


技术领域technical field
本发明涉及一种UWB系统的动态精度标定方法,属于精度标定技术领域。The invention relates to a dynamic precision calibration method of a UWB system, and belongs to the technical field of precision calibration.
背景技术Background technique
随着人们对室内环境下LBS(location based service)的需求愈加强烈,室内定位技术受到学者的广泛研究和关注。超声波、红外线、WIFI、蓝牙、RFID、如图1所示的UWB超宽带等多种室内定位技术的发展,使人们在商场购物、地下停车和展厅参观时能快速地进行自身定位和目的地导航。With the increasing demand for LBS (location based service) in indoor environment, indoor positioning technology has received extensive research and attention from scholars. The development of various indoor positioning technologies such as ultrasonic, infrared, WIFI, Bluetooth, RFID, and UWB ultra-wideband as shown in Figure 1 enables people to quickly locate themselves and navigate their destinations when shopping in shopping malls, underground parking and visiting exhibition halls .
其中,UWB(Ultra Wide Band)超宽带室内定位技术作为一种新兴的一种室内定位技术,具有穿透能力强、系统结构简单和定位精度高的优点,在生产车间、博物馆和展厅等场所应用广泛。研究UWB室内定位系统的动态精度标定方法对于和改善UWB的定位精度和拓展UWB技术的应用领域具有重要作用。Among them, UWB (Ultra Wide Band) ultra-wideband indoor positioning technology, as an emerging indoor positioning technology, has the advantages of strong penetration ability, simple system structure and high positioning accuracy, and is used in production workshops, museums and exhibition halls and other places. widely. Studying the dynamic accuracy calibration method of UWB indoor positioning system plays an important role in improving the positioning accuracy of UWB and expanding the application field of UWB technology.
UWB系统的动态精度标定难度较高,例如:期刊为《测绘科学技术学报》、期刊号为1673-6338(2017)02-0147-05的期刊文章公开了一种基于运动捕捉系统的UWB室内定位精度标定方法,该方法的实现是基于两个实验完成的:一是使用全站仪对运动捕捉系统进行精度验证,通过布尔莎七参数坐标转换模型对实验数据进行处理,表明了运动捕捉系统的精度满足要求,可以用于标定UWB室内定位系统的精度;二是通过运动捕捉系统来标定UWB室内定位系统的精度,以运动捕捉系统采集的数据为真值,将UWB室内定位系统采集的数据与运动捕捉系统采集的数据进行比较,完成了UWB系统的精度标定。The dynamic accuracy calibration of the UWB system is difficult. For example, the journal article is "Journal of Surveying and Mapping Science and Technology" and the journal number is 1673-6338 (2017) 02-0147-05. A UWB indoor positioning based on motion capture system is disclosed. Accuracy calibration method, the realization of this method is based on two experiments: one is to use the total station to verify the accuracy of the motion capture system, and to process the experimental data through the Bursa seven-parameter coordinate transformation model, which shows the accuracy of the motion capture system. The accuracy meets the requirements and can be used to calibrate the accuracy of the UWB indoor positioning system; the second is to calibrate the accuracy of the UWB indoor positioning system through the motion capture system, taking the data collected by the motion capture system as the true value, and comparing the data collected by the UWB indoor positioning system with The data collected by the motion capture system are compared, and the precision calibration of the UWB system is completed.
然而上述标定方法复杂、标定结果(尤其是Z轴)并不准确。However, the above calibration method is complicated, and the calibration results (especially the Z axis) are not accurate.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供一种UWB系统的动态精度标定方法,用以解决现有标定方案标定复杂且不准确的问题。The purpose of the present application is to provide a dynamic accuracy calibration method of a UWB system to solve the problem of complex and inaccurate calibration in the existing calibration scheme.
为实现上述目的,本申请提出了一种UWB系统的动态精度标定方法的技术方案,包括以下步骤:In order to achieve the above purpose, the present application proposes a technical scheme of a dynamic accuracy calibration method of a UWB system, comprising the following steps:
1)将UWB标签固定在工业机器人的末端,测量得到UWB标签相对于工业机器人末端的距离;1) Fix the UWB tag on the end of the industrial robot, and measure the distance between the UWB tag and the end of the industrial robot;
2)控制工业机器人按照预先规划的轨迹运动;工业机器人记录UWB标签的运动轨迹,得到UWB标签的真实位置信息;同时通过UWB系统监测所述UWB标签,得到UWB标签的观测位置信息;2) Control the industrial robot to move according to the pre-planned trajectory; the industrial robot records the movement trajectory of the UWB tag to obtain the real position information of the UWB tag; at the same time, the UWB tag is monitored by the UWB system to obtain the observation position information of the UWB tag;
3)将上述UWB标签的真实位置信息和UWB标签的观测位置信息的坐标进行统一;3) Unify the coordinates of the real position information of the UWB tag and the observation position information of the UWB tag;
4)在统一坐标系下,比较UWB标签的真实位置信息和UWB标签的观测位置信息的差异;4) Under the unified coordinate system, compare the difference between the real position information of the UWB tag and the observed position information of the UWB tag;
5)根据所述差异计算UWB系统的动态运动误差,完成UWB系统的动态精度标定。5) Calculate the dynamic motion error of the UWB system according to the difference, and complete the dynamic accuracy calibration of the UWB system.
本发明的UWB系统的动态精度标定方法的技术方案的有益效果是:本发明利用工业机器人精度高、稳定性好、且根据用户能够自主规划其三维运动轨迹的特点,将UWB标签固定在工业机器人的末端,通过工具坐标系标定得到UWB标签相对于机器人法兰末端的位置;利用控制程序控制工业机器人运动,得到工业机器人坐标系下的UWB标签的真实位置信息,以及UWB坐标系下的UWB标签的观测位置信息,由于机器人和UWB系统的坐标系不统一,因此需要对坐标系进行统一,方可实现位置的比较。比较后得到UWB系统动态运动的误差,完成UWB系统的精度标定。本发明充分利用工业机器人的特点,可以使得UWB标签在三维空间中任意运动,提高了UWB系统动态精度标定的准确性,并且本发明整体标定过程简单,可靠。The beneficial effects of the technical solution of the dynamic accuracy calibration method of the UWB system of the present invention are: the present invention utilizes the characteristics of high precision and good stability of the industrial robot, and can independently plan its three-dimensional motion trajectory according to the user, to fix the UWB label on the industrial robot. The position of the UWB label relative to the end of the robot flange is obtained by calibrating the tool coordinate system; using the control program to control the motion of the industrial robot, the real position information of the UWB label in the industrial robot coordinate system and the UWB label in the UWB coordinate system are obtained. Since the coordinate systems of the robot and the UWB system are not unified, it is necessary to unify the coordinate systems to realize the position comparison. After the comparison, the error of the dynamic motion of the UWB system is obtained, and the precision calibration of the UWB system is completed. The invention makes full use of the characteristics of industrial robots, can make the UWB label move arbitrarily in three-dimensional space, improves the accuracy of dynamic precision calibration of the UWB system, and the overall calibration process of the invention is simple and reliable.
进一步的,所述步骤3)中通过转换矩阵进行坐标统一,所述转换矩阵通过控制工业机器人使UWB标签运动到不同静态位置,根据使UWB标签在工业机器人坐标系和UWB系统坐标系下的不同坐标,采用公共点转换的方法得到。Further, in the step 3), coordinate unification is carried out through a transformation matrix, and the transformation matrix makes the UWB label move to different static positions by controlling the industrial robot, according to the difference between the UWB label in the industrial robot coordinate system and the UWB system coordinate system. The coordinates are obtained by the method of public point conversion.
进一步的,所述UWB系统的动态运动误差为:Further, the dynamic motion error of the UWB system is:
ei=||ΔPi||2;ei =||ΔPi ||2 ;
其中,ei为UWB系统的第i个位置信息的动态运动误差;ΔP为第i个真实位置信息和观测位置信息的差异。Among them, ei is the dynamic motion error of the ith position information of the UWB system; ΔP is the difference between the ith real position information and the observed position information.
进一步的,为了提高标定的准确性和可靠性,所述步骤2)中,控制工业机器人按照预先设定的不同的姿态、速度、路线进行运动。Further, in order to improve the accuracy and reliability of the calibration, in the step 2), the industrial robot is controlled to move according to different preset postures, speeds and routes.
进一步的,所述路线包括直线路线和曲线路线。Further, the route includes a straight route and a curved route.
附图说明Description of drawings
图1是本发明UWB系统的原理框图;Fig. 1 is the principle block diagram of UWB system of the present invention;
图2是本发明UWB系统的动态精度标定方法的流程图;Fig. 2 is the flow chart of the dynamic precision calibration method of UWB system of the present invention;
图3是本发明动态标定系统的示意图;Fig. 3 is the schematic diagram of the dynamic calibration system of the present invention;
图中:1为UWB基站、2为UWB标签、3为工业机器人。In the figure: 1 is a UWB base station, 2 is a UWB tag, and 3 is an industrial robot.
具体实施方式Detailed ways
UWB系统的动态精度标定方法实施例:Example of dynamic accuracy calibration method of UWB system:
UWB系统的动态精度标定方法的主要构思在于,将工业机器人作为运动载体和高精度测量系统,把UWB标签固定在工业机器人的末端,驱动UWB标签以不同姿态、不同速度、以及不同路线进行运动;进而将工业机器人坐标系下的工业机器人记录的UWB标签的运动数据作为真实值,UWB系统坐标系下采集的UWB标签运动数据为观测值,将两个坐标系统一到一个坐标系之后,将观测值和真实值作比较,完成UWB系统的动态精度标定。The main idea of the dynamic accuracy calibration method of the UWB system is to use the industrial robot as a motion carrier and a high-precision measurement system, fix the UWB tag on the end of the industrial robot, and drive the UWB tag to move with different attitudes, different speeds, and different routes; Then, the motion data of the UWB tag recorded by the industrial robot in the industrial robot coordinate system is taken as the real value, and the UWB tag motion data collected in the UWB system coordinate system is the observation value. The value is compared with the real value to complete the dynamic accuracy calibration of the UWB system.
具体的,UWB系统的动态精度标定方法如图2所示,包括以下步骤:Specifically, the dynamic accuracy calibration method of the UWB system is shown in Figure 2, including the following steps:
1)搭建如图3所示的动态标定系统。1) Build a dynamic calibration system as shown in Figure 3.
动态标定系统包括工业机器人3、UWB标签2、若干个UWB基站1(不少于3个)以及PC端。The dynamic calibration system includes an
将UWB基站1架设在工业机器人3四周,UWB标签2固定在工业机器人3的末端,UWB标签2与UWB基站1尽可能保持通视以减少NLOS(non-line of sight)误差对UWB系统位置解算的影响;同时工业机器人3、以及各UWB基站1均与PC端连接,PC端作为工业机器人和UWB系统数据输出的接收端,同时对所采集的数据进行误差分析。The UWB base station 1 is erected around the
该动态标定系统包括两个坐标系:UWB系统坐标系,具体为根据基站位置分布所建立的某个UWB基站1的UWB局部坐标系OU;工业机器人3坐标系,具体为工业机器人3底部建立起的基坐标系OB,并且局部的大地坐标系OW默认与基坐标系OB重合。The dynamic calibration system includes two coordinate systems: the UWB system coordinate system, specifically the UWB local coordinate system OU of a certain UWB base station 1 established according to the location distribution of the base station; the
2)将UWB标签2固定到机器人末端,测量UWB标签2相对于工业机器人3法兰末端的距离,完成工具坐标系标定,使工业机器人能够实时获取UWB标签2的位置。2) Fix the UWB tag 2 to the end of the robot, measure the distance of the UWB tag 2 relative to the flange end of the
UWB标签2固定到机器人末端后,UWB标签2即为工业机器人所安装的工具,工具坐标系的原点即为UWB标签发送数据的天线端口,工具坐标系标定的目的是为了获取天线端口相对于工业机器人法兰末端坐标系的位置,以便工业机器人能够实时获取UWB标签2在工业机器人坐标系下的位置。标定方法可以通过游标卡尺等精密仪器测量得到工业机器人对于法兰末端坐标系的位置,也可以通过四点法、对尖法等方法实现工具坐标系标定。After the UWB tag 2 is fixed to the end of the robot, the UWB tag 2 is the tool installed by the industrial robot. The origin of the tool coordinate system is the antenna port of the data sent by the UWB tag. The purpose of the tool coordinate system calibration is to obtain the antenna port relative to the industrial robot. The position of the coordinate system of the end of the robot flange, so that the industrial robot can obtain the position of the UWB tag 2 in the coordinate system of the industrial robot in real time. The calibration method can be measured by a vernier caliper and other precision instruments to obtain the position of the industrial robot on the coordinate system of the end of the flange, or the tool coordinate system can be calibrated by methods such as the four-point method and the point-to-point method.
3)通过离线编程规划工业机器人3的运动状态(包括控制工业机器人的速度、姿态和运动轨迹等参数)。控制工业机器人3运动,分别得到UWB标签2在UWB局部坐标系OU和基坐标系OB下的位置信息。3) Planning the motion state of the
所编写的程序包括工业机器人3以不同姿态、不同路线和不同速度运动的程序,利用控制变量法控制工业机器人3每次改变一个变量因素,使固定在工业机器人3末端的标签分别以不同姿态、不同运动路线和不同速度运动时的UWB系统动态定位精度。The programs written include the programs in which the
变量因素包括姿态变量、速度变量以及路线变量。Variable factors include attitude variables, speed variables, and route variables.
其中,姿态变量:UWB标签2固定在工业机器人3末端,UWB标签2的运动姿态会随着工业机器人3末端的姿态变化一同发生变化。由于UWB标签2在不同姿态下接收的基站信息会发生变化,从而对动态定结果产生影响。因此,为探究标签运动姿态对UWB系统定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3以多种不同的姿态运动相同的路线,对比不同姿态下UWB系统的动态定位精度。Among them, the attitude variable: the UWB tag 2 is fixed at the end of the
速度变量:速度对UWB系统的动态定位精度影响往往较大。为探究标签运动速度对UWB系统定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3以不同的速度运动相同的路线,对比不同速度下UWB系统的动态定位精度。Velocity variable: Velocity often has a greater impact on the dynamic positioning accuracy of UWB systems. In order to explore the influence of the label movement speed on the positioning accuracy of the UWB system, when other variables remain unchanged, the
路线变量:UWB标签2进行直线运动和曲线运动时的动态运动精度往往是不同的。为探究UWB标签2路线对定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3使UWB标签2在空间分别运动一个长方形运动轨迹(直线)和一个圆形运动轨迹(曲线),对比不同路线下UWB系统的动态运动精度。同时,为减少其他因素对UWB定位经过的影响,圆形的圆心与长方形的几何中心重合,圆形的周长应和长方形的周长因保持相同,并且长方形路线和圆形路线应位于同一个空间平面上。Route variables: The dynamic motion accuracy of UWB tags 2 is often different when performing linear and curved motions. In order to explore the influence of the UWB tag 2 route on the positioning accuracy, when other variables remain unchanged, the
工业机器人3的优点在于用户可以离线编程自主规划工业机器人3运动轨迹、运动姿态、运动速度等参数,这对于控制标签的运动变量进行动态精度标定实验非常方便。根据步骤2)中编写程序使工业机器人3工具末端(即UWB标签2)在空间在不同的速度、姿态和路线的条件下运动。The advantage of the
4)以基坐标系OB下的位置信息为真实位置信息,UWB局部坐标系OU下的位置信息为观测位置信息,将UWB局部坐标系OU下的位置信息转换到基坐标系OB下,得到UWB系统的动态运动误差,完成UWB系统的动态精度标定。4) Take the position information under the base coordinate system OB as the real position information, and the position information under the UWB local coordinate system OU as the observation position information, and convert the position information under the UWB local coordinate system OU to the base coordinate system OB Then, the dynamic motion error of the UWB system is obtained, and the dynamic accuracy calibration of the UWB system is completed.
本步骤中,通过socket通信将UWB标签2的位置和姿态实时输出给PC,根据UWB系统的采样数据解算得到UWB标签2在UWB局部坐标系OU下的运动位置。为了方便对比工业机器人3和UWB系统的采样数据,使工业机器人3的输出频率和UWB系统的采样频率保持一致,如采样频率统一设置为10HZ。为了解决两套坐标系的采样点匹配问题,控制工业机器人3每次运动前在起始点位置停止数秒,以便于两套系统的起始采样点匹配。In this step, the position and attitude of the UWB tag 2 are output to the PC in real time through socket communication, and the motion position of the UWB tag 2 in the UWB local coordinate systemOU is obtained by calculating the sampling data of the UWB system. In order to facilitate the comparison of the sampling data of the
通过公共点转换的方法将UWB局部坐标系OU下的运动数据转换到基坐标系OB下,转换矩阵的获取过程如下:The motion data in the UWB local coordinate systemOU is converted to the base coordinate system OB by the method of common point conversion.The acquisition process of the conversion matrix is as follows:
控制工业机器人3依次移动到空间任意30个位置处,每个位置停留的时间约为1分钟。通过对30个静态点采样得到UWB标签2在两个坐标系下30个位置处的静态位置数据。Control the
对静态采样点取均值得到UWB标签2在UWB局部坐标系OU下第i个静态点的坐标UPi0:The average value of the static sampling points is obtained to obtain the coordinateU Pi0 of the i-th static point of the UWB label 2 in the UWB local coordinate system OU :
UPi0=(xui,yui,zui)T(i=1…30);U Pi0 =(xui , yui , zui )T (i=1...30);
UWB标签2在基坐标系OB下记录的第i个静态点的坐标BPi0:The coordinateB Pi0 of the i-th static point recorded by UWB tag 2 in the base coordinate systemOB :
BPi0=(xbi,ybi,zbi)T。B Pi0 =(xbi , ybi , zbi )T .
根据坐标系转换公式建立如下方程组:According to the coordinate system conversion formula, the following equations are established:
令:make:
得到:A·X=B,根据最小二乘迭代得到两套坐标系的转换矩阵X=(ATA)-1ATB。Obtain: A·X=B, and obtain the transformation matrix X=(AT A)-1 AT B of the two sets of coordinate systems according to the least squares iteration.
基于所得到的转换矩阵,将步骤3)中得到的UWB标签2在UWB局部坐标系OU下的动态位置信息转换到基坐标系OB下:BPi'=UPi·X;Based on the obtained conversion matrix, the dynamic position information of the UWB tag 2 obtained in step 3) under the UWB local coordinate systemOU is converted to the base coordinate systemOB: BPi '=U Pi ·X;
进而得到第i个真实位置信息和观测位置信息的差异ΔPi:ΔPi=BPi'-BPi;UWB系统的第i个位置信息的动态运动误差ei为:ei=||ΔPi||2;Then, the difference ΔPi between the i-th real position information and the observed position information is obtained: ΔPi =B Pi '-B Pi ; the dynamic motion error ei of the i-th position information of the UWB system is: ei =|| ΔPi ||2 ;
其中,UPi为UWB标签2在UWB局部坐标系OU下的第i个位置信息;BPi'为UWB标签2从UWB局部坐标系OU转换到基坐标系OB下的第i个位置信息,也即第i个观测位置信息;BPi为UWB标签2在基坐标系OB下的第i个真实位置信息。Among them,U Pi is the i-th position information of UWB tag 2 under UWB local coordinate system OU ;B Pi ' is the i-th position information of UWB tag 2 converted from UWB local coordinate system OU to base coordinate system OB position information, that is, the ith observation position information;B Pi is the ith real position information of the UWB tag 2 in the base coordinate systemOB .
同时还可以根据以下公式求得UWB系统的最大误差Emax、算术平均值误差E和均方根误差ERMS:At the same time, the maximum error Emax , the arithmetic mean error E and the root mean square error ERMS of the UWB system can also be obtained according to the following formulas:
其中,n为位置信息的总数。Among them, n is the total number of location information.
上述实施例中,设定工业机器人3的运动路线为矩形和圆形,作为其他实施方式,运动路线也可以为三角形,梯形等其他形状的路线,同时关于姿态和速度的控制也可以根据人为进行设定,本发明对此不做限制。In the above embodiment, the motion route of the
关于转换矩阵的确定方式,上述实施例中,为了提高转换矩阵的精度,采用工业机器人3的不同静态点得到,当然作为其他实施方式,也可以采用动态线路得到转换矩阵。Regarding the way of determining the transformation matrix, in the above embodiment, in order to improve the accuracy of the transformation matrix, different static points of the
本发明提出的标定方法只需要将UWB标签2固定在工业机器人3末端,首先通过多个静态点得到基坐标系和UWB局部坐标系间的转换矩阵;其次控制机器人按事先运动规划的轨迹运动,进行UWB系统的动态精度标定,标定方法操作过程简单;工业机器人3的动态运动精度在1mm左右,而UWB系统的动态定位精度在分米级,利用工业机器人3进行UWB系统的标定精度较高;同时,由于工业机器人3的运动姿态、运动速度和运动路线可以人为自主规划,因此可以探究UWB标签2在不同姿态、不同速度、和不同运动路线的情况下的UWB系统的动态定位精度,标定结果更可靠、具有说服力。由于用户能够通过离线编程规划工业机器人的运动轨迹,使工业机器人按照事先规划好的程序自动运行,减少了人为因素对标定过程的干扰,同时降低了工作人员的劳动强度,提高了标定效率。The calibration method proposed by the present invention only needs to fix the UWB tag 2 on the end of the
本发明提出的标定方法不仅可以用于UWB系统的动态精度标定,而且可以用于蓝牙、超声波等其他室内导航定位系统的动态定位精度标定。The calibration method proposed by the invention can not only be used for the dynamic accuracy calibration of the UWB system, but also can be used for the dynamic positioning accuracy calibration of other indoor navigation and positioning systems such as bluetooth and ultrasonic.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN202011564384.1ACN113154989A (en) | 2020-12-25 | 2020-12-25 | Dynamic precision calibration method of UWB system | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN202011564384.1ACN113154989A (en) | 2020-12-25 | 2020-12-25 | Dynamic precision calibration method of UWB system | 
| Publication Number | Publication Date | 
|---|---|
| CN113154989Atrue CN113154989A (en) | 2021-07-23 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN202011564384.1APendingCN113154989A (en) | 2020-12-25 | 2020-12-25 | Dynamic precision calibration method of UWB system | 
| Country | Link | 
|---|---|
| CN (1) | CN113154989A (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN114885276A (en)* | 2022-04-14 | 2022-08-09 | 无锡艾森汇智科技有限公司 | Dynamic positioning method, device and system based on UWB technology | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN103033183A (en)* | 2012-12-14 | 2013-04-10 | 中国航空工业集团公司北京长城航空测控技术研究所 | Indoor precise positioning system and method for industrial robot | 
| WO2013054442A1 (en)* | 2011-10-14 | 2013-04-18 | 中国電力株式会社 | Position evaluating method and position evaluating system | 
| CN103228040A (en)* | 2012-01-31 | 2013-07-31 | 国际商业机器公司 | Indoor electronic map generating method and system, and indoor target positioning method and system | 
| CN104612682A (en)* | 2014-12-09 | 2015-05-13 | 中国矿业大学 | UWB-based precise calibration method for coal-cutter absolute position and apparatus | 
| CN104714209A (en)* | 2015-03-27 | 2015-06-17 | 中国矿业大学 | Dynamic positioning method and device based on UWB and laser ranging combination | 
| CN108174442A (en)* | 2017-12-26 | 2018-06-15 | 河海大学常州校区 | A sensor network positioning detection method for an underwater structure crack repair robot | 
| CN108474859A (en)* | 2017-08-15 | 2018-08-31 | 深圳市大疆创新科技有限公司 | positioning system and its building method | 
| CN109829952A (en)* | 2019-02-11 | 2019-05-31 | 广东工业大学 | A kind of outer ginseng scaling method, device and the relevant device of positioning system | 
| CN110243376A (en)* | 2019-06-28 | 2019-09-17 | 湖南三一快而居住宅工业有限公司 | A kind of indoor orientation method and indoor locating system | 
| CN110290463A (en)* | 2019-08-05 | 2019-09-27 | 杭州智鹍科技有限公司 | UWB base station coordinates automatic calibration method and system based on Optimum Theory | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| WO2013054442A1 (en)* | 2011-10-14 | 2013-04-18 | 中国電力株式会社 | Position evaluating method and position evaluating system | 
| CN103228040A (en)* | 2012-01-31 | 2013-07-31 | 国际商业机器公司 | Indoor electronic map generating method and system, and indoor target positioning method and system | 
| CN103033183A (en)* | 2012-12-14 | 2013-04-10 | 中国航空工业集团公司北京长城航空测控技术研究所 | Indoor precise positioning system and method for industrial robot | 
| CN104612682A (en)* | 2014-12-09 | 2015-05-13 | 中国矿业大学 | UWB-based precise calibration method for coal-cutter absolute position and apparatus | 
| CN104714209A (en)* | 2015-03-27 | 2015-06-17 | 中国矿业大学 | Dynamic positioning method and device based on UWB and laser ranging combination | 
| CN108474859A (en)* | 2017-08-15 | 2018-08-31 | 深圳市大疆创新科技有限公司 | positioning system and its building method | 
| CN108174442A (en)* | 2017-12-26 | 2018-06-15 | 河海大学常州校区 | A sensor network positioning detection method for an underwater structure crack repair robot | 
| CN109829952A (en)* | 2019-02-11 | 2019-05-31 | 广东工业大学 | A kind of outer ginseng scaling method, device and the relevant device of positioning system | 
| CN110243376A (en)* | 2019-06-28 | 2019-09-17 | 湖南三一快而居住宅工业有限公司 | A kind of indoor orientation method and indoor locating system | 
| CN110290463A (en)* | 2019-08-05 | 2019-09-27 | 杭州智鹍科技有限公司 | UWB base station coordinates automatic calibration method and system based on Optimum Theory | 
| Title | 
|---|
| 中国移动: "《2020室内定位白皮书》", 16 July 2020* | 
| 刘智伟等: "基于运动捕捉系统的UWB室内定位精度标定方法", 《测绘科学技术学报》* | 
| 杨洲等: "超宽带室内高精度定位技术研究", 《导航定位学报》* | 
| 隋心等: "基于UWB TDOA测距的井下动态定位方法", 《导航定位学报》* | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN114885276A (en)* | 2022-04-14 | 2022-08-09 | 无锡艾森汇智科技有限公司 | Dynamic positioning method, device and system based on UWB technology | 
| Publication | Publication Date | Title | 
|---|---|---|
| CN107543495A (en) | Spacecraft equipment autocollimation measuring system, alignment method and measuring method | |
| CN105072580B (en) | WIFI fingerprint map automated collection systems and method based on sweeping robot | |
| CN111491367B (en) | An indoor positioning method based on crowd-sensing and multi-fusion technology | |
| CN106443578B (en) | A kind of indoor positioning base station coordinates scaling method | |
| WO2019136714A1 (en) | 3d laser-based map building method and system | |
| CN109732600A (en) | A fully automatic sequential multi-station measurement system and measurement method | |
| CN102209386A (en) | Indoor wireless positioning method and device | |
| CN113900061A (en) | Navigation positioning system and method based on UWB wireless positioning and IMU fusion | |
| CN104154859A (en) | Multi-scale measurement field integrated detecting method used for airplane digital assembly | |
| CN110531391A (en) | Field navigation methods and systems based on dynamic carrier phase difference technology | |
| CN114739400A (en) | An indoor positioning method based on information fusion of UWB and IMU | |
| CN107291786A (en) | A kind of three-dimensional geographic information acquisition system | |
| CN114413894A (en) | Multi-sensor fusion robot positioning method | |
| CN103776442B (en) | The localization method of region wireless location and micro-inertial navigation combined system | |
| CN116736220A (en) | A UWB positioning system base station coordinate measurement method and system | |
| Yu et al. | Combining Zigbee and inertial sensors for quadrotor UAV indoor localization | |
| CN113587819A (en) | Three-laser-tracking-based large-scale space pose dynamic measurement method and measurement precision verification method | |
| CN105180940A (en) | Determination method of indoor target astronomical coordinates, based on wMPS | |
| CN204461441U (en) | A kind of parking garage Multi-Targets Tracking and Positioning System | |
| CN114740798B (en) | Method for constructing measuring field of numerical control equipment group cooperative production line | |
| CN113154989A (en) | Dynamic precision calibration method of UWB system | |
| CN109062139A (en) | A kind of robot linear axis location error compensation method based on data-driven | |
| CN105928512A (en) | Geomagnetic field-based indoor positioning method | |
| CN112556695A (en) | Indoor positioning and three-dimensional modeling method and system, electronic equipment and storage medium | |
| Ciężkowski et al. | Apparent beacon position estimation for accuracy improvement in lateration positioning system | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20210723 | |
| RJ01 | Rejection of invention patent application after publication |