Disclosure of Invention
The invention aims to design an electrostatic aerosol particle sampler which is suitable for collecting and sampling nano-scale aerosol particles and has the advantage of high sampling efficiency of the nano-scale aerosol particles.
The invention is realized by the following technical scheme:
an electrostatic aerosol particle sampler comprises a sampling head, an electrostatic generating device and a sampling sheet; the sampling head is an insulating structural member with a cavity inside, the sampling head is provided with an air inlet and an air exhaust opening communicated with the cavity, and the sampling head is provided with a threading hole for inserting a positive electrode wire and a negative electrode wire; the static electricity generating device is arranged in a cavity of the sampling head and is connected with a high-voltage power supply; the sampling sheet is arranged in the cavity of the sampling head and is arranged in the discharge area of the static electricity generating device.
When the structure is adopted, the static generating device is arranged in the sampling head, the positive electrode and the negative electrode which are connected with the high-voltage power supply generate discharge to form a discharge area, the discharge area is a high-voltage static dust collecting area, and aerosol particles can be collected by adopting an electrostatic adsorption method when the sampling sheet is placed in the high-voltage static dust collecting area, so that the collection efficiency is improved, and especially for ultrafine particles smaller than 0.01 micrometer, the collection efficiency can reach more than 99%.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the air inlet set up in the top of sampling head, the extraction opening set up in the bottom of sampling head.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the static generating device comprises a high-voltage power supply positive electrode fixing plate, a metal needle head and a tray base;
the high-voltage power supply positive fixing plate is an insulating structural part and is arranged above the tray base and blocks an air path from the air inlet to the air exhaust port; the top surface of the tray base is provided with the sampling sheet; the metal needle head is hollow and is inserted into the high-voltage power supply positive fixing plate, and the needle point of the metal needle head points to the sampling sheet.
In order to further better implement the invention, the following arrangement structure is particularly adopted: and the needle point of the metal needle points to the circle center position of the sampling sheet.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the bottom of the cavity of the sampling head is connected with a height adjusting bolt, and the tray base is installed on the height adjusting bolt so as to adjust the distance between the height adjusting bolt and the needle point of the metal needle.
When the structure is adopted, the setting height of the tray base can be changed by adjusting the height adjusting bolt, and the distance between the sampling sheet and the needle point of the metal needle can be realized.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the metal needle heads are arranged in a plurality of numbers, and all the metal needle heads are independently arranged on the high-voltage power supply positive fixing plate; the tray base with the same and the one-to-one correspondence of the number of setting up of metal syringe needle, every the tray base all sets up one slice the sampling piece.
When adopting above-mentioned structure that sets up, produce a high-voltage static dust collecting area between each pair of tray base and the metal syringe needle, once can gather many sampling piece samples during the sampling, can improve the collection efficiency of sample to improve the precision of observing and/or detecting data, a plurality of samples of collecting simultaneously are convenient for carry out the comparative analysis of the different physicochemical characteristic of aerosol particulate matter, can improve the credibility of analysis and contrast data.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the four metal needles are arranged at equal angles around a central point.
In order to further better implement the invention, the following arrangement structure is particularly adopted: in all the sampling sheets, different sampling sheets can be made of the same material or different materials.
When the structure is adopted, the sampling sheet can adopt a metal membrane or an organic/inorganic porous filter membrane according to the analysis requirements on different physicochemical characteristics.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the sampling head comprises a main body upper shell and a main body lower shell which are arranged up and down, the main body upper shell is detachably connected with the main body lower shell, and the main body upper shell and the main body lower shell are connected to form the cavity; the air inlet set up in the main part epitheca, the extraction opening set up in the main part inferior valve.
In order to further better implement the invention, the following arrangement structure is particularly adopted: the bottom of the main body upper shell is connected with the top of the main body lower shell in a nested structure.
In order to further better implement the invention, the following arrangement structure is particularly adopted: a lifting handle is arranged at the top of the main body upper shell; the bottom of the lower shell of the main body is provided with a whole fixing hole.
In order to further better implement the invention, the following arrangement structure is particularly adopted: a flow meter connecting nozzle is inserted into the air pumping hole; and the gas path taking the flow meter connecting nozzle as a starting point is sequentially connected with a flow meter and an air pump.
The invention has the following advantages and beneficial effects:
in the invention, the static generating device is arranged in the sampling head, the positive electrode and the negative electrode which are connected with the high-voltage power supply generate discharge to form a discharge area, the discharge area is a high-voltage static dust collecting area, and aerosol particles can be collected by adopting an electrostatic adsorption method when the sampling sheet is placed in the high-voltage static dust collecting area, so that the collection efficiency is improved, and particularly, the collection efficiency can reach more than 99 percent for ultrafine particles smaller than 0.01 micrometer.
According to the invention, a high-voltage electrostatic dust collection area is formed between each pair of tray bases and the metal needle head, so that a plurality of sampling sheet samples can be collected at one time during sampling, the collection efficiency of the samples can be improved, the accuracy of observation and/or detection data is improved, meanwhile, the collected samples are convenient for comparative analysis of different physical and chemical characteristics of aerosol particles, and the reliability of analysis and data comparison can be improved.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the technical solutions of the present invention will be described in detail below. It is to be understood that the described embodiments are merely exemplary of the invention, and not restrictive of the full scope of the invention. All other embodiments, which can be derived by a person skilled in the art from the examples given herein without any inventive step, are within the scope of the present invention.
In the description of the present invention, it is to be noted that, unless otherwise specified, "a plurality" means two or more; the terms "upper", "lower", "left", "right", "inner", "outer", "front", "rear", "head", "tail", and the like, indicate orientations or positional relationships based on the orientations or positional relationships shown in the drawings, are only for convenience in describing and simplifying the description, and do not indicate or imply that the device or element referred to must have a particular orientation, be constructed in a particular orientation, and be operated, and thus, should not be construed as limiting the invention. Furthermore, the terms "first," "second," "third," and the like are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
In the description of the present invention, it should also be noted that, unless otherwise explicitly specified or limited, the terms "mounted," "connected," and "connected" are to be construed broadly, e.g., as meaning either a fixed connection, a removable connection, or an integral connection; can be mechanically or electrically connected; may be directly connected or indirectly connected through an intermediate. The specific meaning of the above terms in the present invention can be understood as appropriate to those of ordinary skill in the art.
Example 1:
an electrostatic aerosol particle sampler is suitable for collecting and sampling nano-sized aerosol particles, has the advantage of high sampling efficiency of the nano-sized aerosol particles, and is particularly arranged into the following structures as shown in fig. 1 and fig. 2:
basically, the electrostatic aerosol particle sampler comprises asampling head 1, anelectrostatic generating device 2 and asampling sheet 3.
Thesampling head 1 is an insulating structural member made of plastics such as polyethylene, the appearance of the sampling head is approximately cylindrical, and the sampling head comprises a main bodyupper shell 11 and a main bodylower shell 12 which are arranged up and down, the bottom of the main bodyupper shell 11 is connected with the top of the main bodylower shell 12 through a nested structure, an internal cavity is formed when the main bodyupper shell 11 is connected with the main bodylower shell 12, and the cavity is approximately cylindrical. Anair inlet 13 communicated with the cavity is formed in the center of the top of the main bodyupper shell 11, and a positive powercord threading hole 15 for inserting a positive power cord is formed in the side position of the top of the main bodyupper shell 11; anair suction port 14 communicated with the cavity is formed in the center of the bottom of the lowermain body shell 12; a negative powercord threading hole 16 for inserting a negative power cord is formed at the bottom side of thelower body case 12. Anair inlet 13 of the main bodyupper shell 11 protrudes upwards to form an air inlet channel, an opening of the air inlet channel is positioned on the side of the air inlet channel, and a handle 4 is fixed at the top of the air inlet channel; the bottom of thelower body case 12 is provided with a plurality of one-piece fixing holes 7.
The staticelectricity generating device 2 can adopt the existing device, is arranged in the cavity of thesampling head 1 and is detachably and fixedly connected with the inner wall of thesampling head 1, and the staticelectricity generating device 2 is connected with the positive pole and the negative pole of the high-voltage power supply through the positive powerline threading hole 15 and the negative powerline threading hole 16.
Thesampling sheet 3 is arranged in the cavity of thesampling head 1, and thesampling sheet 3 is arranged in the discharge area of the staticelectricity generating device 2.
In the above arrangement structure, all the gas port joints and other matching parts of thesampling head 1 are provided with sealing structures to ensure gas tightness. Thestatic generating device 2 is arranged in thesampling head 1, thestatic generating device 2 is connected with the positive electrode and the negative electrode of the high-voltage power supply to generate discharge to form a discharge area, the discharge area becomes a high-voltage static dust collecting area, and the aerosol particles can be collected by adopting an electrostatic adsorption method when thesampling sheet 3 is placed in the high-voltage static dust collecting area. The device can solve the problem that part of aerosol particles are sucked into the aperture of the filter membrane when the prior art is used for sampling, especially nano-scale particles easily penetrate through the filter membrane and are not easily collected on the filter membrane, can improve the collection efficiency, and especially can reach more than 99 percent of the collection efficiency for ultrafine particles smaller than 0.01 micron.
Example 2:
the embodiment is further optimized on the basis of the above embodiment, and in order to further better implement the invention, the following arrangement structure is particularly adopted:
thestatic electricity generator 2 in this embodiment specifically includes a high voltage power supplypositive fixing plate 21, ametal needle 22 and atray base 23.
The high-voltage power supplypositive fixing plate 21 is a circular insulating plate, is embedded in the main bodyupper shell 11 and is fixed at the main bodyupper shell 11 through three evenly distributed screws, and the high-voltage power supplypositive fixing plate 21 blocks the air path from theair inlet 13 to theair exhaust port 14. The high-voltage power supply positiveelectrode fixing plate 21 is arranged right above thetray base 23.
Tray base 23 connects in the inner wall of main partinferior valve 12, andtray base 23's top surface is provided with circular shape recess, places a slice circularshape sampling piece 3 or places a slice circularshape metal tray 24 and places aslice sampling piece 3 onmetal tray 24 in the recess, and the negative pole line penetrates and is connected withtray base 23 from negative pole power cord throughwires hole 16.
Thehollow metal needle 22 with the aperture of 1.6mm is inserted into the center of the high-voltage power supplypositive fixing plate 21, the needle point of themetal needle 22 points downwards to the circle center of thesampling sheet 3 and keeps the height interval of 25mm, and the positive power line penetrates through the positive powerline threading hole 15 and is connected with themetal needle 22.
In the above arrangement, theelectrostatic generator 2 is embedded in theupper case 11 of the main body by the above circular insulating plate as a positive fixing plate of the high voltage power supply, the metal needle (which may be a medical syringe needle) connected to the positive electrode of the high voltage power supply passes through thepositive fixing plate 21 of the high voltage power supply, and the position of the needle point points to the position of the center of the circle of thetray base 23. The negative pole of the high voltage power supply is connected to thetray base 23. This ensures that after power is applied, a point discharge is formed by the high voltage electrode, and a high voltage electrostatic dust collection area is formed in the region of thetray base 23.
Example 3:
the embodiment is further optimized on the basis of the above embodiment, and in order to further better implement the invention, the following arrangement structure is particularly adopted:
the bottom of the inner wall of the lowermain body shell 12 is connected with aheight adjusting bolt 6 which is vertically arranged, thetray base 23 is installed on theheight adjusting bolt 6, and the distance between thetray base 23 and the needle point of themetal needle 22 is adjusted by adjusting theheight adjusting bolt 6.
In the arrangement structure, thetray base 23 can change the arrangement height thereof by adjusting theheight adjusting bolt 6, and the distance between thesampling sheet 3 and the needle point of themetal needle 22 can be realized, so that the effective range of the needle point discharge as the anode of the high-voltage power supply can be ensured to completely cover the circular area of the tray.
Example 4:
the embodiment is further optimized on the basis of the above embodiment, and in order to further better implement the invention, the following arrangement structure is particularly adopted:
the number of the metal needles 22 in this embodiment is four, all the metal needles 22 are independently arranged on the high-voltage power supplypositive fixing plate 21, and the fourmetal needles 22 are arranged around the center point of the high-voltage power supplypositive fixing plate 21 at equal angles. Correspondingly, the tray bases 23 and the metal needles 22 are arranged in the same number and correspond to each other one by one to form four pairs, and each of the four 51mm circular stainless steel tray bases 23 is provided with onesampling sheet 3.
Among all thesampling sheets 3,different sampling sheets 3 can be made of the same material or different materials, and metal membranes or organic/inorganic porous filter membranes can be adopted according to the analysis requirements on different physicochemical characteristics.
In the structure, four pairs oftray bases 23 andmetal needle head 22 can produce four high-voltage electrostatic dust collection areas in the sampling head, can once gather four sampling piece samples during sampling, can improve the collection efficiency of sample to improve the precision of observing and/or detecting data, a plurality of samples of collecting simultaneously are convenient for carry out the comparative analysis of the different physicochemical characteristics of aerosol particulate matter, can improve the credibility of analysis and contrast data.
Example 5:
the embodiment is further optimized on the basis of the above embodiment, and in order to further better implement the invention, the following arrangement structure is particularly adopted:
a flow meter connecting nozzle 5 is inserted into theair suction port 14, and a flow meter and an air suction pump are connected in sequence to an air path starting from the flow meter connecting nozzle 5.
The flowmeter adopts the product of selling on the market, and the one end of flowmeter is passed through plastic pipe or rubber tube and is connected with the aspiration pump, and the other end passes through plastic pipe or rubber tube and is connected with flowmeter connector 5. The flow meter can adjust and determine the sampling flow rate through buttons, and display the total flow rate of each sampling.
The air pump adopts the equipment sold in the market, and is powered by a small motor, wherein the working voltage of the small motor is selected to be AC 220V (50HZ), and the load capacity is more than 1.5 kilowatts. The air pump is communicated with the flowmeter through a plastic pipe or a rubber pipe, and can provide 0.2-25.0L of sampling flow per minute.
The electrostatic aerosol particle sampler mainly comprises an air pump, a flowmeter, asampling head 1, anelectrostatic generating device 2 and asampling sheet 3. The air suction pump sucks ambient air from anair inlet 13 to thesampling head 1 at a fixed flow rate, the air flows to the lower part of a high-voltage power supplypositive fixing plate 21 from a hole of ametal needle 22, the flow meter controls and displays the air quantity passing through the area where thesampling sheet 3 is located, four stainless steel tray bases 23 are arranged in thesampling head 1,metal trays 24 are arranged on the tray bases 23, themetal trays 24 are located in an electrostatic dust suction area, theelectrostatic generating device 2 generates the electrostatic dust suction area through a tip discharge effect by utilizing 10 kilovolt high-voltage current, and thesampling sheet 3 is arranged on themetal trays 24 and used for collecting aerosol particles in the ambient air. The electrostatic aerosol particle sampler can solve the problem that part of aerosol particles are sucked into the aperture of the filter membrane when the prior art is used for sampling, especially nano-scale particles easily permeate the membrane of the filter membrane and are not easily collected on the filter membrane, can improve the collection efficiency, and especially can reach more than 99 percent of the collection efficiency of ultrafine particles smaller than 0.01 micron.
The above description is only for the specific embodiments of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily conceive of the changes or substitutions within the technical scope of the present invention, and all the changes or substitutions should be covered within the scope of the present invention.