



技术领域technical field
本发明涉及自动定位的技术领域,特别是涉及一种立体定向框架定位方法及系统、介质及终端。The present invention relates to the technical field of automatic positioning, and in particular, to a stereotaxic frame positioning method and system, medium and terminal.
背景技术Background technique
脑深部电刺激疗法(Deep Brain Stimulation,DBS),又称脑起搏器治疗手术,是人们将电极植入到人体内从而改善生命质量的生物医学工程技术。该技术是利用脑立体定向手术在脑内运动相关神经核团(如苍白球内侧部、丘脑底核等)的位置植入电极,发放高频电刺激,干扰异常电活动的神经元,将运动控制环路或紊乱的神经递质恢复到相对正常的功能状态,从而达到减轻患者运动障碍症状、提高生活质量的目的。目前,DBS一般应用于治疗帕金森病(Parkinson's Disease,PD)、肌张力障碍(dystonia)等疾病。Deep Brain Stimulation (DBS), also known as brain pacemaker surgery, is a biomedical engineering technology in which people implant electrodes into the human body to improve the quality of life. This technology uses stereotaxic surgery to implant electrodes at the positions of motor-related nerve nuclei (such as the medial part of the globus pallidus, subthalamic nucleus, etc.) The control loop or disordered neurotransmitter can be restored to a relatively normal functional state, so as to reduce the symptoms of movement disorders and improve the quality of life of patients. Currently, DBS is generally used to treat Parkinson's Disease (PD), dystonia and other diseases.
虽然DBS治疗方法日趋成熟,但手术相关并发症仍在不断发生。颅内出血是其中最大的一个问题之一。出血的风险与患者术前高血压、年龄和进针位置等因素密切相关。为了获取手术的进针位置,患者需要在手术前安装立体定向框架,使用一系列脑影像进行脑深部核团的分割、定位,从而确定手术执行的细节,并通过多模态的影像学信息确定立体定向框架标志和进行手术靶点的定位。但由于在影像学扫描的过程中,可能会发生立体定向框架移位或定位不准确的问题,直接通过影像学中标记出的手术靶点获取手术进针位置存在定位偏移的风险,从而可能引发一系列的手术并发症。Although DBS treatment methods are becoming more mature, surgery-related complications continue to occur. Intracranial hemorrhage is one of the biggest problems. The risk of bleeding is closely related to factors such as preoperative hypertension, age, and needle insertion location. In order to obtain the needle insertion position for the operation, the patient needs to install a stereotaxic frame before the operation, and use a series of brain images to segment and locate the deep brain nuclei, so as to determine the details of the operation, and determine the details of the operation through multimodal imaging information. Stereotactic frame marking and positioning of surgical targets. However, due to the displacement of the stereotactic frame or inaccurate positioning during the imaging scanning process, there is a risk of positioning deviation to obtain the surgical needle insertion position directly through the surgical target marked in the imaging, which may lead to lead to a series of surgical complications.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种立体定向框架定位方法及系统、介质及终端,有效解决了立体定向框架定位精度较低、定位时间较长的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a stereotaxic frame positioning method and system, a medium and a terminal, which effectively solve the problems of low positioning accuracy and long positioning time of the stereotaxic frame.
为实现上述目的及其他相关目的,本发明提供一种立体定向框架定位方法,包括以下步骤:对包含有立体定向框架的CT图像进行预处理,滤除所述立体定向框架内定位器的框架;在滤除所述框架的CT图像上,获取所述定位器的先验坐标点;在滤除所述框架的CT图像的各个片层上,获取所述定位器的轮廓中心位置点;对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层;在各个有效片层上,基于所述有效片层的轮廓中心位置点计算立体定向框架坐标系下的左、右、上方的参考点坐标;所述参考点为左、右、上方位于中间位置的轮廓中心位置点;基于所述各个有效片层上的参考点坐标计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵;基于所述三维仿射变换矩阵将所述立体定向框架的影像坐标映射至所述立体定向框架坐标系。In order to achieve the above object and other related objects, the present invention provides a method for positioning a stereotaxic frame, comprising the following steps: preprocessing a CT image including a stereotaxic frame, and filtering out the frame of the localizer in the stereotaxic frame; On the CT image from which the frame is filtered out, the prior coordinate points of the locator are obtained; on each slice of the CT image from which the frame is filtered out, the contour center position point of the locator is obtained; The contour center position points of each slice are filtered to obtain effective slices with three contour center points on the left, right and above; on each effective slice, based on the outline center position points of the effective slices Calculate the coordinates of the left, right, and upper reference points in the stereotaxic frame coordinate system; the reference point is the center position point of the contour at the middle position on the left, right, and upper; Calculate based on the reference point coordinates on each effective slice A three-dimensional affine transformation matrix from an image coordinate system to a stereotactic frame coordinate system; mapping the image coordinates of the stereotactic frame to the stereotactic frame coordinate system based on the three-dimensional affine transformation matrix.
于本发明一实施例中,对包含有立体定向框架的CT图像进行预处理包括以下步骤:In an embodiment of the present invention, preprocessing the CT image including the stereotaxic frame includes the following steps:
选取滤波阈值;Select the filter threshold;
基于所述滤波阈值对所述CT图像进行滤波,以滤除所述立体定向框架内定位器的框架。The CT image is filtered based on the filtering threshold to filter out the frame of the localizer within the stereotaxic frame.
于本发明一实施例中,获取所述定位器的先验坐标点包括以下步骤:In an embodiment of the present invention, acquiring the prior coordinate points of the locator includes the following steps:
在滤除所述框架的CT图像的各个片层的左、右、上方逐层查找第一次出现非零值时的坐标点;Find the coordinate point when a non-zero value occurs for the first time layer by layer on the left, right, and top of each slice of the CT image of the filtered frame;
将出现次数最多的坐标点作为所述先验坐标点。The coordinate point with the largest number of occurrences is used as the prior coordinate point.
于本发明一实施例中,基于图形矩获取所述定位器的轮廓中心位置点。In an embodiment of the present invention, the contour center position point of the locator is obtained based on the graph moment.
于本发明一实施例中,对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层包括以下步骤:In an embodiment of the present invention, filtering the contour center position points of each slice, and obtaining an effective slice with three contour center points on the left, right, and top includes the following steps:
根据所述先验坐标点和所述轮廓中心位置点之间的距离,在所述各个片层上滤除所述距离大于所述定位器半径的轮廓中心位置点;According to the distance between the prior coordinate point and the contour center position point, filter out the contour center position point whose distance is greater than the radius of the locator on each slice;
将左、右、上方有三个轮廓中心位置点的片层作为有效片层。The slice with three contour center position points on the left, right and above is taken as the effective slice.
于本发明一实施例中,所述立体定向框架坐标系包括两个自定义参数和一个相对高度;所述参考点的相对高度为hr=lλ,l为所述定位器高度,λ为所述三个轮廓中心位置点中起始边缘轮廓中心位置点至所述参考点的距离与两个边缘轮廓中心位置点之间的距离的比值。In an embodiment of the present invention, the coordinate system of the stereotaxic frame includes two user-defined parameters and a relative height; the relative height of the reference point is hr =lλ, l is the height of the locator, and λ is the The ratio of the distance between the starting edge contour center position point and the reference point and the distance between the two edge contour center position points among the three contour center position points.
于本发明一实施例中,基于最小二乘法和RANSAC异常点滤除算法,计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵。In an embodiment of the present invention, a three-dimensional affine transformation matrix from the image coordinate system to the stereotaxic frame coordinate system is calculated based on the least squares method and the RANSAC outlier filtering algorithm.
对应地,本发明提供一种立体定向框架定位系统,包括预处理模块、第一获取模块、第二获取模块、过滤模块、第一计算模块、第二计算模块和映射模块;Correspondingly, the present invention provides a stereotaxic frame positioning system, comprising a preprocessing module, a first acquisition module, a second acquisition module, a filtering module, a first calculation module, a second calculation module and a mapping module;
所述预处理模块用于对包含有立体定向框架的CT图像进行预处理,滤除所述立体定向框架内定位器的框架;The preprocessing module is used to preprocess the CT image containing the stereotaxic frame, and filter out the frame of the localizer in the stereotaxic frame;
所述第一获取模块用于在滤除所述框架的CT图像上,获取所述定位器的先验坐标点;The first acquisition module is configured to acquire the prior coordinate point of the locator on the CT image from which the frame is filtered;
所述第二获取模块用于在滤除所述框架的CT图像的各个片层上,获取所述定位器的轮廓中心位置点;The second acquisition module is used to acquire the contour center position point of the locator on each slice of the CT image of the frame;
所述过滤模块用于对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层;The filtering module is used to filter the contour center position points of the respective slices, and obtain effective slices with three contour center position points on the left, right, and top;
所述第一计算模块用于在各个有效片层上,基于所述有效片层的轮廓中心位置点计算立体定向框架坐标系下的左、右、上方的参考点坐标;所述参考点为左、右、上方位于中间位置的轮廓中心位置点;The first calculation module is used to calculate the coordinates of the left, right and upper reference points in the stereotaxic frame coordinate system based on the contour center position point of the effective slice on each effective slice; the reference point is the left , the right, upper contour center position point in the middle position;
所述第二计算模块用于基于所述各个有效片层上的参考点坐标计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵;The second calculation module is configured to calculate a three-dimensional affine transformation matrix from the image coordinate system to the stereotaxic frame coordinate system based on the reference point coordinates on the effective slices;
所述映射模块用于基于所述三维仿射变换矩阵将所述立体定向框架的影像坐标映射至所述立体定向框架坐标系。The mapping module is configured to map the image coordinates of the stereotaxic frame to the stereotaxic frame coordinate system based on the three-dimensional affine transformation matrix.
本发明提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的立体定向框架定位方法。The present invention provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned stereotaxic frame positioning method is implemented.
最后,本发明提供一种终端,包括:处理器及存储器;Finally, the present invention provides a terminal, including: a processor and a memory;
所述存储器用于存储计算机程序;the memory is used to store computer programs;
所述处理器用于执行所述存储器存储的计算机程序,以使所述终端执行上述的立体定向框架定位方法。The processor is configured to execute the computer program stored in the memory, so that the terminal executes the above-mentioned stereotaxic frame positioning method.
如上所述,本发明的立体定向框架定位方法及系统、介质及终端,具有以下有益效果:As described above, the stereotaxic frame positioning method and system, medium and terminal of the present invention have the following beneficial effects:
(1)能够自动识别参考点,无需人为进行参考点的选择或筛选,从而减少了主观误差;(1) The reference point can be automatically identified without the need for manual selection or screening of the reference point, thereby reducing subjective errors;
(2)能够根据参考点坐标与影像坐标之间的映射关系实现定位,有效缩短了定位时间;(2) The positioning can be realized according to the mapping relationship between the reference point coordinates and the image coordinates, which effectively shortens the positioning time;
(3)解决了立体定向框架定位精度较低、定位时间较长的问题。(3) The problems of low positioning accuracy and long positioning time of the stereotaxic frame are solved.
附图说明Description of drawings
图1显示为本发明的立体定向框架定位方法于一实施例中的流程图;FIG. 1 is a flowchart of the stereotaxic frame positioning method of the present invention in one embodiment;
图2显示为本发明的中心位置点于一实施例中的示意图;FIG. 2 shows a schematic diagram of the center position point of the present invention in an embodiment;
图3显示为本发明的立体定向框架定位系统于一实施例中的结构示意图;3 is a schematic structural diagram of the stereotaxic frame positioning system of the present invention in an embodiment;
图4显示为本发明的终端于一实施例中的结构示意图。FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
元件标号说明Component label description
31 预处理模块31 Preprocessing module
32 第一获取模块32 The first acquisition module
33 第二获取模块33 Second acquisition module
34 过滤模块34 Filter Module
35 第一计算模块35 The first calculation module
36 第二计算模块36 Second calculation module
37 映射模块37 Mapping Module
41 处理器41 processors
42 存储器42 memory
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
本发明的立体定向框架定位方法及系统、介质及终端通过自动选取参考点,建立参考点坐标与影像坐标之间的映射关系来实现立体定向框架的精准定位,有效解决了立体定向框架定位精度较低、定位时间较长的问题,极具实用性。The stereotactic frame positioning method, system, medium and terminal of the present invention realize the precise positioning of the stereotactic frame by automatically selecting reference points and establishing a mapping relationship between the coordinates of the reference points and the image coordinates, and effectively solves the problem that the positioning accuracy of the stereotactic frame is relatively high. It is very practical to solve the problem of low and long positioning time.
如图1所示,于一实施例中,本发明的立体定向框架定位方法包括以下步骤:As shown in FIG. 1, in one embodiment, the stereotaxic frame positioning method of the present invention includes the following steps:
步骤S1、对包含有立体定向框架的CT图像进行预处理,滤除所述立体定向框架内定位器的框架。Step S1 , preprocessing the CT image including the stereotaxic frame, and filtering out the frame of the localizer in the stereotaxic frame.
具体地,定位器设置在立体定向框架内部,故为了确定定位器的位置,首先在包含有立体定向框架的CT图像上,滤除位于定位器边缘的框架。Specifically, the localizer is set inside the stereotactic frame, so in order to determine the position of the localizer, first, the frame located at the edge of the localizer is filtered out on the CT image containing the stereotaxic frame.
于本发明一实施例中,对包含有立体定向框架的CT图像进行预处理包括以下步骤:In an embodiment of the present invention, preprocessing the CT image including the stereotaxic frame includes the following steps:
11)选取滤波阈值。11) Select the filtering threshold.
具体地,所述滤波阈值用于对所述CT图像进行过滤操作,从而将所述CT图像划分为背景部分和目标部分。在本发明中,通过选取合理的滤波阈值,使得所述定位器为目标部分,所述框架为背景部分。Specifically, the filtering threshold is used to perform a filtering operation on the CT image, so as to divide the CT image into a background part and a target part. In the present invention, by selecting a reasonable filtering threshold, the localizer is the target part and the frame is the background part.
12)基于所述滤波阈值对所述CT图像进行滤波,以滤除所述立体定向框架内定位器的框架。12) Filtering the CT image based on the filtering threshold to filter out the frame of the localizer within the stereotaxic frame.
步骤S2、在滤除所述框架的CT图像上,获取所述定位器的先验坐标点。Step S2: Obtain the prior coordinate points of the localizer on the CT image from which the frame is filtered.
具体地,在滤除所述框架的CT图像的各个片层上,在左、右、上方逐层查找第一次出现非零值时的坐标点。然后,对各个坐标点进行统计,将出现次数最多的坐标点作为所述先验坐标点,即表明所述定位器位置的点。Specifically, on each slice of the CT image from which the frame is filtered out, the coordinate point when a non-zero value appears for the first time is searched layer by layer on the left, right and above. Then, statistics are performed on each coordinate point, and the coordinate point with the largest number of occurrences is used as the prior coordinate point, that is, the point indicating the position of the locator.
步骤S3、在滤除所述框架的CT图像的各个片层上,获取所述定位器的轮廓中心位置点。Step S3: Obtain the contour center position point of the locator on each slice of the CT image from which the frame is filtered.
具体地,基于图形矩获取所述定位器的轮廓中心位置点。Specifically, the contour center position point of the locator is obtained based on the graph moment.
步骤S4、对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层。Step S4 , filtering the contour center position points of each slice to obtain valid slices with three contour center positions on the left, right, and top.
具体地,在滤除所述框架的CT图像上,所述定位器的四周可能会存在一些毛刺,故上述步骤所得到的轮廓中心位置点中可能位于所述毛刺上,故需要进行过滤处理,以提升精度。通过过滤处理后,仅保留在左、右、上方均有三个轮廓中心位置点的片层作为有效片层。对于在左、右、上方有多于或少于三个轮廓中心位置点的片层,则删除处理。Specifically, on the CT image filtered out of the frame, there may be some burrs around the locator, so the center position of the contour obtained in the above steps may be located on the burr, so filtering processing is required, to improve accuracy. After filtering, only the slices with three contour center points on the left, right and above are retained as valid slices. For slices with more or less than three contour center position points on the left, right, and above, delete processing.
于本发明一实施例中,对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层包括以下步骤:In an embodiment of the present invention, filtering the contour center position points of each slice, and obtaining an effective slice with three contour center points on the left, right, and top includes the following steps:
41)根据所述先验坐标点和所述轮廓中心位置点之间的距离,在所述各个片层上滤除所述距离大于所述定位器半径的轮廓中心位置点。41) According to the distance between the prior coordinate point and the contour center position point, filter out the contour center position point whose distance is greater than the radius of the locator on each slice.
42)将左、右、上方有三个轮廓中心位置点的片层作为有效片层。42) The slices with three contour center position points on the left, right and above are used as effective slices.
步骤S5、在各个有效片层上,基于所述有效片层的轮廓中心位置点计算立体定向框架坐标系下的左、右、上方的参考点坐标;所述参考点为左、右、上方位于中间位置的轮廓中心位置点。Step S5, on each effective slice, calculate the left, right, and upper reference point coordinates under the stereotaxic frame coordinate system based on the contour center position point of the effective slice; The contour center position point in the middle position.
具体地,在每个有效片层上,计算左、右、上方的参考点坐标。其中,本发明所述的参考点是指左、右、上方位于中间位置的轮廓中心位置点。于本发明一实施例中,所述立体定向框架坐标系包括两个自定义参数和一个相对高度。所述参考点的相对高度为hr=lλ,l为所述定位器高度,λ为所述三个轮廓中心位置点中起始边缘轮廓中心位置点至所述参考点的距离与两个边缘轮廓中心位置点之间的距离的比值。其中,对于左、右方向,轮廓中心位置点按照从上到下的顺序排列,位于最上方的轮廓中心位置点为所述起始边缘轮廓中心位置点。对于上方,轮廓中心位置点按照从左到右的顺序排列,位于最左方的轮廓中心位置点为所述起始边缘轮廓中心位置点。Specifically, on each valid slice, the coordinates of the left, right, and upper reference points are calculated. Wherein, the reference point in the present invention refers to the center position point of the contour at the middle position on the left, right and top. In an embodiment of the present invention, the stereotaxic frame coordinate system includes two custom parameters and a relative height. The relative height of the reference point is hr =lλ, l is the height of the locator, and λ is the distance between the center position of the starting edge contour and the reference point and the two edges of the three contour center position points. The ratio of the distances between the contour center position points. Wherein, for the left and right directions, the contour center position points are arranged in order from top to bottom, and the contour center position point located at the top is the initial edge contour center position point. For the upper part, the contour center position points are arranged in order from left to right, and the contour center position point located at the far left is the contour center position point of the starting edge.
如图2所示,在左侧有A、B和C三个轮廓中心位置点,选取B为参考点。B的相对高度为hr=lλ,其中,As shown in Figure 2, there are three contour center points A, B and C on the left side, and B is selected as the reference point. The relative height of B is hr =lλ , where,
步骤S6、基于所述各个有效片层上的参考点坐标计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵。Step S6: Calculate a three-dimensional affine transformation matrix from the image coordinate system to the stereotaxic frame coordinate system based on the coordinates of the reference points on the effective slices.
具体地,基于最小二乘法和RANSAC异常点滤除算法,计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵。于一实施例中,所述三维仿射变换矩阵如下:Specifically, based on the least squares method and the RANSAC outlier filtering algorithm, the three-dimensional affine transformation matrix from the image coordinate system to the stereotaxic frame coordinate system is calculated. In one embodiment, the three-dimensional affine transformation matrix is as follows:
其中,(x,y,z)表示影像坐标,(x′,y′,z′)表示参考点坐标,矩阵表示含12个待优化参数的三维仿射矩阵。Among them, (x, y, z) represents the coordinates of the image, (x', y', z') represents the coordinates of the reference point, and the matrix Represents a three-dimensional affine matrix with 12 parameters to be optimized.
步骤S7、基于所述三维仿射变换矩阵将所述立体定向框架的影像坐标映射至所述立体定向框架坐标系。Step S7 , mapping the image coordinates of the stereotaxic frame to the stereotaxic frame coordinate system based on the three-dimensional affine transformation matrix.
具体地,对于所述立体定向框架,将其影像坐标通过所述三维仿射变换矩阵映射至所述立体定向框架坐标系,从而实现所述立体定向框架的自动化定位。Specifically, for the stereotactic frame, its image coordinates are mapped to the stereotactic frame coordinate system through the three-dimensional affine transformation matrix, so as to realize the automatic positioning of the stereotactic frame.
如图3所示,于一实施例中,本发明的立体定向框架定位系统包括预处理模块31、第一获取模块32、第二获取模块33、过滤模块34、第一计算模块35、第二计算模块36和映射模块37。As shown in FIG. 3 , in one embodiment, the stereotaxic frame positioning system of the present invention includes a
所述预处理模块31用于对包含有立体定向框架的CT图像进行预处理,滤除所述立体定向框架内定位器的框架。The
所述第一获取模块32与所述预处理模块31相连,用于在滤除所述框架的CT图像上,获取所述定位器的先验坐标点。The
所述第二获取模块33与所述预处理模块31相连,用于在滤除所述框架的CT图像的各个片层上,获取所述定位器的轮廓中心位置点。The
所述过滤模块34与所述第一获取模块32和所述第二获取模块33相连,用于对所述各个片层的轮廓中心位置点进行过滤处理,获取在左、右、上方均有三个轮廓中心位置点的有效片层。The
所述第一计算模块35与所述过滤模块34相连,用于在各个有效片层上,基于所述有效片层的轮廓中心位置点计算立体定向框架坐标系下的左、右、上方的参考点坐标;所述参考点为左、右、上方位于中间位置的轮廓中心位置点。The
所述第二计算模块36与所述第一计算模块35相连,用于基于所述各个有效片层上的参考点坐标计算影像坐标系到立体定向框架坐标系的三维仿射变换矩阵。The
所述映射模块37与所述第二计算模块36相连,用于基于所述三维仿射变换矩阵将所述立体定向框架的影像坐标映射至所述立体定向框架坐标系。The
其中,预处理模块31、第一获取模块32、第二获取模块33、过滤模块34、第一计算模块35、第二计算模块36和映射模块37的结构和原理与上述立体定向框架定位方法的步骤一一对应,故在此不再赘述。The structures and principles of the
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,x模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上x模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。It should be noted that it should be understood that the division of each module of the above apparatus is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated. And these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware. For example, the x module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Calls and executes the functions of the above x module. The implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently. The processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(Digital Signal Processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。For example, the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), or one or more microprocessors ( Digital Signal Processor, referred to as DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array, referred to as FPGA) and the like. For another example, when one of the above modules is implemented in the form of processing element scheduling program code, the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU for short) or other processors that can call program codes. For another example, these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC for short).
本发明的存储介质上存储有计算机程序,该程序被处理器执行时实现上述的立体定向框架定位方法。所述存储介质包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。A computer program is stored on the storage medium of the present invention, and when the program is executed by the processor, the above-mentioned stereotaxic frame positioning method is implemented. The storage medium includes: ROM, RAM, magnetic disk, U disk, memory card or optical disk and other media that can store program codes.
如图4所示,于一实施例中,本发明的终端包括:处理器41及存储器42。As shown in FIG. 4 , in an embodiment, the terminal of the present invention includes: a
所述存储器42用于存储计算机程序。The
所述存储器42包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。The
所述处理器41与所述存储器42相连,用于执行所述存储器42存储的计算机程序,以使所述终端执行上述的立体定向框架定位方法。The
优选地,所述处理器41可以是通用处理器,包括中央处理器(Central ProcessingUnit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application SpecificIntegrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。Preferably, the
综上所述,本发明的立体定向框架定位方法及系统、介质及终端能够自动识别参考点,无需人为进行参考点的选择或筛选,从而减少了主观误差;能够根据参考点坐标与影像坐标之间的映射关系实现定位,有效缩短了定位时间;解决了立体定向框架定位精度较低、定位时间较长的问题。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the stereotaxic frame positioning method and system, medium and terminal of the present invention can automatically identify reference points, without the need for manual selection or screening of reference points, thereby reducing subjective errors; The mapping relationship between them realizes positioning, which effectively shortens the positioning time; it solves the problems of low positioning accuracy and long positioning time of the stereotaxic frame. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110152049.9ACN112837363B (en) | 2021-02-03 | 2021-02-03 | Stereotaxic frame positioning method and system, medium and terminal |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110152049.9ACN112837363B (en) | 2021-02-03 | 2021-02-03 | Stereotaxic frame positioning method and system, medium and terminal |
| Publication Number | Publication Date |
|---|---|
| CN112837363A CN112837363A (en) | 2021-05-25 |
| CN112837363Btrue CN112837363B (en) | 2022-09-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110152049.9AActiveCN112837363B (en) | 2021-02-03 | 2021-02-03 | Stereotaxic frame positioning method and system, medium and terminal |
| Country | Link |
|---|---|
| CN (1) | CN112837363B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118037681A (en)* | 2023-12-29 | 2024-05-14 | 清华大学 | Method and device for determining direction of direction electrode based on CT image |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0018166A1 (en)* | 1979-04-13 | 1980-10-29 | Pfizer Inc. | Apparatus for use in stereotactic surgery |
| CN1775183A (en)* | 2005-12-07 | 2006-05-24 | 嘉兴市第一医院 | Framed Stereotaxic Neurosurgery System Registration Method |
| CN102697560A (en)* | 2012-05-17 | 2012-10-03 | 深圳市一体医疗科技股份有限公司 | Non-invasive tumor locating system and method |
| CN103083090A (en)* | 2012-12-29 | 2013-05-08 | 浙江大学医学院附属第二医院 | Method using cross-sectional image to obtain coordinate of target point in stereotaxic apparatus |
| CN105250035A (en)* | 2015-10-22 | 2016-01-20 | 同方鼎欣信息技术有限公司 | Target site positioning method and system supporting various stereotaxic apparatuses |
| CN105326566A (en)* | 2014-08-11 | 2016-02-17 | 刘会 | Skull surface marking and planar positioning stereotactic instrument and positioning method thereof |
| CN108309450A (en)* | 2017-12-27 | 2018-07-24 | 刘洋 | Locator system and method for surgical navigational |
| CN209018974U (en)* | 2018-02-06 | 2019-06-25 | 刘会 | A kind of cranium brain stereotactic apparatus |
| CN110021053A (en)* | 2019-04-16 | 2019-07-16 | 河北医科大学第二医院 | A kind of image position method, device, storage medium and equipment based on coordinate conversion |
| CN110645928A (en)* | 2019-10-09 | 2020-01-03 | 华志微创医疗科技(北京)有限公司 | Space coordinate positioning method of three-dimensional scanner |
| CN112184914A (en)* | 2020-10-27 | 2021-01-05 | 北京百度网讯科技有限公司 | Method and device for determining three-dimensional position of target object and road side equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0018166A1 (en)* | 1979-04-13 | 1980-10-29 | Pfizer Inc. | Apparatus for use in stereotactic surgery |
| CN1775183A (en)* | 2005-12-07 | 2006-05-24 | 嘉兴市第一医院 | Framed Stereotaxic Neurosurgery System Registration Method |
| CN102697560A (en)* | 2012-05-17 | 2012-10-03 | 深圳市一体医疗科技股份有限公司 | Non-invasive tumor locating system and method |
| CN103083090A (en)* | 2012-12-29 | 2013-05-08 | 浙江大学医学院附属第二医院 | Method using cross-sectional image to obtain coordinate of target point in stereotaxic apparatus |
| CN105326566A (en)* | 2014-08-11 | 2016-02-17 | 刘会 | Skull surface marking and planar positioning stereotactic instrument and positioning method thereof |
| CN105250035A (en)* | 2015-10-22 | 2016-01-20 | 同方鼎欣信息技术有限公司 | Target site positioning method and system supporting various stereotaxic apparatuses |
| CN108309450A (en)* | 2017-12-27 | 2018-07-24 | 刘洋 | Locator system and method for surgical navigational |
| CN209018974U (en)* | 2018-02-06 | 2019-06-25 | 刘会 | A kind of cranium brain stereotactic apparatus |
| CN110021053A (en)* | 2019-04-16 | 2019-07-16 | 河北医科大学第二医院 | A kind of image position method, device, storage medium and equipment based on coordinate conversion |
| CN110645928A (en)* | 2019-10-09 | 2020-01-03 | 华志微创医疗科技(北京)有限公司 | Space coordinate positioning method of three-dimensional scanner |
| CN112184914A (en)* | 2020-10-27 | 2021-01-05 | 北京百度网讯科技有限公司 | Method and device for determining three-dimensional position of target object and road side equipment |
| Title |
|---|
| MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping;Ruimin Feng;《NeuroImage》;20210708;全文* |
| Robotic System for MRI-Guided Stereotactic Neurosurgery;Gang Li等;《 IEEE Transactions on Biomedical Engineering》;20141004;全文* |
| 基于MR图像的苍白球内侧部帕金森手术;邓信平等;《磁共振成像》;20181231;全文* |
| 大脑中央前回计算神经影像解剖学及三维可视化;高雅;《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》;20160415;全文* |
| Publication number | Publication date |
|---|---|
| CN112837363A (en) | 2021-05-25 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107808377B (en) | A locating device for lesions in lung lobes | |
| CN112508888B (en) | Brain artery rapid automatic segmentation method and system for medical image | |
| Hasan et al. | A modified U-Net convolutional network featuring a nearest-neighbor re-sampling-based elastic-transformation for brain tissue characterization and segmentation | |
| US7903849B2 (en) | Medical image processing apparatus | |
| CN112837363B (en) | Stereotaxic frame positioning method and system, medium and terminal | |
| Avecillas-Chasin et al. | Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system | |
| KR20210115010A (en) | Image processing method and apparatus, electronic device | |
| CN114631885A (en) | Simulation system and readable storage medium | |
| CN112465900A (en) | Stereo electroencephalogram electrode positioning method | |
| CN109035316A (en) | The method for registering and equipment of nuclear magnetic resonance image sequence | |
| CN115797293A (en) | Brain image reference point automatic labeling method based on magnetic resonance imaging | |
| Liu et al. | Automatic segmentation of the human brain ventricles from MR images by knowledge-based region growing and trimming | |
| CN111583189B (en) | Brain nucleus positioning method, device, storage medium and computer equipment | |
| CN110379493A (en) | A kind of image-guidance registration arrangement and image-guidance system | |
| KR20240096862A (en) | Eye tracking method, device, equipment and storage medium for anterior segment OCTA | |
| CN115100217A (en) | Brain region extraction method, device, equipment and medium in head and neck CT images | |
| TWI766253B (en) | Method and system of determining operation pathway based on image matching | |
| CN108852287A (en) | A method of the selection symmetrical region of interest of brain | |
| CN113344892A (en) | Medical image processing device, method, medium and electronic equipment | |
| EP4459545A1 (en) | Target region positioning method, electronic device, and medium | |
| CN118096791A (en) | Deep learning-based automatic brain hemorrhage influence segmentation method and device | |
| CN115272288B (en) | Automatic identification method for medical image mark points, electronic equipment and storage medium | |
| CN113926078B (en) | Implantable electrode detection method, detection device and computer readable storage medium | |
| CN115116113A (en) | Optical navigation method | |
| CN113302627B (en) | Methods for stereotactic brain target determination |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |