



技术领域technical field
本发明属于无源多站定位技术领域,涉及一种时差定位跟踪方法,具体涉及一种基于时钟偏差和站址误差的时差定位跟踪方法。The invention belongs to the technical field of passive multi-station positioning, and relates to a time-difference positioning and tracking method, in particular to a time-difference positioning and tracking method based on clock deviation and site error.
背景技术Background technique
运动目标定位跟踪实质上是连续时间的目标定位,是信号处理领域的一项重要研究内容,在雷达、无线通信和传感器网络等领域中有着广泛的应用。目标定位可分为有源定位和无源定位,其中,由于无源定位无需向外界发射电磁波信号,具有隐蔽性好、作用距离长、生存能力强等特点,成为近年来目标定位技术领域中的研究热点之一。Moving target positioning and tracking is essentially continuous time target positioning, which is an important research content in the field of signal processing, and has a wide range of applications in the fields of radar, wireless communication and sensor networks. Target positioning can be divided into active positioning and passive positioning. Among them, because passive positioning does not need to transmit electromagnetic wave signals to the outside world, it has the characteristics of good concealment, long operating distance, and strong survivability, and has become a popular target in the field of target positioning technology in recent years. One of the research hotspots.
无源定位根据量测信息可分为基于空域信息定位、基于频域信息定位和基于时域信息定位三类。其中基于空域信息的信号到达角的无源定位系统往往需要多天线的阵列接收辐射源信号,且对于运动平台姿态的测量要求较高。基于频域信息的多普勒频率和多普勒频差的无源定位系统与信号的频率调制息息相关,对信号的适应能力差。相比基于空域和频域信息的定位体制,基于时域信息的时差定位方法不仅定位精度高,而且对于无源定位系统中单个节点的载荷能力要求低,利用时差定位方法可实现无源定位系统的小型化及网络化,时差定位方法在无源定位系统中得到了广泛的应用。According to the measurement information, passive positioning can be divided into three categories: positioning based on spatial information, positioning based on frequency domain information and positioning based on time domain information. Among them, the passive positioning system based on the signal arrival angle of the spatial information often requires an array of multiple antennas to receive the radiation source signal, and has high requirements for the measurement of the attitude of the moving platform. The passive positioning system based on Doppler frequency and Doppler frequency difference based on frequency domain information is closely related to the frequency modulation of the signal, and has poor adaptability to the signal. Compared with the positioning system based on spatial and frequency domain information, the time-difference positioning method based on time-domain information not only has high positioning accuracy, but also has low requirements for the load capacity of a single node in the passive positioning system. The passive positioning system can be realized by using the time-difference positioning method. Due to the miniaturization and networking, the time difference positioning method has been widely used in passive positioning systems.
定位跟踪精度是衡量定位跟踪方法性能的重要指标,为了提高定位跟踪精度,时差定位方法一方面要求接收辐射源信号的传感器的采样时钟一致,另一方面要求获取的传感器位置信息精确,然而由于不同传感器的时钟一致性在硬件上难以实现,传感器的精确位置难以获得,因此采用时差定位时所获取的观测值信息往往存在时钟偏差和站址误差,但是,现有技术通常仅考虑其中一种误差,例如申请公布号为CN105954720A,名称为“存在无源探测观测站位置误差的辐射源时差定位方法”的专利申请,公开了一种存在无源探测观测站位置误差的辐射源时差定位方法,包括如下步骤:1)提取时差;2)构造时差定位直接线性方程组;3)构造无源探测观测站位置误差扰动的线性映射矩阵;4)构造时差测量误差扰动的线性映射矩阵;5)构造误差扰动的线性映射矩阵;6)估计辐射源位置。该方法采用了时差定位直接线性模型,考虑了无源探测观测站位置误差在时差定位中的影响,在一定程度上提高了目标的定位精度,但其存在的不足之处在于,该方法仅考虑了站址误差,而未考虑测量传感器与参考传感器之间存在的时钟偏差,同时该方法将距离差值噪声视为与目标和传感器之间的距离无关的常数,与实际应用中距离差值噪声由目标和传感器之间的距离决定存在差异,使得目标位置的估计精度不理想,导致目标跟踪精度较低。因此亟待提出一种可以综合考虑时钟偏差和站址误差的时差定位跟踪方法。The positioning and tracking accuracy is an important indicator to measure the performance of the positioning and tracking method. In order to improve the positioning and tracking accuracy, the time-difference positioning method requires that the sampling clock of the sensor receiving the radiation source signal be consistent on the one hand, and on the other hand, the acquired sensor position information is required to be accurate. The clock consistency of the sensor is difficult to achieve in hardware, and the precise position of the sensor is difficult to obtain. Therefore, the observation information obtained when using time difference positioning often has clock deviation and site error. However, the existing technology usually only considers one of these errors. For example, the patent application with the publication number of CN105954720A and the title of "Radiation Source Time Difference Positioning Method with Position Error of Passive Detection Observation Station" discloses a radiation source time difference positioning method with position error of passive detection observation station, including The following steps are: 1) extracting the time difference; 2) constructing the direct linear equation system for the time difference positioning; 3) constructing the linear mapping matrix of the position error disturbance of the passive detection station; 4) constructing the linear mapping matrix of the time difference measurement error disturbance; 5) constructing the error Perturbed linear mapping matrix; 6) Estimate radiation source location. This method adopts the direct linear model of time difference positioning, and considers the influence of the position error of passive detection station in the time difference positioning, which improves the positioning accuracy of the target to a certain extent, but its shortcomings are that this method only considers In addition, the method considers the distance difference noise as a constant independent of the distance between the target and the sensor, which is different from the distance difference noise in practical applications. There is a difference determined by the distance between the target and the sensor, which makes the estimation accuracy of the target position unsatisfactory, resulting in low target tracking accuracy. Therefore, it is urgent to propose a time-difference positioning and tracking method that can comprehensively consider clock deviation and site error.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述已有技术的不足,提出了一种基于时钟偏差和站址误差的时差定位跟踪方法,用于解决现有技术中存在的跟踪精度较低的技术问题。The purpose of the present invention is to provide a time difference positioning and tracking method based on clock deviation and site error in view of the above-mentioned shortcomings of the prior art, which is used to solve the technical problem of low tracking accuracy existing in the prior art.
为实现上述目的,本发明采取的技术方案包括如下步骤:To achieve the above object, the technical scheme adopted by the present invention comprises the following steps:
(1)构建时差定位跟踪场景:(1) Constructing the time difference positioning and tracking scene:
构建空间直角坐标系OXYZ中包括时差定位跟踪系统和作匀速直线运动的目标的时差定位跟踪场景,其中,时差定位跟踪系统包括信息采集模块、信息处理模块和跟踪控制模块;所述信息采集模块包括时间戳差值信息采集模块和位置信息采集模块;所述时间戳差值信息采集模块包括四个传感器,其中一个传感器为参考传感器,其余三个传感器为测量传感器,测量传感器相对于参考传感器存在时钟偏差;A time difference positioning and tracking scene including a time difference positioning and tracking system and a target moving in a straight line at a uniform speed is constructed in the space rectangular coordinate system OXYZ, wherein the time difference positioning and tracking system includes an information acquisition module, an information processing module and a tracking control module; The information collection module includes A time stamp difference information collection module and a position information collection module; the time stamp difference information collection module includes four sensors, one of which is a reference sensor, and the other three sensors are measurement sensors, and the measurement sensors have a clock relative to the reference sensor. deviation;
(2)初始化参数:(2) Initialization parameters:
设信息采集模块中传感器{Si|1≤i≤4}的初始位置为设信息处理模块对目标T的状态l进行估计的初始值为状态预测值为的误差协方差为P11,采样时间间隔为Δt,参考距离为r0,r0下传感器{Si|1≤i≤4}的测距方差为传感器{Si|1≤i≤4}的站址误差的方差为T与{Si|1≤i≤4}不碰撞的最短距离为R,T与{Si|1≤i≤4}在高度维的最短距离为h,设跟踪控制模块记录系统工作的初始时刻为k,最大时刻为K,其中,和分别表示{Si|1≤i≤4}在X、Y和Z轴方向的坐标值,[·]T表示转置运算,l=[uoT,voT]T,uo表示T的位置向量,uo=[xo,yo,zo]T,xo、yo和zo分别表示T在X、Y和Z轴方向的坐标值,vo表示T的速度向量,vo=[vx,vy,vz]T,vx、vy和vz分别表示T在X、Y和Z轴方向的速度值,表示T的位置估计的初始值,和分别表示在X、Y和Z轴方向上的分量,表示T的速度估计的初始值,和分别表示在X、Y和Z轴方向上的分量,F表示T的初始状态转移矩阵,K>2,并令k=2,Δt=1;Let the initial position of the sensor {Si |1≤i≤4} in the information acquisition module be Suppose the initial value of the information processing module to estimate the state l of the target T is The state predicted value is The error covariance is P11 , the sampling time interval is Δt, the reference distance is r0 , and the ranging variance of the sensor {Si |1≤i≤4} under r0 is The variance of the site error of the sensor {Si |1≤i≤4} is The shortest distance between T and {Si |1≤i≤4} without collision is R, and the shortest distance between T and {Si |1≤i≤4} in the height dimension is h. Let the tracking control module record the initial working of the system The moment is k, and the maximum moment is K, where, and represent the coordinate values of {Si |1≤i≤4} in the X, Y and Z axis directions, respectively, [ ]T represents the transposition operation, l=[uoT , voT ]T , uo represents the position of T Vector, uo =[xo , yo , zo]T , xo , yo andzo represent the coordinate values of T in the X, Y and Z axis directions,respectively ,vo represents the velocity vector ofT ,vo =[vx , vy , vz ]T , vx , vy and vz represent the velocity values of T in the X, Y and Z axis directions, respectively, represents the initial value of the position estimate of T, and Respectively components in the directions of the X, Y and Z axes, represents the initial value of the velocity estimate of T, and Respectively The components in the X, Y and Z axis directions, F represents the initial state transition matrix of T, K>2, and let k=2, Δt=1;
(3)信息采集模块采集时间戳差值信息和传感器位置的观测值信息:(3) The information collection module collects the time stamp difference information and the observation value information of the sensor position:
(3a)时间戳差值信息采集模块中的每个测量传感器{Si|2≤i≤4}根据k时刻采集的目标T辐射信号的到达时间戳τi,k,与参考传感器{Si|i=1}k时刻采集的目标T辐射信号的参考到达时间戳τ1,k,计算自己与参考传感器{Si|i=1}的时间戳差值τi1,k,并将τi1,k发送至信息处理模块:(3a) Each measurement sensor {Si |2≤i≤4} in the time stamp difference information collection module is based on the arrival time stamp τi,k of the target T radiation signal collected at time k, and the reference sensor {Si |i=1} the reference arrival time stamp τ1,k of the target T radiation signal collected at time k, calculate the time stamp difference τi1,k between itself and the reference sensor {Si |i=1}, and calculate τi1 ,k is sent to the information processing module:
τi1,k=τi,k-τ1,k;τi1,k =τi,k −τ1,k ;
(3b)位置信息采集模块采集每个传感器{Si|1≤i≤4}位置的观测值si,k,并将si,k发送至信息处理模块:(3b) The position information collection module collects the observation valuesi,k of each sensor {Si |1≤i≤4} position, and sendssi,k to the information processing module:
si,k=[xi,k,yi,k,zi,k]Tsi,k =[xi,k ,yi,k ,zi,k ]T
其中,xi,k、yi,k和zi,k分别表示si,k在X、Y和Z轴方向上的分量;Among them, xi,k , yi,k and zi,k represent the components of si,k in the X, Y and Z axis directions, respectively;
(4)信息处理模块基于时钟偏差和站址误差获取目标T的位置信息:(4) The information processing module obtains the position information of the target T based on the clock deviation and the site error:
(4a)信息处理模块根据每个测量传感器{Si|2≤i≤4}与参考传感器{Si|i=1}的时间戳差值τi1,k,计算目标T和每个测量传感器{Si|2≤i≤4}与目标T和参考传感器{Si|i=1}在k时刻的距离差观测值ri1,k:(4a) The information processing module calculates the target T and each measurement sensor according to the time stamp difference τi1,k between each measurement sensor {Si |2≤i≤4} and the reference sensor {Si |i=1} The observed value ri1,k of the distance difference between {Si |2≤i≤4} and the target T and the reference sensor {Si |i=1} at time k:
ri1,k=cτi1,kri1,k =cτi1,k
其中,c表示信号在空间中的传播速度;Among them, c represents the propagation speed of the signal in space;
(4b)信息处理模块获取测距偏差的估计值(4b) The information processing module obtains the ranging deviation estimated value of
(4b1)信息处理模块根据距离差观测值ri1,k构建ri1,k的模型rk:(4b1) The information processing module constructs a model rk of ri1, k according to the distance difference observations ri1, k:
nk=[n21,k,n31,k,n41,k]Tnk =[n21,k ,n31,k ,n41,k ]T
其中,表示的向量形式,表示目标T和每个测量传感器{Si|2≤i≤4}与目标T和参考传感器{Si|i=1}在k时刻的距离差真实值,表示{Si|1≤i≤4}与T的距离真实值,示k时刻T的位置的真实值,和分别表示k时刻T在X、Y和Z轴方向的坐标值,表示k时刻{Si|1≤i≤4}的位置的真实值,和分别表示在X、Y和Z轴方向上的分量,||·||表示求向量的二范数,δ°表示的向量形式,表示由{Si|2≤i≤4}和{Si|i=1}间的时钟偏差{ti1∣2≤i≤4}引起的测距偏差,nk表示ni1,k的向量形式,nk服从均值为零且协方差矩阵为Qr,k的高斯分布,ni1,k表示k时刻ri1,k的由距离决定的测量噪声,且表示传感器{Si|1≤i≤4}的测距方差,in, express in vector form, represents the true value of the distance difference between the target T and each measurement sensor {Si |2≤i≤4} and the target T and the reference sensor {Si |i=1} at time k, represents the true value of the distance between {Si |1≤i≤4} and T, shows the true value of the position of T at time k, and Represent the coordinate values of T in the X, Y and Z axis directions at time k, respectively, represents the true value of the position at time k {Si |1≤i≤4}, and Respectively Components in the directions of X, Y and Z axes, ||·|| means to find the two-norm of the vector, δ° means in vector form, represents the ranging bias caused by the clock bias {ti1 ∣2≤i≤4} between {Si |2≤i≤4} and {Si |i=1}, nk represents the vector form of ni1,k , nk follows a Gaussian distribution with zero mean and a covariance matrix Qr,k , ni1,k represents the distance-determined measurement noise at time k ri1,k , and represents the ranging variance of the sensor {Si |1≤i≤4},
(4b2)信息处理模块根据距离差观测值ri1,k,构建关于k时刻目标T的位置的真实值方程组U:(4b2) The information processing module constructs the true value of the position of the target T at time k according to the distance difference observation value ri1,k System of equations U:
(4b3)信息处理模块对方程组U进行求解,得到T的位置的真实值的一次估计值并根据计算k时刻传感器{Si|1≤i≤4}与目标T的距离真实值的估计值再根据计算Qr,k的估计值(4b3) The information processing module solves the equation set U, and obtains the true value of the position of T an estimate of and according to Calculate the true value of the distance between the sensor {Si |1≤i≤4} and the target T at time k estimated value of Then according to Calculate the estimate of Qr,k
其中,和分别表示在X、Y和Z轴方向上的分量,表示传感器{Si|1≤i≤4}测距方差的估计值,in, and Respectively components in the directions of the X, Y and Z axes, Represents the sensor {Si |1≤i≤4} ranging variance the estimated value of ,
(4b4)信息处理模块根据建立最大似然优化函数G1,k,并对G1,k进行求解,得到的估计值(4b4) The information processing module is based on Establish the maximum likelihood optimization function G1,k and solve G1,k to get estimated value of
(4c)信息处理模块对目标T进行预定位:(4c) The information processing module pre-positions the target T:
(4c1)信息处理模块根据每个传感器{Si|1≤i≤4}位置的观测值si,k,构建si,k的模型sk:(4c1) The information processing module constructs a model sk of si,k according to the observed values si,k at the positions of each sensor {Si |1≤i≤4}:
其中,表示k时刻传感器{Si|1≤i≤4}的位置真实值的向量形式,p表示k时刻Δsi,k的向量形式,p服从均值为0且协方差矩阵为Qp的高斯分布,Δsi,k表示k时刻{Si|1≤i≤4}的站址误差,Δsi,k=[Δxi,k,Δyi,k,Δzi,k]T,Δxi,k、Δyi,k和Δzi,k分别表示Δsi,k在X、Y和Z轴方向上的分量,diag[I1×12]表示以I1×12为对角线的对角矩阵,I1×12表示1×12维的全1矩阵;in, Represents the true value of the position of the sensor {Si |1≤i≤4} at time k The vector form of , p represents the vector form of Δsi,k at time k, p follows the Gaussian distribution with
(4c2)信息处理模块计算补偿测距偏差后的距离观测值并根据和建立最大似然优化函数G2,k,并对G2,k进行求解,得到的二次估计值和的估计值其中,和分别表示在X、Y和Z轴方向上的分量,和分别表示在X、Y和Z轴方向上的分量;(4c2) The information processing module calculates the distance observation value after compensating the distance measurement deviation and according to and Establish the maximum likelihood optimization function G2,k and solve G2,k to get The second estimate of and estimated value of in, and Respectively components in the directions of the X, Y and Z axes, and Respectively components in the directions of the X, Y and Z axes;
(4d)信息处理模块对目标T进行定位:(4d) The information processing module locates the target T:
信息处理模块将作为观测值,利用的误差协方差Pk-1|k-1对k时刻T的状态lk进行卡尔曼滤波,得到T的状态估计值和的误差协方差Pk|k,并通过取的前三个元素获得k时刻T的位置估计值并将发送至跟踪控制模块;The information processing module will As observations, use The error covariance Pk-1|k-1 performs Kalman filtering on the state lk of T at time k to obtain the state estimation value of T and The error covariance Pk|k of , and by taking The first three elements of get the position estimate at time k T and will sent to the tracking control module;
其中,表示k-1时刻的估计值,和分别表示在X、Y和Z轴方向上的分量,表示k-1时刻vo的估计值,和分别表示在X、Y和Z轴方向上的分量,表示k时刻的估计值,和分别表示在X、Y和Z轴方向上的分量,表示k时刻vo的估计值,和分别表示在X、Y和Z轴方向上的分量,[·]1:3表示取向量的前3个元素操作;in, Represents time k-1 the estimated value of , and Respectively components in the directions of the X, Y and Z axes, represents the estimated value of vo at time k-1, and Respectively components in the directions of the X, Y and Z axes, represents time k the estimated value of , and Respectively components in the directions of the X, Y and Z axes, represents the estimated value of vo at time k, and Respectively Components in the X, Y, and Z axis directions, [ ]1:3 represents operations on the first 3 elements of the vector;
(5)跟踪控制模块获取目标T的时差定位跟踪结果:(5) The tracking control module obtains the time difference positioning and tracking results of the target T:
跟踪控制模块对信息处理模块发送的的估计值进行存储,并判断k>K是否成立,若是,将K个时刻的作为对目标T的定位跟踪结果,否则,令k=k+1,并执行步骤(6);The tracking control module sends the information to the information processing module estimated value of Store it, and judge whether k>K is established, if so, store the K moments As the result of the positioning and tracking of the target T, otherwise, let k=k+1, and execute step (6);
(6)信息处理模块计算k时刻传感器{Si|1≤i≤4}移动的目的位置坐标:(6) The information processing module calculates the coordinates of the destination position where the sensor {Si |1≤i≤4} moves at time k:
(6a)信息处理模块获得目标T的位置的预测值(6a) The information processing module obtains the predicted value of the position of the target T
其中,表示由k-1时刻的目标状态估计值计算的lk的预测值,表示k时刻的预测值,和分别表示在X、Y和Z轴方向上的分量,表示k时刻vo的预测值,和分别表示在X、Y和Z轴方向上的分量;in, Represents the estimated value of the target state at time k-1 Calculate the predicted value of lk , represents time k the predicted value, and Respectively components in the directions of the X, Y and Z axes, represents the predicted value of vo at time k, and Respectively components in the directions of the X, Y and Z axes;
(6b)信息处理模块计算k时刻传感器{Si|1≤i≤4}移动的目的位置坐标(6b) The information processing module calculates the coordinates of the destination position where the sensor {Si |1≤i≤4} moves at time k
(7)跟踪控制模块控制传感器移动:(7) The tracking control module controls the movement of the sensor:
跟踪控制模块向信息采集模块发送指令,控制时间戳差值信息采集模块中的传感器{Si|1≤i≤4}移动至并执行步骤(3)。The tracking control module sends an instruction to the information collection module to control the sensor {Si |1≤i≤4} in the time stamp difference information collection module to move to and perform step (3).
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明在信息处理模块基于时钟偏差和站址误差获取目标T的位置信息时,首先将距离差观测值建模为一个与时钟偏差有关的值并对时钟偏差引起的距离偏差进行了估计,在信息处理模块对目标进行预定位时建立了与传感器的站址误差有关的传感器位置的观测值模型,同时对距离差观测值中时钟偏差引起的距离偏差进行了补偿,使得所利用的距离差观测值更为准确,有效提高目标的定位跟踪精度。1. In the present invention, when the information processing module obtains the position information of the target T based on the clock deviation and the site error, the distance difference observation value is first modeled as a value related to the clock deviation and the distance deviation caused by the clock deviation is estimated. , when the information processing module pre-positions the target, the observation value model of the sensor position related to the site error of the sensor is established, and the distance deviation caused by the clock deviation in the distance difference observation value is compensated, so that the used distance The difference observation value is more accurate, and the positioning and tracking accuracy of the target is effectively improved.
2.本发明在信息处理模块基于时钟偏差和站址误差获取目标的位置信息时,构建了由距离决定的测量噪声的距离差观测值模型,该距离差观测值模型能够准确表示真实的距离差观测值,克服了现有技术中将测量噪声视为常数时与实际噪声由目标和传感器之间的距离决定存在差异的不足,进一步提高了目标的定位跟踪精度。2. In the present invention, when the information processing module obtains the position information of the target based on the clock deviation and the site error, a distance difference observation value model of the measurement noise determined by the distance is constructed, and the distance difference observation value model can accurately represent the real distance difference. The observation value overcomes the deficiency in the prior art that the measurement noise is regarded as a constant and the actual noise is determined by the distance between the target and the sensor, and further improves the positioning and tracking accuracy of the target.
附图说明Description of drawings
图1是本发明的实现流程图。Fig. 1 is the realization flow chart of the present invention.
图2是本发明采用的时差定位跟踪系统的结构示意图。FIG. 2 is a schematic structural diagram of the time difference positioning and tracking system adopted in the present invention.
图3是本发明实例定位跟踪结果的仿真图。FIG. 3 is a simulation diagram of a positioning and tracking result of an example of the present invention.
图4是本发明与现有技术定位跟踪精度的仿真对比图。FIG. 4 is a simulation comparison diagram of the positioning and tracking accuracy of the present invention and the prior art.
具体实施方式Detailed ways
下面结合附图和具体实施例,对本发明作进一步的详细描述。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
参照图1,本发明包括如下步骤:1, the present invention includes the following steps:
步骤1)构建时差定位跟踪场景:Step 1) Build a time difference positioning and tracking scene:
构建空间直角坐标系OXYZ中包括时差定位跟踪系统和作匀速直线运动的目标的时差定位跟踪场景,其中,时差定位跟踪系统的结构如图2所示,包括依次级联的信息采集模块、信息处理模块和跟踪控制模块,且跟踪控制模块的输出与信息采集模块的输入相连;A time difference positioning and tracking scene including a time difference positioning and tracking system and a target moving in a uniform straight line is constructed in the space rectangular coordinate system OXYZ. The structure of the time difference positioning and tracking system is shown in Figure 2, including cascaded information acquisition modules, information processing module and a tracking control module, and the output of the tracking control module is connected with the input of the information acquisition module;
所述信息采集模块包括时间戳差值信息采集模块和位置信息采集模块;所述时间戳差值信息采集模块包括四个传感器,其中一个传感器为参考传感器,其余三个传感器为测量传感器,测量传感器相对于参考传感器存在时钟偏差,四个传感器分布于空间中的不同位置;The information collection module includes a time stamp difference information collection module and a location information collection module; the time stamp difference information collection module includes four sensors, one of which is a reference sensor, and the remaining three sensors are measurement sensors. There is a clock skew relative to the reference sensor, and the four sensors are distributed in different positions in space;
步骤2)初始化参数:Step 2) Initialize parameters:
设信息采集模块中传感器{Si|1≤i≤4}的初始位置为设信息处理模块对目标T的状态l进行估计的初始值为状态预测值为的误差协方差为P11,采样时间间隔为Δt,参考距离为r0下传感器{Si|1≤i≤4}的测距方差为传感器{Si|1≤i≤4}的站址误差的方差为T与{Si|1≤i≤4}不碰撞的最短距离为R,T与{Si|1≤i≤4}在高度维的最短距离为h,设跟踪控制模块记录系统工作的初始时刻为k,最大时刻为K,其中,和分别表示{Si|1≤i≤4}在X、Y和Z轴方向的坐标值,[·]T表示转置运算,l=[uoT,voT]T,uo表示T的位置向量,uo=[xo,yo,zo]T,xo、yo和zo分别表示T在X、Y和Z轴方向的坐标值,vo表示T的速度向量,vo=[vx,vy,vz]T,vx、vy和vz分别表示T在X、Y和Z轴方向的速度值,表示T的位置估计的初始值,和分别表示在X、Y和Z轴方向上的分量,表示T的速度估计的初始值,和分别表示在X、Y和Z轴方向上的分量,F表示T的初始状态转移矩阵,K>2,并令k=2,Δt=1;本实例中,P1|1的主对角元素为1,其它元素为0,r0=1米,R=120米,h=60米,K=100,设置目标T的初始状态为l0=[500,-1000,100,-10,20,30]T;Let the initial position of the sensor {Si |1≤i≤4} in the information acquisition module be Suppose the initial value of the information processing module to estimate the state l of the target T is The state predicted value is The error covariance is P11 , the sampling time interval is Δt, and the ranging variance of the sensor {Si |1≤i≤4} under the reference distance r0 is The variance of the site error of the sensor {Si |1≤i≤4} is The shortest distance between T and {Si |1≤i≤4} without collision is R, and the shortest distance between T and {Si |1≤i≤4} in the height dimension is h. Let the tracking control module record the initial working of the system The moment is k, and the maximum moment is K, where, and represent the coordinate values of {Si |1≤i≤4} in the X, Y and Z axis directions, respectively, [ ]T represents the transposition operation, l=[uoT , voT ]T , uo represents the position of T Vector, uo =[xo , yo , zo]T , xo , yo andzo represent the coordinate values of T in the X, Y and Z axis directions,respectively ,vo represents the velocity vector ofT ,vo =[vx , vy , vz ]T , vx , vy and vz represent the velocity values of T in the X, Y and Z axis directions, respectively, represents the initial value of the position estimate of T, and Respectively components in the directions of the X, Y and Z axes, represents the initial value of the velocity estimate of T, and Respectively The components in the X, Y and Z axis directions, F represents the initial state transition matrix of T, K>2, and let k=2, Δt=1; in this example, The main diagonal element of P1|1 is 1, the other elements are 0, r0 =1 m, R=120 meters, h=60 meters, K=100, set the initial state of the target T as l0 =[500,-1000,100,-10,20,30]T ;
步骤3)信息采集模块采集时间戳差值信息和传感器位置的观测值信息:Step 3) The information collection module collects the time stamp difference information and the observation value information of the sensor position:
(3a)时间戳差值信息采集模块中每个传感器{Si|1≤i≤4}都会接收到目标T的辐射信号,不同传感器接收到T的辐射信号的到达时间存在差异,因此每个测量传感器{Si|2≤i≤4}可以根据k时刻采集的目标T辐射信号的到达时间戳τi,k,与参考传感器{Si|i=1}k时刻采集的目标T辐射信号的参考到达时间戳τ1,k,计算自己与参考传感器{Si|i=1}的时间戳差值τi1,k,并将τi1,k发送至信息处理模块:(3a) Each sensor {Si |1≤i≤4} in the time stamp difference information collection module will receive the radiation signal of the target T, and there are differences in the arrival time of the radiation signal received by different sensors, so each sensor The measurement sensor {Si |2≤i≤4} can be based on the arrival time stamp τi,k of the target T radiation signal collected at time k, and the target T radiation signal collected by the reference sensor {Si |i=1} at time k The reference arrival timestamp τ1,k , calculate the timestamp difference τi1,k between itself and the reference sensor {Si |i=1}, and send τi1,k to the information processing module:
τi1,k=τi,k-τ1,k;τi1,k =τi,k −τ1,k ;
(3b)为了实现对目标的定位跟踪,时差定位跟踪系统需要获取传感器的位置信息,因此利用位置信息采集模块采集每个传感器{Si|1≤i≤4}位置的观测值si,k,并将si,k发送至信息处理模块:(3b) In order to realize the positioning and tracking of the target, the time difference positioning and tracking system needs to obtain the position information of the sensor, so the position information acquisition module is used to collect the observation valuesi,k of the position of each sensor {Si |1≤i≤4} , and sendsi,k to the information processing module:
si,k=[xi,k,yi,k,zi,k]Tsi,k =[xi,k ,yi,k ,zi,k ]T
其中,xi,k、yi,k和zi,k分别表示si,k在X、Y和Z轴方向上的分量;Among them, xi,k , yi,k and zi,k represent the components of si,k in the X, Y and Z axis directions, respectively;
步骤4)信息处理模块基于时钟偏差和站址误差获取目标T的位置信息:Step 4) The information processing module obtains the location information of the target T based on the clock deviation and the site error:
(4a)信息处理模块根据每个测量传感器{Si|2≤i≤4}与参考传感器{Si|i=1}的时间戳差值τi1,k,计算目标T和每个测量传感器{Si|2≤i≤4}与目标T和参考传感器{Si|i=1}在k时刻的距离差观测值ri1,k:(4a) The information processing module calculates the target T and each measurement sensor according to the time stamp difference τi1,k between each measurement sensor {Si |2≤i≤4} and the reference sensor {Si |i=1} The observed value ri1,k of the distance difference between {Si |2≤i≤4} and the target T and the reference sensor {Si |i=1} at time k:
ri1,k=cτi1,kri1,k =cτi1,k
其中,c表示信号在空间中的传播速度;Among them, c represents the propagation speed of the signal in space;
(4b)信息处理模块获取测距偏差的估计值(4b) The information processing module obtains the ranging deviation estimated value of
(4b1)信息处理模块根据距离差观测值ri1,k构建ri1,k的模型rk:(4b1) The information processing module constructs a model rk of ri1, k according to the distance difference observations ri1, k:
其中,表示的向量形式,表示目标T和每个测量传感器{Si|2≤i≤4}与目标T和参考传感器{Si|i=1}在k时刻的距离差真实值,表示{Si|1≤i≤4}与T的距离真实值,表示k时刻T的位置的真实值,和分别表示k时刻T在X、Y和Z轴方向的坐标值,表示k时刻{Si|1≤i≤4}的位置的真实值,和分别表示在X、Y和Z轴方向上的分量,δ°表示的向量形式,表示由{Si|2≤i≤4}和{Si|i=1}间的时钟偏差{ti1∣2≤i≤4}引起的测距偏差,nk表示ni1,k的向量形式,nk服从均值为零且协方差矩阵为Qr,k的高斯分布,ni1,k表示k时刻ri1,k的由距离决定的测量噪声,且表示传感器{Si|1≤i≤4}的测距方差,in, express in vector form, represents the true value of the distance difference between the target T and each measurement sensor {Si |2≤i≤4} and the target T and the reference sensor {Si |i=1} at time k, represents the true value of the distance between {Si |1≤i≤4} and T, represents the true value of the position of T at time k, and Represent the coordinate values of T in the X, Y and Z axis directions at time k, respectively, represents the true value of the position at time k {Si |1≤i≤4}, and Respectively Components in the directions of the X, Y and Z axes, δ° in vector form, represents the ranging bias caused by the clock bias {ti1 ∣2≤i≤4} between {Si |2≤i≤4} and {Si |i=1}, nk represents the vector form of ni1,k , nk follows a Gaussian distribution with zero mean and a covariance matrix Qr,k , ni1,k represents the distance-determined measurement noise at time k ri1,k , and represents the ranging variance of the sensor {Si |1≤i≤4},
在构建距离差观测值模型rk时,将距离差观测值建模为一个与时钟偏差有关的值,即考虑了{Si|2≤i≤4}与{Si|i=1}间的时钟偏差{ti1∣2≤i≤4}带来的测距偏差同时,设置nk的协方差矩阵Qr,k的大小与有关,而非独立于的常数,使得rk能够真实反应距离差观测值,有利于提高目标的定位跟踪精度;When constructing the distance difference observation value model rk , the distance difference observation value is modeled as a value related to the clock deviation, that is, the distance between {Si |2≤i≤4} and {Si |i=1} is considered. The ranging bias caused by the clock bias {ti1 ∣ 2≤i≤4} At the same time, set the covariance matrix Qr of nk , and the size of k is the same as related to, not independent of is constant, so that rk can truly reflect the observed value of distance difference, which is beneficial to improve the positioning and tracking accuracy of the target;
(4b2)信息处理模块根据距离差观测值ri1,k,构建关于k时刻目标T的位置的真实值方程组U:(4b2) The information processing module constructs the true value of the position of the target T at time k according to the distance difference observation value ri1,k System of equations U:
(4b3)信息处理模块对方程组U进行求解,得到T的位置的真实值的一次估计值并根据计算k时刻传感器{Si|1≤i≤4}与目标T的距离真实值的估计值再根据计算Qr,k的估计值(4b3) The information processing module solves the equation set U, and obtains the true value of the position of T an estimate of and according to Calculate the true value of the distance between the sensor {Si |1≤i≤4} and the target T at time k estimated value of Then according to Calculate the estimate of Qr,k
其中,和分别表示在X、Y和Z轴方向上的分量,表示传感器{Si|1≤i≤4}测距方差的估计值,in, and Respectively components in the directions of the X, Y and Z axes, Represents the sensor {Si |1≤i≤4} ranging variance the estimated value of ,
由于T和{Si|1≤i≤4}之间的真实距离未知,在计算Qr,k时用T和{Si|1≤i≤4}之间的距离估计值代替真实值使得估计值与真实值Qr,k之间存在差异,但由于卡尔曼滤波对噪声不敏感,因此在后续定位过程中使用代替Qr,k不会影响目标的定位跟踪精度;Since the true distance between T and {Si |1≤i≤4} unknown, use the distance estimate between T and {Si |1≤i≤4} when calculating Qr,k instead of the true value make the estimated value There is a difference from the true value Qr,k , but since the Kalman filter is not sensitive to noise, it is used in the subsequent localization process Replacing Qr,k will not affect the positioning and tracking accuracy of the target;
(4b4)信息处理模块根据构建似然函数f1,k,并通过f1,k建立最大似然优化函数G1,k,采用牛顿迭代法对G1,k中进行求解得到取估计结果中的后三个元素作为的估计值用于补偿距离差观测值中时钟偏差引起的测距偏差,其中,(4b4) The information processing module is based on Construct the likelihood function f1,k , and establish the maximum likelihood optimization function G1,k through f1, k, and use the Newton iteration method to calculate the value in G1,k Solve to get Take the estimated result The last three elements in as estimated value of is used to compensate the ranging bias caused by the clock bias in the distance difference observations, where,
[·]-1表示矩阵求逆运算,表示G1,k中的待求解参数;[ ]-1 means matrix inversion operation, represents the parameters to be solved in G1,k ;
(4c)信息处理模块对目标T进行预定位:(4c) The information processing module pre-positions the target T:
(4c1)信息处理模块根据每个传感器{Si|1≤i≤4}位置的观测值si,k,构建si,k的模型sk:(4c1) The information processing module constructs a model sk of si,k according to the observed values si,k at the positions of each sensor {Si |1≤i≤4}:
其中,表示k时刻传感器{Si|1≤i≤4}的位置真实值的向量形式,p表示k时刻Δsi,k的向量形式,p服从均值为0且协方差矩阵为Qp的高斯分布,Δsi,k表示k时刻{Si|1≤i≤4}的站址误差,Δsi,k=[Δxi,k,Δyi,k,Δzi,k]T,Δxi,k、Δyi,k和Δzi,k分别表示Δsi,k在X、Y和Z轴方向上的分量,diag[I1×12]表示以I1×12为对角线的对角矩阵,I1×12表示1×12维的全1矩阵;in, Represents the true value of the position of the sensor {Si |1≤i≤4} at time k The vector form of , p represents the vector form of Δsi,k at time k, p follows the Gaussian distribution with
在构建模型sk时,考虑了传感器的站址误差Δsi,k,使得模型更加准确,有利于提高目标的定位跟踪精度;When constructing the modelsk , the site error Δsi,k of the sensor is considered, which makes the model more accurate and helps to improve the positioning and tracking accuracy of the target;
(4c2)信息处理模块计算补偿测距偏差后的距离观测值根据和建立似然函数f2,k,并利用f2,k建立最大似然优化函数G2,k,采用牛顿迭代法对G2,k中的进行求解得到取中前三个元素作为的二次估计值并将其余元素作为的估计值其中:(4c2) The information processing module calculates the distance observation value after compensating the distance measurement deviation according to and Establish the likelihood function f2,k , and use f2,k to establish the maximum likelihood optimization function G2,k , use the Newton iteration method for the Solve to get Pick The first three elements in the The second estimate of and put the rest of the elements as estimated value of in:
表示补偿测距偏差后的距离观测值的向量形式,表示G2,k中的待求解参数,和分别表示在X、Y和Z轴方向上的分量,和分别表示在X、Y和Z轴方向上的分量; Indicates the distance observation value after compensating for the ranging bias in vector form, represents the parameters to be solved in G2,k , and Respectively components in the directions of the X, Y and Z axes, and Respectively components in the directions of the X, Y and Z axes;
通过补偿距离差观测值中时钟偏差引起的测距偏差,消除了距离差观测值中{Si|2≤i≤4}与{Si|i=1}之间存在的时钟偏差带来的影响,获得了更为准确的距离差观测值,利用补偿后距离差观测值对目标定位可以提高目标定位跟踪精度,同时通过信息处理模块对目标T进行预定位,可以将距离差观测值转化为目标位置观测值,即将非线性观测值线性化,使得本发明可以采用卡尔曼滤波对目标位置进行进一步估计,获得更为准确的目标位置估计值;By compensating the ranging bias caused by the clock bias in the distance difference observations, the clock bias that exists between {Si |2≤i≤4} and {Si |i=1} in the distance difference observations is eliminated. Therefore, a more accurate distance difference observation value can be obtained. Using the compensated distance difference observation value to locate the target can improve the target positioning and tracking accuracy. At the same time, the target T can be pre-positioned through the information processing module, and the distance difference observation value can be converted into The target position observation value, that is, the linearization of the nonlinear observation value, enables the present invention to further estimate the target position by using Kalman filtering, and obtain a more accurate target position estimation value;
(4d)信息处理模块对目标T进行定位:(4d) The information processing module locates the target T:
(4d1)信息处理模块对目标T进行预定位之后,将作为观测值,并构建观测值的模型(4d1) After the information processing module pre-positions the target T, as observations, and build a model of the observations
其中,C表示状态转移矩阵,ζk表示观测值的观测噪声,ζk服从均值为零且协方差矩阵为的高斯分布;Among them, C is the state transition matrix, ζk is the observation value The observation noise of ζk obeys zero mean and the covariance matrix is the Gaussian distribution of ;
(4d2)信息处理模块通过预定位,将非线性观测值线性化,因此需要计算线性观测值的观测噪声协方差矩阵(4d2) The information processing module linearizes the nonlinear observation value through pre-positioning, so it is necessary to calculate the linear observation value The observed noise covariance matrix of
其中,Hk表示似然函数f2,k在目标T的位置的二次估计值处的二阶海森矩阵,表示偏导符号;Among them, Hk represents the quadratic estimated value of the likelihood function f2,k at the position of the target T The second-order Hessian matrix at , represents the partial derivative symbol;
(4d3)根据的误差协方差矩阵Pk-1|k-1、初始状态转移矩阵F和过程噪声的协方差矩阵Qk计算预测误差协方差矩阵Pk|k-1,并根据Pk|k-1计算卡尔曼增益Kk,再根据Kk、和lk的预测值计算同时根据Pk|k-1和Kk计算误差协方差矩阵Pk|k:(4d3) according to The error covariance matrix Pk-1|k-1 , the initial state transition matrix F and the process noise covariance matrix Qk calculate the prediction error covariance matrix Pk|k-1 , and calculate according to Pk|k-1 Kalman gain Kk , and then according to Kk , and the predicted value of lk calculate Calculate the error covariance matrix Pk|k according to Pk|k-1 and Kk at the same time:
Pk|k=(I-KkC)Pk|k-1Pk|k =(IKk C)Pk|k-1
Pk|k-1=FPk-1|k-1FT+QkPk|k-1 =FPk-1|k-1 FT +Qk
其中,表示k-1时刻的估计值,和分别表示在X、Y和Z轴方向上的分量,表示k-1时刻vo的估计值,和分别表示在X、Y和Z轴方向上的分量,表示由k-1时刻的目标状态估计值计算的lk的预测值,表示的预测值,和分别表示在X、Y和Z轴方向上的分量,表示vo的预测值,和分别表示在X、Y和Z轴方向上的分量,表示的估计值,和分别表示在X、Y和Z轴方向上的分量,表示vo的估计值,和分别表示在X、Y和Z轴方向上的分量,[·]1:3表示取向量的前3个元素操作,in, Represents time k-1 the estimated value of , and Respectively components in the directions of the X, Y and Z axes, represents the estimated value of vo at time k-1, and Respectively components in the directions of the X, Y and Z axes, Represents the estimated value of the target state at time k-1 Calculate the predicted value of lk , express the predicted value, and Respectively components in the directions of the X, Y and Z axes, represents the predicted value of vo , and Respectively components in the directions of the X, Y and Z axes, express the estimated value of , and Respectively components in the directions of the X, Y and Z axes, represents the estimated value of vo , and Respectively components in the X, Y and Z axis directions, [ ]1:3 represents an operation on the first 3 elements of the vector,
步骤5)跟踪控制模块获取目标T的时差定位跟踪结果:Step 5) The tracking control module obtains the time difference positioning tracking result of the target T:
跟踪控制模块对信息处理模块发送的的估计值进行存储,并判断k>K是否成立,若是,将K个时刻的作为对目标T的定位跟踪结果,否则,令k=k+1,并执行步骤(6);The tracking control module sends the information to the information processing module estimated value of Store it, and judge whether k>K is established, if so, store the K moments As the result of the positioning and tracking of the target T, otherwise, let k=k+1, and execute step (6);
步骤6)信息处理模块计算k时刻传感器{Si|1≤i≤4}移动的目的位置坐标:Step 6) The information processing module calculates the coordinates of the destination position where the sensor {Si |1≤i≤4} moves at time k:
(6a)信息处理模块获得目标T的位置的预测值(6a) The information processing module obtains the predicted value of the position of the target T
(6b)信息处理模块计算k时刻传感器{Si|1≤i≤4}移动的目的位置坐标(6b) The information processing module calculates the coordinates of the destination position where the sensor {Si |1≤i≤4} moves at time k
时差定位方法的定位性能依赖于传感器的位置分布,通过目标位置的预测信息,动态调整传感器的位置,可以使费舍尔信息矩阵的行列式值最大,目标位置的估计更为准确;The positioning performance of the time difference positioning method depends on the position distribution of the sensor. By dynamically adjusting the position of the sensor through the prediction information of the target position, the determinant value of the Fisher information matrix can be maximized, and the estimation of the target position is more accurate;
步骤7)跟踪控制模块控制传感器移动:Step 7) The tracking control module controls the movement of the sensor:
跟踪控制模块向信息采集模块发送指令,控制时间戳差值信息采集模块中的传感器{Si|1≤i≤4}移动至并执行步骤(3)。The tracking control module sends an instruction to the information collection module to control the sensor {Si |1≤i≤4} in the time stamp difference information collection module to move to and perform step (3).
下面结合仿真实验,对本发明的技术效果作进一步的说明。The technical effects of the present invention will be further described below in conjunction with simulation experiments.
1.仿真条件与仿真内容:1. Simulation conditions and simulation content:
设信息采集模块中传感器{Si|1≤i≤4}的初始位置为设信息处理模块对目标T的状态l进行估计的初始值为状态预测值为的误差协方差为P1|1的主对角元素为1,其它元素为0,参考距离为r0=1m,r0下传感器{Si|1≤i≤4}的测距方差为传感器{Si|1≤i≤4}的站址误差的方差为T与{Si|1≤i≤4}不碰撞的最短距离为R=120m,T与{Si|1≤i≤4}在高度维的最短距离为h=60m,设跟踪控制模块记录系统工作的初始时刻为k=2,最大时刻为K=100,设置目标T的初始状态为l0=[500,-1000,100,-10,20,30]T,{Si|2≤i≤4}与{Si|i=1}之间的时钟偏差为Let the initial position of the sensor {Si |1≤i≤4} in the information acquisition module be Suppose the initial value of the information processing module to estimate the state l of the target T is The state predicted value is The error covariance of P1|1 is 1, the other elements are 0, the reference distance is r0 =1m, and the ranging variance of the sensor {Si |1≤i≤4} under r0 is The variance of the site error of the sensor {Si |1≤i≤4} is The shortest distance between T and {Si |1≤i≤4} without collision is R=120m, and the shortest distance between T and {Si |1≤i≤4} in height dimension is h=60m, set the tracking control module to record The initial time of system operation is k=2, the maximum time is K=100, and the initial state of the target T is set as l0 =[500,-1000,100,-10,20,30]T , {Si |2≤ The clock skew between i≤4} and {Si |i=1} is
仿真过程中软硬件环境,硬件环境:CPU为Inter(R)Xeon(R)CPU E3-1231 v3,主频为3.40GHz,主存为32.0GB,64位操作系统。软件环境:Microsoft windows10专业版,MATLAB2015仿真软件。The software and hardware environment in the simulation process, the hardware environment: the CPU is Inter(R) Xeon(R) CPU E3-1231 v3, the main frequency is 3.40GHz, the main memory is 32.0GB, and the 64-bit operating system is used. Software environment: Microsoft windows10 professional edition, MATLAB2015 simulation software.
仿真1:对本实例的定位跟踪结果进行仿真,其结果如图3所示。Simulation 1: The positioning and tracking results of this example are simulated, and the results are shown in Figure 3.
仿真2:对本发明与现有的存在无源探测观测站位置误差的辐射源时差定位方法的目标定位的均方根误差进行对比,其结果如图4所示。Simulation 2: Compare the root mean square error of the target location of the present invention and the existing radiation source time difference location method with passive detection station location errors, and the results are shown in FIG. 4 .
2.仿真结果分析:2. Analysis of simulation results:
参照图3,X轴表示目标位置在X轴方向上的坐标,Y轴表示目标位置在Y轴方向上的坐标,Z轴表示目标位置在Z轴方向上的坐标,图中实线表示目标运动轨迹,虚线表示采用本发明提出的定位跟踪方法得到的跟踪结果,从图中可以看出,两条曲线重合,说明本发明提出的定位跟踪方法能够实现对匀速直线运动目标的有效跟踪。3, the X axis represents the coordinates of the target position in the X axis direction, the Y axis represents the coordinates of the target position in the Y axis direction, the Z axis represents the coordinates of the target position in the Z axis direction, and the solid line in the figure represents the target movement. The dashed line represents the tracking result obtained by the positioning and tracking method proposed by the present invention. It can be seen from the figure that the two curves overlap, indicating that the positioning and tracking method proposed by the present invention can achieve effective tracking of a uniform linear moving target.
参照图4,横坐标为目标跟踪的时刻数,纵坐标为目标位置估计的均方根误差,其中实线表示本发明的目标位置估计的均方根误差,虚线表示现有技术的目标位置估计的均方根误差。从图中可以看出,在初始时刻,两种方法的均方根误差波动较大,随着时间变长,两条曲线趋于平缓,现有技术的目标位置估计的均方根误差约为16.8米,而本发明目标位置估计的均方根误差约为3.6米,本发明目标位置估计的均方根误差远小于现有技术的目标位置估计的均方根误差,因此,同现有技术相比,本发明有效提高了目标的定位跟踪精度。Referring to Fig. 4, the abscissa is the time number of target tracking, and the ordinate is the root mean square error of target position estimation, wherein the solid line represents the root mean square error of target position estimation of the present invention, and the dotted line represents the target position estimation of the prior art The root mean square error of . It can be seen from the figure that at the initial moment, the root mean square error of the two methods fluctuates greatly, and as the time becomes longer, the two curves tend to be flat, and the root mean square error of the target position estimation in the prior art is about 16.8 meters, and the root mean square error of the target position estimation of the present invention is about 3.6 meters, the root mean square error of the target position estimation of the present invention is much smaller than the root mean square error of the target position estimation of the prior art, therefore, the same as the prior art. In comparison, the present invention effectively improves the positioning and tracking accuracy of the target.
综上所述,通过仿真证明了本发明方法能够完成对匀速直线运动目标的跟踪,同时相较于现有技术提高了目标的定位跟踪精度。To sum up, it is proved by simulation that the method of the present invention can complete the tracking of a target moving in a straight line at a constant speed, and meanwhile, the positioning and tracking accuracy of the target is improved compared with the prior art.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011298435.0ACN112526450B (en) | 2020-11-19 | 2020-11-19 | Time Difference Positioning and Tracking Method Based on Clock Deviation and Site Error |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011298435.0ACN112526450B (en) | 2020-11-19 | 2020-11-19 | Time Difference Positioning and Tracking Method Based on Clock Deviation and Site Error |
| Publication Number | Publication Date |
|---|---|
| CN112526450A CN112526450A (en) | 2021-03-19 |
| CN112526450Btrue CN112526450B (en) | 2022-10-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011298435.0AActiveCN112526450B (en) | 2020-11-19 | 2020-11-19 | Time Difference Positioning and Tracking Method Based on Clock Deviation and Site Error |
| Country | Link |
|---|---|
| CN (1) | CN112526450B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007248217A (en)* | 2006-02-16 | 2007-09-27 | Mitsubishi Electric Corp | Positioning device |
| JP2009300380A (en)* | 2008-06-17 | 2009-12-24 | Mitsubishi Electric Corp | Target tracking device |
| JP2012083136A (en)* | 2010-10-07 | 2012-04-26 | Oki Electric Ind Co Ltd | Bias error estimation apparatus, bias error estimation method and position estimation apparatus |
| CN105954720A (en)* | 2016-04-25 | 2016-09-21 | 西安电子科技大学 | Radiation source time difference positioning method having passive detection observation station position error |
| CN106249197A (en)* | 2016-05-03 | 2016-12-21 | 电子科技大学 | The method for self-calibrating of receiver location error in a kind of multipoint location system |
| CN111157943A (en)* | 2019-12-31 | 2020-05-15 | 宁波大学 | TOA-Based Sensor Position Error Suppression in Asynchronous Networks |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2374485T3 (en)* | 2009-03-19 | 2012-02-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | METHOD AND APPARATUS FOR ESTIMATING CLOCK DEVIATIONS, FOR VIRTUAL SYNCHRONIZATION OF FREE-RUNNING CLOCKS AND TO DETERMINE THE POSITION OF A MOBILE OBJECT. |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007248217A (en)* | 2006-02-16 | 2007-09-27 | Mitsubishi Electric Corp | Positioning device |
| JP2009300380A (en)* | 2008-06-17 | 2009-12-24 | Mitsubishi Electric Corp | Target tracking device |
| JP2012083136A (en)* | 2010-10-07 | 2012-04-26 | Oki Electric Ind Co Ltd | Bias error estimation apparatus, bias error estimation method and position estimation apparatus |
| CN105954720A (en)* | 2016-04-25 | 2016-09-21 | 西安电子科技大学 | Radiation source time difference positioning method having passive detection observation station position error |
| CN106249197A (en)* | 2016-05-03 | 2016-12-21 | 电子科技大学 | The method for self-calibrating of receiver location error in a kind of multipoint location system |
| CN111157943A (en)* | 2019-12-31 | 2020-05-15 | 宁波大学 | TOA-Based Sensor Position Error Suppression in Asynchronous Networks |
| Title |
|---|
| Bias reduction for TDOA localization in the presence of receiver position errors and synchronization clock bias;Xin Chen;《Journal on Advances in Signal Processing》;20190128;全文* |
| TDOA Source Localization in the Presence of Synchronization Clock Bias and Sensor Position Errors;Yue Wang;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20130915;全文* |
| 同步时钟偏差存在下的时差定位性能分析及改进的定位方法;王鼎等;《电子学报》;20180630(第06期);全文* |
| 基于参考站的多传感器时差定位误差校正分析;姚山峰等;《计算机科学》;20121130;全文* |
| 对运动目标多站时差定位和被动跟踪方法;张新华等;《海军工程大学学报》;20160831(第04期);全文* |
| 考虑站址误差的稳健TDOA定位算法;高向颖等;《信号处理》;20180831(第08期);全文* |
| Publication number | Publication date |
|---|---|
| CN112526450A (en) | 2021-03-19 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110375730B (en) | Indoor Positioning and Navigation System Based on IMU and UWB Fusion | |
| CN109548141B (en) | Indoor environment base station coordinate position calibration method based on Kalman filtering algorithm | |
| CN103105611B (en) | A kind of distributed multi-sensor Intelligent information fusion method | |
| CN113777600B (en) | Multi-millimeter wave radar co-location tracking method | |
| CN109945856A (en) | Autonomous positioning and mapping method of UAV based on inertial/radar | |
| WO2021233309A1 (en) | Extrinsic parameter change detection method and apparatus, electronic device, and detection system | |
| CN110389318B (en) | Underwater mobile platform positioning system and method based on three-dimensional six-element array | |
| CN105044667B (en) | A kind of double star tracking of moving target, device and system | |
| CN113382354B (en) | Wireless positioning non-line-of-sight signal discrimination method based on factor graph | |
| CN114509069A (en) | Indoor Navigation and Positioning System Based on Fusion of Bluetooth AOA and IMU | |
| CN110044357A (en) | A kind of interior high-precision three-dimensional wireless location method | |
| CN113048983A (en) | Improved layered AUV (autonomous Underwater vehicle) cooperative navigation positioning method for different-time sequential measurement | |
| CN116929350B (en) | A rapid on-the-fly reconstruction cooperative navigation system and method based on data link ranging | |
| CN118089739A (en) | Indoor and outdoor positioning system and method based on RTK, UWB and INS | |
| CN111578939B (en) | Robot compact integrated navigation method and system considering random variation of sampling period | |
| CN108225321B (en) | An indoor positioning method based on mobile node assistance | |
| CN111505573B (en) | Track generation method and device of distributed positioning system | |
| CN112526450B (en) | Time Difference Positioning and Tracking Method Based on Clock Deviation and Site Error | |
| CN109211240B (en) | A monocular vision underwater vehicle navigation and positioning correction method | |
| CN114705223A (en) | Inertial Navigation Error Compensation Method and System for Multiple Mobile Agents in Target Tracking | |
| CN114646937A (en) | A real-time fusion and mapping method of SLAM and UWB | |
| CN112285697A (en) | Multi-sensor multi-target space-time deviation calibration and fusion method | |
| CN116699516A (en) | Method and system for maneuvering target positioning based on one-way TOA in asynchronous network | |
| CN117579987A (en) | An indoor positioning system and method based on ultrasonic and Bluetooth fingerprint database | |
| CN117491944A (en) | Mobile source positioning method based on Doppler frequency shift measurement |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |