Wearable visual ultrasonic non-invasive monitoring equipmentTechnical Field
The invention relates to the technical field of ultrasonic imaging, in particular to flexible ultrasonic imaging monitoring equipment.
Background
The determination of central venous pressure is important for guiding the formulation of treatment regimens for clinically critical patients. At present, the floating catheter is placed in the inferior vena cava for determination clinically by means of an interventional operation, the method is an invasive method, and has the defects of infection, inconvenience, difficulty in long-term continuous monitoring and the like, and a noninvasive central venous pressure monitoring method is urgently needed clinically. The ultrasonic imaging can carry out non-invasive imaging on blood vessels, and the central venous pressure is found to be positively correlated with the caliber of inferior vena cava in the early period, so the idea of monitoring the central venous pressure by utilizing the ultrasonic image is provided. However, two difficulties have been found to exist: first, most of the existing ultrasound imaging devices are used for one-time scanning imaging, which is difficult to perform continuous monitoring imaging for a long time, and difficult to obtain dynamic ultrasound recording data for diagnosis and treatment of diseases and selection of surgical schemes. The reason for this is that: at present, the geometric dimension of the conventional ultrasonic probe, whether a convex array, a concave array, a linear array or an area array, is fixed. Such as a convex/concave array probe with a fixed radius of curvature of the probe, array element spacing and distribution, etc. Therefore, in order to obtain good contact, it is necessary to closely attach the ultrasonic probe to the detection site and fill up the fine gaps with an ultrasonic couplant. Even so, since the ultrasound probe is rigid, good contact is often not obtained, resulting in a great impact on imaging quality. When human tissue detects, if not soft tissue position, perhaps when the detection target surface curvature continuous variation is irregular, the probe just can't use, has caused very big inconvenience to formation of image and detection, needs medical personnel to hold fixedly in the use, consequently can't carry out continuous control formation of image. Secondly, the automatic calculation and real-time monitoring of the area of the vein can not be achieved due to the lack of artificial intelligence.
Disclosure of Invention
The invention aims to provide a wearable visual ultrasonic non-invasive monitoring device for obtaining dynamic ultrasonic recording data for diagnosis and treatment of diseases. In order to achieve the purpose, the invention adopts the following technical scheme:
a wearable visualized ultrasound non-invasive monitoring device, comprising: the flexible ultrasonic probe, with the supersound scanning host computer that flexible ultrasonic probe meets, supersound scanning host computer links to each other with display device. When in use, the ultrasonic probe is attached to the skin on the surface of an organ to be monitored, fixed by a medical adhesive tape, and then the ultrasonic scanning host is opened. The ultrasonic scanning host transmits the image to the display device to realize monitoring.
Further, the flexible ultrasonic probe comprises a flexible layer medium, the ultrasonic transducer units are arranged in the flexible medium or on the surface of the flexible medium in an array mode, and the shape of the flexible layer medium can be changed so as to be attached to the surface of an ultrasonic treatment/ultrasonic imaging object.
Further, the flexible ultrasound probe includes a housing and a flexible ultrasound probe layer.
Further, the probe frequency of the flexible ultrasonic probe can be selected from: 1-2MH,3-5MHz,5-12MHz and 12-20 MHz.
Further, the display device includes: cell-phone, panel computer, display etc..
Furthermore, computer vision recognition analysis software is arranged in the ultrasonic scanning host machine, and can automatically recognize and analyze the measured elements in the acquired data image.
Furthermore, computer vision recognition analysis software is arranged in the ultrasonic scanning host, and can automatically recognize blood vessels in the acquired data image and calculate the area of the blood vessels.
Further, the ultrasonic imaging device can be used for monitoring the heart, monitoring blood vessels, monitoring muscle movement and monitoring cerebral hemorrhage.
Based on the technical scheme, the invention further provides a visual blood flow monitoring instrument which comprises a flexible ultrasonic probe and an ultrasonic scanning host connected with the flexible ultrasonic probe, wherein the ultrasonic scanning host is connected with a display device.
The technical scheme of the invention has the following beneficial effects:
1. the flexible ultrasonic probe is closely attached to the surface of a detected body, energy loss of ultrasonic waves is reduced, the ultrasonic waves can be transmitted and/or received more accurately, detection precision is improved, accurate detection scanning can be carried out on human tissues, the flexible ultrasonic probe is not limited to soft tissues, and the flexible ultrasonic probe can also be used on the neck or other bone tissues.
2. The acquisition of long-time dynamic ultrasonic recording data can be realized for diagnosis and treatment of diseases.
3. The computer vision recognition analysis software can be used for automatically recognizing and analyzing the measured elements in the acquired data image. The medical care personnel can obtain the health condition of the patient more intuitively and effectively.
Drawings
Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
Fig. 2 is a schematic structural diagram of a flexible ultrasonic probe according to an embodiment of the present invention.
FIG. 3 is an image of a pre-transfusion jugular vein taken in accordance with one embodiment of the present invention.
FIG. 4 is a post-transfusion jugular vein image taken in accordance with one embodiment of the present invention.
FIG. 5 is a graph showing the cross-sectional area changes of the anterior and posterior jugular veins collected in accordance with one embodiment of the present invention.
Description of the drawings: 01 is the cross-sectional area change curve of the jugular vein after blood transfusion, and 02 is the cross-sectional area change curve of the jugular vein before blood transfusion.
Detailed Description
In order to make those skilled in the art better understand the technical solution of the present invention, the following examples further describe the present invention in detail, and the following examples are only used for illustrating the present invention, but not for limiting the scope of the present invention.
A wearable visualized ultrasound non-invasive monitoring device, comprising: the flexibleultrasonic probe 1 and the flexible ultrasonic probe are connected through an ultrasonicscanning host machine 2 of a connectingwire 3, and the ultrasonicscanning host machine 2 is connected with the display device. The flexibleultrasonic probe 1 comprises a flexible layer medium, wherein the ultrasonic transducer units are arranged in an array form on the surface of the flexible medium, and the shape of the flexible layer medium can be changed so as to be attached to the surface of an ultrasonic treatment/ultrasonic imaging object. Theflexible ultrasound probe 1 comprises ahousing 4 and a flexibleultrasound probe layer 5. The display device includes: cell-phone, panel computer, display etc.. Computer vision recognition analysis software is arranged in theultrasonic scanning host 2, and can automatically recognize blood vessels in the acquired data images and calculate the area of the blood vessels.
Specifically, the ultrasonic imaging data acquisition of multiple parts and multiple sections of the jugular vein of 50 cases of pregnant women with normal and gestational hypertension, anemia and hypoproteinemia is completed, dynamic ultrasonic recording data under different parameter conditions are obtained, and video computer identification analysis is carried out on the obtained ultrasonic recording by using computer vision identification analysis software, so that the ultrasonic imaging system is greatly helpful for clinical diagnosis and treatment.
Furthermore, through the ultrasonic image analysis of the jugular vein before and after fluid infusion of normal people and acute blood loss patients, the dynamic monitoring of the jugular vein area can better reflect the clinical fluid infusion effect, and a simple and feasible monitoring mode is hopeful to be provided for clinical treatment.
In summary, the technical scheme provided by the invention realizes automatic identification, area measurement and dynamic tracking of jugular vein blood vessels under the condition of low signal to noise ratio by integrating and combining the flexible ultrasonic probe and the computer vision identification analysis software. The purpose of acquiring the dynamic ultrasonic recording data for a long time is achieved, and a reliable treatment basis is provided for clinical medical diagnosis and treatment. With the popularization of the wearable visual ultrasonic imaging equipment provided by the invention, the comprehensive upgrade of a clinical monitoring instrument is hopefully driven. And the image identification requirement required by multidisciplinary research can be met.
The preferred embodiments of the present invention have been described in detail, however, the present invention is not limited to the specific details of the above embodiments, and various changes may be made to the technical solution of the present invention within the technical idea of the present invention, and these simple modifications are included in the protective scope of the present invention.
It should be noted that, in the foregoing embodiments, various specific technical features and steps described in the above embodiments can be combined in any suitable manner, and in order to avoid unnecessary repetition, various possible combinations of the features and steps are not described separately.
In addition, any combination of the various embodiments of the present invention is also possible, and the same should be considered as the disclosure of the present invention as long as it does not depart from the spirit of the present invention.