Movatterモバイル変換


[0]ホーム

URL:


CN112731463B - Synchronous simulation system combining GNSS navigation constellation and receiver - Google Patents

Synchronous simulation system combining GNSS navigation constellation and receiver
Download PDF

Info

Publication number
CN112731463B
CN112731463BCN202011475007.0ACN202011475007ACN112731463BCN 112731463 BCN112731463 BCN 112731463BCN 202011475007 ACN202011475007 ACN 202011475007ACN 112731463 BCN112731463 BCN 112731463B
Authority
CN
China
Prior art keywords
module
simulation
receiver
information
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011475007.0A
Other languages
Chinese (zh)
Other versions
CN112731463A (en
Inventor
刘坤
蔡霞
张晓敏
万程程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Star Technology Co Ltd
Original Assignee
Space Star Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Star Technology Co LtdfiledCriticalSpace Star Technology Co Ltd
Priority to CN202011475007.0ApriorityCriticalpatent/CN112731463B/en
Publication of CN112731463ApublicationCriticalpatent/CN112731463A/en
Application grantedgrantedCritical
Publication of CN112731463BpublicationCriticalpatent/CN112731463B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a synchronous simulation system of a combined GNSS navigation constellation and a receiver, which comprises: the system comprises a system simulation module, an interface module and a time-frequency module; the system simulation module comprises a GNSS navigation constellation simulator and a GNSS receiver simulator; the GNSS navigation constellation simulator generates navigation observation information according to preset orbit information and transmits the navigation observation information to the GNSS receiver simulator; the GNSS receiver simulator carries out loop tracking simulation and noise adding processing on the navigation observation information to realize positioning, orbit determination or differential positioning processing; the time-frequency module adopts an internal or external clock to generate a standard 1PPS signal; the interface module is used for carrying out information interaction with peripheral control and outputting standard 1PPS signals. The invention can quickly realize the simulation of the receiving navigation satellite state and the measurement state of positioning and orbit determination of the receiver under various track scenes, and reduces the complexity of building the radio frequency receiving and transmitting physical board card real object.

Description

Translated fromChinese
一种联合GNSS导航星座与接收机的同步模拟系统A synchronized simulation system that combines GNSS navigation constellations and receivers

技术领域Technical field

本发明属于卫星应用技术领域,尤其涉及一种联合GNSS导航星座与接收机的同步模拟系统。The invention belongs to the field of satellite application technology, and in particular relates to a synchronization simulation system that combines GNSS navigation constellations and receivers.

背景技术Background technique

卫星导航系统的建立的主要目的是陆、海、空三大领域提供实时、全天候和全球性的导航服务,目前全球导航定位系统有我国的BDS、美国的GPS、欧洲的Galileo和俄罗斯的Glonass,卫星导航系统的应用越来越广泛,目前已与人们的生活息息相关,随着导航系统在航天领域的发展,卫星导航接收机在中低高轨卫星的应用也越来越广泛,由于卫星应用导航接收机应用场景的特殊性,其不可回收、无法人工修复等问题,导致在轨导航接收机的对研制可靠性的要求较高,另外对于在轨卫星状况现象的表现,一般采用搭建地面模拟仿真系统对卫星接收机在轨可见导航的状态进行模拟。The main purpose of establishing satellite navigation systems is to provide real-time, all-weather and global navigation services in the three major areas of land, sea and air. Currently, the global navigation and positioning systems include my country's BDS, the United States' GPS, Europe's Galileo and Russia's Glonass. Satellite navigation systems are becoming more and more widely used and are now closely related to people's lives. With the development of navigation systems in the aerospace field, satellite navigation receivers are increasingly used in low- and medium-orbit satellites. Due to satellite application navigation The particularity of the receiver's application scenarios, as well as its non-recyclability and inability to be manually repaired, lead to higher requirements for the development reliability of on-orbit navigation receivers. In addition, for the performance of on-orbit satellite conditions and phenomena, ground simulation is generally used. The system simulates the visible navigation status of the satellite receiver in orbit.

卫星导航地面模拟仿真系统是以卫星导航系统为原型,并根据导航信号特性实现导航信号的硬件设备搭建,实现导航信号的调制信号播发。导航接收机接收地面模拟仿真系统播发的导航信号,进行信号解调,完成电文解译和观测量解算,实现定位、定轨解算和差分定位解算等功能,整体仿真系统硬件设备复杂,射频发射和处理模块对射频信号完整性处理要求较高,另外在采用射频信号物理硬件进行联合仿真时,不能进行快速仿真。The satellite navigation ground simulation system is based on the satellite navigation system as a prototype, and realizes the construction of navigation signal hardware equipment according to the characteristics of the navigation signal, and realizes the modulated signal broadcast of the navigation signal. The navigation receiver receives the navigation signal broadcast by the ground simulation system, performs signal demodulation, completes message interpretation and observation calculation, and realizes functions such as positioning, orbit determination and differential positioning calculation. The overall simulation system hardware equipment is complex. The RF transmission and processing module has high requirements for RF signal integrity processing. In addition, when using RF signal physical hardware for joint simulation, fast simulation cannot be performed.

发明内容Contents of the invention

本发明解决的技术问题是:克服现有技术的不足,提供了一种联合GNSS导航星座与接收机的同步模拟系统,模拟系统可以同时模拟导航系统运行状态与模拟接收机运行状态,减少了传统模拟器在基带生成模块和射频模块设计的复杂度,可以直接模拟接收机伪距、载波相位等观测信息传递给接收机模拟器,接收机模拟器根据接收到的观测信息进行定位、定轨解算,减少了接收机的射频处理模块、基带处理模块设计;另外可同时仿真多台卫星导航接收机,实现接收机间的观测信息传递,实现卫星接收机在轨差分场景模拟。系统整体仿真以1pps为仿真时间基准,1pps的一个脉冲代表1s时间间隔,可通过调整1pps的时间间隔加速仿真。The technical problem solved by the present invention is to overcome the shortcomings of the existing technology and provide a synchronous simulation system that combines GNSS navigation constellations and receivers. The simulation system can simultaneously simulate the operating status of the navigation system and the simulated receiver operating status, reducing the traditional The complexity of the baseband generation module and radio frequency module design of the simulator can directly simulate the receiver pseudo-range, carrier phase and other observation information and transfer it to the receiver simulator. The receiver simulator performs positioning and orbit determination based on the received observation information. The calculation reduces the design of the radio frequency processing module and baseband processing module of the receiver; in addition, it can simulate multiple satellite navigation receivers at the same time to realize the transmission of observation information between receivers and realize the on-orbit differential scene simulation of satellite receivers. The overall simulation of the system uses 1pps as the simulation time benchmark. A pulse of 1pps represents a 1s time interval. The simulation can be accelerated by adjusting the 1pps time interval.

本发明目的通过以下技术方案予以实现:一种联合GNSS导航星座与接收机的同步模拟系统,包括:系统仿真模块、接口模块和时频模块;其中,系统仿真模块包括GNSS导航星座模拟器和GNSS接收机模拟器;GNSS导航星座模拟器根据预设的轨道信息生成观测数据和广播星历,并将观测数据和广播星历传输给所述GNSS接收机模拟器;GNSS接收机模拟器根据观测数据和广播星历进行环路跟踪仿真和加噪处理实现接收机的位置解算;所述时频模块采用内部或外部时钟产生标准1PPS信号;所述接口模块用于与外设控制进行信息交互和标准1PPS信号的输出。The object of the present invention is achieved through the following technical solutions: a synchronous simulation system that combines GNSS navigation constellations and receivers, including: a system simulation module, an interface module and a time-frequency module; wherein the system simulation module includes a GNSS navigation constellation simulator and a GNSS Receiver simulator; the GNSS navigation constellation simulator generates observation data and broadcast ephemeris according to preset orbit information, and transmits the observation data and broadcast ephemeris to the GNSS receiver simulator; the GNSS receiver simulator generates observation data and broadcast ephemeris according to the observation data Perform loop tracking simulation and noise addition processing with broadcast ephemeris to achieve position calculation of the receiver; the time-frequency module uses an internal or external clock to generate a standard 1PPS signal; the interface module is used for information interaction and peripheral control Standard 1PPS signal output.

上述联合GNSS导航星座与接收机的同步模拟系统中,所述GNSS导航星座模拟器包括坐标系统和时间系统模块、常数和参数库、误差仿真模块、用户轨迹仿真模块、轨道仿真模块、空间传播仿真模块、天线方向图模块、观测数据仿真及切换模块、广域差分信息仿真模块、完好性信息仿真模块和导航电文生成模块;其中,坐标系统和时间系统模块产生基础数据;常数和参数库提供常数信息;误差仿真模块分别为轨道仿真模块、空间传播仿真模块、用户轨迹仿真模块提供可控的误差数据;用户轨迹仿真模块根据基础数据和误差数据模拟仿真计算不同载体在不同运动状态条件下的载体信息;轨道仿真模块根据基础数据、常数信息和误差数据计算任意时刻导航卫星的位置和速度的卫星信息;空间传播仿真模块根据卫星信息和载体信息以及电离层模型和对流程模型计算传播延迟信息;天线方向图模块用于提供卫星端和用户端的天线方向图仿真信息;观测数据仿真及切换模块根据载体信息、卫星信息、传播延迟信息和天线方向图仿真信息输出观测数据;广域差分信息仿真模块针对GEO卫星生成广域差分信息;完好性信息仿真模块生成通过对GNSS导航系统完好性的仿真生成系统完好性信息;导航电文生成模块根据卫星信息、广域差分信息和系统完好性信息计算观测值、状态方程以及观测方程,对观测值、状态方程以及观测方程进行最小二乘拟合得到广播星历。In the above synchronous simulation system of joint GNSS navigation constellation and receiver, the GNSS navigation constellation simulator includes coordinate system and time system modules, constant and parameter library, error simulation module, user trajectory simulation module, orbit simulation module, and space propagation simulation module, antenna pattern module, observation data simulation and switching module, wide-area differential information simulation module, integrity information simulation module and navigation message generation module; among them, the coordinate system and time system modules generate basic data; the constant and parameter library provide constants information; the error simulation module provides controllable error data for the orbit simulation module, space propagation simulation module, and user trajectory simulation module respectively; the user trajectory simulation module simulates and calculates the carriers of different carriers under different motion conditions based on basic data and error data. information; the orbit simulation module calculates the satellite information of the position and speed of the navigation satellite at any time based on basic data, constant information and error data; the space propagation simulation module calculates propagation delay information based on satellite information and carrier information, as well as the ionospheric model and pair flow model; The antenna pattern module is used to provide antenna pattern simulation information for satellites and users; the observation data simulation and switching module outputs observation data based on carrier information, satellite information, propagation delay information and antenna pattern simulation information; the wide-area differential information simulation module Generates wide-area differential information for GEO satellites; the integrity information simulation module generates system integrity information by simulating the integrity of the GNSS navigation system; the navigation message generation module calculates observation values based on satellite information, wide-area differential information and system integrity information , state equation and observation equation, perform least square fitting on the observation value, state equation and observation equation to obtain the broadcast ephemeris.

上述联合GNSS导航星座与接收机的同步模拟系统中,所述GNSS接收机模拟器包括接收机射频通道仿真模块、接收机环路跟踪仿真模块、观测数据接收仿真模块、导航电文接收模块、观测量处理模块、解算模块、通道跟踪状态处理模块、接收机时钟模型模块和接收机噪声模型模块;其中,接收机射频通道仿真模块对从GNSS导航星座模拟器接收的观测数据增加射频通道参数修正得到带射频通道改正的观测数据给接收机环路跟踪仿真模块和观测数据接收仿真模块;接收机时钟模型模块对接收机使用的时钟进行建模并得到时钟模型数据给接收机环路跟踪仿真模块和观测数据接收仿真模块;接收机噪声模型模块用于给观测数据接收仿真模块提供观测噪声参数;接收机环路跟踪仿真模块对接收到带射频通道改正的观测数据和时钟模型数据进行跟踪处理得到跟踪数据;通道跟踪状态处理模块对跟踪数据并依据预设的接收机跟踪门限输出通道跟踪状态和跟踪数据给解算模块;观测数据接收仿真模块接收到带射频通道改正的观测数据和时钟模型数据,并根据观测噪声参数对观测数据进行仿真处理得到加噪后观测数据给观测量处理模块;导航电文接收模块从GNSS导航星座模拟器接收到广播星历并对导航电文进行解译得到导航星轨道参数、电离层的参数给观测量处理模块;观测量处理模块根据加噪后观测数据、导航星轨道参数以及电离层的参数得到导航位置、速度以及观测伪距并将导航位置、速度以及观测伪距传递给解算模块;解算模块接收到通道跟踪状态和跟踪数据、导航位置、速度以及观测伪距,进行接收机的位置解算。In the above synchronous simulation system of combined GNSS navigation constellation and receiver, the GNSS receiver simulator includes a receiver radio frequency channel simulation module, a receiver loop tracking simulation module, an observation data receiving simulation module, a navigation message receiving module, and an observation data module. processing module, solution module, channel tracking status processing module, receiver clock model module and receiver noise model module; among them, the receiver radio frequency channel simulation module adds radio frequency channel parameter correction to the observation data received from the GNSS navigation constellation simulator to obtain The observation data with radio frequency channel correction is sent to the receiver loop tracking simulation module and the observation data receiving simulation module; the receiver clock model module models the clock used by the receiver and obtains the clock model data to the receiver loop tracking simulation module and Observation data reception simulation module; the receiver noise model module is used to provide observation noise parameters to the observation data reception simulation module; the receiver loop tracking simulation module tracks and processes the received observation data with radio frequency channel correction and clock model data to obtain tracking data; the channel tracking status processing module processes the tracking data and outputs the channel tracking status and tracking data to the solution module according to the preset receiver tracking threshold; the observation data receiving simulation module receives the observation data with radio frequency channel correction and clock model data, And simulate the observation data according to the observation noise parameters to obtain the noise-added observation data and send it to the observation processing module; the navigation message receiving module receives the broadcast ephemeris from the GNSS navigation constellation simulator and interprets the navigation message to obtain the navigation star orbit parameters , the ionospheric parameters are given to the observation quantity processing module; the observation quantity processing module obtains the navigation position, speed and observation pseudo range based on the noised observation data, navigation star orbit parameters and ionospheric parameters and transfers the navigation position, speed and observation pseudo range Passed to the solution module; the solution module receives the channel tracking status and tracking data, navigation position, speed and observation pseudo-range, and calculates the position of the receiver.

上述联合GNSS导航星座与接收机的同步模拟系统中,导航观测信息包含伪距、载波相位、电离层延迟、对流层延迟。In the above-mentioned synchronous simulation system of joint GNSS navigation constellations and receivers, navigation observation information includes pseudorange, carrier phase, ionospheric delay, and tropospheric delay.

上述联合GNSS导航星座与接收机的同步模拟系统中,基础数据包括CGS2000坐标系统或WGS84坐标系统和时间系统。In the above-mentioned synchronous simulation system of joint GNSS navigation constellation and receiver, the basic data includes CGS2000 coordinate system or WGS84 coordinate system and time system.

上述联合GNSS导航星座与接收机的同步模拟系统中,常数信息包括数学常数和地球物理基本常数。In the above synchronous simulation system of joint GNSS navigation constellation and receiver, the constant information includes mathematical constants and basic geophysical constants.

上述联合GNSS导航星座与接收机的同步模拟系统中,载体信息包括用户位置、速度、加速度和姿态。In the above-mentioned synchronous simulation system of joint GNSS navigation constellation and receiver, the carrier information includes user position, speed, acceleration and attitude.

上述联合GNSS导航星座与接收机的同步模拟系统中,传播延迟信息包括电离层延迟和对流程延迟信息。In the above synchronous simulation system of joint GNSS navigation constellation and receiver, the propagation delay information includes ionospheric delay and pair flow delay information.

本发明与现有技术相比具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

(1)本发明采用GNSS导航星座与GNSS接收机同步模拟的方式,可快速实现接收机在各种轨道场景下接收机接收导航星状态以及定位定轨的测量状态的模拟,减少了搭建射频收发射物理板卡实物的复杂度。另外可通过CPU运行板的运算能力,实现接收机在轨运行时快速仿真,快速复现卫星在轨导航定位状态;(1) The present invention adopts a synchronous simulation method of GNSS navigation constellation and GNSS receiver, which can quickly realize the simulation of the receiver's reception of navigation star status and positioning and orbit determination measurement status in various orbit scenarios, reducing the need to build radio frequency receivers. The complexity of launching a physical board. In addition, the computing power of the CPU operation board can be used to realize rapid simulation when the receiver is running in orbit, and quickly reproduce the satellite navigation and positioning status in orbit;

(2)本发明提供可控制的接口板卡,可实现准确1PPS授时功能,时频板卡的设计可实现10MHz的输入,实现仿真系统与外部测试系统或控制系统的同频处理,保证授时的相位准确性,提高整体仿真系统的时间精度。(2) The present invention provides a controllable interface board that can realize accurate 1PPS timing function. The design of the time-frequency board can realize 10MHz input, realize the same frequency processing of the simulation system and the external test system or control system, and ensure the timing Phase accuracy improves the time accuracy of the overall simulation system.

附图说明Description of drawings

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be construed as limiting the invention. Also throughout the drawings, the same reference characters are used to designate the same components. In the attached picture:

图1为联合GNSS导航星座与接收机的同步模拟系统结构图;Figure 1 shows the structure diagram of the synchronization simulation system of the joint GNSS navigation constellation and receiver;

图2为信号源等效器系统流程图;Figure 2 is the signal source equivalent system flow chart;

图3为接收机等效器流程图;Figure 3 is the receiver equivalent flow chart;

图4为同步模拟器硬件结构图;Figure 4 is the hardware structure diagram of the synchronous simulator;

图5为接口板卡原理结构图;Figure 5 is the schematic structure diagram of the interface board;

图6为时频板卡功能框图。Figure 6 is the functional block diagram of the time-frequency board.

具体实施方式Detailed ways

下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be implemented in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided to provide a thorough understanding of the disclosure, and to fully convey the scope of the disclosure to those skilled in the art. It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments of the present invention can be combined with each other. The present invention will be described in detail below with reference to the accompanying drawings and embodiments.

如图1所示,该联合GNSS导航星座与接收机的同步模拟系统包括:系统仿真模块、接口模块和时频模块。其中,系统仿真模块包括GNSS导航星座模拟器和GNSS接收机模拟器;GNSS导航星座模拟器根据预设的轨道信息生成导航观测信息,并将导航观测信息传输给所述GNSS接收机模拟器;GNSS接收机模拟器对导航观测信息进行环路跟踪仿真和加噪处理实现定位、定轨或者差分定位处理;所述时频模块采用内部或外部时钟产生标准1PPS信号;所述接口模块用于与外设控制进行信息交互和标准1PPS信号的输出。As shown in Figure 1, the synchronous simulation system of joint GNSS navigation constellation and receiver includes: system simulation module, interface module and time-frequency module. Among them, the system simulation module includes a GNSS navigation constellation simulator and a GNSS receiver simulator; the GNSS navigation constellation simulator generates navigation observation information based on preset orbit information, and transmits the navigation observation information to the GNSS receiver simulator; GNSS The receiver simulator performs loop tracking simulation and noise processing on the navigation observation information to achieve positioning, orbit determination or differential positioning processing; the time-frequency module uses an internal or external clock to generate a standard 1PPS signal; the interface module is used to communicate with external Set up to control information interaction and output of standard 1PPS signals.

如图1所示,联合GNSS导航星座和接收机的同步模拟器集成了CPU运行模块、接口模块、时频模块和电源模块。CPU运行模块承担了整体的模拟仿真功能,可模拟仿真GNSS导航星座和GNSS接收机。As shown in Figure 1, the synchronization simulator of the joint GNSS navigation constellation and receiver integrates the CPU operation module, interface module, time-frequency module and power module. The CPU operation module is responsible for the overall simulation function and can simulate the GNSS navigation constellation and GNSS receiver.

如图2所示,GNSS导航星座模拟器包括坐标系统和时间系统模块、常数和参数库、误差仿真模块、用户轨迹仿真模块、轨道仿真模块、空间传播仿真模块、天线方向图模块、观测数据仿真及切换模块、广域差分信息仿真模块、完好性信息仿真模块和导航电文生成模块;其中,坐标系统和时间系统模块产生CGS2000坐标系统或WGS84坐标系统和时间系统等基础数据;常数和参数库提供数学常数、地球物理基本常数等常数信息;误差仿真模块主要为轨道仿真模块、空间传播仿真模块、用户轨迹仿真模块提供可控的误差数据;用户轨迹仿真模块根据基础数据、误差数据模拟仿真计算不同载体在不同运动状态条件下的用户位置、速度、加加速度和姿态等载体信息;轨道仿真模块根据基础数据、常数信息和误差数据计算任意时刻导航卫星的位置和速度等卫星信息;空间传播仿真模块根据卫星信息和载体信息以及电离层模型和对流程模型计算电离层延迟、对流程延迟等传播延迟信息;天线方向图模块主要进行卫星端和用户端天线方向图仿真信息;观测数据仿真及切换模块根据载体信息、卫星信息、传播延迟信息和天线方向图信息输出观测数据,用户可通过配置输出所需观测数据;广域差分信息仿真模块针对GEO卫星生成广域差分信息;完好性信息仿真模块生成通过对GNSS导航系统完好性的仿真生成系统完好性信息;导航电文生成模块根据卫星信息、广域差分信息和系统完好性信息,计算观测值、状态方程以及观测方程,对观测星历进行最小二乘拟合得到广播星历。As shown in Figure 2, the GNSS navigation constellation simulator includes coordinate system and time system modules, constant and parameter libraries, error simulation module, user trajectory simulation module, orbit simulation module, space propagation simulation module, antenna pattern module, and observation data simulation and switching module, wide-area differential information simulation module, integrity information simulation module and navigation message generation module; among them, the coordinate system and time system modules generate basic data such as CGS2000 coordinate system or WGS84 coordinate system and time system; the constant and parameter library provides Constant information such as mathematical constants and basic geophysical constants; the error simulation module mainly provides controllable error data for the orbit simulation module, space propagation simulation module, and user trajectory simulation module; the user trajectory simulation module simulates different calculations based on basic data and error data Carrier information such as the user's position, speed, acceleration and attitude under different motion conditions; the orbit simulation module calculates satellite information such as the position and speed of the navigation satellite at any time based on basic data, constant information and error data; the space propagation simulation module Calculate propagation delay information such as ionospheric delay and pair process delay based on satellite information and carrier information, as well as ionospheric model and pair process model; the antenna pattern module mainly performs satellite-side and user-side antenna pattern simulation information; observation data simulation and switching module Output observation data based on carrier information, satellite information, propagation delay information and antenna pattern information. Users can output the required observation data through configuration; the wide-area differential information simulation module generates wide-area differential information for GEO satellites; the integrity information simulation module generates System integrity information is generated by simulating the integrity of the GNSS navigation system; the navigation message generation module calculates observation values, state equations and observation equations based on satellite information, wide-area differential information and system integrity information, and performs least quadratic analysis of the observation ephemeris. Multiply the fit to get the broadcast ephemeris.

如图3所示,GNSS接收机模拟器包括接收机射频通道仿真模块、接收机环路跟踪仿真模块、观测数据接收仿真模块、导航电文接收模块、观测量处理模块、解算模块、通道跟踪状态处理模块、接收机时钟模型和接收机噪声模型模块;其中,接收机时钟模型根据接收机射频通道仿真模块根据对硬件接收机射频通道建模并对从GNSS导航星座模拟器接收观测数据增加射频通道参数修正得到带射频通道改正的观测数据给接收机环路跟踪仿真模块和观测数据接收仿真模块;接收机时钟模型模块主要对接收机使用的硬件时钟进行建模并计算出时钟模型数据给接收机环路跟踪仿真模块和观测数据接收仿真模块;接收机噪声模型模块根据硬件接收机模型对各处理模块提供噪声参数信息;接收机环路跟踪仿真模块对接收机的码环和载波环进行建模,根据模型对接收到带射频通道改正的观测数据和时钟模型数据进行跟踪处理得到跟踪数据;通道跟踪状态处理模块对跟踪数据并依据接收机跟踪门限等设置输出通道跟踪状态和跟踪数据给解算模块;观测数据接收仿真模块接收到带射频通道改正的观测数据和时钟模型数据,并根据接收机的观测噪声参数对观测数据进行仿真处理得到加噪后观测数据给观测量处理模块;导航电文接收模块从GNSS导航星座模拟器接收到导航电文并对导航电文进行解译得到导航星轨道参数、电离层等参数给观测量处理模块;观测量处理模块接收到加噪后观测数据、导航星轨道参数以及电离层等参数对导航位置、速度以及观测伪距进行处理并传递给解算模块;解算模块接收到通道跟踪状态和跟踪数据、导航位置、速度以及观测伪距等数据,进行定位解算,如果用户为在轨卫星可进行定轨解算,如果接收差分接收机数据可进行差分定位解算。As shown in Figure 3, the GNSS receiver simulator includes a receiver radio frequency channel simulation module, a receiver loop tracking simulation module, an observation data receiving simulation module, a navigation message receiving module, an observation processing module, a solution module, and a channel tracking status processing module, receiver clock model and receiver noise model module; among them, the receiver clock model models the hardware receiver radio frequency channel based on the receiver radio frequency channel simulation module and adds the radio frequency channel based on the observation data received from the GNSS navigation constellation simulator. The parameter correction obtains the observation data with RF channel correction and sends it to the receiver loop tracking simulation module and observation data receiving simulation module; the receiver clock model module mainly models the hardware clock used by the receiver and calculates the clock model data to the receiver. The loop tracking simulation module and the observation data receiving simulation module; the receiver noise model module provides noise parameter information to each processing module according to the hardware receiver model; the receiver loop tracking simulation module models the code loop and carrier loop of the receiver , according to the model, the received observation data with radio frequency channel correction and clock model data are tracked and processed to obtain tracking data; the channel tracking state processing module sets the output channel tracking state and tracking data based on the tracking data and based on the receiver tracking threshold, etc. for solution module; the observation data receiving simulation module receives the observation data with radio frequency channel correction and clock model data, and simulates the observation data according to the observation noise parameters of the receiver to obtain the noise-added observation data to the observation processing module; navigation message reception The module receives the navigation message from the GNSS navigation constellation simulator and interprets the navigation message to obtain the navigation star orbit parameters, ionosphere and other parameters to the observation quantity processing module; the observation quantity processing module receives the noise-added observation data, navigation star orbit parameters and ionospheric and other parameters to process the navigation position, speed and observation pseudorange and pass them to the solution module; the solution module receives the channel tracking status and tracking data, navigation position, speed and observation pseudorange and other data, and performs positioning solution , if the user has an on-orbit satellite, it can perform orbit determination calculations, and if it receives differential receiver data, it can perform differential positioning calculations.

如图4所示,GPS接收机通用闭环模拟器设备主要通过网口、SPI接口、1553B接口与外部设备进行数据的交互,同时产生1PPS信号给GNC控制器进行时间调整。As shown in Figure 4, the GPS receiver universal closed-loop simulator device mainly interacts with external devices through the network port, SPI interface, and 1553B interface, and at the same time generates a 1PPS signal to the GNC controller for time adjustment.

CPU主板可运行模拟源等效器模块软件,通过网口与GNC测试设备连接,可实现接收机的信号模拟,并把模拟测量结果通过共享内存发送给接收机等效器,接收机等效器实现接收机处理信号行为的模拟,并通过CPCI总线把接收机测试结果发送给接口板,用于对GNC控制器的控制。The CPU mainboard can run the simulation source equivalent module software and connect to the GNC test equipment through the network port to realize the signal simulation of the receiver and send the simulation measurement results to the receiver equivalent through the shared memory. The receiver equivalent Realize the simulation of the signal processing behavior of the receiver, and send the receiver test results to the interface board through the CPCI bus for control of the GNC controller.

CPCI背板提供连接总线,电源等,有多个插槽,可供CPU板、时频板和接口板安装。时频板实现了基准时钟生成。接口板实现专用接口和通用接口,包括1PPS输出接口、SPI接口和1553B接口。The CPCI backplane provides connection buses, power supplies, etc., and has multiple slots for the installation of CPU boards, time-frequency boards and interface boards. The time-frequency board implements the reference clock generation. The interface board implements dedicated interfaces and general interfaces, including 1PPS output interface, SPI interface and 1553B interface.

如图5所示,接口板采用ARM+FPGA的结构,ARM控制器的总线分别与FPGA和1553B总线控制器相连,并通过ARM向总线控制器发送片选等控制信号。FPGA实现专用接口和通用接口。As shown in Figure 5, the interface board adopts the structure of ARM+FPGA. The bus of the ARM controller is connected to the FPGA and the 1553B bus controller respectively, and control signals such as chip selection are sent to the bus controller through the ARM. FPGA implements special interfaces and general interfaces.

如图6所示,时频板在有外频标10MHz输入时,输出10MHz信号选择外频标10MHz输出;内部10MHz晶振锁定于外10MHz信号,使时钟模块的输出信号与外输入10MHz信号同步;当外频标丢失后,时钟模块将自动切换到内频标10MHz输出,时钟模块的频率准确度由内部10MHzVCO晶振的频率准确度维持。时频板探测1PPS的输入并进行内外1PPS信号的切换,传递给CPU板,保证仿真时间的准确性。As shown in Figure 6, when the external frequency standard 10MHz is input, the time-frequency board outputs a 10MHz signal and selects the external frequency standard 10MHz for output; the internal 10MHz crystal oscillator is locked to the external 10MHz signal, so that the output signal of the clock module is synchronized with the external input 10MHz signal; When the external frequency standard is lost, the clock module will automatically switch to the internal frequency standard 10MHz output. The frequency accuracy of the clock module is maintained by the frequency accuracy of the internal 10MHz VCO crystal oscillator. The time-frequency board detects the input of 1PPS and switches the internal and external 1PPS signals, passing them to the CPU board to ensure the accuracy of the simulation time.

(1)利用卫星轨道信息、天线姿态信息、卫星机动信息等,对GNSS接收机接收到的卫星信号、可见星状态、导航测量信息进行模拟,另外对空间信息如电离层延迟、对流层延迟等信息进行模拟推算,用来模拟实际太空运动中接收机观测导航星状态。(1) Use satellite orbit information, antenna attitude information, satellite maneuver information, etc. to simulate the satellite signals, visible star status, and navigation measurement information received by the GNSS receiver. In addition, space information such as ionospheric delay, tropospheric delay, etc. Carry out simulation calculations to simulate the state of the navigation star observed by the receiver during actual space motion.

(2)利用接收机天线延迟、硬件设备延迟、热噪声等信息,根据GNSS接收机卫星捕获跟踪策略、测量量处理方法、定位解算等处理方法,对GNSS接收机进行单点定位模拟,模拟实现接收机的单点定位功能。(2) Using information such as receiver antenna delay, hardware equipment delay, thermal noise, etc., and based on the GNSS receiver satellite acquisition and tracking strategy, measurement processing method, positioning solution and other processing methods, perform a single-point positioning simulation on the GNSS receiver. Realize the single point positioning function of the receiver.

(3)利用模拟接收机观测量信息、定位信息、轨道参数信息等,模拟接收机的定轨解算,此部分功能可实现接收机定轨解算以及在不满足定轨解算时进行定轨外推。(3) Use the simulated receiver observation information, positioning information, orbit parameter information, etc. to simulate the orbit determination solution of the receiver. This part of the function can realize the receiver orbit determination solution and determine the orbit when the orbit determination solution is not satisfied. Orbit extrapolation.

(4)通过模拟双卫星运动、双接收机定位,通过双接收机的数据交互,以其中一个模拟接收机为基准站,一个为移动站,实现双用户差分定位解算模拟,进而实现双星或双飞行器的模拟,可模拟交汇对接等场景。(4) By simulating the movement of dual satellites and positioning of dual receivers, and through the data interaction of dual receivers, using one of the simulated receivers as the base station and the other as the mobile station, dual-user differential positioning solution simulation is realized, and then dual-satellite or Simulation of dual aircraft can simulate rendezvous and docking scenarios.

(5)通过接口板、时频板实物可实现与GNC测试系统、GNC控制器或其他控制器进行数据交互和对系统进行授时,实现与整体飞行器的系统模拟测试,可有效模拟整体系统的在轨运行状态。(5) Through the interface board and time-frequency board, data interaction and timing of the system can be realized with the GNC test system, GNC controller or other controllers, and system simulation testing with the entire aircraft can be realized, which can effectively simulate the operation of the overall system. rail operating status.

步骤(1)中利用GNC测试系统输入的用户轨迹或卫星的轨道参数、姿态或机动数据,结合仿真时间和GNSS星座卫星轨道参数,可计算出导航星到用户的各卫星的伪距、多普勒、可见性,根据伪距可推算出信号到达用户接收机的信号功率等信息。In step (1), the user trajectory or satellite orbit parameters, attitude or maneuver data input by the GNC test system are used, combined with the simulation time and GNSS constellation satellite orbit parameters, to calculate the pseudorange and Dopp of each satellite from the navigation star to the user. ler, visibility, and other information such as the signal power of the signal reaching the user receiver can be calculated based on the pseudorange.

步骤(2)中GNSS接收机模拟时,模拟接收机的热噪声对信号功率的影响,计算出信号的信噪比,并根据信噪比模拟GNSS对卫星的捕获、跟踪、失锁等处理过程;通过天线延迟、设备延迟等信息计算接收机计算出的观测量信息(包含伪距、载波相位等信息),根据观测量信息进行单点定位解算。When simulating the GNSS receiver in step (2), simulate the impact of the thermal noise of the receiver on the signal power, calculate the signal-to-noise ratio, and simulate the acquisition, tracking, and loss-of-lock processing of the satellite by GNSS based on the signal-to-noise ratio. ; Calculate the observation information (including pseudo range, carrier phase and other information) calculated by the receiver through antenna delay, equipment delay and other information, and perform single-point positioning calculation based on the observation information.

步骤(3)中在GNSS接收机模拟时,自主定轨系统的滤波模型初始值根据观测信息、轨道参数等进行解算获得,定轨模拟可根据接收机当前工作状态进行切换,当接收机无法定位时,进行定轨外推解算。In step (3), during the GNSS receiver simulation, the initial value of the filter model of the autonomous orbit determination system is calculated based on observation information, orbit parameters, etc. The orbit determination simulation can be switched according to the current working status of the receiver. When the receiver cannot During positioning, orbit determination extrapolation is performed.

步骤(4)中在GNSS接收机可根据设置进行两个或超过两个接收机实时模拟,两个接收机进行模拟时,一台接收机可作为基准站,另外一台接收机作为移动站,可模拟差分定位解算功能;另外两台接收机可相互作为基准站/移动站,实现双移动接收机的差分模拟。In step (4), the GNSS receiver can perform real-time simulation of two or more receivers according to the settings. When two receivers are simulated, one receiver can be used as a base station and the other receiver can be used as a mobile station. It can simulate the differential positioning solution function; the other two receivers can serve as base stations/mobile stations for each other to realize differential simulation of dual mobile receivers.

步骤(5)中在设计有时频模块,可产生标注秒脉冲信号给控制系统和测试系统进行授时,同时可接收外部秒脉冲信号和10MHz,与外部输入设备实现同频授时;另外设计有网口可与测试设备进行数据通信,实现模拟观测数据、定轨数据、差分结果等数据的输出。In step (5), a time-frequency module is designed, which can generate labeled second pulse signals for timing of the control system and test system. At the same time, it can receive external second pulse signals and 10MHz to achieve same-frequency timing with external input equipment; in addition, a network port is designed It can carry out data communication with test equipment to realize the output of simulated observation data, orbit determination data, differential results and other data.

本发明采用GNSS导航星座与GNSS接收机同步模拟的方式,可快速实现接收机在各种轨道场景下接收机接收导航星状态以及定位定轨等测量状态的模拟,减少了搭建射频收发射物理板卡实物的复杂度。另外可通过CPU运行板的运算能力,实现接收机在轨运行时快速仿真,快速复现卫星在轨导航定位状态;本发明提供可控制的接口板卡,可实现准确1PPS授时功能,时频板卡的设计可实现10MHz的输入,实现仿真系统与外部测试系统或控制系统的同频处理,保证授时的相位准确性,提高整体仿真系统的时间精度。The present invention adopts a synchronous simulation method of GNSS navigation constellation and GNSS receiver, which can quickly realize the simulation of the receiver's reception of navigation star status and positioning and orbit determination and other measurement status in various orbit scenarios, and reduces the need to build a radio frequency receiving and transmitting physical board. Card physical complexity. In addition, the computing power of the CPU operation board can be used to realize fast simulation when the receiver is running in orbit and quickly reproduce the satellite on-orbit navigation and positioning state; the invention provides a controllable interface board that can realize accurate 1PPS timing function, time-frequency board The design of the card can realize 10MHz input, realize the same frequency processing between the simulation system and the external test system or control system, ensure the phase accuracy of timing, and improve the time accuracy of the overall simulation system.

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。Although the present invention has been disclosed above in terms of preferred embodiments, they are not intended to limit the present invention. Any person skilled in the art can utilize the methods and technical contents disclosed above to improve the present invention without departing from the spirit and scope of the present invention. Possible changes and modifications are made to the technical solution. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention, all belong to the technical solution of the present invention. protected range.

Claims (6)

CN202011475007.0A2020-12-142020-12-14Synchronous simulation system combining GNSS navigation constellation and receiverActiveCN112731463B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202011475007.0ACN112731463B (en)2020-12-142020-12-14Synchronous simulation system combining GNSS navigation constellation and receiver

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202011475007.0ACN112731463B (en)2020-12-142020-12-14Synchronous simulation system combining GNSS navigation constellation and receiver

Publications (2)

Publication NumberPublication Date
CN112731463A CN112731463A (en)2021-04-30
CN112731463Btrue CN112731463B (en)2024-02-09

Family

ID=75602072

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202011475007.0AActiveCN112731463B (en)2020-12-142020-12-14Synchronous simulation system combining GNSS navigation constellation and receiver

Country Status (1)

CountryLink
CN (1)CN112731463B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN114465673B (en)*2022-01-182023-08-04中国人民解放军国防科技大学Navigation channel simulation data flow precision control method and system
CN114779296A (en)*2022-03-312022-07-22哈尔滨梦飞翔科技有限公司 An all-weather satellite wide-area precision positioning terminal
CN115575982B (en)*2022-11-242023-03-28中汽研软件测评(天津)有限公司Method, apparatus and storage medium for determining robustness of vehicle-mounted satellite positioning system
CN116224391A (en)*2023-03-072023-06-06航天恒星科技有限公司Text interpretation method of GNSS signals
CN116559911A (en)*2023-05-092023-08-08东南大学 Simulation system of pseudolite with spiral indoor motion trajectory
CN116819574B (en)*2023-08-292023-11-17极诺星空(北京)科技有限公司GNSS positioning occultation reflection receiver integrated test method and system
CN119854930B (en)*2025-03-212025-06-03中国科学院国家授时中心Simulation on-orbit test method and system for low-orbit satellite time-frequency equipment
CN120233379A (en)*2025-04-112025-07-01北京空间飞行器总体设计部 A multi-user GNSS analog source signal closed-loop self-test system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102866407A (en)*2012-09-072013-01-09航天恒星科技有限公司Satellite navigation anti-interference test simulator and simulation method thereof
CN105785402A (en)*2014-12-262016-07-20北京无线电计量测试研究所GNSS signal simulator time delay calibration system and GNSS signal simulator time delay calibration method
CN107544467A (en)*2017-09-222018-01-05上海卫星工程研究所Double Satellite's control closed loop test system and method under the conditions of whole star
CN109696696A (en)*2019-02-152019-04-30航天恒星科技有限公司A kind of navigation neceiver device suitable for high rail spacecraft
KR102101995B1 (en)*2020-02-242020-04-17(주)이투비비Gnss simulator system
US10809388B1 (en)*2019-05-012020-10-20Swift Navigation, Inc.Systems and methods for high-integrity satellite positioning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102866407A (en)*2012-09-072013-01-09航天恒星科技有限公司Satellite navigation anti-interference test simulator and simulation method thereof
CN105785402A (en)*2014-12-262016-07-20北京无线电计量测试研究所GNSS signal simulator time delay calibration system and GNSS signal simulator time delay calibration method
CN107544467A (en)*2017-09-222018-01-05上海卫星工程研究所Double Satellite's control closed loop test system and method under the conditions of whole star
CN109696696A (en)*2019-02-152019-04-30航天恒星科技有限公司A kind of navigation neceiver device suitable for high rail spacecraft
US10809388B1 (en)*2019-05-012020-10-20Swift Navigation, Inc.Systems and methods for high-integrity satellite positioning
KR102101995B1 (en)*2020-02-242020-04-17(주)이투비비Gnss simulator system

Also Published As

Publication numberPublication date
CN112731463A (en)2021-04-30

Similar Documents

PublicationPublication DateTitle
CN112731463B (en)Synchronous simulation system combining GNSS navigation constellation and receiver
US12422565B2 (en)Vehicle positioning using pseudo range observation and doppler observation values
US6127970A (en)Coupled real time emulation method for positioning and location system
CN104678408B (en)Satellite borne navigation receiver time service method, time service type satellite borne navigation receiver and satellite borne navigation application system
CN103116169B (en)Anti-inference method based on vector tracking loop
CN102176030B (en)Global positioning system (GPS)/global navigation satellite system (GLONASS) dual-system combination simulator and method
CN103777218B (en)The performance evaluation system of GNSS/INS hypercompact combination navigation system and method
CN104133221B (en)A kind of fake satellite positioning system based on general purpose receiver
CN101261317A (en) High dynamic multi-mode satellite navigation signal source simulation method and device
CN102866407A (en)Satellite navigation anti-interference test simulator and simulation method thereof
Capuano et al.High accuracy GNSS based navigation in GEO
CN112596077B (en) A satellite navigation signal simulation method for terminal carriers that are low-orbit satellites
CN103257352B (en)Method for testing double-satellite GPS closed-loop control
CN114814908A (en) A simulation system for low-orbit satellite monitoring GNSS
CN106773783A (en)The semi-physical simulation test system and method for a kind of CORS system
Prol et al.Simulations using LEO-PNT systems: A brief survey
CN102096074B (en)Galileo search signal simulator
CN118778080B (en)GBAS pseudo-range correction simulation method and device based on GPS simulator
JP2010164496A (en)Gnss receiver and positioning method
CN108885266A (en) SDR for navigation using cellular CDMA signals
CN108897027A (en)Terrestrial user navigation locating method based on Beidou Ka inter-satellite link signal
CN114741898A (en)Satellite high-precision observation data simulation method supporting variable scene
CN108549094A (en)Ground base navigation system based on repeater satellite auxiliary
Progri et al.A combined GPS satellite/pseudolite system for category III precision landing
TW576928B (en)Process and system of coupled real-time GPS/IMU simulation with differential GPS

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp