















技术领域technical field
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。The invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
背景技术Background technique
近年来,随着各种智能设备的兴起,小型化摄像光学镜头的需求日渐提高,且由于感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄便携的外型为发展趋势,因此,具备良好成像品质的小型化摄像光学镜头俨然成为目前市场上的主流。为获得较佳的成像品质,多采用多片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中。迫切需要具有优秀的光学特征、体积小且像差被充分补正的广角摄像镜头。In recent years, with the rise of various smart devices, the demand for miniaturized photographic optical lenses is increasing, and due to the shrinking pixel size of photosensitive devices, coupled with the development trend of today's electronic products with good functions and light, thin and portable appearance, Therefore, miniaturized photographic optical lenses with good imaging quality have become the mainstream in the current market. In order to obtain better imaging quality, a multi-piece lens structure is often used. In addition, with the development of technology and the increase of diversified needs of users, the pixel area of the photosensitive device is continuously reduced, and the system's requirements for imaging quality are constantly improving, and the eight-piece lens structure gradually appears in the lens design. There is an urgent need for a wide-angle camera lens with excellent optical characteristics, small size, and sufficiently corrected aberrations.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。In view of the above problems, the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and at the same time meets the design requirements of large aperture, wide angle, and ultra-thinness.
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序为:具有负屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;In order to solve the above technical problems, embodiments of the present invention provide an imaging optical lens, the imaging optical lens is sequentially from the object side to the image side: a first lens with negative refractive power, a second lens, and a third lens , the fourth lens, the fifth lens, the sixth lens, the seventh lens, and the eighth lens;
其中,所述摄像光学镜头的视场角为FOV,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,且满足下列关系式:Wherein, the field of view of the imaging optical lens is FOV, the focal length of the third lens is f3, the focal length of the fourth lens is f4, and the object from the image side of the fourth lens to the fifth lens The on-axis distance of the side surface is d8, the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens is d10, and the following relationship is satisfied:
100.00°≤FOV≤135.00°;100.00°≤FOV≤135.00°;
1.30≤f3/f4≤5.00;1.30≤f3/f4≤5.00;
1.00≤d8/d10≤20.00。1.00≤d8/d10≤20.00.
优选地,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,且满足下列关系式:Preferably, the central radius of curvature of the object side surface of the seventh lens is R13, the central radius of curvature of the image side surface of the seventh lens is R14, and the following relationship is satisfied:
2.50≤R13/R14≤8.50。2.50≤R13/R14≤8.50.
优选地,所述第一透镜的物侧面于近轴处为凸面,所述第一透镜的像侧面于近轴处为凹面;Preferably, the object side of the first lens is convex at the paraxial position, and the image side of the first lens is concave at the paraxial position;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the focal length of the first lens is f1, the central radius of curvature of the object side of the first lens is R1, and the central radius of curvature of the image side of the first lens is R2, The on-axis thickness of the first lens is d1, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
-5.81≤f1/f≤-1.06;-5.81≤f1/f≤-1.06;
0.62≤(R1+R2)/(R1-R2)≤3.34;0.62≤(R1+R2)/(R1-R2)≤3.34;
0.03≤d1/TTL≤0.10。0.03≤d1/TTL≤0.10.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
-3.63≤f1/f≤-1.33;-3.63≤f1/f≤-1.33;
1.00≤(R1+R2)/(R1-R2)≤2.68;1.00≤(R1+R2)/(R1-R2)≤2.68;
0.04≤d1/TTL≤0.08。0.04≤d1/TTL≤0.08.
优选地,所述第二透镜具有正屈折力;所述第二透镜的物侧面于近轴处为凸面;Preferably, the second lens has a positive refractive power; the object side of the second lens is convex at the paraxial position;
所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the focal length of the second lens is f2, the central radius of curvature of the object side of the second lens is R3, and the central radius of curvature of the image side of the second lens is R4, The on-axis thickness of the second lens is d3, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
0.69≤f2/f≤2.56;0.69≤f2/f≤2.56;
-2.76≤(R3+R4)/(R3-R4)≤-0.13;-2.76≤(R3+R4)/(R3-R4)≤-0.13;
0.02≤d3/TTL≤0.10。0.02≤d3/TTL≤0.10.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
1.10≤f2/f≤2.05;1.10≤f2/f≤2.05;
-1.73≤(R3+R4)/(R3-R4)≤-0.16;-1.73≤(R3+R4)/(R3-R4)≤-0.16;
0.04≤d3/TTL≤0.08。0.04≤d3/TTL≤0.08.
优选地,所述第三透镜具有正屈折力;Preferably, the third lens has a positive refractive power;
所述摄像光学镜头的焦距为f,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the central radius of curvature of the object side of the third lens is R5, the central radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens is d5, the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
2.67≤f3/f≤40.50;2.67≤f3/f≤40.50;
-2.51≤(R5+R6)/(R5-R6)≤26.48;-2.51≤(R5+R6)/(R5-R6)≤26.48;
0.02≤d5/TTL≤0.07。0.02≤d5/TTL≤0.07.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
4.27≤f3/f≤32.40;4.27≤f3/f≤32.40;
-1.57≤(R5+R6)/(R5-R6)≤21.18;-1.57≤(R5+R6)/(R5-R6)≤21.18;
0.03≤d5/TTL≤0.06。0.03≤d5/TTL≤0.06.
