a focusing mechanism
DE202013003263U1 (en)*2013-04-092014-07-11William R. Benner jun. Rotary position detection device
EP2801841B1 (en)*2013-05-102018-07-04Leica Geosystems AGLaser tracker with a target detecting unit for a target tracking system and orientation detection
US9476695B2 (en)*2013-07-032016-10-25Faro Technologies, Inc.Laser tracker that cooperates with a remote camera bar and coordinate measurement device
CN104752267B (en)*2013-12-312018-04-27上海微电子装备(集团)股份有限公司A kind of laser anneal device and method
EP2980526B1 (en)*2014-07-302019-01-16Leica Geosystems AGCoordinate measuring device and method
US9857161B2 (en)*2014-09-032018-01-02Beijing Jiaotong University6DOF error laser simultaneous measurement system with a single polarization maintaining fiber coupling and transmitting the dual-frequency laser
EP3006895B1 (en)*2014-10-102020-02-19Leica Geosystems AGLaser tracker with hot air flow shielding for the measurement beam
EP3032277B1 (en)*2014-12-122021-04-07Leica Geosystems AGLaser tracker
CN105161961A (en)*2015-09-302015-12-16中国科学院合肥物质科学研究院Micro-pulse laser radar light source with high pulse energy
EP3179271B1 (en)*2015-12-112020-12-09Leica Geosystems AGTec-module with laser diode as interferometer laser beam source in a laser tracker
CN106931877A (en)*2015-12-302017-07-07上海微电子装备有限公司A kind of optical grating measuring system
EP3220163B1 (en)*2016-03-152021-07-07Leica Geosystems AGLaser tracker with two measuring function alities
CN105629404A (en)*2016-04-082016-06-01四川华拓光通信股份有限公司Coupling lens device applied to vertical cavity surface emitting laser
CN105784334B (en)*2016-04-082018-08-07中国人民解放军国防科学技术大学Optical-fiber laser beam quality measurement method based on photodetector and CCD camera
CN205785113U (en)*2016-05-132016-12-07深圳市中图仪器科技有限公司A kind of for the remote optical system of laser interferometer measurement
CN105938198A (en)*2016-06-122016-09-14天津大学High-precision absolute distance measurement apparatus and measurement method based on secondary polarization
US20180095174A1 (en)*2016-09-302018-04-05Faro Technologies, Inc.Three-dimensional coordinate measuring device
EP3444686B1 (en)*2017-08-152021-12-22GF Machining Solutions AGMethod for using a geometrical probe with a spindle of a machine tool, and machine tool configured to carry out such a method
CN107764189B (en)*2017-09-302019-08-27中国航空工业集团公司北京长城计量测试技术研究所A kind of femtosecond laser Models of Absolute Distance Measurement Based device and method of a wide range of repetition modulation
JP7179844B2 (en)*2017-11-132022-11-29ヘキサゴン メトロロジー,インコーポレイテッド Thermal management of optical scanning equipment
CN109855530B (en)*2017-11-302021-03-09上海微电子装备(集团)股份有限公司Interferometer system and method of use thereof
JP7004947B2 (en)*2017-12-152022-01-21株式会社東京精密 Measuring device and measuring method
CN108872074A (en)*2018-06-082018-11-23北京农业智能装备技术研究中心A kind of soil nutrient elements detection system and method
CN209102016U (en)*2018-11-302019-07-12广西师范大学 A long-distance structured light three-dimensional measurement device
CN109813218B (en)*2019-01-232020-11-13南京工程学院Precision compensation method for three-degree-of-freedom target of laser tracker
CN109813225A (en)*2019-03-202019-05-28安徽工业大学 A spatial error compensation method for a flexible arm coordinate measuring machine
CN111457894A (en)*2020-03-312020-07-28徐州迪沃通讯工程有限公司Be applied to open-air measuring cold survey formula high accuracy total powerstation
CN112066887A (en)*2020-08-192020-12-11昂纳信息技术(深圳)有限公司Optical fiber length measuring system and measuring method thereof
CN112082499B (en)*2020-09-142022-08-26清华大学Deformation measuring system, method for measuring deformation and measuring head
CN112556579A (en)*2020-12-252021-03-26深圳市中图仪器股份有限公司Six-degree-of-freedom space coordinate position and attitude measuring device
CN214278411U (en)*2021-01-072021-09-24深圳市中图仪器股份有限公司Laser ranging system of optic fibre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19934931C1 (en)*1999-07-262000-12-28Zeiss Carl Jena GmbhHorizontal and vertical setting device for theodolite or tachymeter telescope uses precision horizontal and vertical setting drive lying in different planes and controlled by coaxial setting shafts
CN204027529U (en)*2014-07-072014-12-17中国电子科技集团公司第五十三研究所Based on the biaxial stabilization turntable error of perpendicularity pick-up unit of autocollimator
CN106705821A (en)*2015-07-312017-05-24北京航天计量测试技术研究所Rotary axis system orthogonality measuring method and device
CN109500619A (en)*2017-09-152019-03-22大隈株式会社The numerical control device and numerical control method of lathe
CN108469782A (en)*2018-02-082018-08-31西南交通大学A kind of installation error discrimination method based on rotary shaft composition error measured value
CN110806182A (en)*2019-10-302020-02-18河海大学 High-precision optical extensometer and measurement method based on telecentric lens
CN111993159A (en)*2020-08-272020-11-27江苏科技大学In-place non-contact detection method for shaft workpieces

Also Published As

Publication numberPublication date
CN117433416A (en)2024-01-23
CN115523838A (en)2022-12-27
EP4180760A4 (en)2024-08-07
CN115597489B (en)2023-08-18
CN115540757B (en)2023-11-10
CN113566710B (en)2022-11-08
CN113739700A (en)2021-12-03
CN116399232A (en)2023-07-07
CN115540758A (en)2022-12-30
CN116399231A (en)2023-07-07
CN115540758B (en)2023-06-27
EP4180760A1 (en)2023-05-17
CN112556579A (en)2021-03-26
CN113340205A (en)2021-09-03
CN215217505U (en)2021-12-17
CN114838658A (en)2022-08-02
CN113566710A (en)2021-10-29
CN114838658B (en)2023-08-22
CN113686245A (en)2021-11-23
CN113340205B (en)2022-11-08
CN116399232B (en)2023-12-01
CN113432534A (en)2021-09-24
CN115540757A (en)2022-12-30
CN115597489A (en)2023-01-13
CN115014196B (en)2022-12-23
CN117433415A (en)2024-01-23
CN115014196A (en)2022-09-06
CN113686245B (en)2022-05-03
CN113432534B (en)2023-05-23
CN215217506U (en)2021-12-17
CN116399231B (en)2024-02-27
WO2022135480A1 (en)2022-06-30
CN215984384U (en)2022-03-08

Similar Documents

PublicationPublication DateTitle
CN113739700B (en)Method for adjusting orthogonal axis system of coordinate measuring instrument
CN102519399B (en)Method for calibrating the geometry of a multi-axis metrology system
CN114088037B (en)Method for measuring orthogonality of orthogonal axis system of instrument
US9316476B2 (en)Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
US7440089B2 (en)Method of measuring decentering of lens
US7856729B1 (en)Bore elevation and azimuth measuring apparatus and method
JP2010530532A (en) Scan head calibration apparatus and method
CN108007347B (en) A Geometric Error Compensation Method for Laser Tracker
WO2008067561A2 (en)Interior contour measurement probe
US4414748A (en)Ball mounting fixture for a roundness gage
CN110926365B (en) A calibration method for detection objects based on line structured light
JP2009122065A (en) Calibration jig and calibration method
TWI580513B (en) Method of Simultaneous Error Measurement of Linear and Rotating Shaft of Machine Tool
JP2008089541A (en)Reference for measuring motion error and motion error measuring device
JP6800442B2 (en) 3D shape measurement system
CN110631523B (en) A device and method for measuring position error between axes of a precision two-dimensional turntable
JP7201208B2 (en) Calibration gauge and calibration method
CN218455443U (en)Attitude measurement and calibration device for laser tracker
CN115371558B (en)Intersection error detection method and system of pitching axis and azimuth axis of laser tracker
CN115307579A (en) A verticality error detection device for the elevation and azimuth axes of a laser tracker
JP4072265B2 (en) Rotation axis tilt measurement method
JP6456087B2 (en) Shape measuring apparatus and shape measuring method
JP7742016B2 (en) Shape measuring instrument and its calibration method
CN120112770A (en) Method for measuring the condition of a rotating component
CN119820332A (en)Calibration device and calibration method for center point of rotating shaft of five-axis numerical control machine tool

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp