Movatterモバイル変換


[0]ホーム

URL:


CN113154989A - Dynamic precision calibration method of UWB system - Google Patents

Dynamic precision calibration method of UWB system
Download PDF

Info

Publication number
CN113154989A
CN113154989ACN202011564384.1ACN202011564384ACN113154989ACN 113154989 ACN113154989 ACN 113154989ACN 202011564384 ACN202011564384 ACN 202011564384ACN 113154989 ACN113154989 ACN 113154989A
Authority
CN
China
Prior art keywords
uwb
industrial robot
position information
dynamic
tag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011564384.1A
Other languages
Chinese (zh)
Inventor
李广云
罗豪龙
王力
王安成
欧阳文
王鹏
李帅鑫
项学泳
李枭凯
高杨骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering UniversityfiledCriticalPLA Information Engineering University
Priority to CN202011564384.1ApriorityCriticalpatent/CN113154989A/en
Publication of CN113154989ApublicationCriticalpatent/CN113154989A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明涉及一种UWB系统的动态精度标定方法,属于精度标定技术领域。标定方法包括:将UWB标签固定在工业机器人的末端,测量得到UWB标签相对于工业机器人末端的距离;控制机器人按照预先规划好的轨迹运动,工业机器人记录UWB标签的运动轨迹,得到UWB标签的真实位置信息;同时通过UWB系统监测UWB标签,得到UWB标签的观测位置信息;将真实位置信息和观测位置信息进行统一;在统一坐标系下,比较真实位置信息和观测位置信息的差异;根据差异计算UWB系统的动态运动误差,完成UWB系统的动态精度标定。本发明利用工业机器人精度高、稳定性好、且能够三维运动特点,提高了UWB系统动态精度标定的准确性,并且本发明整体标定过程简单,可靠。

Figure 202011564384

The invention relates to a dynamic precision calibration method of a UWB system, and belongs to the technical field of precision calibration. The calibration method includes: fixing the UWB tag on the end of the industrial robot, and measuring the distance of the UWB tag relative to the end of the industrial robot; controlling the robot to move according to a pre-planned trajectory, and the industrial robot records the movement trajectory of the UWB tag to obtain the true UWB tag. At the same time, the UWB tag is monitored through the UWB system to obtain the observation position information of the UWB tag; the real position information and the observation position information are unified; under the unified coordinate system, the difference between the real position information and the observation position information is compared; according to the difference calculation The dynamic motion error of UWB system completes the dynamic accuracy calibration of UWB system. The invention utilizes the characteristics of high precision, good stability and three-dimensional motion of the industrial robot, which improves the accuracy of the dynamic precision calibration of the UWB system, and the overall calibration process of the invention is simple and reliable.

Figure 202011564384

Description

Translated fromChinese
一种UWB系统的动态精度标定方法A Dynamic Accuracy Calibration Method of UWB System

技术领域technical field

本发明涉及一种UWB系统的动态精度标定方法,属于精度标定技术领域。The invention relates to a dynamic precision calibration method of a UWB system, and belongs to the technical field of precision calibration.

背景技术Background technique

随着人们对室内环境下LBS(location based service)的需求愈加强烈,室内定位技术受到学者的广泛研究和关注。超声波、红外线、WIFI、蓝牙、RFID、如图1所示的UWB超宽带等多种室内定位技术的发展,使人们在商场购物、地下停车和展厅参观时能快速地进行自身定位和目的地导航。With the increasing demand for LBS (location based service) in indoor environment, indoor positioning technology has received extensive research and attention from scholars. The development of various indoor positioning technologies such as ultrasonic, infrared, WIFI, Bluetooth, RFID, and UWB ultra-wideband as shown in Figure 1 enables people to quickly locate themselves and navigate their destinations when shopping in shopping malls, underground parking and visiting exhibition halls .

其中,UWB(Ultra Wide Band)超宽带室内定位技术作为一种新兴的一种室内定位技术,具有穿透能力强、系统结构简单和定位精度高的优点,在生产车间、博物馆和展厅等场所应用广泛。研究UWB室内定位系统的动态精度标定方法对于和改善UWB的定位精度和拓展UWB技术的应用领域具有重要作用。Among them, UWB (Ultra Wide Band) ultra-wideband indoor positioning technology, as an emerging indoor positioning technology, has the advantages of strong penetration ability, simple system structure and high positioning accuracy, and is used in production workshops, museums and exhibition halls and other places. widely. Studying the dynamic accuracy calibration method of UWB indoor positioning system plays an important role in improving the positioning accuracy of UWB and expanding the application field of UWB technology.

UWB系统的动态精度标定难度较高,例如:期刊为《测绘科学技术学报》、期刊号为1673-6338(2017)02-0147-05的期刊文章公开了一种基于运动捕捉系统的UWB室内定位精度标定方法,该方法的实现是基于两个实验完成的:一是使用全站仪对运动捕捉系统进行精度验证,通过布尔莎七参数坐标转换模型对实验数据进行处理,表明了运动捕捉系统的精度满足要求,可以用于标定UWB室内定位系统的精度;二是通过运动捕捉系统来标定UWB室内定位系统的精度,以运动捕捉系统采集的数据为真值,将UWB室内定位系统采集的数据与运动捕捉系统采集的数据进行比较,完成了UWB系统的精度标定。The dynamic accuracy calibration of the UWB system is difficult. For example, the journal article is "Journal of Surveying and Mapping Science and Technology" and the journal number is 1673-6338 (2017) 02-0147-05. A UWB indoor positioning based on motion capture system is disclosed. Accuracy calibration method, the realization of this method is based on two experiments: one is to use the total station to verify the accuracy of the motion capture system, and to process the experimental data through the Bursa seven-parameter coordinate transformation model, which shows the accuracy of the motion capture system. The accuracy meets the requirements and can be used to calibrate the accuracy of the UWB indoor positioning system; the second is to calibrate the accuracy of the UWB indoor positioning system through the motion capture system, taking the data collected by the motion capture system as the true value, and comparing the data collected by the UWB indoor positioning system with The data collected by the motion capture system are compared, and the precision calibration of the UWB system is completed.

然而上述标定方法复杂、标定结果(尤其是Z轴)并不准确。However, the above calibration method is complicated, and the calibration results (especially the Z axis) are not accurate.

发明内容SUMMARY OF THE INVENTION

本申请的目的在于提供一种UWB系统的动态精度标定方法,用以解决现有标定方案标定复杂且不准确的问题。The purpose of the present application is to provide a dynamic accuracy calibration method of a UWB system to solve the problem of complex and inaccurate calibration in the existing calibration scheme.

为实现上述目的,本申请提出了一种UWB系统的动态精度标定方法的技术方案,包括以下步骤:In order to achieve the above purpose, the present application proposes a technical scheme of a dynamic accuracy calibration method of a UWB system, comprising the following steps:

1)将UWB标签固定在工业机器人的末端,测量得到UWB标签相对于工业机器人末端的距离;1) Fix the UWB tag on the end of the industrial robot, and measure the distance between the UWB tag and the end of the industrial robot;

2)控制工业机器人按照预先规划的轨迹运动;工业机器人记录UWB标签的运动轨迹,得到UWB标签的真实位置信息;同时通过UWB系统监测所述UWB标签,得到UWB标签的观测位置信息;2) Control the industrial robot to move according to the pre-planned trajectory; the industrial robot records the movement trajectory of the UWB tag to obtain the real position information of the UWB tag; at the same time, the UWB tag is monitored by the UWB system to obtain the observation position information of the UWB tag;

3)将上述UWB标签的真实位置信息和UWB标签的观测位置信息的坐标进行统一;3) Unify the coordinates of the real position information of the UWB tag and the observation position information of the UWB tag;

4)在统一坐标系下,比较UWB标签的真实位置信息和UWB标签的观测位置信息的差异;4) Under the unified coordinate system, compare the difference between the real position information of the UWB tag and the observed position information of the UWB tag;

5)根据所述差异计算UWB系统的动态运动误差,完成UWB系统的动态精度标定。5) Calculate the dynamic motion error of the UWB system according to the difference, and complete the dynamic accuracy calibration of the UWB system.

本发明的UWB系统的动态精度标定方法的技术方案的有益效果是:本发明利用工业机器人精度高、稳定性好、且根据用户能够自主规划其三维运动轨迹的特点,将UWB标签固定在工业机器人的末端,通过工具坐标系标定得到UWB标签相对于机器人法兰末端的位置;利用控制程序控制工业机器人运动,得到工业机器人坐标系下的UWB标签的真实位置信息,以及UWB坐标系下的UWB标签的观测位置信息,由于机器人和UWB系统的坐标系不统一,因此需要对坐标系进行统一,方可实现位置的比较。比较后得到UWB系统动态运动的误差,完成UWB系统的精度标定。本发明充分利用工业机器人的特点,可以使得UWB标签在三维空间中任意运动,提高了UWB系统动态精度标定的准确性,并且本发明整体标定过程简单,可靠。The beneficial effects of the technical solution of the dynamic accuracy calibration method of the UWB system of the present invention are: the present invention utilizes the characteristics of high precision and good stability of the industrial robot, and can independently plan its three-dimensional motion trajectory according to the user, to fix the UWB label on the industrial robot. The position of the UWB label relative to the end of the robot flange is obtained by calibrating the tool coordinate system; using the control program to control the motion of the industrial robot, the real position information of the UWB label in the industrial robot coordinate system and the UWB label in the UWB coordinate system are obtained. Since the coordinate systems of the robot and the UWB system are not unified, it is necessary to unify the coordinate systems to realize the position comparison. After the comparison, the error of the dynamic motion of the UWB system is obtained, and the precision calibration of the UWB system is completed. The invention makes full use of the characteristics of industrial robots, can make the UWB label move arbitrarily in three-dimensional space, improves the accuracy of dynamic precision calibration of the UWB system, and the overall calibration process of the invention is simple and reliable.

进一步的,所述步骤3)中通过转换矩阵进行坐标统一,所述转换矩阵通过控制工业机器人使UWB标签运动到不同静态位置,根据使UWB标签在工业机器人坐标系和UWB系统坐标系下的不同坐标,采用公共点转换的方法得到。Further, in the step 3), coordinate unification is carried out through a transformation matrix, and the transformation matrix makes the UWB label move to different static positions by controlling the industrial robot, according to the difference between the UWB label in the industrial robot coordinate system and the UWB system coordinate system. The coordinates are obtained by the method of public point conversion.

进一步的,所述UWB系统的动态运动误差为:Further, the dynamic motion error of the UWB system is:

ei=||ΔPi||2ei =||ΔPi ||2 ;

其中,ei为UWB系统的第i个位置信息的动态运动误差;ΔP为第i个真实位置信息和观测位置信息的差异。Among them, ei is the dynamic motion error of the ith position information of the UWB system; ΔP is the difference between the ith real position information and the observed position information.

进一步的,为了提高标定的准确性和可靠性,所述步骤2)中,控制工业机器人按照预先设定的不同的姿态、速度、路线进行运动。Further, in order to improve the accuracy and reliability of the calibration, in the step 2), the industrial robot is controlled to move according to different preset postures, speeds and routes.

进一步的,所述路线包括直线路线和曲线路线。Further, the route includes a straight route and a curved route.

附图说明Description of drawings

图1是本发明UWB系统的原理框图;Fig. 1 is the principle block diagram of UWB system of the present invention;

图2是本发明UWB系统的动态精度标定方法的流程图;Fig. 2 is the flow chart of the dynamic precision calibration method of UWB system of the present invention;

图3是本发明动态标定系统的示意图;Fig. 3 is the schematic diagram of the dynamic calibration system of the present invention;

图中:1为UWB基站、2为UWB标签、3为工业机器人。In the figure: 1 is a UWB base station, 2 is a UWB tag, and 3 is an industrial robot.

具体实施方式Detailed ways

UWB系统的动态精度标定方法实施例:Example of dynamic accuracy calibration method of UWB system:

UWB系统的动态精度标定方法的主要构思在于,将工业机器人作为运动载体和高精度测量系统,把UWB标签固定在工业机器人的末端,驱动UWB标签以不同姿态、不同速度、以及不同路线进行运动;进而将工业机器人坐标系下的工业机器人记录的UWB标签的运动数据作为真实值,UWB系统坐标系下采集的UWB标签运动数据为观测值,将两个坐标系统一到一个坐标系之后,将观测值和真实值作比较,完成UWB系统的动态精度标定。The main idea of the dynamic accuracy calibration method of the UWB system is to use the industrial robot as a motion carrier and a high-precision measurement system, fix the UWB tag on the end of the industrial robot, and drive the UWB tag to move with different attitudes, different speeds, and different routes; Then, the motion data of the UWB tag recorded by the industrial robot in the industrial robot coordinate system is taken as the real value, and the UWB tag motion data collected in the UWB system coordinate system is the observation value. The value is compared with the real value to complete the dynamic accuracy calibration of the UWB system.

具体的,UWB系统的动态精度标定方法如图2所示,包括以下步骤:Specifically, the dynamic accuracy calibration method of the UWB system is shown in Figure 2, including the following steps:

1)搭建如图3所示的动态标定系统。1) Build a dynamic calibration system as shown in Figure 3.

动态标定系统包括工业机器人3、UWB标签2、若干个UWB基站1(不少于3个)以及PC端。The dynamic calibration system includes anindustrial robot 3, a UWB tag 2, several UWB base stations 1 (not less than 3) and a PC terminal.

将UWB基站1架设在工业机器人3四周,UWB标签2固定在工业机器人3的末端,UWB标签2与UWB基站1尽可能保持通视以减少NLOS(non-line of sight)误差对UWB系统位置解算的影响;同时工业机器人3、以及各UWB基站1均与PC端连接,PC端作为工业机器人和UWB系统数据输出的接收端,同时对所采集的数据进行误差分析。The UWB base station 1 is erected around theindustrial robot 3, the UWB tag 2 is fixed at the end of theindustrial robot 3, and the UWB tag 2 and the UWB base station 1 are kept in sight as much as possible to reduce the NLOS (non-line of sight) error. At the same time, theindustrial robot 3 and each UWB base station 1 are connected to the PC terminal, and the PC terminal is used as the receiving terminal for the data output of the industrial robot and the UWB system, and the error analysis is performed on the collected data at the same time.

该动态标定系统包括两个坐标系:UWB系统坐标系,具体为根据基站位置分布所建立的某个UWB基站1的UWB局部坐标系OU;工业机器人3坐标系,具体为工业机器人3底部建立起的基坐标系OB,并且局部的大地坐标系OW默认与基坐标系OB重合。The dynamic calibration system includes two coordinate systems: the UWB system coordinate system, specifically the UWB local coordinate system OU of a certain UWB base station 1 established according to the location distribution of the base station; theindustrial robot 3 coordinate system, specifically the bottom of theindustrial robot 3 established The base coordinate system OB from the starting point, and the local geodetic coordinate system OW coincides with the base coordinate system OB by default.

2)将UWB标签2固定到机器人末端,测量UWB标签2相对于工业机器人3法兰末端的距离,完成工具坐标系标定,使工业机器人能够实时获取UWB标签2的位置。2) Fix the UWB tag 2 to the end of the robot, measure the distance of the UWB tag 2 relative to the flange end of theindustrial robot 3, and complete the calibration of the tool coordinate system, so that the industrial robot can obtain the position of the UWB tag 2 in real time.

UWB标签2固定到机器人末端后,UWB标签2即为工业机器人所安装的工具,工具坐标系的原点即为UWB标签发送数据的天线端口,工具坐标系标定的目的是为了获取天线端口相对于工业机器人法兰末端坐标系的位置,以便工业机器人能够实时获取UWB标签2在工业机器人坐标系下的位置。标定方法可以通过游标卡尺等精密仪器测量得到工业机器人对于法兰末端坐标系的位置,也可以通过四点法、对尖法等方法实现工具坐标系标定。After the UWB tag 2 is fixed to the end of the robot, the UWB tag 2 is the tool installed by the industrial robot. The origin of the tool coordinate system is the antenna port of the data sent by the UWB tag. The purpose of the tool coordinate system calibration is to obtain the antenna port relative to the industrial robot. The position of the coordinate system of the end of the robot flange, so that the industrial robot can obtain the position of the UWB tag 2 in the coordinate system of the industrial robot in real time. The calibration method can be measured by a vernier caliper and other precision instruments to obtain the position of the industrial robot on the coordinate system of the end of the flange, or the tool coordinate system can be calibrated by methods such as the four-point method and the point-to-point method.

3)通过离线编程规划工业机器人3的运动状态(包括控制工业机器人的速度、姿态和运动轨迹等参数)。控制工业机器人3运动,分别得到UWB标签2在UWB局部坐标系OU和基坐标系OB下的位置信息。3) Planning the motion state of theindustrial robot 3 through offline programming (including controlling parameters such as speed, attitude, and motion trajectory of the industrial robot). Control the movement of theindustrial robot 3 to obtain the position information of the UWB tag 2 in the UWB local coordinate systemOU and the base coordinate systemOB respectively.

所编写的程序包括工业机器人3以不同姿态、不同路线和不同速度运动的程序,利用控制变量法控制工业机器人3每次改变一个变量因素,使固定在工业机器人3末端的标签分别以不同姿态、不同运动路线和不同速度运动时的UWB系统动态定位精度。The programs written include the programs in which theindustrial robot 3 moves with different attitudes, different routes and different speeds. The control variable method is used to control theindustrial robot 3 to change one variable factor at a time, so that the labels fixed at the end of theindustrial robot 3 have different attitudes, The dynamic positioning accuracy of UWB system in different motion routes and different speeds.

变量因素包括姿态变量、速度变量以及路线变量。Variable factors include attitude variables, speed variables, and route variables.

其中,姿态变量:UWB标签2固定在工业机器人3末端,UWB标签2的运动姿态会随着工业机器人3末端的姿态变化一同发生变化。由于UWB标签2在不同姿态下接收的基站信息会发生变化,从而对动态定结果产生影响。因此,为探究标签运动姿态对UWB系统定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3以多种不同的姿态运动相同的路线,对比不同姿态下UWB系统的动态定位精度。Among them, the attitude variable: the UWB tag 2 is fixed at the end of theindustrial robot 3, and the motion attitude of the UWB tag 2 will change with the attitude change of the end of theindustrial robot 3. Since the base station information received by the UWB tag 2 under different attitudes will change, it will affect the dynamic determination result. Therefore, in order to explore the influence of the tag motion attitude on the positioning accuracy of the UWB system, when other variables remain unchanged, theindustrial robot 3 is controlled to move the same route in a variety of different attitudes, and the dynamic positioning accuracy of the UWB system under different attitudes is compared. .

速度变量:速度对UWB系统的动态定位精度影响往往较大。为探究标签运动速度对UWB系统定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3以不同的速度运动相同的路线,对比不同速度下UWB系统的动态定位精度。Velocity variable: Velocity often has a greater impact on the dynamic positioning accuracy of UWB systems. In order to explore the influence of the label movement speed on the positioning accuracy of the UWB system, when other variables remain unchanged, theindustrial robot 3 is controlled to move the same route at different speeds, and the dynamic positioning accuracy of the UWB system at different speeds is compared.

路线变量:UWB标签2进行直线运动和曲线运动时的动态运动精度往往是不同的。为探究UWB标签2路线对定位精度的影响,在其他变量保持不变的情况下,控制工业机器人3使UWB标签2在空间分别运动一个长方形运动轨迹(直线)和一个圆形运动轨迹(曲线),对比不同路线下UWB系统的动态运动精度。同时,为减少其他因素对UWB定位经过的影响,圆形的圆心与长方形的几何中心重合,圆形的周长应和长方形的周长因保持相同,并且长方形路线和圆形路线应位于同一个空间平面上。Route variables: The dynamic motion accuracy of UWB tags 2 is often different when performing linear and curved motions. In order to explore the influence of the UWB tag 2 route on the positioning accuracy, when other variables remain unchanged, theindustrial robot 3 is controlled to make the UWB tag 2 move a rectangular motion trajectory (line) and a circular motion trajectory (curve) in space respectively. , to compare the dynamic motion accuracy of the UWB system under different routes. At the same time, in order to reduce the influence of other factors on the positioning of UWB, the center of the circle coincides with the geometric center of the rectangle, the perimeter of the circle should be the same as the perimeter of the rectangle, and the rectangle route and the circle route should be located in the same space plane superior.

工业机器人3的优点在于用户可以离线编程自主规划工业机器人3运动轨迹、运动姿态、运动速度等参数,这对于控制标签的运动变量进行动态精度标定实验非常方便。根据步骤2)中编写程序使工业机器人3工具末端(即UWB标签2)在空间在不同的速度、姿态和路线的条件下运动。The advantage of theindustrial robot 3 is that the user can independently program the motion trajectory, motion posture, motion speed and other parameters of theindustrial robot 3 offline, which is very convenient for the dynamic accuracy calibration experiment of the motion variables of the control label. According to the program written in step 2), the tool end of the industrial robot 3 (that is, the UWB tag 2) moves in space under the conditions of different speeds, attitudes and routes.

4)以基坐标系OB下的位置信息为真实位置信息,UWB局部坐标系OU下的位置信息为观测位置信息,将UWB局部坐标系OU下的位置信息转换到基坐标系OB下,得到UWB系统的动态运动误差,完成UWB系统的动态精度标定。4) Take the position information under the base coordinate system OB as the real position information, and the position information under the UWB local coordinate system OU as the observation position information, and convert the position information under the UWB local coordinate system OU to the base coordinate system OB Then, the dynamic motion error of the UWB system is obtained, and the dynamic accuracy calibration of the UWB system is completed.

本步骤中,通过socket通信将UWB标签2的位置和姿态实时输出给PC,根据UWB系统的采样数据解算得到UWB标签2在UWB局部坐标系OU下的运动位置。为了方便对比工业机器人3和UWB系统的采样数据,使工业机器人3的输出频率和UWB系统的采样频率保持一致,如采样频率统一设置为10HZ。为了解决两套坐标系的采样点匹配问题,控制工业机器人3每次运动前在起始点位置停止数秒,以便于两套系统的起始采样点匹配。In this step, the position and attitude of the UWB tag 2 are output to the PC in real time through socket communication, and the motion position of the UWB tag 2 in the UWB local coordinate systemOU is obtained by calculating the sampling data of the UWB system. In order to facilitate the comparison of the sampling data of theindustrial robot 3 and the UWB system, the output frequency of theindustrial robot 3 and the sampling frequency of the UWB system are kept consistent, for example, the sampling frequency is uniformly set to 10HZ. In order to solve the problem of matching the sampling points of the two sets of coordinate systems, theindustrial robot 3 is controlled to stop at the starting point for several seconds before each movement, so as to match the starting sampling points of the two sets of systems.

通过公共点转换的方法将UWB局部坐标系OU下的运动数据转换到基坐标系OB下,转换矩阵的获取过程如下:The motion data in the UWB local coordinate systemOU is converted to the base coordinate system OB by the method of common point conversion.The acquisition process of the conversion matrix is as follows:

控制工业机器人3依次移动到空间任意30个位置处,每个位置停留的时间约为1分钟。通过对30个静态点采样得到UWB标签2在两个坐标系下30个位置处的静态位置数据。Control theindustrial robot 3 to move to any 30 positions in the space in sequence, and each position stays for about 1 minute. The static position data of UWB tag 2 at 30 positions in two coordinate systems are obtained by sampling 30 static points.

对静态采样点取均值得到UWB标签2在UWB局部坐标系OU下第i个静态点的坐标UPi0The average value of the static sampling points is obtained to obtain the coordinateU Pi0 of the i-th static point of the UWB label 2 in the UWB local coordinate system OU :

UPi0=(xui,yui,zui)T(i=1…30);U Pi0 =(xui , yui , zui )T (i=1...30);

UWB标签2在基坐标系OB下记录的第i个静态点的坐标BPi0The coordinateB Pi0 of the i-th static point recorded by UWB tag 2 in the base coordinate systemOB :

BPi0=(xbi,ybi,zbi)TB Pi0 =(xbi , ybi , zbi )T .

根据坐标系转换公式建立如下方程组:According to the coordinate system conversion formula, the following equations are established:

Figure BDA0002861449140000051
Figure BDA0002861449140000051

令:make:

Figure BDA0002861449140000052
Figure BDA0002861449140000052

得到:A·X=B,根据最小二乘迭代得到两套坐标系的转换矩阵X=(ATA)-1ATB。Obtain: A·X=B, and obtain the transformation matrix X=(AT A)-1 AT B of the two sets of coordinate systems according to the least squares iteration.

基于所得到的转换矩阵,将步骤3)中得到的UWB标签2在UWB局部坐标系OU下的动态位置信息转换到基坐标系OB下:BPi'=UPi·X;Based on the obtained conversion matrix, the dynamic position information of the UWB tag 2 obtained in step 3) under the UWB local coordinate systemOU is converted to the base coordinate systemOB: BPi '=U Pi ·X;

进而得到第i个真实位置信息和观测位置信息的差异ΔPi:ΔPiBPi'-BPi;UWB系统的第i个位置信息的动态运动误差ei为:ei=||ΔPi||2Then, the difference ΔPi between the i-th real position information and the observed position information is obtained: ΔPi =B Pi '-B Pi ; the dynamic motion error ei of the i-th position information of the UWB system is: ei =|| ΔPi ||2 ;

其中,UPi为UWB标签2在UWB局部坐标系OU下的第i个位置信息;BPi'为UWB标签2从UWB局部坐标系OU转换到基坐标系OB下的第i个位置信息,也即第i个观测位置信息;BPi为UWB标签2在基坐标系OB下的第i个真实位置信息。Among them,U Pi is the i-th position information of UWB tag 2 under UWB local coordinate system OU ;B Pi ' is the i-th position information of UWB tag 2 converted from UWB local coordinate system OU to base coordinate system OB position information, that is, the ith observation position information;B Pi is the ith real position information of the UWB tag 2 in the base coordinate systemOB .

同时还可以根据以下公式求得UWB系统的最大误差Emax、算术平均值误差E和均方根误差ERMSAt the same time, the maximum error Emax , the arithmetic mean error E and the root mean square error ERMS of the UWB system can also be obtained according to the following formulas:

Figure BDA0002861449140000053
Figure BDA0002861449140000053

Figure BDA0002861449140000054
Figure BDA0002861449140000054

Figure BDA0002861449140000061
Figure BDA0002861449140000061

其中,n为位置信息的总数。Among them, n is the total number of location information.

上述实施例中,设定工业机器人3的运动路线为矩形和圆形,作为其他实施方式,运动路线也可以为三角形,梯形等其他形状的路线,同时关于姿态和速度的控制也可以根据人为进行设定,本发明对此不做限制。In the above embodiment, the motion route of theindustrial robot 3 is set as a rectangle and a circle. As other implementations, the motion route can also be a route of other shapes such as triangles and trapezoids. At the same time, the control of attitude and speed can also be performed manually. It is assumed that the present invention does not limit this.

关于转换矩阵的确定方式,上述实施例中,为了提高转换矩阵的精度,采用工业机器人3的不同静态点得到,当然作为其他实施方式,也可以采用动态线路得到转换矩阵。Regarding the way of determining the transformation matrix, in the above embodiment, in order to improve the accuracy of the transformation matrix, different static points of theindustrial robot 3 are used to obtain the transformation matrix. Of course, as other implementations, the transformation matrix can also be obtained by using a dynamic circuit.

本发明提出的标定方法只需要将UWB标签2固定在工业机器人3末端,首先通过多个静态点得到基坐标系和UWB局部坐标系间的转换矩阵;其次控制机器人按事先运动规划的轨迹运动,进行UWB系统的动态精度标定,标定方法操作过程简单;工业机器人3的动态运动精度在1mm左右,而UWB系统的动态定位精度在分米级,利用工业机器人3进行UWB系统的标定精度较高;同时,由于工业机器人3的运动姿态、运动速度和运动路线可以人为自主规划,因此可以探究UWB标签2在不同姿态、不同速度、和不同运动路线的情况下的UWB系统的动态定位精度,标定结果更可靠、具有说服力。由于用户能够通过离线编程规划工业机器人的运动轨迹,使工业机器人按照事先规划好的程序自动运行,减少了人为因素对标定过程的干扰,同时降低了工作人员的劳动强度,提高了标定效率。The calibration method proposed by the present invention only needs to fix the UWB tag 2 on the end of theindustrial robot 3, firstly, the transformation matrix between the base coordinate system and the UWB local coordinate system is obtained through a plurality of static points; secondly, the robot is controlled to move according to the trajectory planned in advance, To calibrate the dynamic accuracy of the UWB system, the calibration method has a simple operation process; the dynamic motion accuracy of theindustrial robot 3 is about 1mm, while the dynamic positioning accuracy of the UWB system is at the decimeter level, and theindustrial robot 3 is used to calibrate the UWB system. The accuracy of the system is high; At the same time, since the motion posture, motion speed and motion route of theindustrial robot 3 can be planned autonomously, the dynamic positioning accuracy of the UWB system of the UWB tag 2 under different postures, different speeds, and different motion routes can be explored, and the calibration results More reliable and persuasive. Since the user can plan the motion trajectory of the industrial robot through offline programming, the industrial robot can run automatically according to the pre-planned program, which reduces the interference of human factors on the calibration process, reduces the labor intensity of the staff, and improves the calibration efficiency.

本发明提出的标定方法不仅可以用于UWB系统的动态精度标定,而且可以用于蓝牙、超声波等其他室内导航定位系统的动态定位精度标定。The calibration method proposed by the invention can not only be used for the dynamic accuracy calibration of the UWB system, but also can be used for the dynamic positioning accuracy calibration of other indoor navigation and positioning systems such as bluetooth and ultrasonic.

Claims (5)

1. A dynamic precision calibration method of a UWB system is characterized by comprising the following steps:
1) fixing the UWB tag at the tail end of the industrial robot, and measuring to obtain the distance of the UWB tag relative to the tail end of the industrial robot;
2) controlling the industrial robot to move according to a pre-planned track; the industrial robot records the motion track of the UWB tag to obtain the real position information of the UWB tag; simultaneously monitoring the UWB tag through a UWB system to obtain observation position information of the UWB tag;
3) unifying the real position information of the UWB tag and the coordinates of the observation position information of the UWB tag;
4) comparing the difference between the real position information of the UWB tag and the observation position information of the UWB tag under a unified coordinate system;
5) and calculating the dynamic motion error of the UWB system according to the difference to finish the dynamic precision calibration of the UWB system.
2. The dynamic precision calibration method of the UWB system according to claim 1, wherein the coordinates are unified in step 3) by a transformation matrix, the transformation matrix is obtained by controlling the industrial robot to move the UWB tag to different static positions and using a common point transformation method according to different coordinates of the UWB tag in the industrial robot coordinate system and the UWB system coordinate system.
3. The dynamic precision calibration method of the UWB system according to claim 1, wherein the dynamic motion error of the UWB system is:
ei=||ΔPi||2
wherein e isiA dynamic motion error for the ith position information of the UWB system; Δ P is a difference between the ith real position information and the observed position information.
4. The dynamic precision calibration method of the UWB system according to claim 1, wherein in the step 2), the industrial robot is controlled to move according to the preset posture, speed and route.
5. A dynamic accuracy calibration method for an UWB system according to claim 4 wherein the route comprises a straight route and a curved route.
CN202011564384.1A2020-12-252020-12-25Dynamic precision calibration method of UWB systemPendingCN113154989A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202011564384.1ACN113154989A (en)2020-12-252020-12-25Dynamic precision calibration method of UWB system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202011564384.1ACN113154989A (en)2020-12-252020-12-25Dynamic precision calibration method of UWB system

Publications (1)

Publication NumberPublication Date
CN113154989Atrue CN113154989A (en)2021-07-23

Family

ID=76878046

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202011564384.1APendingCN113154989A (en)2020-12-252020-12-25Dynamic precision calibration method of UWB system

Country Status (1)

CountryLink
CN (1)CN113154989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN114885276A (en)*2022-04-142022-08-09无锡艾森汇智科技有限公司Dynamic positioning method, device and system based on UWB technology

Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103033183A (en)*2012-12-142013-04-10中国航空工业集团公司北京长城航空测控技术研究所Indoor precise positioning system and method for industrial robot
WO2013054442A1 (en)*2011-10-142013-04-18中国電力株式会社Position evaluating method and position evaluating system
CN103228040A (en)*2012-01-312013-07-31国际商业机器公司Indoor electronic map generating method and system, and indoor target positioning method and system
CN104612682A (en)*2014-12-092015-05-13中国矿业大学UWB-based precise calibration method for coal-cutter absolute position and apparatus
CN104714209A (en)*2015-03-272015-06-17中国矿业大学Dynamic positioning method and device based on UWB and laser ranging combination
CN108174442A (en)*2017-12-262018-06-15河海大学常州校区 A sensor network positioning detection method for an underwater structure crack repair robot
CN108474859A (en)*2017-08-152018-08-31深圳市大疆创新科技有限公司positioning system and its building method
CN109829952A (en)*2019-02-112019-05-31广东工业大学A kind of outer ginseng scaling method, device and the relevant device of positioning system
CN110243376A (en)*2019-06-282019-09-17湖南三一快而居住宅工业有限公司A kind of indoor orientation method and indoor locating system
CN110290463A (en)*2019-08-052019-09-27杭州智鹍科技有限公司UWB base station coordinates automatic calibration method and system based on Optimum Theory

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2013054442A1 (en)*2011-10-142013-04-18中国電力株式会社Position evaluating method and position evaluating system
CN103228040A (en)*2012-01-312013-07-31国际商业机器公司Indoor electronic map generating method and system, and indoor target positioning method and system
CN103033183A (en)*2012-12-142013-04-10中国航空工业集团公司北京长城航空测控技术研究所Indoor precise positioning system and method for industrial robot
CN104612682A (en)*2014-12-092015-05-13中国矿业大学UWB-based precise calibration method for coal-cutter absolute position and apparatus
CN104714209A (en)*2015-03-272015-06-17中国矿业大学Dynamic positioning method and device based on UWB and laser ranging combination
CN108474859A (en)*2017-08-152018-08-31深圳市大疆创新科技有限公司positioning system and its building method
CN108174442A (en)*2017-12-262018-06-15河海大学常州校区 A sensor network positioning detection method for an underwater structure crack repair robot
CN109829952A (en)*2019-02-112019-05-31广东工业大学A kind of outer ginseng scaling method, device and the relevant device of positioning system
CN110243376A (en)*2019-06-282019-09-17湖南三一快而居住宅工业有限公司A kind of indoor orientation method and indoor locating system
CN110290463A (en)*2019-08-052019-09-27杭州智鹍科技有限公司UWB base station coordinates automatic calibration method and system based on Optimum Theory

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
中国移动: "《2020室内定位白皮书》", 16 July 2020*
刘智伟等: "基于运动捕捉系统的UWB室内定位精度标定方法", 《测绘科学技术学报》*
杨洲等: "超宽带室内高精度定位技术研究", 《导航定位学报》*
隋心等: "基于UWB TDOA测距的井下动态定位方法", 《导航定位学报》*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN114885276A (en)*2022-04-142022-08-09无锡艾森汇智科技有限公司Dynamic positioning method, device and system based on UWB technology

Similar Documents

PublicationPublication DateTitle
CN107543495A (en)Spacecraft equipment autocollimation measuring system, alignment method and measuring method
CN105072580B (en)WIFI fingerprint map automated collection systems and method based on sweeping robot
CN111491367B (en) An indoor positioning method based on crowd-sensing and multi-fusion technology
CN106443578B (en)A kind of indoor positioning base station coordinates scaling method
WO2019136714A1 (en)3d laser-based map building method and system
CN109732600A (en) A fully automatic sequential multi-station measurement system and measurement method
CN102209386A (en)Indoor wireless positioning method and device
CN113900061A (en)Navigation positioning system and method based on UWB wireless positioning and IMU fusion
CN104154859A (en)Multi-scale measurement field integrated detecting method used for airplane digital assembly
CN110531391A (en)Field navigation methods and systems based on dynamic carrier phase difference technology
CN114739400A (en) An indoor positioning method based on information fusion of UWB and IMU
CN107291786A (en)A kind of three-dimensional geographic information acquisition system
CN114413894A (en)Multi-sensor fusion robot positioning method
CN103776442B (en)The localization method of region wireless location and micro-inertial navigation combined system
CN116736220A (en) A UWB positioning system base station coordinate measurement method and system
Yu et al.Combining Zigbee and inertial sensors for quadrotor UAV indoor localization
CN113587819A (en)Three-laser-tracking-based large-scale space pose dynamic measurement method and measurement precision verification method
CN105180940A (en)Determination method of indoor target astronomical coordinates, based on wMPS
CN204461441U (en)A kind of parking garage Multi-Targets Tracking and Positioning System
CN114740798B (en)Method for constructing measuring field of numerical control equipment group cooperative production line
CN113154989A (en)Dynamic precision calibration method of UWB system
CN109062139A (en)A kind of robot linear axis location error compensation method based on data-driven
CN105928512A (en)Geomagnetic field-based indoor positioning method
CN112556695A (en)Indoor positioning and three-dimensional modeling method and system, electronic equipment and storage medium
Ciężkowski et al.Apparent beacon position estimation for accuracy improvement in lateration positioning system

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication

Application publication date:20210723

RJ01Rejection of invention patent application after publication

[8]ページ先頭

©2009-2025 Movatter.jp