

技术领域technical field
本发明涉及打印技术领域,更具体地,涉及一种生物墨水打印条件筛选平台及筛选方法。The present invention relates to the technical field of printing, and more particularly, to a bioink printing condition screening platform and screening method.
背景技术Background technique
对于生物墨水和打印条件的筛选,重复性实验是目前常用的筛选策略,如重复性打印线条,通过人眼观察重复性调整打印参数,这种策略虽然可行,但在实际实验中有较为明显的缺陷:For the screening of bioinks and printing conditions, repetitive experiments are currently commonly used screening strategies, such as repetitive printing of lines, and repetitive adjustment of printing parameters through human eye observation. Although this strategy is feasible, it has obvious advantages in practical experiments. defect:
(1)实验操作繁杂:对于筛选生物3D打印参数的传统方法,是通过重复性实验找到最佳打印参数,每次实验都要对参数进行重置,在存在多个打印参数的条件下,试验次数会呈指数型增长,操作步骤复杂多变,不利于生物打印机的使用寿命,更不利于生物3D打印参数的筛选。(1) The experimental operation is complicated: the traditional method of screening biological 3D printing parameters is to find the best printing parameters through repeated experiments, and the parameters must be reset in each experiment. The number of times will increase exponentially, and the operation steps are complex and changeable, which is not conducive to the service life of the bioprinter, and it is not conducive to the screening of biological 3D printing parameters.
(2)实验时间长:对于某种特定的生物墨水,找到最佳的打印参数平均需要400次以上的实验积累,仅找到适合打印的参数就需要大量时间,在掺有细胞之后混合培养的过程中更加需要时间来证明实验方案的可行性。此外,适合打印的生物墨水比例不仅需要调整生物墨水自身比例或者浓度,而且适合打印的参数还需要进一步实验,使得生物3D打印再到临床应用时经历更长的实验周期。(2) Long experiment time: For a specific bioink, it takes an average of more than 400 experiments to find the best printing parameters, and it takes a lot of time to find the parameters suitable for printing. The process of mixed culture after mixing cells More time is needed to prove the feasibility of the experimental scheme. In addition, the proportion of bio-ink suitable for printing not only needs to adjust the proportion or concentration of the bio-ink itself, but also needs further experiments on the parameters suitable for printing, so that 3D bio-printing will go through a longer experimental period when it is used in clinical applications.
(3)实验数据缺乏连续性:在测试一种生物墨水的可打印性时,对于打印头与基底平台之间的距离是手动调整或者通过在代码中编程设定数值实现的,虽然可以找到合适的打印参数范围,但是各个数值点之间是离散的,不具有连续性,存在偶然性。(3) The experimental data lacks continuity: when testing the printability of a bioink, the distance between the print head and the substrate platform is manually adjusted or realized by programming a value in the code, although it is possible to find a suitable The printing parameter range of , but each numerical point is discrete, not continuous, and there is chance.
从上述因素可以看出,筛选生物3D打印参数存在效率低下的问题。中国专利申请,公开号为:CN109251492A公开了生物墨水及其制备方法和应用,该专利公开了生物墨水的打印程序设置的设置方法:调节注射装置的注射速率为0.1-40μL/min、喷嘴与打印底板间的垂直距离为0.05-2.5mm,平台移动速率为10-2000mm/s,电压稳定在0.5-5.0kV。该技术方案设置单个的打印参数,并不能对最佳的打印条件进行筛选,也不能解决生物3D打印参数筛选效率低下的问题。From the above factors, it can be seen that there is a problem of inefficiency in screening bio-3D printing parameters. Chinese patent application, publication number: CN109251492A discloses bio-ink and its preparation method and application. The patent discloses the setting method of printing program setting of bio-ink: adjusting the injection rate of the injection device to 0.1-40μL/min, nozzle and printing The vertical distance between the bottom plates is 0.05-2.5mm, the platform moving speed is 10-2000mm/s, and the voltage is stable at 0.5-5.0kV. This technical solution sets a single printing parameter, which cannot screen the best printing conditions, nor can it solve the problem of low efficiency of biological 3D printing parameter screening.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述现有技术中筛选生物3D打印参数存在效率低下的问题,提供一种生物墨水打印条件筛选平台。The purpose of the present invention is to overcome the problem of low efficiency in screening biological 3D printing parameters in the prior art, and to provide a biological ink printing condition screening platform.
为解决上述技术问题,本发明采用的技术方案是:一种生物墨水打印条件筛选平台,包括沿X轴方向水平移动的第一移动平台,所述第一移动平台上设置有沿Y轴方向移动的第二移动平台,所述第二移动平台上设置有打印头组件,所述打印头组件通过管道连接有若干用于输送生物墨水的注射装置,所述打印头下方设置有打印平台,所述打印平台的上表面与水平面呈锐角;所述打印平台上还设置有使其上表面温度呈线性变化的控温部;还包括用于识别打印平台上所打印线条的形态及宽度的图像识别。In order to solve the above technical problems, the technical solution adopted in the present invention is: a bio-ink printing condition screening platform, comprising a first moving platform that moves horizontally along the X-axis direction, and the first moving platform is provided with a moving platform that moves along the Y-axis direction. The second mobile platform is provided with a print head assembly, the print head assembly is connected with a number of injection devices for conveying biological ink through pipes, and a printing platform is arranged below the print head, and the The upper surface of the printing platform is at an acute angle with the horizontal plane; the printing platform is also provided with a temperature control part that makes the temperature of the upper surface change linearly; it also includes image recognition for identifying the shape and width of the lines printed on the printing platform.
在本技术方案中,第一移动平台带动第二移动平台移动,第二移动平台带动打印头组件在打印平台上方移动,由于打印平台的上表面与水平面呈锐角,使得打印平台的上表面呈倾斜设置,在打印过程中,打印头组件与打印平台的上表面之间的距离呈线性变化。此外,打印平台上还设置有使其上表面温度呈线性变化的控温部,控温部使得打印平台上表面的温度呈线性变化;通过图像识别系统可以识别打印平台上最佳的线条宽度以及形态,根据最佳的线条宽度以及形态可以得到在温度和距离的共同影响下,最佳的打印温度以及距离。通过调整各注射装置注射生物液的配比,根据打印最佳的线条宽度以及形态,可以得到生物墨水的最佳配比。In this technical solution, the first moving platform drives the second moving platform to move, and the second moving platform drives the print head assembly to move above the printing platform. Since the upper surface of the printing platform forms an acute angle with the horizontal plane, the upper surface of the printing platform is inclined. Set, during the printing process, the distance between the print head assembly and the upper surface of the printing platform changes linearly. In addition, the printing platform is also provided with a temperature control part that makes the temperature of the upper surface of the printing platform change linearly. The temperature control part makes the temperature of the upper surface of the printing platform change linearly; the image recognition system can identify the best line width on the printing platform and According to the optimal line width and shape, the optimal printing temperature and distance can be obtained under the joint influence of temperature and distance. By adjusting the ratio of the biological fluid injected by each injection device, the optimal ratio of the biological ink can be obtained according to the optimum line width and shape of the printing.
优选地,所述打印头组件包括外壳以及安装在所述外壳中的打印头,所述外壳与所述第二移动平台固定连接,所述打印头通过所述管道与所述注射装置相连通。Preferably, the print head assembly includes a housing and a print head installed in the housing, the housing is fixedly connected with the second moving platform, and the print head communicates with the injection device through the pipeline.
优选地,所述打印头在与所述管道相连通的一端设置有螺旋通道。Preferably, the print head is provided with a spiral channel at one end that communicates with the pipe.
优选地,所述打印头与所述打印平台的上表面之间的垂直距离为0.05mm到2.5mm。Preferably, the vertical distance between the print head and the upper surface of the print platform is 0.05mm to 2.5mm.
优选地,所述控温部为至少两条循环水道,其中一条循环水道用于冷水循环,另一条循环水道用于热水循环;所述循环水道设置在所述打印平台中并与X轴或Y轴方向平行。Preferably, the temperature control part is at least two circulating water channels, one of which is used for cold water circulation, and the other circulating water channel is used for hot water circulation; the circulating water channel is arranged in the printing platform and is connected with the X-axis or The Y-axis direction is parallel.
优选地,所述打印平台的上表面温度沿Y轴或X轴方向的线性变化范围为0℃至40℃。Preferably, the linear variation range of the temperature of the upper surface of the printing platform along the Y-axis or the X-axis direction is 0°C to 40°C.
优选地,所述第一移动平台包括沿X轴方向设置的第一导槽、设于所述第一导槽中并与其滑动连接的第一滑块以及与所述第一滑块固定连接的安装架;所述第一导槽中还设置有第一驱动电机,所述第一驱动电机的输出轴上安装有第一螺纹杆,所述第一螺纹杆位于所述第一导槽中并与所述第一滑块螺纹连接。Preferably, the first moving platform includes a first guide groove arranged along the X-axis direction, a first sliding block provided in the first guide groove and slidably connected with the first sliding block, and a first sliding block fixedly connected with the first sliding block. A mounting frame; a first drive motor is also arranged in the first guide groove, a first threaded rod is installed on the output shaft of the first drive motor, and the first threaded rod is located in the first guide groove and threadedly connected with the first slider.
优选地,所述第二移动平台包括安装在两个所述安装架上的第二导槽、设于所述第二导槽中并与其滑动连接的第二滑块;所述第二导槽中还设置有第二驱动电机,所述第二驱动电机的输出轴上安装有第二螺纹杆,所述第二螺纹杆位于所述第二导槽中并与所述第二滑块螺纹连接,所述第二滑块与所述打印头组件相连。Preferably, the second moving platform comprises a second guide groove installed on the two mounting brackets, a second sliding block provided in the second guide groove and slidably connected with it; the second guide groove There is also a second drive motor in the motor, a second threaded rod is installed on the output shaft of the second drive motor, the second threaded rod is located in the second guide groove and is threadedly connected with the second slider , the second slider is connected with the print head assembly.
优选地,所述图像识别系统包括用于对打印平台上所打印线条进行摄影的摄像机以及与所述摄像机电连接的处理器。Preferably, the image recognition system includes a camera for photographing the lines printed on the printing platform and a processor electrically connected to the camera.
本发明另一方面提供一种生物墨水打印条件筛选方法,包括打印条件筛选以及生物墨水比例筛选,所述打印条件筛选包括以下步骤:Another aspect of the present invention provides a method for screening bio-ink printing conditions, including printing condition screening and bio-ink ratio screening, and the printing condition screening includes the following steps:
S101:设置注射装置的注射压力为一定值,并控制各注射装置在打印过程中注射各生物墨水比例为一定值;S101: Set the injection pressure of the injection device to a certain value, and control the ratio of each bio-ink injected by each injection device to a certain value during the printing process;
S102:设置第一移动平台、第二移动平台的运动速度,使得打印头组件以固定速率移动;S102: Set the moving speed of the first moving platform and the second moving platform, so that the print head assembly moves at a fixed rate;
S103:利用图像识别系统对打印平台上的线条的宽度与形态进行识别,得到最佳的线条宽度以及形态,根据该最佳线条宽度以及形态得到对应的最佳打印距离以及打印温度;S103: Use an image recognition system to identify the width and shape of the lines on the printing platform to obtain the optimal line width and shape, and obtain the corresponding optimal printing distance and printing temperature according to the optimal line width and shape;
S104:在打印过程中,实时调节第一移动平台、第二移动平台的运动速度,使得打印头组件以变化的速率移动;S104: During the printing process, adjust the movement speeds of the first moving platform and the second moving platform in real time, so that the print head assembly moves at a changing rate;
S105:利用图像识别系统对打印平台上的线条的宽度与形态进行识别,在打印头组件以变化速率移动的情况下,得到最佳的线条宽度以及形态,根据该最佳线条宽度以及形态得到打印头组件最佳的移动速率;S105: Use the image recognition system to identify the width and shape of the lines on the printing platform, and obtain the optimal line width and shape when the print head assembly moves at a changing rate, and print according to the optimal line width and shape The optimal moving rate of the head assembly;
S106:根据步骤S5得到的打印头组件最佳的移动速率,将打印头组件的移动速率调节至最佳的移动速率,同时在打印过程中实时调节注射装置的注射压力;S106: According to the optimum moving speed of the print head assembly obtained in step S5, adjust the moving speed of the print head assembly to the optimum moving speed, and simultaneously adjust the injection pressure of the injection device in real time during the printing process;
S107:利用图像识别系统对打印平台上的线条的宽度与形态进行识别,在注射压力实时变化的情况下,得到最佳的线条宽度以及形态,根据该最佳线条宽度以及形态得到注射装置最佳的注射压力;S107: Use the image recognition system to identify the width and shape of the lines on the printing platform, and obtain the optimal line width and shape when the injection pressure changes in real time, and obtain the best injection device according to the optimal line width and shape. injection pressure;
所述生物墨水比例筛选包括以下步骤:在打印过程中,控制各注射装置在打印过程中注射各生物墨水成分比例为变值,利用图像识别系统对打印平台上的线条的宽度与形态进行识别,在各生物墨水成分比例变化的情况下,得到最佳的线条宽度以及形态,根据该最佳线条宽度以及形态得到最佳的生物墨水比例。The bio-ink ratio screening includes the following steps: during the printing process, controlling each injection device to inject the ratio of each bio-ink component to a variable value during the printing process, and using an image recognition system to identify the width and shape of the lines on the printing platform, When the ratio of each bio-ink component changes, the optimum line width and shape are obtained, and the optimum bio-ink ratio is obtained according to the optimum line width and shape.
与现有技术相比,本发明的有益效果是:本发明通过设置打印平台,打印平台上表面与打印头组之间的距离呈线性变化;打印平台上还设置有使其上表面温度呈线性变化的控温部,控温部使得打印平台上表面的温度呈线性变化;通过图像识别系统可以识别打印平台上最佳的线条宽度以及形态,根据最佳的线条宽度以及形态可以得到在温度和距离的共同影响下,最佳的打印温度以及距离。通过调整各注射装置注射生物液的配比,根据打印最佳的线条宽度以及形态,可以得到生物墨水的最佳配比。本发明提供的生物墨水打印条件筛选平台,打印平台的温度、打印平台与打印头组件之间的距离是连续性变化,可以大量减少实验的重复性次数,在两种甚至多种打印条件的同时改变下,通过图像识别系统对打印线条的宽度以及形态进行识别,即可得到各点的打印条件,减少了试验次数,不需要上百次实验即可得到材料的最佳打印参数以及生物墨水最佳配比。本发明采用图像识别技术,具有智能化、自动化、节约试剂、减少设备损耗、操作简便和快速等优点;提高了打印条件筛选以及生物墨水配比筛选的工作效率。Compared with the prior art, the beneficial effects of the present invention are: by setting the printing platform, the distance between the upper surface of the printing platform and the printing head group changes linearly; The changing temperature control part makes the temperature of the upper surface of the printing platform change linearly; the image recognition system can identify the best line width and shape on the printing platform, and according to the best line width and shape, the temperature and Under the joint influence of distance, the optimal printing temperature and distance. By adjusting the ratio of the biological fluid injected by each injection device, the optimal ratio of the biological ink can be obtained according to the optimum line width and shape of the printing. In the biological ink printing condition screening platform provided by the present invention, the temperature of the printing platform and the distance between the printing platform and the printing head assembly are continuous changes, which can greatly reduce the number of repetitions of experiments. Under the change, the width and shape of the printed lines can be identified by the image recognition system, and the printing conditions of each point can be obtained, which reduces the number of experiments. Best ratio. The invention adopts the image recognition technology, and has the advantages of intelligence, automation, saving reagents, reducing equipment loss, simple and fast operation, etc., and improving the working efficiency of printing condition screening and bio-ink ratio screening.
附图说明Description of drawings
图1为本发明生物墨水打印条件筛选平台的结构示意图;1 is a schematic structural diagram of a bioink printing condition screening platform of the present invention;
图2为本发明生物墨水打印条件筛选平台中打印头组件的结构示意图。FIG. 2 is a schematic structural diagram of the print head assembly in the bio-ink printing condition screening platform of the present invention.
图示标记说明如下:1、第一移动平台;2、第二移动平台;3、打印头组件;4、管道;5、注射装置;6、打印平台;7、循环水道;8、线条;31、外壳;32、打印头;11、第一导槽;12、第一滑块;13、安装架;14、第一驱动电机;15、第一螺纹杆;21、第二导槽;22、第二滑块;23、第二驱动电机;24、第二螺纹杆;9、安装块;10、储存仓。The descriptions of the symbols are as follows: 1. The first moving platform; 2. The second moving platform; 3. The print head assembly; 4. The pipeline; 5. The injection device; 6. The printing platform; 7. The circulating water channel; , housing; 32, print head; 11, first guide groove; 12, first slider; 13, mounting frame; 14, first drive motor; 15, first threaded rod; 21, second guide groove; 22, The second slider; 23, the second drive motor; 24, the second threaded rod; 9, the mounting block; 10, the storage bin.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。The present invention will be further described below in conjunction with specific embodiments. Among them, the accompanying drawings are only used for exemplary description, and they are only schematic diagrams, not physical drawings, and should not be construed as restrictions on this patent; in order to better illustrate the embodiments of the present invention, some parts of the accompanying drawings will be omitted, The enlargement or reduction does not represent the size of the actual product; it is understandable to those skilled in the art that some well-known structures and their descriptions in the accompanying drawings may be omitted.
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。The same or similar numbers in the drawings of the embodiments of the present invention correspond to the same or similar components; in the description of the present invention, it should be understood that if there are terms “upper”, “lower”, “left” and “right” The orientation or positional relationship indicated by etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, with a specific orientation. Orientation structure and operation, so the terms describing the positional relationship in the accompanying drawings are only used for exemplary illustration, and should not be construed as a limitation on the present patent. For those of ordinary skill in the art, the specific meanings of the above terms can be understood according to specific situations.
实施例1Example 1
如图1至图2所示,一种生物墨水打印条件筛选平台,包括沿X轴方向水平移动的第一移动平台1,第一移动平台1上设置有沿Y轴方向移动的第二移动平台2,第二移动平台2上设置有打印头组件3,打印头组件3通过管道4连接有若干用于输送生物墨水的注射装置5,打印头组件3下方设置有打印平台6,打印平台6的上表面与水平面呈锐角;打印平台6上还设置有使其上表面温度呈线性变化的控温部;还包括用于识别打印平台6上的线条8的形态及宽度的图像识别。需要说明的是,各注射装置5通过管道4向打印头组件3输送生物墨水的不同成分,同时可以通过控制各注射装置5,从而实现不同配比的生物墨水成分的输送。注射装置5可以为注射泵或空气压缩机。各生物墨水成分储存在储存仓10中,在注射装置5的作用下,将储存仓10中生物墨水成分通过管道4输送至打印头组件3。在筛选生物墨水水凝胶时,使用明胶和海藻酸钠两种试剂,只需用到两条管道4以及两个注射装置5,也可根据需要试剂种类的不同选用所需要的管道4条数。为了使得图像识别系统对线条8的识别效果更好,各生物墨水成分中可以分别加入不同的荧光染料。在本实施例中,第一移动平台1带动第二移动平台2移动,第二移动平台2带动打印头组件3在打印平台6上方移动,由于打印平台6的上表面与水平面呈锐角,使得打印平台6的上表面呈倾斜设置,在打印过程中,打印头组件3与打印平台6的上表面之间的距离呈线性变化。此外,控温部使得打印平台6上表面的温度呈线性变化;通过图像识别系统可以识别打印平台6上最佳的线条8宽度以及形态,根据最佳的线条8宽度以及形态可以得到在温度和距离的共同影响下,最佳的打印温度以及距离。通过调整各注射装置5注射生物墨水成分的配比,根据打印最佳的线条8宽度以及形态,可以得到生物墨水的最佳配比。As shown in FIG. 1 to FIG. 2, a bio-ink printing condition screening platform includes a first moving
其中,打印头组件3包括外壳31以及安装在外壳31中的打印头32,外壳31与第二移动平台2固定连接,打印头32通过管道4与注射装置5相连通。在本实施例中,第二移动平台2带动外壳31移动,从而实现打印头32在打印平台6上方的移动。由于打印头32通过管道4与注射装置5相连,各不同的注射装置5可以将生物墨水的不同成分通过管道4输送至打印头32。需要说明的是外壳31通过安装块9与第二移动平台2相连接。The
另外,打印头32在与管道4相连通的一端设置有螺旋通道。在本实施例中,螺旋通道的设置延长了各生物墨水成分混合的时间,使得各生物墨水成分混合的更加均匀,有利于打印效果。In addition, the
其中,打印头32与打印平台6的上表面之间的垂直距离为0.05mm到2.5mm。The vertical distance between the
另外,控温部为至少两条循环水道7,其中一条循环水道7用于冷水循环,另一条水道用于热水循环;循环水道7设置在打印平台6中并与X轴或Y轴方向平行。在本实施例中,当两条循环水道7平行于X轴方向设置时,打印平台6上表面的温度变化沿Y轴方向呈线性变化;当两条循环水道7平行于Y轴方向设置时,打印平台6上表面的温度变化沿X轴方向呈线性变化。In addition, the temperature control part is at least two circulating
其中,打印平台6的上表面温度沿Y轴或X轴方向的线性变化范围为0℃至40℃。需要说明的是,当向其中一条循环水道7通0℃的冷水,另一条循环水道7通40℃的热水,可以使得打印平台6上表面温度沿Y轴或X轴方向的温度变化范围为0℃至40℃。Wherein, the linear variation range of the temperature of the upper surface of the
另外,第一移动平台1包括沿X轴方向设置的第一导槽11、设于第一导槽11中并与其滑动连接的第一滑块12以及与第一滑块12固定连接的安装架13;第一导槽11中还设置有第一驱动电机14,第一驱动电机14的输出轴上安装有第一螺纹杆15,第一螺纹杆15位于第一导槽11中并与第一滑块12螺纹连接。在本实施例中,第一驱动电机14驱动第一螺纹杆15转动,第一螺纹杆15带动第一滑块12在第一导槽11中移动,由于第一滑块12与安装架13固定相连,第一滑块12带动安装架13沿着X轴方向移动。In addition, the first
其中,第二移动平台2包括安装在两个安装架13上的第二导槽21、设于第二导槽21中并与其滑动连接的第二滑块22;第二导槽21中还设置有第二驱动电机23,第二驱动电机23的输出轴上安装有第二螺纹杆24,第二螺纹杆24位于第二导槽21中并与第二滑块22螺纹连接,第二滑块22与打印头组件3相连。在本实施例中,第二驱动电机23驱动第二螺纹杆24转动,第二螺纹杆24带动第二滑块22在第二导槽21中移动,由于第二滑块22与打印头组件3相连,在第二滑块22移动的过程中,第二滑块22带动打印头组件3沿着Y轴方向移动。Wherein, the second
另外,图像识别系统包括用于对打印平台6上所线条8进行摄影的摄像机以及与摄像机电连接的处理器。摄像机对打印的线条8进行摄影,通过将所拍图片,滤波后将背景去除,使用处理器进行截取、分区、图像识别,形成线条8的宽度与形态的关系图,通过打印效果最好的点所对应的坐标即可实现打印条件的筛选。In addition, the image recognition system includes a camera for photographing the
工作原理:打印的线条8沉积在打印平台6上,由于打印平台6上表面与打印头32之间的距离呈线性变化,且打印平台6上表面的温度也呈线性变化,打印平台6实现打印距离和温度的同时变化,图像识别识别系统可根据线条8的宽度以及形态筛选出合适的打印参数。同理,各生物墨水成分比例的筛选原理是在打印条件筛选的基础上,通过使用与打印头32相连的螺旋管道4,实现不同生物墨水成分比例的融合和挤出,再使其沉积到打印平台6上,图像识别系统设别线条8的形态和宽度后即可找到最优的墨水比例和打印参数的筛选结果。Working principle: The printed
在进行生物墨水比例和打印条件筛选时,打印条件的选择主要包括注射装置5的挤出压力、打印头32的移动速度、打印头32与打印平台6的距离以及打印平台6温度参数。挤出压力、打印头32的移动速度和打印距离是最直接影响线条8宽度的因素。挤出压力不足使得生物墨水无法挤出,挤出压力过大在单位面积下线条8沉积增多,线条8宽度会明显大于打印头32的内径。打印头32的移动速度快时,生物墨水会被拉伸变细甚至断开;打印头32的移动速度慢时,生物墨水在一段时间内沉积增多,线条8的宽度也会增加。打印距离是打印头32与打印平台6之间的距离,距离过大时,墨水在被挤出后无法以线条8的形式沉积在打印平台6上,墨水的形态会变成点状或短线的状态;距离过小时,沉积在打印平台6上的墨水不具有圆柱形,线条8不具有立体感。温度的变化也是直接影响线条8沉积的形态,温度过高时,水凝胶中的水分会挥发,在打印平台6上呈现消失的状态。When screening the bio-ink ratio and printing conditions, the selection of printing conditions mainly includes the extrusion pressure of the
实施例2Example 2
一种生物墨水打印条件筛选方法,包括打印条件筛选以及生物墨水比例筛选,打印条件筛选包括以下步骤:A method for screening bio-ink printing conditions, including screening for printing conditions and screening for bio-ink ratios, and screening for printing conditions includes the following steps:
S101:设置注射装置5的注射压力为一定值,并控制各注射装置5在打印过程中注射各生物墨水成分比例为一定值;S101 : setting the injection pressure of the
S102:设置第一移动平台1、第二移动平台2的运动速度,使得打印头组件3以固定速率移动;S102: Set the moving speed of the first moving
S103:利用图像识别系统对打印平台6上的线条8的宽度与形态进行识别,得到最佳的线条8宽度以及形态,根据该最佳线条8宽度以及形态得到对应的最佳打印距离以及打印温度;S103: Use the image recognition system to identify the width and shape of the
S104:在打印过程中,实时调节第一移动平台1、第二移动平台2的运动速度,使得打印头组件3以变化的速率移动;S104: During the printing process, adjust the movement speeds of the first moving
S105:利用图像识别系统对打印平台6上的线条8的宽度与形态进行识别,在打印头组件3以变化速率移动的情况下,得到最佳的线条8宽度以及形态,根据该最佳线条8宽度以及形态得到打印头组件3最佳的移动速率;S105: Use the image recognition system to identify the width and shape of the
S106:根据步骤S5得到的打印头组件3最佳的移动速率,将打印头组件3的移动速率调节至最佳的移动速率,同时在打印过程中实时调节注射装置5的注射压力;S106: According to the optimum moving speed of the
S107:利用图像识别系统对打印平台6上的线条8的宽度与形态进行识别,在注射压力实时变化的情况下,得到最佳的线条8宽度以及形态,根据该最佳线条8宽度以及形态得到注射装置5最佳的注射压力;S107: Use the image recognition system to identify the width and shape of the
生物墨水比例筛选包括以下步骤:在打印过程中,控制各注射装置5在打印过程中注射各生物墨水成分比例为变值,利用图像识别系统对打印平台6上的线条8的宽度与形态进行识别,在各生物墨水比例变化的情况下,得到最佳的线条8宽度以及形态,根据该最佳线条8宽度以及形态得到最佳的生物墨水比例。The screening of the bio-ink ratio includes the following steps: during the printing process, control each
需要说明的是,将挤出生物墨水的注射压力、打印头32的移动速度、打印头32与打印平台6的距离、打印平台6的温度和各生物墨水成分的比例同时改变,就可以实现对生物墨水比例和打印条件的同时筛选。It should be noted that the injection pressure of the extruded bio-ink, the moving speed of the
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110141828.9ACN112873838B (en) | 2021-02-02 | 2021-02-02 | A kind of bioink printing condition screening platform and screening method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110141828.9ACN112873838B (en) | 2021-02-02 | 2021-02-02 | A kind of bioink printing condition screening platform and screening method |
| Publication Number | Publication Date |
|---|---|
| CN112873838A CN112873838A (en) | 2021-06-01 |
| CN112873838Btrue CN112873838B (en) | 2022-04-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110141828.9AActiveCN112873838B (en) | 2021-02-02 | 2021-02-02 | A kind of bioink printing condition screening platform and screening method |
| Country | Link |
|---|---|
| CN (1) | CN112873838B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115195115B (en)* | 2022-05-12 | 2024-02-20 | 常州大学 | A spiral motion continuous light-curing 3D printing device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0499485A2 (en)* | 1991-02-14 | 1992-08-19 | E.I. Du Pont De Nemours And Company | Method and apparatus for forming solid objects |
| EP1935620A2 (en)* | 2006-12-22 | 2008-06-25 | Sony Corporation | Optical modeling apparatus |
| CN204322522U (en)* | 2014-10-17 | 2015-05-13 | 鲍光普 | Novel intelligent 3D Printing machine |
| CN206967961U (en)* | 2017-03-21 | 2018-02-06 | 上海纳伯金属材料技术服务有限公司 | A kind of five axle 3D printers without support printing |
| CN109251492A (en)* | 2017-07-13 | 2019-01-22 | 新加坡国立大学 | Bio-ink and its preparation method and application |
| US10286484B1 (en)* | 2018-01-12 | 2019-05-14 | General Electric Company | Systems and methods for additive manufacturing calibration |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0686480B1 (en)* | 1988-04-18 | 2001-11-28 | 3D Systems, Inc. | Stereolithographic supports |
| US6572807B1 (en)* | 2000-10-26 | 2003-06-03 | 3D Systems, Inc. | Method of improving surfaces in selective deposition modeling |
| SG11201600770RA (en)* | 2013-07-31 | 2016-02-26 | Organovo Inc | Automated devices, systems, and methods for the fabrication of tissue |
| US20170151713A1 (en)* | 2014-03-07 | 2017-06-01 | Polar 3D Llc | Three dimensional printer |
| DE102015006533A1 (en)* | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Method and device for producing 3D molded parts with layer construction technique |
| DE102015111504A1 (en)* | 2015-07-15 | 2017-01-19 | Apium Additive Technologies Gmbh | 3D printing device |
| CN106671436B (en)* | 2015-08-19 | 2019-04-23 | 三纬国际立体列印科技股份有限公司 | Printing calibration method and three-dimensional printing device |
| US11097464B2 (en)* | 2016-08-26 | 2021-08-24 | Massachusetts Institute Of Technology | Systems, devices, and methods for inkjet-based three-dimensional printing |
| EP3316566B1 (en)* | 2016-10-27 | 2019-09-18 | OCE Holding B.V. | Printing system for printing an object having a surface of varying height |
| WO2019130308A1 (en)* | 2017-12-29 | 2019-07-04 | Stratasys Ltd. | Apparatus and methods for additive manufacturing of three dimensional objects |
| CN108215164A (en)* | 2017-12-30 | 2018-06-29 | 广州紫苑智能科技有限公司 | The control method of 3D printing device and 3D printing device |
| US11084225B2 (en)* | 2018-04-02 | 2021-08-10 | Nanotronics Imaging, Inc. | Systems, methods, and media for artificial intelligence process control in additive manufacturing |
| US11931950B2 (en)* | 2018-09-28 | 2024-03-19 | Lawrence Livermore National Security, Llc | Machine learning informed control systems for extrusion printing processes |
| EP4242762A3 (en)* | 2019-05-17 | 2023-12-27 | Markforged, Inc. | 3d printing apparatus and method |
| CN110369723B (en)* | 2019-07-25 | 2021-11-16 | 西安理工大学 | Laser power optimization method for 3D laser printing |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0499485A2 (en)* | 1991-02-14 | 1992-08-19 | E.I. Du Pont De Nemours And Company | Method and apparatus for forming solid objects |
| EP1935620A2 (en)* | 2006-12-22 | 2008-06-25 | Sony Corporation | Optical modeling apparatus |
| CN204322522U (en)* | 2014-10-17 | 2015-05-13 | 鲍光普 | Novel intelligent 3D Printing machine |
| CN206967961U (en)* | 2017-03-21 | 2018-02-06 | 上海纳伯金属材料技术服务有限公司 | A kind of five axle 3D printers without support printing |
| CN109251492A (en)* | 2017-07-13 | 2019-01-22 | 新加坡国立大学 | Bio-ink and its preparation method and application |
| US10286484B1 (en)* | 2018-01-12 | 2019-05-14 | General Electric Company | Systems and methods for additive manufacturing calibration |
| Title |
|---|
| 《Bio-inks for 3D bioprinting: recent advances and future prospects》;Ilze Donderwinkel;《Polymer Chemistry》;20170710;全文* |
| 《生物3D打印高分子材料发展现状与趋势》;毛宏理;《工程科技Ⅰ辑》;20190128;全文* |
| Publication number | Publication date |
|---|---|
| CN112873838A (en) | 2021-06-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN112873838B (en) | A kind of bioink printing condition screening platform and screening method | |
| CA3093830A1 (en) | Electrohydrodynamic bioprinter system and method | |
| US11307131B2 (en) | Visualization system and method for multiphase fluids displacement experiment with large viscosity difference in complex pore structure | |
| CN110306219B (en) | Metal 3D printer based on electrochemical reaction and printing method thereof | |
| TW201930942A (en) | Optical element, microlens array, and method for producing optical element | |
| CN106948014A (en) | A kind of three-dimensional melting electrostatic Method of printing of big height micro-nano structure | |
| CN110767597A (en) | Micro-operation device and method based on capillary force | |
| CN111300827B (en) | A 3D printing device based on gels with shear thinning properties | |
| Huang et al. | Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device | |
| CN205247831U (en) | Booth is apart from display screen | |
| CN109291428B (en) | Method for regulating and controlling arrangement direction of ceramic nanowires in composite material | |
| CN115178425A (en) | High-uniformity automatic gluing device for capacitor aluminum foil | |
| JP2008075537A (en) | Pulsation absorption device, application method and application device using same, and method for manufacturing liquid crystal display member | |
| CN1609688A (en) | Liquid crystal display device, manufacturing method and bonding device thereof | |
| CN210575891U (en) | A capillary force-based micro-device manipulation device | |
| CN110893679A (en) | A micro-3D printing device for active stem cells based on PL-level piezoelectric nozzle technology | |
| CN211471772U (en) | Near-field direct writing device for preparing multilayer fiber film | |
| CN109306142B (en) | Novel dielectric composite material | |
| CN114507888B (en) | Electrodeposition preparation method and device for pipeline inner wall super-hydrophobic structure | |
| CN111549453A (en) | Preparation method of electrostatic direct-writing regular pore structure perfluorinated polymer porous membrane | |
| DE10235020A1 (en) | Device for etching large surface semiconductor wafers in a trough-shaped receiver containing a liquid electrolyte used in semiconductor manufacture comprises a testing head provided with a device for holding at least one wafer | |
| CN202975388U (en) | System for processing optical fiber end face | |
| CN1419261A (en) | Method and device for forming barrier rib of plane screen display and said display and back board thereof | |
| CN208350485U (en) | A kind of Senior Biology experiment blood smear producing device | |
| CN201639861U (en) | Ink supply device for circuit board plugging machine |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |