Movatterモバイル変換


[0]ホーム

URL:


CN113130526A - High-sensitivity image sensor - Google Patents

High-sensitivity image sensor
Download PDF

Info

Publication number
CN113130526A
CN113130526ACN202110478782.XACN202110478782ACN113130526ACN 113130526 ACN113130526 ACN 113130526ACN 202110478782 ACN202110478782 ACN 202110478782ACN 113130526 ACN113130526 ACN 113130526A
Authority
CN
China
Prior art keywords
filter
area
sub
region
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110478782.XA
Other languages
Chinese (zh)
Other versions
CN113130526B (en
Inventor
陈兵
赵泽宇
邹兴文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xintu Photonics Co ltd
Original Assignee
Xintu Photonics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xintu Photonics Co ltdfiledCriticalXintu Photonics Co ltd
Priority to CN202110478782.XApriorityCriticalpatent/CN113130526B/en
Publication of CN113130526ApublicationCriticalpatent/CN113130526A/en
Application grantedgrantedCritical
Publication of CN113130526BpublicationCriticalpatent/CN113130526B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

本发明提供了一种高灵敏度的图像传感器,包括第一区域、第二区域和第三区域;所述第一区域内设有呈阵列分布的彩色滤光元件和白色滤光单元,第一区域内彩色滤光元件所包括的滤光单元的个数和第一区域内白色滤光单元的个数之比大于或者等于3:1;所述第二区域和第三区域内分别设有彩色滤光元件和白色滤光单元,第二区域内彩色滤光元件所包括的滤光单元的个数和第二区域内白色滤光单元的个数之比小于或者等于1:3;第三区域内白色滤光单元的个数和第三区域内彩色滤光元件所包括的滤光单元的个数之比大于85:15;本发明既能提高图像传感器在弱光下的灵敏度,又能保证图像传感器获取得到的图像具有较好的色彩。

Figure 202110478782

The invention provides a high-sensitivity image sensor, comprising a first area, a second area and a third area; the first area is provided with color filter elements and white filter units distributed in an array, and the first area The ratio between the number of filter units included in the inner color filter element and the number of white filter units in the first area is greater than or equal to 3:1; the second area and the third area are respectively provided with color filters. Optical element and white filter unit, the ratio of the number of filter units included in the color filter element in the second area to the number of white filter units in the second area is less than or equal to 1:3; in the third area The ratio between the number of white filter units and the number of filter units included in the color filter element in the third area is greater than 85:15; the invention can not only improve the sensitivity of the image sensor under weak light, but also ensure the image The image obtained by the sensor has better color.

Figure 202110478782

Description

High-sensitivity image sensor
The application is a divisional application of a parent application named 'an image sensor' with the application number of 201910230735.6 and the application date of 2019, 3 and 26.
Technical Field
The invention relates to the field of sensors, in particular to a high-sensitivity image sensor.
Background
With the rapid development of the fields of machine vision and the like, the requirements on the performance of the image sensor are higher and higher, so that the current computer-based vision system is greatly limited in practical application, the realized functions of the vision system are far less than the performance of human eyes, and the fields of industrial automation, advanced manufacturing systems, intelligent robots, aerospace industry and the like all urgently need higher-performance image sensors.
However, the most commonly used sensors at present are mainly classified into black-and-white image sensors and color image sensors, wherein the black-and-white image sensors can only distinguish black and white, but cannot distinguish color information, and have great limitation in practical application. While the most common color image sensor is a sensor known as a Bayer array, arranged in an RGGB fashion, as shown in fig. 1. Specifically, it consists of 1: 2: the sensor is composed of four pixel points with the proportion of 1, a red (R) filtering unit, two green (G) filtering units and a blue (B) filtering unit are arranged, and the green (G) filtering unit is twice as much as the red and the blue in the sensor because human vision is more sensitive to the green. In the daytime, a color image can be acquired by using a Bayer array sensor; however, at night or in low light conditions, the sensitivity response of the sensor may decrease as the signals available for red, green and blue may decrease, and a color image may not be acquired when the signal falls below the sensitivity threshold of the sensor.
In order to improve the sensitivity of the color sensor, another color sensor has been proposed in which a green (G) filter unit among four pixel filter units is replaced with a white (W) filter unit to allow all visible light to pass through, and the filter units are arranged in an RGWB manner as shown in fig. 2. The color sensor of the RGWB arrangement has enhanced sensitivity to weak light due to the presence of the white (W) filter unit. However, the lack of a green (G) filter unit results in a captured object that has less color expression (particularly green) than a Bayer matrix sensor arranged in the conventional RGGB manner. Therefore, there is a contradiction between obtaining high signal intensity and good color rendering.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the invention provides a high-sensitivity image sensor, which can improve the sensitivity of the image sensor under weak light and ensure that an image acquired by the image sensor has good color.
In order to solve the above technical problem, the present invention provides a high-sensitivity image sensor including a square first region, a square second region, and a square third region; the outer edge of the first area is connected with the inner edge of the second area, and the outer edge of the second area is connected with the inner edge of the third area;
the color filter elements and the white filter units are arranged in the first area in an array mode, the ratio of the number of the filter units included in the color filter elements in the first area to the number of the white filter units in the first area is greater than or equal to 3: 1;
the second area and the third area are respectively provided with a color filter element and a white filter unit, and the ratio of the number of the filter units included in the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3; the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15;
the color filter element comprises a red filter unit, a green filter unit and a blue filter unit.
The invention has the beneficial effects that:
the invention provides a high-sensitivity image sensor, wherein a color filter element comprises a red filter unit, a green filter unit, a blue filter unit and a white filter unit, the color filter units are distributed more in the central area (first area) of the image sensor, the white filter units are distributed relatively less, and the ratio of the red filter unit to the green filter unit to the blue filter unit is more than 3: 1, the perception ratio of the middle area close to the central recess of human eyes to (strong light and color) and (weak light and black and white), and the second area and the third area outside the central area are respectively arranged to make the number of the white filter units more than that of the color filter units, and the ratio of the number of the filter units included by the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3, the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15, the perception ratio of the area outside the middle area of the human eye central recess and the edge area of the central recess to (strong light and color) and (weak light and black and white) is close, so that the invention can effectively realize that a high-resolution and high-sensitivity color image close to that seen by human eyes can be obtained under the condition of large light intensity or small light intensity.
Drawings
FIG. 1 is a schematic diagram of an RGGB color filter arrangement in the prior art;
FIG. 2 is a schematic diagram of an RGWB color filter arrangement in the prior art;
FIG. 3 is a schematic diagram of the distribution of cones and rods in the human eye visual system;
FIG. 4 is a waveform of the relative sensitivity of cones and rods to different wavelengths in human vision;
fig. 5 is a schematic diagram illustrating an arrangement of color filter elements and a white filter unit in an image sensor according to a second embodiment of the present invention;
fig. 6 is a schematic diagram illustrating an arrangement of color filter elements and a white filter unit in an image sensor according to a third embodiment of the present invention;
FIG. 7 is a diagram illustrating an arrangement of color filter elements and a white filter unit in an image sensor according to a fourth embodiment of the present invention;
fig. 8 is a schematic distribution diagram of a red filter unit, a green filter unit, a blue filter unit and a white filter unit on the outer periphery of the image sensor according to the present invention.
Detailed Description
In order to explain technical contents, objects and effects of the present invention in detail, the following detailed description is given with reference to the accompanying drawings in conjunction with the embodiments.
The most key concept of the invention is as follows: the first area is internally provided with color filter elements and white filter units which are distributed in an array mode, and the number ratio of the color filter elements to the white filter units is greater than or equal to 3: 1; the second area and the third area are respectively provided with a color filter element and a white filter unit, and the ratio of the number of the filter units included in the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3; the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15.
referring to fig. 1 to 7, the present invention provides a high-sensitivity image sensor, which includes a square first region, a square second region and a square third region; the outer edge of the first area is connected with the inner edge of the second area, and the outer edge of the second area is connected with the inner edge of the third area;
the color filter elements and the white filter units are arranged in the first area in an array mode, the ratio of the number of the filter units included in the color filter elements in the first area to the number of the white filter units in the first area is greater than or equal to 3: 1;
the second area and the third area are respectively provided with a color filter element and a white filter unit, and the ratio of the number of the filter units included in the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3; the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15;
the color filter element comprises a red filter unit, a green filter unit and a blue filter unit.
In a human eye vision system evolved for a long time, the problems existing in the background can be well solved by means of special human eye photosensitive structure distribution, and meanwhile, development of a higher-performance image sensor aiming at different fields also has important significance, such as development of an intelligent robot vision system and the like. In a typical human eye structure, there are two types of photoreceptor cells: cone and rod cells. Wherein, cone cells are responsible for perceiving highlight and color, about 600 ten thousand are mainly distributed in the central concave part of the human eye structure; the rods are responsible for sensing low light and black and white, up to 12000 million, and are located mainly at the edge of the central fovea, and their distribution is shown in fig. 3. The total proportion of the number of RGB and the number of W of the image sensor of the present invention is set according to the proportion of the number of RGB color filter units and the number of W white filter units of human eyes (600 ten thousand/12000 ten thousand is 5%), in fig. 3, the cone cells in the middle are distributed more and the rod cells in the periphery are distributed more, and according to this characteristic, the cone cells can be equivalent to red (R), green (G) and blue (B) filter units, and the rod cells can be regarded as white (W) filter units, that is, the proportion of the color filter units in the middle area is large and the proportion of the white filter units in the peripheral area is large. The relative spectral sensitivity of color cones in human vision is shown in fig. 4.
The english interpretation in fig. 3 and 4 is as follows:
numberofrechtorsper mm 2: the number of photoreceptor cells;
anglefm fovea: the angle of the photoreceptor cells (rod and cone) relative to the fovea;
fovea: the fovea centralis;
blind spot: a human eye blind spot;
normalized absorbance (Normalized);
wavelet: a wavelength;
blue cons: blue cone cells;
green cons: green cone cells;
red wires: red cone cells;
rods: a rod cell;
short: short wave length;
medium: a medium wave wavelength;
and (4) Long: a long wavelength;
cons: a cone cell;
rods: a rod cell;
as can be seen from the above description, the image sensor with high sensitivity provided by the present invention includes a red filter unit, a green filter unit, a blue filter unit, and a white filter unit in a color filter element, and the color filter units are distributed more in a central area (a first area) of the image sensor, the white filter units are distributed relatively less, and the ratio of the two is greater than 3: 1, approaching the perception ratio of the central area of human eyes to (strong light and color) and (weak light and black and white), and respectively arranging a second area and a third area outside the central area to enable the number of white filter units to be more than that of color filter units, wherein the ratio of the number of filter units included by the color filter element in the second area to the number of white filter units in the second area is less than or equal to 1: 3, the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15; the human eye color image sensing proportion is close to the perception proportion of the areas outside the central area of the human eye and the edge areas to strong light and color) and (weak light and black and white), so that the invention can effectively realize that a high-resolution and high-sensitivity color image close to that seen by the human eye can be obtained under the condition of large light intensity or small light intensity.
Further, the first region includes a plurality of first filter blocks, each of which includes a red filter unit, a green filter unit, a blue filter unit, and a white filter unit; the four filtering units of each first filtering block are distributed in a square matrix of two rows and two columns.
As can be seen from the above description, the arrangement makes the central region of the image sensor sense both the color light and the weak light.
Furthermore, the second region includes a plurality of second filter blocks, each second filter block is composed of four first sub-filter blocks, the first sub-filter block includes a red filter unit and three white filter units, the second first sub-filter block includes a green filter unit and three white filter units, the third first sub-filter block includes a green filter unit and three white filter units, and the fourth first sub-filter block includes a blue filter unit and three white filter units; the four filter units of each first sub-filter block are distributed in a square matrix of two rows and two columns.
Further, the third area includes a plurality of third filter blocks, each of which includes one red filter unit, two green filter units, one blue filter unit, and sixty white filter units; sixty-four filtering units of each third filtering block are distributed in a square matrix of eight rows and eight columns.
From the above description, it can be known that, through the above structure, the red, green and blue filter units in the central area of the photosensitive device are distributed more, the white filter units are distributed relatively less, and the white filter units in the area of the photosensitive device far from the center are distributed more, and the red, green and blue filter units are distributed relatively less, so that it is effectively realized that the four first sub-filters which can obtain a high-resolution and high-sensitivity color image close to that seen by human eyes form a large unit to represent a color output unit, and the distribution of cone cells and rod cells of human eyes is similar to that seen by human eyes, and the proportion of the number of colors is smaller as going to the periphery.
Further, the first region, the second region and the third region are connected to form a square region;
the side length of the first area is 1/3 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/6 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/6 the side length of the square region.
From the above description, it can be known that the proportion simulates the distribution of cone cells and rod cells of human eyes, and effectively realizes that a high-resolution and high-sensitivity color image close to that seen by human eyes can be obtained under the conditions of bright field or extremely weak light.
Further, the third area includes a plurality of fourth filter blocks, each fourth filter block is composed of four second sub-filter blocks, the first second sub-filter block includes a red filter unit and eight white filter units, the second sub-filter block includes a green filter unit and eight white filter units, the third second sub-filter block includes a green filter unit and eight white filter units, and the fourth second sub-filter block includes a blue filter unit and eight white filter units; the nine filtering units of each second filtering block are distributed in a square matrix of three rows and three columns.
Further, the first region, the second region and the third region are connected to form a square region;
the side length of the first area is 1/2 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/8 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/8 the side length of the square region.
From the above description, it can be known that the proportion simulates the distribution of cone cells and rod cells of human eyes, and effectively realizes that a high-resolution and high-sensitivity color image close to that seen by human eyes can be obtained under the conditions of bright field or extremely weak light.
Further, the first area comprises a square first sub-area and a square second sub-area, the second area comprises a square third sub-area and a square fourth sub-area, the outer edge of the first sub-area is connected with the inner edge of the second sub-area, the outer edge of the second sub-area is connected with the inner edge of the third sub-area, and the outer edge of the third sub-area is connected with the inner edge of the fourth sub-area; the outer edge of the fourth sub-region is connected with the inner edge of the third region.
Furthermore, the first sub-area comprises a plurality of fifth filter blocks, each fifth filter block comprises a red filter unit, two green filter units and a blue filter unit, and four filter units of each fifth filter block are distributed in a square matrix of two rows and two columns;
the second subregion includes a plurality of sixth filter blocks, and each sixth filter block all includes a red filter unit, a green filter unit, a blue filter unit and a white filter unit, and four filter units of each sixth filter block all are the square matrix distribution of two rows and two columns.
Furthermore, the third sub-area includes a plurality of seventh filter blocks, each of the seventh filter blocks is composed of four third sub-filter blocks, the first third sub-filter block includes a red filter unit, a green filter unit and two white filter units, the second third sub-filter block includes a blue filter unit, a green filter unit and two white filter units, the third first sub-filter block includes a blue filter unit, a green filter unit and two white filter units, and the fourth first sub-filter block includes a red filter unit, a green filter unit and two white filter units; the four filtering units of each third sub-filtering block are distributed in a square matrix of two rows and two columns;
the fourth sub-area comprises a plurality of eighth filter blocks, each eighth filter block consists of four fourth sub-filter blocks, the first fourth sub-filter block comprises a red filter unit and three white filter units, the second fourth sub-filter block comprises a green filter unit and three white filter units, the third fourth sub-filter block comprises a green filter unit and three white filter units, and the fourth sub-filter block comprises a blue filter unit and three white filter units; the four filtering units of each fourth sub-filtering block are distributed in a square matrix of two rows and two columns;
the first sub-area, the second sub-area, the third sub-area, the fourth sub-area and the third area are connected to form a square area;
the side length of the first sub-area is 1/5 of the side length of the square area; the distance from the outer edge of the second sub-area to the inner edge of the second sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the third sub-area to the inner edge of the third sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the fourth subregion to the inner edge of the fourth subregion is 1/10 of the side length of the square region; the distance from the outer edge of the third region to the inner edge of the third region is 1/10 the side length of the square region.
From the above description, it can be known that, through the above structure, the red, green and blue filter units in the central area of the photosensitive device are distributed more, the white filter units are distributed relatively less, and the white filter units in the area of the photosensitive device far from the center are distributed more, and the red, green and blue filter units are distributed relatively less, so that it is effectively realized that the four first sub-filters which can obtain a high-resolution and high-sensitivity color image close to that seen by human eyes form a large unit to represent a color output unit, and the distribution of cone cells and rod cells of human eyes is similar to that seen by human eyes, and the proportion of the number of colors is smaller as going to the periphery. The proportion simulates the distribution of cone cells and rod cells of human eyes, and the high-resolution and high-sensitivity color images which are close to those seen by the human eyes can be effectively obtained in bright fields or under the condition of extremely weak light.
The first embodiment of the invention is as follows:
the invention provides an image sensor, which comprises a square first area, a square-shaped second area and a square-shaped third area; the outer edge of the first area is connected with the inner edge of the second area, and the outer edge of the second area is connected with the inner edge of the third area;
the color filter elements and the white filter units are arranged in the first area in an array mode, the ratio of the number of the filter units included in the color filter elements in the first area to the number of the white filter units (W) in the first area is greater than or equal to 3: 1;
the second area and the third area are respectively provided with a color filter element and a white filter unit, and the ratio of the number of the filter units included in the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3; the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15;
wherein the color filter element includes a red filter unit (R), a green filter unit (G), and a blue filter unit (B).
Referring to fig. 5, a second embodiment of the present invention is:
the second embodiment of the present invention is different from the first embodiment in that the first region includes a square first sub-region and a square second sub-region, the second region includes a square third sub-region and a square fourth sub-region, an outer edge of the first sub-region is connected to an inner edge of the second sub-region, an outer edge of the second sub-region is connected to an inner edge of the third sub-region, and an outer edge of the third sub-region is connected to an inner edge of the fourth sub-region; the outer edge of the fourth sub-area is connected with the inner edge of the third area;
the first sub-area comprises a plurality of fifth filtering blocks, each fifth filtering block comprises a red filtering unit, two green filtering units and a blue filtering unit, and four filtering units of each fifth filtering block are distributed in a square matrix of two rows and two columns;
the second subregion includes a plurality of sixth filter blocks, and each sixth filter block all includes a red filter unit, a green filter unit, a blue filter unit and a white filter unit, and four filter units of each sixth filter block all are the square matrix distribution of two rows and two columns.
The third sub-area comprises a plurality of seventh filtering blocks, each seventh filtering block consists of four third sub-filtering blocks, the first third sub-filtering block comprises a red filtering unit, a green filtering unit and two white filtering units, the second third sub-filtering block comprises a blue filtering unit, a green filtering unit and two white filtering units, the third first sub-filtering block comprises a blue filtering unit, a green filtering unit and two white filtering units, and the fourth first sub-filtering block comprises a red filtering unit, a green filtering unit and two white filtering units; the four filtering units of each third sub-filtering block are distributed in a square matrix of two rows and two columns; each seventh filtering block comprises sixteen filtering units, namely a square matrix with four rows and four columns;
the fourth sub-area comprises a plurality of eighth filter blocks, each eighth filter block consists of four fourth sub-filter blocks, the first fourth sub-filter block comprises a red filter unit and three white filter units, the second fourth sub-filter block comprises a green filter unit and three white filter units, the third fourth sub-filter block comprises a green filter unit and three white filter units, and the fourth sub-filter block comprises a blue filter unit and three white filter units; the four filtering units of each fourth sub-filtering block are distributed in a square matrix of two rows and two columns; each eighth filtering block comprises sixteen filtering units, namely a square matrix with four rows and four columns;
the third area comprises a plurality of third filtering blocks, and each third filtering block comprises a red filtering unit, two green filtering units, a blue filtering unit and sixty white filtering units; sixty-four filtering units of each third filtering block are distributed in a matrix of eight rows and eight columns;
the first sub-area, the second sub-area, the third sub-area, the fourth sub-area and the third area are connected to form a square area; the side length of the first sub-area is 1/5 of the side length of the square area; the distance from the outer edge of the second sub-area to the inner edge of the second sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the third sub-area to the inner edge of the third sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the fourth subregion to the inner edge of the fourth subregion is 1/10 of the side length of the square region; the distance from the outer edge of the third region to the inner edge of the third region is 1/10 the side length of the square region.
Wherein, the first sub-region corresponds to the Zone0 in fig. 5, the second sub-region corresponds to the Zone1 in fig. 5, the third sub-region corresponds to the Zone2 in fig. 5, the fourth sub-region corresponds to the Zone3 in fig. 5, and a third region, that is, the Zone4 in fig. 5 (not shown, N is 4) is arranged at the periphery of the fourth sub-region; the region may be further set outside the third region as necessary.
Referring to fig. 6, a third embodiment of the present invention is:
the third embodiment of the present invention is different from the first embodiment in that the first region includes a plurality of first filter blocks, each of which includes a red filter unit, a green filter unit, a blue filter unit, and a white filter unit; the four filtering units of each first filtering block are distributed in a square matrix of two rows and two columns;
the second area comprises a plurality of second filter blocks, each second filter block consists of four first sub filter blocks, the first sub filter block comprises a red filter unit and three white filter units, the second first sub filter block comprises a green filter unit and three white filter units, the third first sub filter block comprises a green filter unit and three white filter units, and the fourth first sub filter block comprises a blue filter unit and three white filter units; the four filter units of each first sub-filter block are distributed in a square matrix of two rows and two columns.
The third area comprises a plurality of third filtering blocks, and each third filtering block comprises a red filtering unit, two green filtering units, a blue filtering unit and sixty white filtering units; sixty-four filtering units of each third filtering block are distributed in a matrix of eight rows and eight columns;
the first region, the second region and the third region are connected to form a square region; the side length of the first area is 1/3 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/6 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/6 the side length of the square region.
The first area corresponds to the Zone0 in fig. 6, the second area corresponds to the Zone1 in fig. 6, and the third area corresponds to the Zone2 in fig. 6.
Referring to fig. 7, a fourth embodiment of the present invention is:
the fourth embodiment of the present invention is different from the first embodiment in that the first region includes a plurality of first filter blocks, each of which includes a red filter unit, a green filter unit, a blue filter unit, and a white filter unit; the four filtering units of each first filtering block are distributed in a square matrix of two rows and two columns.
The second area comprises a plurality of second filter blocks, each second filter block consists of four first sub filter blocks, the first sub filter block comprises a red filter unit and three white filter units, the second first sub filter block comprises a green filter unit and three white filter units, the third first sub filter block comprises a green filter unit and three white filter units, and the fourth first sub filter block comprises a blue filter unit and three white filter units; the four filtering units of each first sub-filtering block are distributed in a square matrix of two rows and two columns;
the third area comprises a plurality of fourth filter blocks, each fourth filter block consists of four second sub-filter blocks, the first second sub-filter block comprises a red filter unit and eight white filter units, the second sub-filter block comprises a green filter unit and eight white filter units, the third second sub-filter block comprises a green filter unit and eight white filter units, and the fourth second sub-filter block comprises a blue filter unit and eight white filter units; nine filtering units of each second filtering block are distributed in a square matrix of three rows and three columns;
the first region, the second region and the third region are connected to form a square region; the side length of the first area is 1/2 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/8 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/8 the side length of the square region.
The first area corresponds to the Zone0 in fig. 7, the second area corresponds to the Zone1 in fig. 7, and the third area corresponds to the Zone2 in fig. 7.
Example five of the present invention:
the invention also provides an imaging method for the image sensor, which comprises the following steps:
dividing the color image sensor into n sub-areas, and calculating a red pixel photosensitive value Ri, a green pixel photosensitive value Gi, a blue pixel photosensitive value Bi and an all-pass pixel photosensitive value Wi of each sub-area;
wherein, R, G, B and W pixels in each sub-region have different light sensing, and corresponding RGB gray scale values, namely the above-mentioned light sensing values, can be obtained;
superposing the Ri, Gi and Bi photosensitive values of each sub-region pixel to obtain a color channel image of each sub-region; the Wi value is used as a brightness channel image;
superposing the color channel image and the brightness channel image of each subregion to obtain a final image of each subregion; and then splicing the final images of each sub-area to obtain a final color image of the whole color image sensor.
In summary, the present invention provides a high-sensitivity image sensor, which conforms to the characteristics of the human visual system, in the second embodiment, the third embodiment and the fourth embodiment, the white filter of the third region occupies a ratio of 93.75%, 93.75% and 88.8% at the maximum respectively, which is close to 95% of human eye rod cells, but since it is the maximum value, this ratio may be higher, for example, the arrangement ratio of the outermost layer of the image sensor may be that in every 6 × 4 filter cell in fig. 8A, there is one color filter, twenty-three white filters, and the ratio of white cells is 95.85%. The 6 × 4 may also be 4 × 6, or other division such as 12 × 12 in fig. 8B, with a white proportion of 99%.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all equivalent changes made by using the contents of the present specification and the drawings, or applied directly or indirectly to other related technical fields, are included in the scope of the present invention.

Claims (10)

1. The high-sensitivity image sensor is characterized by comprising a square first area, a square second area and a square third area; the outer edge of the first area is connected with the inner edge of the second area, and the outer edge of the second area is connected with the inner edge of the third area;
the color filter elements and the white filter units are arranged in the first area in an array mode, the ratio of the number of the filter units included in the color filter elements in the first area to the number of the white filter units in the first area is greater than or equal to 3: 1;
the ratio of the color filter unit to the white filter unit in the first area is close to the perception ratio of the middle area of the central recess of human eyes to strong light and color as well as weak light and black and white;
the second area and the third area are respectively provided with a color filter element and a white filter unit, and the ratio of the number of the filter units included in the color filter element in the second area to the number of the white filter units in the second area is less than or equal to 1: 3, the ratio of the number of white filter cells in the third area to the number of filter cells included in the color filter element in the third area is greater than 85: 15, the perception proportion of the area outside the middle area of the central recess of the human eyes and the edge area of the central recess to strong light and color and to weak light and black and white is close;
the color filter element comprises a red filter unit, a green filter unit and a blue filter unit.
2. The image sensor of claim 1, wherein the first region includes a plurality of first filter blocks, each of the first filter blocks including a red filter unit, a green filter unit, a blue filter unit, and a white filter unit; the four filtering units of each first filtering block are distributed in a square matrix of two rows and two columns.
3. The image sensor of claim 1, wherein the second region includes a plurality of second filter blocks, each of the second filter blocks is composed of four first sub-filter blocks, a first one of the first sub-filter blocks includes a red filter unit and three white filter units, a second one of the first sub-filter blocks includes a green filter unit and three white filter units, a third one of the first sub-filter blocks includes a green filter unit and three white filter units, and a fourth one of the first sub-filter blocks includes a blue filter unit and three white filter units; the four filter units of each first sub-filter block are distributed in a square matrix of two rows and two columns.
4. The image sensor of claim 1, wherein the third area includes a plurality of third filter blocks, each of the third filter blocks including one red filter unit, two green filter units, one blue filter unit, and sixty white filter units; sixty-four filtering units of each third filtering block are distributed in a square matrix of eight rows and eight columns.
5. A high-sensitivity image sensor according to claim 1, wherein the first region, the second region and the third region are connected to form a square region;
the side length of the first area is 1/3 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/6 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/6 the side length of the square region.
6. The image sensor of claim 1, wherein the third area includes a plurality of fourth filter blocks, each of the fourth filter blocks is composed of four second sub-filter blocks, a first one of the second sub-filter blocks includes a red filter unit and eight white filter units, a second one of the second sub-filter blocks includes a green filter unit and eight white filter units, a third one of the second sub-filter blocks includes a green filter unit and eight white filter units, and a fourth one of the second sub-filter blocks includes a blue filter unit and eight white filter units; the nine filtering units of each second filtering block are distributed in a square matrix of three rows and three columns.
7. The image sensor of claim 6, wherein the first region, the second region and the third region are connected to form a square region;
the side length of the first area is 1/2 of the side length of the square area; the distance from the outer edge of the second area to the inner edge of the second area is 1/8 of the side length of the square area; the distance from the outer edge of the third region to the inner edge of the third region is 1/8 the side length of the square region.
8. The image sensor of claim 1, wherein the first region includes a square first sub-region and a square second sub-region, the second region includes a square third sub-region and a square fourth sub-region, an outer edge of the first sub-region is connected to an inner edge of the second sub-region, an outer edge of the second sub-region is connected to an inner edge of the third sub-region, and an outer edge of the third sub-region is connected to an inner edge of the fourth sub-region; the outer edge of the fourth sub-region is connected with the inner edge of the third region.
9. The image sensor of claim 8, wherein the first sub-area includes a plurality of fifth filter blocks, each of the fifth filter blocks includes a red filter unit, two green filter units and a blue filter unit, and the four filter units of each of the fifth filter blocks are distributed in a square matrix of two rows and two columns;
the second subregion includes a plurality of sixth filter blocks, and each sixth filter block all includes a red filter unit, a green filter unit, a blue filter unit and a white filter unit, and four filter units of each sixth filter block all are the square matrix distribution of two rows and two columns.
10. The image sensor of claim 8, wherein the third sub-area includes a plurality of seventh filter blocks, each of the seventh filter blocks is composed of four third sub-filter blocks, a first one of the third sub-filter blocks includes a red filter unit, a green filter unit and two white filter units, a second one of the third sub-filter blocks includes a blue filter unit, a green filter unit and two white filter units, a third one of the first sub-filter blocks includes a blue filter unit, a green filter unit and two white filter units, and a fourth one of the first sub-filter blocks includes a red filter unit, a green filter unit and two white filter units; the four filtering units of each third sub-filtering block are distributed in a square matrix of two rows and two columns;
the fourth sub-area comprises a plurality of eighth filter blocks, each eighth filter block consists of four fourth sub-filter blocks, the first fourth sub-filter block comprises a red filter unit and three white filter units, the second fourth sub-filter block comprises a green filter unit and three white filter units, the third fourth sub-filter block comprises a green filter unit and three white filter units, and the fourth sub-filter block comprises a blue filter unit and three white filter units; the four filtering units of each fourth sub-filtering block are distributed in a square matrix of two rows and two columns;
the first sub-area, the second sub-area, the third sub-area, the fourth sub-area and the third area are connected to form a square area;
the side length of the first sub-area is 1/5 of the side length of the square area; the distance from the outer edge of the second sub-area to the inner edge of the second sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the third sub-area to the inner edge of the third sub-area is 1/10 of the side length of the square area; the distance from the outer edge of the fourth subregion to the inner edge of the fourth subregion is 1/10 of the side length of the square region; the distance from the outer edge of the third region to the inner edge of the third region is 1/10 the side length of the square region.
CN202110478782.XA2019-03-262019-03-26High-sensitivity image sensorActiveCN113130526B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202110478782.XACN113130526B (en)2019-03-262019-03-26High-sensitivity image sensor

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
CN202110478782.XACN113130526B (en)2019-03-262019-03-26High-sensitivity image sensor
CN201910230735.6ACN109979953B (en)2019-03-262019-03-26Image sensor

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
CN201910230735.6ADivisionCN109979953B (en)2019-03-262019-03-26Image sensor

Publications (2)

Publication NumberPublication Date
CN113130526Atrue CN113130526A (en)2021-07-16
CN113130526B CN113130526B (en)2023-04-28

Family

ID=67080538

Family Applications (3)

Application NumberTitlePriority DateFiling Date
CN202110478782.XAActiveCN113130526B (en)2019-03-262019-03-26High-sensitivity image sensor
CN202110478370.6AActiveCN113192993B (en)2019-03-262019-03-26Imaging method of image sensor
CN201910230735.6AActiveCN109979953B (en)2019-03-262019-03-26Image sensor

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
CN202110478370.6AActiveCN113192993B (en)2019-03-262019-03-26Imaging method of image sensor
CN201910230735.6AActiveCN109979953B (en)2019-03-262019-03-26Image sensor

Country Status (1)

CountryLink
CN (3)CN113130526B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110620861B (en)*2019-09-242021-10-15Oppo广东移动通信有限公司 Image Sensors, Camera Modules and Terminals
CN111083405B (en)*2019-12-242021-06-04清华大学Bimodal bionic vision sensor pixel reading system
CN112042185B (en)*2020-02-192022-01-14深圳市汇顶科技股份有限公司Image sensor and related electronic device
CN114793262B (en)*2021-01-262024-06-14华为技术有限公司 Image sensor, camera, electronic device and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH04355722A (en)*1991-06-031992-12-09Canon Inc color liquid crystal display element
CN104241309A (en)*2014-09-192014-12-24上海集成电路研发中心有限公司CMOS image pixel array for simulating random pixel effect
CN104637964A (en)*2013-11-072015-05-20瑞萨电子株式会社Solid-state image sensing device and method for manufacturing the same
CN106298826A (en)*2016-09-292017-01-04杭州雄迈集成电路技术有限公司A kind of imageing sensor
US20180006078A1 (en)*2014-12-222018-01-04Teledyne E2V Semiconductors SasColour image sensor with white pixels and colour pixels
CN207558799U (en)*2017-12-012018-06-29德淮半导体有限公司Colorful optical filter array structure and imaging sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100808494B1 (en)*2006-01-202008-02-29엠텍비젼 주식회사 Color Filter of Image Sensor
TWI422020B (en)*2008-12-082014-01-01Sony Corp Solid-state imaging device
TWI439738B (en)*2011-07-012014-06-01E Ink Holdings IncColor filter and color display device with the same
CN104025579B (en)*2011-12-272016-05-04富士胶片株式会社Solid camera head
CN103002292A (en)*2012-12-262013-03-27陶霖密Colorful image sensor and colorful color-filtering cell array
CN106911919A (en)*2017-03-242017-06-30陈兵Color image sensor and coloured image imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH04355722A (en)*1991-06-031992-12-09Canon Inc color liquid crystal display element
CN104637964A (en)*2013-11-072015-05-20瑞萨电子株式会社Solid-state image sensing device and method for manufacturing the same
CN104241309A (en)*2014-09-192014-12-24上海集成电路研发中心有限公司CMOS image pixel array for simulating random pixel effect
US20180006078A1 (en)*2014-12-222018-01-04Teledyne E2V Semiconductors SasColour image sensor with white pixels and colour pixels
CN106298826A (en)*2016-09-292017-01-04杭州雄迈集成电路技术有限公司A kind of imageing sensor
CN207558799U (en)*2017-12-012018-06-29德淮半导体有限公司Colorful optical filter array structure and imaging sensor

Also Published As

Publication numberPublication date
CN109979953B (en)2021-04-30
CN109979953A (en)2019-07-05
CN113130526B (en)2023-04-28
CN113192993B (en)2023-04-11
CN113192993A (en)2021-07-30

Similar Documents

PublicationPublication DateTitle
CN109979953B (en)Image sensor
CN101455075B (en) System and method for a high-performance color filter mosaic array
DE112013003422B4 (en) Color image pickup element and image pickup device
CN101983510B (en)The System and method for of adaptive local white balance adjusting
KR20150140832A (en)Device for acquiring bimodal images
JPH11285012A (en)Image sensor for digital camera
WO2017193738A1 (en)Image sensor, imaging method, and imaging device
CN102640501A (en)Color filters and demosaicing techniques for digital imaging
CN211296854U (en) Pixel Array and Bionic Vision Sensor
EP4027639A1 (en)Image processing method, image processing device, and photographing device
CN106534723A (en)Environment detection device for a vehicle and method for detecting an image by means of an environment detection device
CN105430361A (en) Imaging method, image sensor, imaging device and electronic device
JP2005051791A (en) Sensor array with various optical sensors
WO2022037557A1 (en)Image sensor, signal processing method, and related device
CN106911919A (en)Color image sensor and coloured image imaging method
CN113038046A (en)Pixel sensing array and vision sensor
TWI751124B (en)Method for processing signals arising from a colour image capture matrix, and corresponding sensor
EP3232473B1 (en)Masked pixel arrays
CN212628124U (en)Dark-scene full-color functional image sensor and imaging device thereof
CN113141488A (en)Color restoration method of small-size pixel image sensor
CN113888439B (en) Image processing method, device, electronic device and computer readable storage medium
CN111050097A (en)Infrared crosstalk compensation method and device
CN112042185B (en)Image sensor and related electronic device
CN115242949A (en)Camera module and electronic equipment
CN113905193B (en) Image sensor with dark scene full-color function and imaging method thereof

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp