技术领域Technical field
本发明涉及花园工具领域,具体而言涉及一种自行走设备的地图构建和定位方法。The present invention relates to the field of garden tools, and specifically to a map construction and positioning method for self-propelled equipment.
背景技术Background technique
割草机器人是一种常见的能够在户外连续的、实时的自主移动的自动行走设备。智能割草机器人作为自动行走设备的一种,适用于清理丘陵、梯田、平原等地块的植被,以及草坪之内的杂草。其具有操作简单,工作效率高的优势。我们常见的学校,以及街道绿地的美化,都是用这些自动行走设备来完成的。在国外,许多家庭用自动行走设备来为自己的花园除草。Lawn mowing robot is a common automatic walking device that can move continuously and autonomously in real time outdoors. As a type of automatic walking equipment, intelligent lawn mowing robots are suitable for cleaning vegetation on hills, terraces, plains and other plots, as well as weeds in lawns. It has the advantages of simple operation and high work efficiency. Our common schools and the beautification of street green spaces are all completed with these automatic walking devices. Abroad, many families use automatic walking equipment to weed their gardens.
随着人们生活水平的提高,人们对自动行走设备作业效率的要求也不断提高。带路径规划功能,能够自主遍历工作区域的智能型自动行走设备应运而生。一些科技含量较高的设备通过携带或安装GNSS模块,通过定位信号确定工作区域范围和机器位置。其还能够将障碍物圈定起来生成坐标,通过定位模块来绕开障碍物。一些设备能够通过霍尔原理检测碰撞,或者,其还可以通过超声波等方式进行避障。With the improvement of people's living standards, people's requirements for the operating efficiency of automatic walking equipment are also constantly increasing. Intelligent automatic walking equipment with path planning function and the ability to autonomously traverse the work area has emerged. Some high-tech devices carry or install GNSS modules to determine the scope of the working area and the location of the machine through positioning signals. It can also circle obstacles to generate coordinates, and use the positioning module to avoid obstacles. Some devices can detect collisions through the Hall principle, or they can avoid obstacles through ultrasonic and other methods.
但是,GPS等定位方式受外界干扰很大。通常,大树下、雨棚之类的遮挡物会遮挡GPS信号,在自动行走设备的工作区域内形成孤岛。现有RTK定位技术中,同样会存在卫星信号较弱的孤岛(或称为阴影区)。在这些孤岛内,自动行走设备无法获得准确的定位信号,使得孤岛区域内割草不完全。一些情况条下,自动行走设备将因为无法在孤岛区域中定位,而无法工作,或者由于定位不准确而出现工作异常。定位信号缺失的孤岛区域既影响自动行走设备的作业效果也影响机器实际使用。However, positioning methods such as GPS are subject to great interference from the outside world. Usually, obstructions such as under big trees or awnings will block the GPS signal and form an island in the working area of the autonomous walking equipment. In existing RTK positioning technology, there are also isolated islands (or shadow areas) with weak satellite signals. In these isolated islands, automatic walking equipment cannot obtain accurate positioning signals, resulting in incomplete mowing in the isolated island areas. In some cases, the automatic walking equipment will be unable to work because it cannot be positioned in the island area, or it will work abnormally due to inaccurate positioning. The island area where the positioning signal is missing not only affects the operation effect of the automatic walking equipment but also affects the actual use of the machine.
发明内容Contents of the invention
本发明针对现有技术的不足,提供一种自行走设备的地图构建和定位方法,自行走设备在路径学习过程中,在采集RTK数据的基础上,同时采集其他地图数据(激光slam数据、视觉slam数据、超声波测距数据中的一种或几种),构建地图,避免单独使用RTK构建地图时,由于信号缺失导致地图存在孤岛影响自行走设备作业效果的问题。In view of the shortcomings of the existing technology, the present invention provides a map construction and positioning method for self-propelled equipment. During the path learning process, the self-propelled equipment collects other map data (laser slam data, visual data) at the same time on the basis of collecting RTK data. slam data, ultrasonic ranging data), build a map, and avoid the problem that when RTK is used alone to build a map, the problem of islanding in the map due to lack of signal affects the operation effect of self-propelled equipment.
首先,为实现上述目的,提出一种自行走设备的地图构建和定位方法,地图构建时包括如下步骤:First, in order to achieve the above purpose, a map construction and positioning method for self-propelled equipment is proposed. The map construction includes the following steps:
a1、自行走设备沿工作区域边界线绕行一周,采集第一位置信息;a1. The self-propelled equipment goes around the boundary line of the working area and collects the first position information;
a2、通过步骤a1采集的数据,划定工作区域边界并填充内部各个位置点的位置信息,构建第一位置信息地图;a2. Using the data collected in step a1, delineate the boundaries of the work area and fill in the location information of each internal location point to construct the first location information map;
a3、控制自行走设备在工作区域内遍历行走,采集参考位置信息并记录,构建第二位置信息地图;a3. Control the self-propelled equipment to traverse the work area, collect reference position information and record it, and construct a second position information map;
a4、将步骤a2中构建的第一位置信息地图与步骤a4中构建的第二位置信息地图中各个位置点进行对应,每个位置点包括第一位置信息和第二位置信息,构成最终地图;a4. Correspond to each location point in the first location information map constructed in step a2 and the second location information map constructed in step a4. Each location point includes the first location information and the second location information, forming the final map;
基于上述地图所实施的定位方法,步骤包括:Based on the positioning method implemented on the above map, the steps include:
b1、自行走设备启动,在工作区域内运行;b1. The self-propelled equipment starts and runs in the work area;
b2、自行走设备实时获取第一位置信息和第二位置信息中的至少一种,与步骤a4中所构建地图中的位置信息进行比对,确定自身位置。b2. The self-propelled device obtains at least one of the first position information and the second position information in real time, compares it with the position information in the map constructed in step a4, and determines its own position.
作为本方案的一种改进,步骤a4中,选取第一位置信息地图和第二位置信息地图中的至少一个基准点和/或方向信息对第一位置信息地图和第二位置信息地图中的各个位置点进行对应。As an improvement of this solution, in step a4, at least one reference point and/or direction information in the first location information map and the second location information map is selected to match each of the first location information map and the second location information map. corresponding location points.
作为本方案的一种改进,所述基准点为自行走设备基站或者充电站所在位置点。As an improvement of this solution, the reference point is the location point of the self-propelled equipment base station or charging station.
作为本方案的一种改进,每个位置点的第一位置信息包括如下数据中的一种:GPS定位位置信息、RTK位置信息、激光slam位置信息、视觉slam位置信息和超声波位置信息;每个位置点的第二位置信息包括上述数据中除开第一位置信息后,其他数据中的至少一种。As an improvement of this solution, the first position information of each location point includes one of the following data: GPS positioning position information, RTK position information, laser slam position information, visual slam position information and ultrasonic position information; each The second location information of the location point includes at least one of the other data in the above data except the first location information.
作为本方案的一种改进,所述第一位置信息为GPS定位位置信息或者RTK位置信息;所述第二位置信息为激光slam位置信息、视觉slam位置信息和超声波位置信息其中至少一个。As an improvement of this solution, the first position information is GPS positioning position information or RTK position information; the second position information is at least one of laser slam position information, visual slam position information and ultrasonic position information.
作为本方案的一种改进,每个位置点的第一位置信息和第二位置信息均包括该位置点的坐标数据和/或经纬度数据。As an improvement of this solution, the first location information and the second location information of each location point include coordinate data and/or latitude and longitude data of the location point.
作为本方案的一种改进,所述定位方法步骤包括:As an improvement of this solution, the positioning method steps include:
b1、自行走设备启动,在工作区域内运行;b1. The self-propelled equipment starts and runs in the work area;
b2、自行走设备运行过程中,检测获取第一位置信息的信号强度,当信号强度达到预设阈值时,自行走设备通过实时获取的第一位置信息,并与最终地图中的第一位置信息进行比对,确定自身位置;b2. During the operation of the self-propelled equipment, the signal strength of the first location information is detected and obtained. When the signal strength reaches the preset threshold, the self-propelled equipment obtains the first location information in real time and compares it with the first location information in the final map. Compare and determine your position;
b3、当信号强度未达到预设阈值时,自行走设备实时获取第二位置信息,并通过实时获取的第二位置信息,确定最终地图中的具体位置点,并获取该位置点所记录的第一位置信息,并利用该第一位置信息确定自身位置。b3. When the signal strength does not reach the preset threshold, the self-propelled device obtains the second location information in real time, and determines the specific location point in the final map through the second location information obtained in real time, and obtains the third location point recorded at the location point. A piece of location information, and use the first location information to determine its own location.
作为本方案的一种改进,所述第一位置信息为RTK位置信息,所述第二位置信息为激光slam位置信息。As an improvement of this solution, the first position information is RTK position information, and the second position information is laser slam position information.
作为本方案的一种改进,每个位置点的第一位置信息和第二位置信息还包括每个位置点附近障碍物信息。As an improvement of this solution, the first position information and the second position information of each position point also include information about obstacles near each position point.
有益效果beneficial effects
本发明在自动行走设备上同时设置有RTK设备及其他数据采集设备。在进行机器学习过程中,同时开启自行走设备中的RTK设备和其他数据采集设备,获取位置信息。在最终构建的地图中,地图上每个位置点包括RTK坐标数据以及其他类型的位置信息。利用上述方法构建的地图,在实际使用过程中,当自动行走设备进入RTK信号缺失的区域(孤岛区域)时,可以利用其他数据采集设备获取的实时数据信息,对照所构建地图,找到地图中所对应的位置点,并获取地图中该位置点的RTK位置信息。通过上述方法,利用其他数据采集设备所采集的信息反推获得对应的RTK位置信息,保证自行走设备可以在RTK信号缺失区域(孤岛区域)内正常运行。In the present invention, RTK equipment and other data collection equipment are simultaneously provided on the automatic walking equipment. During the machine learning process, RTK devices and other data collection devices in self-propelled devices are turned on at the same time to obtain location information. In the final map, each location point on the map includes RTK coordinate data and other types of location information. During actual use of the map constructed using the above method, when the autonomous walking equipment enters an area where RTK signals are missing (isolated island area), it can use real-time data information obtained by other data collection equipment to compare with the constructed map to find the location in the map. Corresponding location point, and obtain the RTK location information of the location point in the map. Through the above method, the corresponding RTK position information is obtained by using the information collected by other data collection equipment to ensure that the self-propelled equipment can operate normally in the RTK signal missing area (isolated island area).
进一步的,本发明中的其他数据采集设备,可以使用自行走设备自身用于避障的传感器,例如激光测距设备、视觉设备或超声波测距设备中的一种或几种,方案实施较为方便,需要额外增加的设备成本较小。Further, other data collection equipment in the present invention can use the sensor of the self-propelled equipment itself for obstacle avoidance, such as one or more of laser ranging equipment, visual equipment or ultrasonic ranging equipment. The implementation of the solution is relatively convenient. , the additional equipment cost required is smaller.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
附图说明Description of the drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,并与本发明的实施例一起,用于解释本发明,并不构成对本发明的限制。在附图中:The drawings are used to provide a further understanding of the present invention and constitute a part of the specification. Together with the embodiments of the present invention, they are used to explain the present invention and do not constitute a limitation of the present invention. In the attached picture:
图1是本发明应用场景示意图。Figure 1 is a schematic diagram of the application scenario of the present invention.
图2是所述地图构建方法流程图。Figure 2 is a flow chart of the map construction method.
图3是所述导航方法流程图。Figure 3 is a flow chart of the navigation method.
附图标记为:1表示自移动设备;2表示工作区域;3表示房屋;4表示树木;201表示RTK信号正常区域;202表示孤岛区域;203表示新增孤岛区域。The reference marks are: 1 represents the mobile device; 2 represents the work area; 3 represents the house; 4 represents the trees; 201 represents the normal RTK signal area; 202 represents the isolated island area; 203 represents the new isolated island area.
具体实施方式Detailed ways
为使本发明实施例的目的和技术方案更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose and technical solutions of the embodiments of the present invention clearer, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the drawings of the embodiments of the present invention. Obviously, the described embodiments are some, but not all, of the embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It will be understood by one of ordinary skill in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in general dictionaries are to be understood to have meanings consistent with their meaning in the context of the prior art, and are not to be taken in an idealized or overly formal sense unless defined as herein. explain.
本发明中所述的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。The meaning of "and/or" mentioned in the present invention means that each exists alone or both exist simultaneously.
本发明中所述的“内、外”的含义指的是相对于信号线本身而言,由信号线指向工作区域内部的方向为内,反之为外;而非对本发明的装置机构的特定限定。The meaning of "inside and outside" mentioned in the present invention refers to the direction from the signal line to the inside of the working area relative to the signal line itself, and vice versa; it is not a specific limitation on the device mechanism of the present invention. .
本发明中所述的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。The meaning of "connection" in the present invention may be a direct connection between components or an indirect connection between components through other components.
以下实施例以带有RTK装置及激光测距单元的割草机器人为例,具体说明地图构建方法及导航方法。The following embodiment takes a lawn mower robot equipped with an RTK device and a laser ranging unit as an example to specifically describe the map construction method and navigation method.
如图1所示,自移动设备1在工作区域2内工作,具体的自移动设备1为割草机器人,工作区域2为草地,例如院落内、公园内等地方的草地。工作区域2内部分区域RTK信号良好,为RTK信号正常区域201。由于草地周围或者内部可能存在房屋3和树木4等障碍物,障碍物遮挡会形成RTK信号盲区,构成孤岛区域202,割草机器人在孤岛区域202内,因无法接收到RTK信号,没有位置信息导致不能正常运行。As shown in Figure 1, the autonomous mobile device 1 works in a working area 2. Specifically, the autonomous mobile device 1 is a lawn mowing robot, and the working area 2 is grass, such as grass in courtyards, parks, and other places. The RTK signal in some areas within the working area 2 is good, which is the RTK signal normal area 201. Since there may be obstacles such as houses 3 and trees 4 around or inside the grass, the obstruction of the obstacles will form a blind zone for the RTK signal, forming an island area 202. The lawn mowing robot is in the island area 202 and cannot receive the RTK signal and has no location information. Not functioning properly.
如图2所示为一种地图构建流程,割草机器人带有RTK装置及激光测距单元。具体流程如下:Figure 2 shows a map construction process. The lawn mowing robot is equipped with an RTK device and a laser ranging unit. The specific process is as follows:
A1、割草机器人进行工作区域边界施教,割草机器人在工作区域内遍历行走,RTK装置及激光测距单元同时开启运行;A1. The lawn mowing robot performs teaching on the boundaries of the working area. The lawn mowing robot traverses the working area and the RTK device and laser ranging unit are started at the same time;
A2、割草机器人行走过程中,记录每个位置点的RTK位置信息和基于激光测距数据得到的激光slam位置信息;A2. During the walking process of the lawn mowing robot, the RTK position information of each position point and the laser slam position information obtained based on the laser ranging data are recorded;
A3、将每个位置点的RTK位置信息和激光slam数据进行对应,构建地图,地图中,每个位置点包括该位置点的RTK位置信息和激光slam位置信息。A3. Match the RTK position information of each position point with the laser slam data and construct a map. In the map, each position point includes the RTK position information and laser slam position information of the position point.
在上述地图构建过程中,割草机器人在施教阶段,通过RTK装置,获取每个位置点的位置信息,位置信息具体为位置点坐标数据,为了说明清楚,每个位置点处,通过RTK装置获取的坐标数据为(Xrtk,Yrtk);同样在施教阶段,通过激光测距单元获取数据,利用激光slam算法可以得到激光slam位置信息,其具体同样为位置点坐标数据,以(Xslam,Yslam)表示,在最终构建的地图中,地图上每个位置点包含(Xrtk,Yrtk)和(Xslam,Yslam)两个坐标数据,地图中坐标系原点通常设置为基站。In the above map construction process, the lawn mowing robot obtains the position information of each position point through the RTK device during the teaching stage. The position information is specifically the coordinate data of the position point. In order to explain clearly, at each position point, the RTK device is used to obtain the position information of each position point. The obtained coordinate data is (Xrtk, Yrtk); also in the teaching stage, the data is obtained through the laser ranging unit, and the laser slam position information can be obtained using the laser slam algorithm, which is also the position point coordinate data, with (Xslam, Yslam ) means that in the final map, each location point on the map contains two coordinate data (Xrtk, Yrtk) and (Xslam, Yslam). The origin of the coordinate system in the map is usually set to the base station.
需要说明的是,在处理激光slam位置信息的过程中,具体通过激光测距单元获取的数据包括每个位置点的地形信息,地形信息包括每个位置点处的激光发射、反射数据等,此为激光测距以及激光slam公知技术,此处不详细叙述。通过人为设定激光slam坐标系中的原点,可以以激光slam位置信息为基础得到地图数据中的激光slam坐标数据(Xslam,Yslam)。It should be noted that in the process of processing laser slam position information, the data obtained specifically through the laser ranging unit includes terrain information of each position point. The terrain information includes laser emission and reflection data at each position point. This It is a well-known technology for laser ranging and laser slam and will not be described in detail here. By artificially setting the origin in the laser slam coordinate system, the laser slam coordinate data (Xslam, Yslam) in the map data can be obtained based on the laser slam position information.
RTK装置获取位置信息的数据来源为卫星定位信息,因此,割草机器人在使用RTK装置时,需要工作区域没有遮挡物,避免遮挡物对信号产生干扰,在实际应用场景中,例如院落、公园内,不可避免的有房屋、树木等物体存在,可能导致房屋附件、树下等区域没有卫星信号。而使用激光slam、视觉slam、超声波等技术手段进行地图构建时,需要工作区域内有相应的参照物作为参照,才可收集距离数据,最后得到位置点坐标数据,所以在开阔且没有参照物的区域,激光slam、视觉slam、超声波等技术手段难以实施,但是在房屋、树木等物体附件,激光slam、视觉slam、超声波等技术手段具有较好的定位效果,其检测数据也较为准确。The data source for the RTK device to obtain position information is satellite positioning information. Therefore, when the lawn mower robot uses the RTK device, the working area needs to be free of obstructions to avoid obstructions from interfering with the signal. In practical application scenarios, such as courtyards and parks , it is inevitable that there are objects such as houses and trees, which may result in no satellite signal in areas such as near houses and under trees. When using laser slam, visual slam, ultrasonic and other technical means to construct a map, it is necessary to have a corresponding reference object in the work area as a reference before collecting distance data and finally obtaining the location point coordinate data. Therefore, in an open environment without a reference object, In certain areas, technical means such as laser slam, visual slam, and ultrasonic waves are difficult to implement. However, near houses, trees, and other objects, technical means such as laser slam, visual slam, and ultrasonic waves have better positioning effects, and their detection data are also more accurate.
在使用RTK数据采集单元进行地图构建时,也可采用自行走设备绕工作区域边界绕行一周的方式划定边界,边界内各位置点通过计算的方式填充坐标信息(Xrtk,Yrtk)。在RTK数据地图构建完成后,割草机器人采用遍历方式在工作区域内行走,行走过程中,通过激光测距单元获取数据,利用激光slam算法可以得到激光slam位置信息,其具体同样为位置点坐标数据,以(Xslam,Yslam)表示,构建激光测距数据地图。构建完成RTK数据地图和激光测距数据地图后,将两张地图上各个位置点的RTK坐标数据(Xrtk,Yrtk)和激光slam坐标数据(Xslam,Yslam)对应,合成为最终地图。具体对应过程可以是以两张地图中方位信息和基准点信息进行对应,例如利用两张地图中的基站位置坐标为基准点,结合方向信息(例如东南西北方向),对两张地图中的各个位置点进行对应。除了上述方法外,还可以在两张地图中选定多个基准点完成对应过程。When using the RTK data acquisition unit for map construction, the self-propelled equipment can also be used to delineate the boundary by making a circuit around the boundary of the work area, and each position point within the boundary is filled with coordinate information (Xrtk, Yrtk) through calculation. After the RTK data map is constructed, the lawn mower robot walks in the work area using a traversal method. During the walking process, the data is obtained through the laser ranging unit, and the laser slam algorithm can be used to obtain the laser slam position information, which is also the location point coordinates. Data, represented by (Xslam, Yslam), constructs a laser ranging data map. After the RTK data map and laser ranging data map are constructed, the RTK coordinate data (Xrtk, Yrtk) and laser slam coordinate data (Xslam, Yslam) of each location point on the two maps are corresponding and synthesized into the final map. The specific corresponding process can be based on the orientation information and reference point information in the two maps. For example, using the base station location coordinates in the two maps as the reference point, combined with the direction information (such as southeast, northwest, etc.), each point in the two maps is mapped. corresponding location points. In addition to the above methods, you can also select multiple reference points in the two maps to complete the corresponding process.
利用上述流程构建出地图后,在设备后续运行过程中,导航流程如图3所示,具体如下:After the map is constructed using the above process, during the subsequent operation of the device, the navigation process is shown in Figure 3, as follows:
B1、机器启动运行、RTK单元运行;B1. The machine starts running and the RTK unit runs;
B2、机器运行过程中,检测RTK信号强度,当RTK信号强度达到预设阈值时,机器根据RTK位置信息运行;B2. During the operation of the machine, the RTK signal strength is detected. When the RTK signal strength reaches the preset threshold, the machine operates according to the RTK position information;
B3、当检测到RTK信号强度没有达到预设阈值时,机器启动激光测距单元,获取激光测距数据得到激光slam位置信息,根据激光slam位置信息查找地图得到对应位置点的RTK位置信息,机器根据得到的RTK位置信息运行。B3. When it is detected that the RTK signal strength does not reach the preset threshold, the machine starts the laser ranging unit, obtains the laser ranging data to obtain the laser slam position information, and searches the map according to the laser slam position information to obtain the RTK position information of the corresponding location point. The machine Run based on the obtained RTK position information.
在具体导航过程中,如图1所示,自移动设备1在工作区域2内工作。当自移动设备1在RTK信号正常区域201内移动时,RTK装置可以得到卫星定位信号,获取准确的(Xrtk’,Yrtk’)实时坐标数据在工作区域内进行行走。During the specific navigation process, as shown in Figure 1, the mobile device 1 works in the work area 2. When the mobile device 1 moves within the RTK signal normal area 201, the RTK device can obtain the satellite positioning signal and obtain accurate (Xrtk’, Yrtk’) real-time coordinate data to walk in the work area.
在房屋3和树木4周围,由于障碍物遮挡,会形成RTK信号盲区,构成孤岛区域202,割草机器人运行到孤岛区域202内时,由于没有RTK信号,机器无法得到RTK位置信息,此时,启动激光测距单元,获取激光slam实时位置信息,即激光slam实时坐标数据(Xslam’,Yslam’);利用激光slam实时坐标数据(Xslam’,Yslam’)在地图中找到对应的位置点(Xslam,Yslam),并获取此位置点的RTK坐标数据(Xrtk,Yrtk)并将此坐标替代为RTK实时坐标数据(Xslam’,Yslam’),供RTK设备使用,使机器继续运行。如果该孤岛区域内地图中记录的RTK坐标数据为空白,则可直接使用激光slam实时坐标数据(Xslam’,Yslam’)替代RTK坐标数据(Xrtk,Yrtk)供机器运行,或者在此数据基础上增加补偿值a,利用增加补偿值之后的激光slam补偿坐标数据(Xslam’+a,Yslam’+a)替代RTK坐标数据(Xrtk,Yrtk)供机器运行。增加补偿值a的目的是为了使位置点向工作区域中心偏移,防止当机器位于工作区域边缘区域时,由于坐标数据误差导致机器移动至工作区域以外。Around the house 3 and the trees 4, due to the obstruction of obstacles, a blind zone of the RTK signal will be formed, forming an island area 202. When the lawn mowing robot runs into the island area 202, the machine cannot obtain the RTK position information because there is no RTK signal. At this time, Start the laser ranging unit and obtain the laser slam real-time position information, that is, the laser slam real-time coordinate data (Xslam', Yslam'); use the laser slam real-time coordinate data (Xslam', Yslam') to find the corresponding position point (Xslam) on the map , Yslam), and obtain the RTK coordinate data (Xrtk, Yrtk) of this location point and replace this coordinate with RTK real-time coordinate data (Xslam', Yslam') for use by the RTK device, allowing the machine to continue running. If the RTK coordinate data recorded in the map in the island area is blank, the laser slam real-time coordinate data (Xslam', Yslam') can be used directly to replace the RTK coordinate data (Xrtk, Yrtk) for machine operation, or based on this data Increase the compensation value a, and use the laser slam compensation coordinate data (Xslam'+a, Yslam'+a) after increasing the compensation value to replace the RTK coordinate data (Xrtk, Yrtk) for machine operation. The purpose of increasing the compensation value a is to offset the position point toward the center of the work area and prevent the machine from moving outside the work area due to coordinate data errors when the machine is located at the edge of the work area.
在实际使用过程中,天气、环境以及工作区域2内放置物体的变化,可能导致出现额外的新增孤岛区域203, 由于没有RTK信号,机器无法得到RTK位置信息,此时,启动激光测距单元,获取激光slam实时位置信息,即激光slam实时坐标数据(Xslam’,Yslam’);利用激光slam实时坐标数据(Xslam’,Yslam’)在地图中找到对应的位置点(Xslam,Yslam),并获取此位置点的RTK坐标数据(Xrtk,Yrtk)并将此坐标替代为RTK实时坐标数据(Xslam’,Yslam’),供RTK设备使用,使机器继续运行。During actual use, changes in weather, environment, and objects placed in the working area 2 may lead to additional new island areas 203. Since there is no RTK signal, the machine cannot obtain RTK position information. At this time, the laser ranging unit is started. , obtain the laser slam real-time position information, that is, the laser slam real-time coordinate data (Xslam', Yslam'); use the laser slam real-time coordinate data (Xslam', Yslam') to find the corresponding position point (Xslam, Yslam) on the map, and Obtain the RTK coordinate data (Xrtk, Yrtk) of this location point and replace this coordinate with RTK real-time coordinate data (Xslam', Yslam') for use by the RTK device, allowing the machine to continue running.
具体应用过程中,不仅可以使用激光slam技术,还可以使用视觉slam技术、超声波技术等中的一种或几种组合。In the specific application process, not only laser slam technology can be used, but one or several combinations of visual slam technology, ultrasonic technology, etc. can be used.
以上仅为本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。The above are only embodiments of the present invention, and the descriptions are relatively specific and detailed, but they should not be construed as limiting the patent scope of the present invention. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011555589.3ACN112697133B (en) | 2020-12-23 | 2020-12-23 | A map construction and positioning method for self-propelled equipment |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011555589.3ACN112697133B (en) | 2020-12-23 | 2020-12-23 | A map construction and positioning method for self-propelled equipment |
| Publication Number | Publication Date |
|---|---|
| CN112697133A CN112697133A (en) | 2021-04-23 |
| CN112697133Btrue CN112697133B (en) | 2023-09-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011555589.3AActiveCN112697133B (en) | 2020-12-23 | 2020-12-23 | A map construction and positioning method for self-propelled equipment |
| Country | Link |
|---|---|
| CN (1) | CN112697133B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108235736A (en)* | 2017-12-25 | 2018-06-29 | 深圳前海达闼云端智能科技有限公司 | Positioning method, cloud server, terminal, system, electronic device and computer program product |
| WO2018214977A1 (en)* | 2017-05-26 | 2018-11-29 | 苏州宝时得电动工具有限公司 | Moving object and positioning method therefor, automated working system, and storage medium |
| CN109752008A (en)* | 2019-03-05 | 2019-05-14 | 长安大学 | Intelligent vehicle multi-mode cooperative positioning system, method and intelligent vehicle |
| CN110082804A (en)* | 2019-05-10 | 2019-08-02 | 广东星舆科技有限公司 | Method, mobile device and the alignment sensor of co-located |
| CN111123339A (en)* | 2019-12-23 | 2020-05-08 | 南京苏美达智能技术有限公司 | A dual-mode self-propelled device control method and self-propelled device |
| CN111176282A (en)* | 2019-12-31 | 2020-05-19 | 南京苏美达智能技术有限公司 | Method and system for setting boundary and self-walking equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018214977A1 (en)* | 2017-05-26 | 2018-11-29 | 苏州宝时得电动工具有限公司 | Moving object and positioning method therefor, automated working system, and storage medium |
| CN109313253A (en)* | 2017-05-26 | 2019-02-05 | 苏州宝时得电动工具有限公司 | Moving object and its positioning method, automatic working system, storage medium |
| CN108235736A (en)* | 2017-12-25 | 2018-06-29 | 深圳前海达闼云端智能科技有限公司 | Positioning method, cloud server, terminal, system, electronic device and computer program product |
| CN109752008A (en)* | 2019-03-05 | 2019-05-14 | 长安大学 | Intelligent vehicle multi-mode cooperative positioning system, method and intelligent vehicle |
| CN110082804A (en)* | 2019-05-10 | 2019-08-02 | 广东星舆科技有限公司 | Method, mobile device and the alignment sensor of co-located |
| CN111123339A (en)* | 2019-12-23 | 2020-05-08 | 南京苏美达智能技术有限公司 | A dual-mode self-propelled device control method and self-propelled device |
| CN111176282A (en)* | 2019-12-31 | 2020-05-19 | 南京苏美达智能技术有限公司 | Method and system for setting boundary and self-walking equipment |
| Publication number | Publication date |
|---|---|
| CN112697133A (en) | 2021-04-23 |
| Publication | Publication Date | Title |
|---|---|---|
| US8340438B2 (en) | Automated tagging for landmark identification | |
| US20230292657A1 (en) | Robotic tool system and control method thereof | |
| EP2342965B1 (en) | Varying irrigation scheduling based on height of vegetation | |
| US8744626B2 (en) | Managing autonomous machines across multiple areas | |
| US8195342B2 (en) | Distributed knowledge base for vehicular localization and work-site management | |
| US9235214B2 (en) | Distributed knowledge base method for vehicular localization and work-site management | |
| CN102368158B (en) | Navigation positioning method of orchard machine | |
| US20110295423A1 (en) | Condition based keep-out for machines | |
| US20110190931A1 (en) | Pheromone for robotic boundary | |
| EP3695701B1 (en) | Robotic vehicle for boundaries determination | |
| US20100063672A1 (en) | Vehicle with high integrity perception system | |
| CN112715133B (en) | Intelligent mower system and mowing method | |
| CN112702693B (en) | A map construction method and positioning method for self-propelled equipment | |
| CN114296463A (en) | A method for generating paths between work areas and a garden system | |
| CN114610038A (en) | A kind of weeding robot control system and control method | |
| CN113448327A (en) | Operation control method of automatic walking equipment and automatic walking equipment | |
| WO2023274339A1 (en) | Self-propelled working system | |
| CN114326743B (en) | Working map generation method, detection device and garden system | |
| CN112697133B (en) | A map construction and positioning method for self-propelled equipment | |
| CN116560351A (en) | Self-moving equipment, intelligent mowing system and mower | |
| CN115933681A (en) | Working area delineation method and outdoor robot based on laser and vision scheme | |
| CN113515113B (en) | Operation control method of automatic walking equipment and automatic walking equipment | |
| Andersson et al. | Smart robot lawn mower Robot lawn mower without need for a boundary cable around the lawn |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| EE01 | Entry into force of recordation of patent licensing contract | Application publication date:20210423 Assignee:SUMEC HARDWARE & TOOLS Co.,Ltd. Assignor:NANJING SUMEC INTELLIGENT TECHNOLOGY Co.,Ltd. Contract record no.:X2025980018370 Denomination of invention:A method for map building and positioning of a self-propelled device Granted publication date:20230926 License type:Common License Record date:20250821 | |
| EE01 | Entry into force of recordation of patent licensing contract |