优选地,所述第四透镜具有正屈折力;所述第四透镜的像侧面于近轴处为凸面;Preferably, the fourth lens has a positive refractive power; the image side of the fourth lens is convex at the paraxial position;
所述摄像光学镜头的焦距为f,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the central radius of curvature of the object side of the fourth lens is R7, the central radius of curvature of the image side of the fourth lens is R8, and the axial thickness of the fourth lens is d7, the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
1.53≤f4/f≤8.11;1.53≤f4/f≤8.11;
-0.34≤(R7+R8)/(R7-R8)≤8.79;-0.34≤(R7+R8)/(R7-R8)≤8.79;
0.02≤d7/TTL≤0.06。0.02≤d7/TTL≤0.06.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
2.45≤f4/f≤6.49;2.45≤f4/f≤6.49;
-0.21≤(R7+R8)/(R7-R8)≤7.03;-0.21≤(R7+R8)/(R7-R8)≤7.03;
0.03≤d7/TTL≤0.05。0.03≤d7/TTL≤0.05.
优选地,所述第五透镜具有负屈折力;Preferably, the fifth lens has negative refractive power;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the focal length of the fifth lens is f5, the central radius of curvature of the object side of the fifth lens is R9, and the central radius of curvature of the image side of the fifth lens is R10, The on-axis thickness of the fifth lens is d9, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
-47.44≤f5/f≤-2.47;-47.44≤f5/f≤-2.47;
-37.17≤(R9+R10)/(R9-R10)≤11.10;-37.17≤(R9+R10)/(R9-R10)≤11.10;
0.02≤d9/TTL≤0.07。0.02≤d9/TTL≤0.07.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
-29.65≤f5/f≤-3.09;-29.65≤f5/f≤-3.09;
-23.23≤(R9+R10)/(R9-R10)≤8.88;-23.23≤(R9+R10)/(R9-R10)≤8.88;
0.03≤d9/TTL≤0.06。0.03≤d9/TTL≤0.06.
优选地,所述第六透镜具有正屈折力;所述第六透镜的物侧面于近轴处为凹面,所述第六透镜的像侧面于近轴处为凸面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the sixth lens has a positive refractive power; the object side of the sixth lens is concave at the paraxial position, and the image side of the sixth lens is convex at the paraxial position; the focal length of the imaging optical lens is f, the focal length of the sixth lens is f6, the central radius of curvature of the object side of the sixth lens is R11, the central radius of curvature of the image side of the sixth lens is R12, and the axis of the sixth lens is R12. The upper thickness is d11, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
1.47≤f6/f≤21.26;1.47≤f6/f≤21.26;
0.50≤(R11+R12)/(R11-R12)≤33.19;0.50≤(R11+R12)/(R11-R12)≤33.19;
0.04≤d11/TTL≤0.14。0.04≤d11/TTL≤0.14.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
2.35≤f6/f≤17.01;2.35≤f6/f≤17.01;
0.80≤(R11+R12)/(R11-R12)≤26.55;0.80≤(R11+R12)/(R11-R12)≤26.55;
0.06≤d11/TTL≤0.11。0.06≤d11/TTL≤0.11.
优选地,所述第七透镜具有正屈折力;所述第七透镜的物侧面于近轴处为凹面,所述第七透镜的像侧面于近轴处为凸面;Preferably, the seventh lens has a positive refractive power; the object side of the seventh lens is concave at the paraxial position, and the image side of the seventh lens is convex at the paraxial position;
所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the focal length of the seventh lens is f7, the central radius of curvature of the object side of the seventh lens is R13, and the central radius of curvature of the image side of the seventh lens is R14, The on-axis thickness of the seventh lens is d13, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
0.42≤f7/f≤1.88;0.42≤f7/f≤1.88;
0.64≤(R13+R14)/(R13-R14)≤3.35;0.64≤(R13+R14)/(R13-R14)≤3.35;
0.07≤d13/TTL≤0.24。0.07≤d13/TTL≤0.24.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
0.68≤f7/f≤1.50;0.68≤f7/f≤1.50;
1.02≤(R13+R14)/(R13-R14)≤2.68;1.02≤(R13+R14)/(R13-R14)≤2.68;
0.11≤d13/TTL≤0.19。0.11≤d13/TTL≤0.19.
优选地,所述第八透镜具有负屈折力;所述第八透镜的物侧面于近轴处为凸面,所述第八透镜的像侧面于近轴处为凹面;Preferably, the eighth lens has a negative refractive power; the object side of the eighth lens is convex at the paraxial position, and the image side of the eighth lens is concave at the paraxial position;
所述摄像光学镜头的焦距为f,所述第八透镜的焦距为f8,所述第八透镜的物侧面的中心曲率半径为R15,所述第八透镜的像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:The focal length of the imaging optical lens is f, the focal length of the eighth lens is f8, the central radius of curvature of the object side of the eighth lens is R15, and the central radius of curvature of the image side of the eighth lens is R16, The on-axis thickness of the eighth lens is d15, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
-2.84≤f8/f≤-0.67;-2.84≤f8/f≤-0.67;
0.92≤(R15+R16)/(R15-R16)≤3.72;0.92≤(R15+R16)/(R15-R16)≤3.72;
0.05≤d15/TTL≤0.23。0.05≤d15/TTL≤0.23.
优选地,所述摄像光学镜头满足下列关系式:Preferably, the imaging optical lens satisfies the following relationship:
-1.77≤f8/f≤-0.83;-1.77≤f8/f≤-0.83;
1.47≤(R15+R16)/(R15-R16)≤2.97;1.47≤(R15+R16)/(R15-R16)≤2.97;
0.08≤d15/TTL≤0.18。0.08≤d15/TTL≤0.18.
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:Preferably, the image height of the imaging optical lens is IH, the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
TTL/IH≤1.72。TTL/IH≤1.72.
优选地,所述摄像光学镜头的光圈值FNO小于或等于1.86。Preferably, the aperture value FNO of the imaging optical lens is less than or equal to 1.86.
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。The beneficial effects of the present invention are: the imaging optical lens according to the present invention has excellent optical properties, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for high-pixel CCD, CMOS and other imaging elements. Mobile phone camera lens assembly and WEB camera lens.
附图说明Description of drawings
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, under the premise of no creative work, other drawings can also be obtained from these drawings, wherein:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention;
图2是图1所示摄像光学镜头的轴向像差示意图;Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
图3是图1所示摄像光学镜头的倍率色差示意图;3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
图4是图1所示摄像光学镜头的场曲及畸变示意图;4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention;
图6是图5所示摄像光学镜头的轴向像差示意图;Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
图7是图5所示摄像光学镜头的倍率色差示意图;7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
图8是图5所示摄像光学镜头的场曲及畸变示意图;FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention;
图10是图9所示摄像光学镜头的轴向像差示意图;Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
图11是图9所示摄像光学镜头的倍率色差示意图;11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
图12是图9所示摄像光学镜头的场曲及畸变示意图;12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention;
图14是图13所示摄像光学镜头的轴向像差示意图;Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
图15是图13所示摄像光学镜头的倍率色差示意图;15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
图16是图13所示摄像光学镜头的场曲及畸变示意图。FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13 .
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。In order to make the objectives, technical solutions and advantages of the present invention clearer, each embodiment of the present invention will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can appreciate that, in the various embodiments of the present invention, many technical details are set forth for the reader to better understand the present invention. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the present invention can be realized.
(第一实施方式)(first embodiment)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包含八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序为:第一透镜L1、光圈S1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。Referring to the accompanying drawings, the present invention provides an imaging
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质。在其他可选的实施方式中,各透镜也可以是其他材质。In this embodiment, the first lens L1 is made of plastic material, the second lens L2 is made of plastic material, the third lens L3 is made of plastic material, the fourth lens L4 is made of plastic material, the fifth lens L5 is made of plastic material, and the sixth lens L6 is made of plastic material It is made of plastic material, the seventh lens L7 is made of plastic material, and the eighth lens L8 is made of plastic material. In other optional embodiments, each lens may also be made of other materials.
在本实施方式中,定义摄像光学镜头10的视场角为FOV,满足下列关系式:100.00°≤FOV≤135.00°,规定了视场角的范围,满足关系式的所述摄像光学镜头10具有广角化特征。In this embodiment, the field of view of the imaging
定义第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,满足下列关系式:1.30≤f3/f4≤5.00,规定了第三透镜L3的焦距f3与第四透镜L4的焦距f4的比值,通过焦距的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。Define the focal length of the third lens L3 as f3 and the focal length of the fourth lens L4 as f4, which satisfy the following relationship: 1.30≤f3/f4≤5.00, which specifies the difference between the focal length f3 of the third lens L3 and the focal length f4 of the fourth lens L4 The ratio, through the reasonable distribution of the focal length, enables the imaging
定义第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离为d8,第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离为d10,满足下列关系式:1.00≤d8/d10≤20.00,规定了第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离d8与第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离d10的比值,在关系式范围内,有助于压缩光学系统总长,实现超薄化效果。The on-axis distance from the image side of the fourth lens L4 to the object side of the fifth lens L5 is defined as d8, and the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6 is d10, which satisfies the following relationship: 1.00≤d8/d10≤20.00, which specifies the on-axis distance d8 from the image side of the fourth lens L4 to the object side of the fifth lens L5 and the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6 The ratio of d10, within the range of the relational expression, helps to compress the total length of the optical system and achieve ultra-thinning effect.
定义第七透镜L7的物侧面的中心曲率半径为R13,第七透镜L7的像侧面的中心曲率半径为R14,满足下列关系式:2.50≤R13/R14≤8.50,规定了第七透镜L7的形状,在条件式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。The central radius of curvature of the object side of the seventh lens L7 is defined as R13, and the central radius of curvature of the image side of the seventh lens L7 is R14, which satisfies the following relationship: 2.50≤R13/R14≤8.50, which specifies the shape of the seventh lens L7 , within the range of the conditional formula, the degree of deflection of the light passing through the lens can be alleviated, and the aberration can be effectively reduced.
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凹面,第一透镜L1具有负屈折力。在其他可选的实施方式中,第一透镜L1的物侧面和像侧面也可设置为其他凹、凸分布情况。In this embodiment, the object side surface of the first lens L1 is convex at the paraxial position, the image side surface thereof is concave at the paraxial position, and the first lens L1 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the first lens L1 can also be set to other concave and convex distributions.
定义摄像光学镜头10的焦距为f,第一透镜L1的焦距为f1,满足下列关系式:-5.81≤f1/f≤-1.06,规定了第一透镜L1焦距f1与摄像光学镜头10的焦距f的比值,在规定的范围内时,第一透镜L1具有适当的负屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足-3.63≤f1/f≤-1.33。The focal length of the imaging
定义第一透镜L1的物侧面的中心曲率半径为R1,第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:0.62≤(R1+R2)/(R1-R2)≤3.34,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足1.00≤(R1+R2)/(R1-R2)≤2.68。Define the central radius of curvature of the object side of the first lens L1 as R1, and the central radius of curvature of the image side of the first lens L1 as R2, which satisfies the following relationship: 0.62≤(R1+R2)/(R1-R2)≤3.34, The shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the system. Preferably, 1.00≤(R1+R2)/(R1-R2)≤2.68 is satisfied.
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.10,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d1/TTL≤0.08。The on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,其像侧面于近轴处为凸面,第二透镜L2具有正屈折力。在其他可选的实施方式中,第二透镜L2的物侧面和像侧面也可设置为其他凹、凸分布情况,第二透镜L2也可以具有负屈折力。In this embodiment, the object side surface of the second lens L2 is convex at the paraxial position, and the image side surface is convex at the paraxial position, and the second lens L2 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the second lens L2 can also be set to other concave and convex distributions, and the second lens L2 can also have a negative refractive power.
摄像光学镜头10的焦距为f,定义第二透镜L2的焦距为f2,满足下列关系式:0.69≤f2/f≤2.56,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足1.10≤f2/f≤2.05。The focal length of the imaging
定义第二透镜L2的物侧面的中心曲率半径为R3,第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:-2.76≤(R3+R4)/(R3-R4)≤-0.13,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足-1.73≤(R3+R4)/(R3-R4)≤-0.16。The central radius of curvature of the object side of the second lens L2 is defined as R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: -2.76≤(R3+R4)/(R3-R4)≤- 0.13, which specifies the shape of the second lens L2. When it is within the range, as the lens develops towards ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration. Preferably, -1.73≤(R3+R4)/(R3-R4)≤-0.16 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.10,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.08。The total optical length of the imaging
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,其像侧面于近轴处为凹面,第三透镜L3具有正屈折力。在其他可选的实施方式中,第三透镜L3的物侧面和像侧面也可设置为其他凹、凸分布情况,第三透镜L3也可以具有负屈折力。In this embodiment, the object side surface of the third lens L3 is convex at the paraxial position, and the image side surface thereof is concave at the paraxial position, and the third lens L3 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the third lens L3 may also be set to other concave and convex distributions, and the third lens L3 may also have a negative refractive power.
摄像光学镜头10的焦距为f,第三透镜L3的焦距为f3,满足下列关系式:2.67≤f3/f≤40.50,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。优选地,满足4.27≤f3/f≤32.40。The focal length of the imaging
定义第三透镜L3的物侧面的中心曲率半径为R5,第三透镜L3的像侧面的中心曲率半径为R6,满足下列关系式-2.51≤(R5+R6)/(R5-R6)≤26.48,规定了第三透镜L3的形状,有利于第三透镜L3成型,在关系式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-1.57≤(R5+R6)/(R5-R6)≤21.18。The central radius of curvature of the object side of the third lens L3 is defined as R5, and the central radius of curvature of the image side of the third lens L3 is R6, which satisfies the following relationship: -2.51≤(R5+R6)/(R5-R6)≤26.48, The shape of the third lens L3 is specified, which is beneficial to the shaping of the third lens L3. Within the range specified by the relational expression, the degree of deflection of the light passing through the lens can be eased, and the aberration can be effectively reduced. Preferably, -1.57≤(R5+R6)/(R5-R6)≤21.18 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.07,在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.06。The total optical length of the imaging
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,其像侧面于近轴处为凸面,第四透镜L4具有正屈折力。在其他可选的实施方式中,第四透镜L4的物侧面和像侧面也可设置为其他凹、凸分布情况,第四透镜L4也可以具有负屈折力。In this embodiment, the object side surface of the fourth lens L4 is concave at the paraxial position, the image side surface thereof is convex at the paraxial position, and the fourth lens L4 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the fourth lens L4 may also be set to other concave and convex distributions, and the fourth lens L4 may also have a negative refractive power.
摄像光学镜头10的焦距为f,第四透镜L4的焦距为f4,满足下列关系式:1.53≤f4/f≤8.11,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足2.45≤f4/f≤6.49。The focal length of the imaging
定义第四透镜L4的物侧面的中心曲率半径为R7,第四透镜L4的像侧面的中心曲率半径为R8,且满足下列关系式:-0.34≤(R7+R8)/(R7-R8)≤8.79,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-0.21≤(R7+R8)/(R7-R8)≤7.03。Define the central radius of curvature of the object side of the fourth lens L4 as R7, and the central radius of curvature of the image side of the fourth lens L4 as R8, and satisfy the following relationship: -0.34≤(R7+R8)/(R7-R8)≤ 8.79, the shape of the fourth lens L4 is specified, and when it is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle. Preferably, -0.21≤(R7+R8)/(R7-R8)≤7.03 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.06,在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d7/TTL≤0.05。The total optical length of the imaging
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,其像侧面于近轴处为凹面,第五透镜L5具有负屈折力。在其他可选的实施方式中,第五透镜L5的物侧面和像侧面也可设置为其他凹、凸分布情况,第五透镜L5也可以具有正屈折力。In this embodiment, the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface thereof is concave at the paraxial position, and the fifth lens L5 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the fifth lens L5 may also be set to other concave and convex distributions, and the fifth lens L5 may also have a positive refractive power.
摄像光学镜头10的焦距为f,定义第五透镜L5的焦距为f5,满足下列关系式:-47.44≤f5/f≤-2.47,对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选地,满足-29.65≤f5/f≤-3.09。The focal length of the imaging
定义第五透镜L5的物侧面的中心曲率半径为R9,第五透镜L5的像侧面的中心曲率半径为R10,满足下列关系式:-37.17≤(R9+R10)/(R9-R10)≤11.10,规定了第五透镜L5的形状,在条件式范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-23.23≤(R9+R10)/(R9-R10)≤8.88。The central radius of curvature of the object side of the fifth lens L5 is defined as R9, and the central radius of curvature of the image side of the fifth lens L5 is R10, which satisfies the following relationship: -37.17≤(R9+R10)/(R9-R10)≤11.10 , specifies the shape of the fifth lens L5, and when it is within the range of the conditional expression, it is beneficial to correct problems such as aberrations of the off-axis picture angle with the development of ultra-thin and wide-angle. Preferably, -23.23≤(R9+R10)/(R9-R10)≤8.88 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.07,在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.06。The optical total length of the imaging
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,其像侧面于近轴处为凸面,第六透镜L6具有正屈折力。在其他可选的实施方式中,第六透镜L6的物侧面和像侧面也可设置为其他凹、凸分布情况,第六透镜L6也可以具有负屈折力。In this embodiment, the object side surface of the sixth lens L6 is concave at the paraxial position, the image side surface thereof is convex at the paraxial position, and the sixth lens L6 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the sixth lens L6 may also be set to other concave and convex distributions, and the sixth lens L6 may also have a negative refractive power.
摄像光学镜头10的焦距为f,定义第六透镜L6的焦距为f6,满足下列关系式:1.47≤f6/f≤21.26,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。优选地,满足2.35≤f6/f≤17.01。The focal length of the imaging
定义第六透镜L6的物侧面的中心曲率半径为R11,第六透镜L6的像侧面的中心曲率半径为R12,且满足下列关系式:0.50≤(R11+R12)/(R11-R12)≤33.19,规定了第六透镜L6的形状,在条件式范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.80≤(R11+R12)/(R11-R12)≤26.55。Define the central radius of curvature of the object side of the sixth lens L6 as R11, and the central radius of curvature of the image side of the sixth lens L6 as R12, and satisfy the following relationship: 0.50≤(R11+R12)/(R11-R12)≤33.19 , which defines the shape of the sixth lens L6. When the shape of the sixth lens L6 is within the range of the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle. Preferably, 0.80≤(R11+R12)/(R11-R12)≤26.55 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第六透镜L6的轴上厚度为d11,满足下列关系式:0.04≤d11/TTL≤0.14,在关系式范围内,有利于实现超薄化。优选地,满足0.06≤d11/TTL≤0.11。The total optical length of the imaging
本实施方式中,第七透镜L7的物侧面于近轴处为凹面,其像侧面于近轴处为凸面,第七透镜L7具有正屈折力。在其他可选的实施方式中,第七透镜L7的物侧面和像侧面也可设置为其他凹、凸分布情况,第七透镜L7也可以具有负屈折力。In this embodiment, the object side surface of the seventh lens L7 is concave at the paraxial position, and the image side surface thereof is convex at the paraxial position, and the seventh lens L7 has a positive refractive power. In other optional embodiments, the object side surface and the image side surface of the seventh lens L7 may also be set to other concave and convex distributions, and the seventh lens L7 may also have a negative refractive power.
摄像光学镜头10的焦距为f,定义第七透镜L7的焦距为f7,满足下列关系式:0.42≤f7/f≤1.88,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。优选地,满足0.68≤f7/f≤1.50。The focal length of the imaging
定义第七透镜L7的物侧面的中心曲率半径为R13,第七透镜L7的像侧面的中心曲率半径为R14,满足下列关系式:0.64≤(R13+R14)/(R13-R14)≤3.35,规定了第七透镜L7的形状,在条件式范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.02≤(R13+R14)/(R13-R14)≤2.68。The central radius of curvature of the object side of the seventh lens L7 is defined as R13, and the central radius of curvature of the image side of the seventh lens L7 is R14, which satisfies the following relationship: 0.64≤(R13+R14)/(R13-R14)≤3.35, When the shape of the seventh lens L7 is specified and within the range of the conditional expression, it is beneficial to correct problems such as aberrations in the off-axis picture angle with the progress of ultra-thin and wide-angle. Preferably, 1.02≤(R13+R14)/(R13-R14)≤2.68 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第七透镜L7的轴上厚度为d13,满足下列关系式:0.07≤d13/TTL≤0.24,在关系式范围内,有利于实现超薄化。优选地,满足0.11≤d13/TTL≤0.19。The total optical length of the imaging
本实施方式中,第八透镜L8的物侧面于近轴处为凸面,其像侧面于近轴处为凹面,第八透镜L8具有负屈折力。在其他可选的实施方式中,第八透镜L8的物侧面和像侧面也可设置为其他凹、凸分布情况,第八透镜L8也可以具有正屈折力。In this embodiment, the object side surface of the eighth lens L8 is convex at the paraxial position, and the image side surface thereof is concave at the paraxial position, and the eighth lens L8 has a negative refractive power. In other optional embodiments, the object side surface and the image side surface of the eighth lens L8 may also be set to other concave and convex distributions, and the eighth lens L8 may also have a positive refractive power.
摄像光学镜头10的焦距为f,定义第八透镜L8的焦距为f8,满足下列关系式:-2.84≤f8/f≤-0.67,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.77≤f8/f≤-0.83。The focal length of the imaging
定义第八透镜L8的物侧面的中心曲率半径为R15,第八透镜L8的像侧面的中心曲率半径为R16,满足下列关系式:0.92≤(R15+R16)/(R15-R16)≤3.72,规定了第八透镜的形状,在条件式范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.47≤(R15+R16)/(R15-R16)≤2.97。The central radius of curvature of the object side of the eighth lens L8 is defined as R15, and the central radius of curvature of the image side of the eighth lens L8 is R16, which satisfies the following relationship: 0.92≤(R15+R16)/(R15-R16)≤3.72, The shape of the eighth lens is specified, and when the shape is within the range of the conditional expression, it is beneficial to correct problems such as aberration of the off-axis picture angle as the ultra-thin and wide-angle development progresses. Preferably, 1.47≤(R15+R16)/(R15-R16)≤2.97 is satisfied.
摄像光学镜头10的光学总长为TTL,定义第八透镜L8的轴上厚度为d15,满足下列关系式:0.05≤d15/TTL≤0.23,在关系式范围内,有利于实现超薄化。优选地,满足0.08≤d15/TTL≤0.18。The total optical length of the imaging
本实施方式中,摄像光学镜头10的像高为IH,摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤1.72,从而有利于实现超薄化。In this embodiment, the image height of the imaging
本实施方式中,所述摄像光学镜头10光圈值FNO小于或等于1.86,从而实现大光圈,摄像光学镜头10成像性能好。In this embodiment, the aperture value FNO of the imaging
摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。While the imaging
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。The imaging
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;TTL: total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。Aperture value FNO: refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。Preferably, an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements. For specific implementations, see below.
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。Table 1 and Table 2 show design data of the imaging
【表1】【Table 1】
其中,各符号的含义如下。Here, the meaning of each symbol is as follows.
S1:光圈;S1: aperture;
R:光学面中心处的曲率半径;R: the radius of curvature at the center of the optical surface;
R1:第一透镜L1的物侧面的中心曲率半径;R1: the central radius of curvature of the object side surface of the first lens L1;
R2:第一透镜L1的像侧面的中心曲率半径;R2: the central curvature radius of the image side surface of the first lens L1;
R3:第二透镜L2的物侧面的中心曲率半径;R3: the central radius of curvature of the object side surface of the second lens L2;
R4:第二透镜L2的像侧面的中心曲率半径;R4: the central curvature radius of the image side surface of the second lens L2;
R5:第三透镜L3的物侧面的中心曲率半径;R5: the central radius of curvature of the object side surface of the third lens L3;
R6:第三透镜L3的像侧面的中心曲率半径;R6: the central curvature radius of the image side surface of the third lens L3;
R7:第四透镜L4的物侧面的中心曲率半径;R7: the central curvature radius of the object side surface of the fourth lens L4;
R8:第四透镜L4的像侧面的中心曲率半径;R8: the central curvature radius of the image side surface of the fourth lens L4;
R9:第五透镜L5的物侧面的中心曲率半径;R9: the central curvature radius of the object side surface of the fifth lens L5;
R10:第五透镜L5的像侧面的中心曲率半径;R10: the central curvature radius of the image side surface of the fifth lens L5;
R11:第六透镜L6的物侧面的中心曲率半径;R11: the central curvature radius of the object side surface of the sixth lens L6;
R12:第六透镜L6的像侧面的中心曲率半径;R12: the central curvature radius of the image side surface of the sixth lens L6;
R13:第七透镜L7的物侧面的中心曲率半径;R13: the central curvature radius of the object side surface of the seventh lens L7;
R14:第七透镜L7的像侧面的中心曲率半径;R14: the central curvature radius of the image side surface of the seventh lens L7;
R15:第八透镜L8的物侧面的中心曲率半径;R15: the central curvature radius of the object side surface of the eighth lens L8;
R16:第八透镜L8的像侧面的中心曲率半径;R16: the central curvature radius of the image side surface of the eighth lens L8;
R17:光学过滤片GF的物侧面的中心曲率半径;R17: the central curvature radius of the object side of the optical filter GF;
R18:光学过滤片GF的像侧面的中心曲率半径;R18: The central curvature radius of the image side of the optical filter GF;
d:透镜的轴上厚度、透镜之间的轴上距离;d: the on-axis thickness of the lens, the on-axis distance between the lenses;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;d0: the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
d1:第一透镜L1的轴上厚度;d1: the on-axis thickness of the first lens L1;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;d2: the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
d3:第二透镜L2的轴上厚度;d3: the on-axis thickness of the second lens L2;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;d4: the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
d5:第三透镜L3的轴上厚度;d5: the on-axis thickness of the third lens L3;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;d6: the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
d7:第四透镜L4的轴上厚度;d7: the on-axis thickness of the fourth lens L4;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;d8: the on-axis distance from the image side of the fourth lens L4 to the object side of the fifth lens L5;
d9:第五透镜L5的轴上厚度;d9: the on-axis thickness of the fifth lens L5;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;d10: the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
d11:第六透镜L6的轴上厚度;d11: the on-axis thickness of the sixth lens L6;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;d12: the on-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
d13:第七透镜L7的轴上厚度;d13: the on-axis thickness of the seventh lens L7;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;d14: the on-axis distance from the image side of the seventh lens L7 to the object side of the eighth lens L8;
d15:第八透镜L8的轴上厚度;d15: the on-axis thickness of the eighth lens L8;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;d16: the on-axis distance from the image side of the eighth lens L8 to the object side of the optical filter GF;
d17:光学过滤片GF的轴上厚度;d17: On-axis thickness of optical filter GF;
d18:光学过滤片GF的像侧面到像面Si的轴上距离;d18: the on-axis distance from the image side of the optical filter GF to the image plane Si;
nd:d线的折射率(d线为波长为550nm的绿光);nd: the refractive index of the d line (the d line is green light with a wavelength of 550 nm);
nd1:第一透镜L1的d线的折射率;nd1: the refractive index of the d-line of the first lens L1;
nd2:第二透镜L2的d线的折射率;nd2: the refractive index of the d-line of the second lens L2;
nd3:第三透镜L3的d线的折射率;nd3: the refractive index of the d-line of the third lens L3;
nd4:第四透镜L4的d线的折射率;nd4: the refractive index of the d-line of the fourth lens L4;
nd5:第五透镜L5的d线的折射率;nd5: the refractive index of the d-line of the fifth lens L5;
nd6:第六透镜L6的d线的折射率;nd6: the refractive index of the d-line of the sixth lens L6;
nd7:第七透镜L7的d线的折射率;nd7: the refractive index of the d-line of the seventh lens L7;
nd8:第八透镜L8的d线的折射率;nd8: the refractive index of the d-line of the eighth lens L8;
ndg:光学过滤片GF的d线的折射率;ndg: the refractive index of the d-line of the optical filter GF;
vd:阿贝数;vd: Abbe number;
v1:第一透镜L1的阿贝数;v1: Abbe number of the first lens L1;
v2:第二透镜L2的阿贝数;v2: Abbe number of the second lens L2;
v3:第三透镜L3的阿贝数;v3: Abbe number of the third lens L3;
v4:第四透镜L4的阿贝数;v4: Abbe number of the fourth lens L4;
v5:第五透镜L5的阿贝数;v5: Abbe number of the fifth lens L5;
v6:第六透镜L6的阿贝数;v6: Abbe number of the sixth lens L6;
v7:第七透镜L7的阿贝数;v7: Abbe number of the seventh lens L7;
v8:第八透镜L8的阿贝数;v8: Abbe number of the eighth lens L8;
vg:光学过滤片GF的阿贝数。vg: Abbe number of optical filter GF.
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。Table 2 shows aspherical surface data of each lens in the imaging
【表2】【Table 2】
为方便起见,各个透镜面的非球面使用下述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。For the sake of convenience, the aspherical surfaces of the respective lens surfaces are those shown in the following formula (1). However, the present invention is not limited to the aspheric polynomial form represented by the formula (1).
z=(cr2)/{1+[1-(k+1)(c2r2)]1/2}+A4r4+A6r6+A8r8+A10r10+A12r12+A14r14+A16r16+A18r18+A20r20 (1)z=(cr2 )/{1+[1-(k+1)(c2 r2 )]1/2 }+A4r4 +A6r6 +A8r8 +A10r10 +A12r12 +A14r14 +A16r16 +A18r18 +A20r20 (1)
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。Among them, k is the conic coefficient, A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspheric coefficients, c is the curvature at the center of the optical surface, and r is the vertical distance between the point on the aspheric curve and the optical axis , z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface with a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging
【表3】【table 3】
【表4】【Table 4】
图2、图3分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。2 and 3 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm after passing through the imaging
后出现的表17示出各实施例一、二、三、四中各种数值与关系式中已规定的参数所对应的值。The following table 17 shows the values corresponding to various numerical values in the first, second, third, and fourth embodiments and the parameters specified in the relational expressions.
如表17所示,第一实施方式满足各关系式。As shown in Table 17, the first embodiment satisfies each relational expression.
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.331mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为120.00°,所述摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging
(第二实施方式)(Second Embodiment)
图5所示为本发明第二实施方式的摄像光学镜头20。第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。FIG. 5 shows an imaging optical lens 20 according to a second embodiment of the present invention. The second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
第三透镜L3的物侧面于近轴处为凹面,第三透镜L3的像侧面于近轴处为凸面;第四透镜L4的物侧面于近轴处为凸面。The object side of the third lens L3 is concave at the paraxial position, the image side of the third lens L3 is convex at the paraxial position, and the object side of the fourth lens L4 is convex at the paraxial position.
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
【表5】【table 5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
【表6】【Table 6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。Table 7 and Table 8 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
【表7】【Table 7】
【表8】【Table 8】
图6、图7分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging optical lens 20 of the second embodiment. FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment. The field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
如表17所示,第二实施方式满足各关系式。As shown in Table 17, the second embodiment satisfies each relational expression.
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.105mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为134.60°,所述摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens 20 is 1.105 mm, the image height IH of the full field of view is 3.500 mm, and the FOV in the diagonal direction is 134.60°. The imaging optical lens 20 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
(第三实施方式)(third embodiment)
图9所示为本发明第三实施方式的摄像光学镜头30。第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。FIG. 9 shows an imaging
第二透镜L2的像侧面于近轴处为凹面;第三透镜L3的物侧面于近轴处为凹面,第三透镜L3的像侧面于近轴处为凸面。The image side of the second lens L2 is concave at the paraxial position; the object side of the third lens L3 is concave at the paraxial position, and the image side of the third lens L3 is convex at the paraxial position.
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。Table 9 and Table 10 show design data of the imaging
【表9】【Table 9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。Table 10 shows aspherical surface data of each lens in the imaging
【表10】【Table 10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging
【表11】【Table 11】
【表12】【Table 12】
图10、图11分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging
以下表17按照上述关系式列出了本实施方式中对应各关系式的数值。显然,本实施方式的摄像光学镜头30满足上述的关系式。The following Table 17 lists the numerical values corresponding to each relational expression in the present embodiment according to the above-mentioned relational expression. Obviously, the imaging
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.577mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为100.60°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging
(第四实施方式)(Fourth Embodiment)
图13所示为本发明第四实施方式的摄像光学镜头40。第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。FIG. 13 shows an imaging optical lens 40 according to a fourth embodiment of the present invention. The fourth embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
第三透镜L3的物侧面于近轴处为凹面,第三透镜L3的像侧面于近轴处为凸面;第四透镜L4的物侧面于近轴处为凸面;第五透镜L5的物侧面于近轴处为凹面,第五透镜L5的像侧面于近轴处为凸面。The object side of the third lens L3 is concave at the paraxial position, the image side of the third lens L3 is convex at the paraxial position; the object side of the fourth lens L4 is convex at the paraxial position; the object side of the fifth lens L5 is at The paraxial position is concave, and the image side surface of the fifth lens L5 is convex at the paraxial position.
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
【表13】【Table 13】
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
【表14】【Table 14】
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
【表15】【Table 15】
【表16】【Table 16】
图14、图15分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了波长为546nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging optical lens 40 of the fourth embodiment. FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 40 of the fourth embodiment. The field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
以下表17按照上述关系式列出了本实施方式中对应各关系式的数值。显然,本实施方式的摄像光学镜头40满足上述的关系式。The following Table 17 lists the numerical values corresponding to each relational expression in the present embodiment according to the above-mentioned relational expression. Obviously, the imaging optical lens 40 of the present embodiment satisfies the above-mentioned relational expression.
在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为1.136mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为129.00°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。In this embodiment, the entrance pupil diameter ENPD of the imaging optical lens 40 is 1.136 mm, the full field of view image height IH is 3.500 mm, and the field of view angle FOV in the diagonal direction is 129.00°. The imaging
【表17】【Table 17】
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific embodiments for realizing the present invention, and in practical applications, various changes in form and details can be made without departing from the spirit and the spirit of the present invention. scope.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011630955.7ACN112698491B (en) | 2020-12-30 | 2020-12-30 | camera optics |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011630955.7ACN112698491B (en) | 2020-12-30 | 2020-12-30 | camera optics |
| Publication Number | Publication Date |
|---|---|
| CN112698491A CN112698491A (en) | 2021-04-23 |
| CN112698491Btrue CN112698491B (en) | 2022-08-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011630955.7AExpired - Fee RelatedCN112698491B (en) | 2020-12-30 | 2020-12-30 | camera optics |
| Country | Link |
|---|---|
| CN (1) | CN112698491B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113608337B (en)* | 2021-10-11 | 2022-02-11 | 江西联创电子有限公司 | Wide-angle lens |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110646921A (en)* | 2019-09-27 | 2020-01-03 | 浙江舜宇光学有限公司 | Optical imaging lens |
| CN110687659A (en)* | 2018-07-04 | 2020-01-14 | 大立光电股份有限公司 | Photographic optical lens assembly, imaging device and electronic device |
| CN111352219A (en)* | 2020-05-25 | 2020-06-30 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI724190B (en)* | 2017-06-23 | 2021-04-11 | 佳能企業股份有限公司 | Optical lens and electronic device using the same |
| CN110007444B (en)* | 2019-05-21 | 2024-04-16 | 浙江舜宇光学有限公司 | Optical imaging lens |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110687659A (en)* | 2018-07-04 | 2020-01-14 | 大立光电股份有限公司 | Photographic optical lens assembly, imaging device and electronic device |
| CN110646921A (en)* | 2019-09-27 | 2020-01-03 | 浙江舜宇光学有限公司 | Optical imaging lens |
| CN111352219A (en)* | 2020-05-25 | 2020-06-30 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
| Publication number | Publication date |
|---|---|
| CN112698491A (en) | 2021-04-23 |
| Publication | Publication Date | Title |
|---|---|---|
| WO2022047998A1 (en) | Camera optical lens | |
| WO2022047999A1 (en) | Photographing optical lens | |
| CN109839717B (en) | Camera optics | |
| CN112698488B (en) | camera optics | |
| WO2022052262A1 (en) | Optical camera lens | |
| CN111929836A (en) | Image pickup optical lens | |
| WO2022067956A1 (en) | Camera optical lens | |
| WO2022088356A1 (en) | Camera optical lens | |
| WO2022082929A1 (en) | Optical camera lens | |
| CN111427135A (en) | Image pickup optical lens | |
| CN110749983A (en) | Camera optics | |
| CN112698498B (en) | Camera optics | |
| CN112698494B (en) | Camera optics | |
| WO2022077622A1 (en) | Image-capture optical lens | |
| WO2022077600A1 (en) | Optical camera lens | |
| CN112684580B (en) | camera optics | |
| WO2022134178A1 (en) | Optical camera lens | |
| WO2022067942A1 (en) | Photographing optical lens | |
| WO2022052267A1 (en) | Camera optical lens | |
| CN112698490B (en) | Image pickup optical lens | |
| CN112698496B (en) | Image pickup optical lens | |
| CN114675401A (en) | Image pickup optical lens | |
| CN110515180B (en) | Image pickup optical lens | |
| WO2022077608A1 (en) | Optical camera lens | |
| WO2022134177A1 (en) | Optical camera lens |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20221101 Address after:215000 133 Weixin Road, Suzhou Industrial Park, Suzhou, Jiangsu Patentee after:Chengrui optics (Suzhou) Co.,Ltd. Address before:215000 133 Weixin Road, Suzhou Industrial Park, Suzhou, Jiangsu Patentee before:Chengrui optics (Suzhou) Co.,Ltd. Patentee before:Chengrui optics (Shenzhen) Co.,Ltd. | |
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address | Address after:215000 133 Weixin Road, Suzhou Industrial Park, Suzhou, Jiangsu Patentee after:Chenrui Optics (Suzhou) Co.,Ltd. Country or region after:China Address before:215000 133 Weixin Road, Suzhou Industrial Park, Suzhou, Jiangsu Patentee before:Chengrui optics (Suzhou) Co.,Ltd. Country or region before:China | |
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20220805 |