具体实施方式
关于本公开的一实施方式的成膜方法,首先说明其概要。该实施方式如下:进行在表面露出有Si(硅)膜、SiO2(氧化硅)膜、作为金属膜的W(钨)膜的晶圆B上形成SiN膜的处理。需要说明的是,W容易被氧化,以在该W膜的表面存在有氧原子的状态进行处理。
此处,对SiN膜的孵育时间事先进行说明。该SiN膜的孵育时间是指,供给包含硅的原料气体和用于将该硅进行氮化的氮化气体而成膜SiN膜时,开始供给这些气体之一者起直至开始成膜SiN膜所需的时间。更具体说明,通过分别供给原料气体、氮化气体,从而在SiN膜的基底的膜上,形成多个岛状的SiN的核。该SiN的核沿着基底膜的表面扩展并生长,彼此接触地形成薄层时,该薄层作为SiN膜生长(膜厚增加)。因此,上述膜的生长开始的时机为SiN的薄层形成的时机。作为SiN膜的基底,根据与该SiN膜接触的膜的种类不同,上述核的形成、生长所需的时间彼此不同。
而且,在各膜间SiN膜的孵育时间不同是指,在彼此相同的条件下在各膜间供给原料气体和氮化气体以成膜与各膜接触的SiN膜时,从开始供给这些气体直至形成上述薄层的时间彼此不同。进一步补充时,是指,除了进行原料气体的吸附和通过氮化气体对原料气体中的硅进行氮化以外,没有进行任何处理地进行比较,结果直至形成上述薄层的时间不同。即,是指,不进行如本实施方式中进行的通过氢等离子体的还原、改性那样的处理而进行比较,结果直至形成上述薄层的时间不同。需要说明的是,此处所谓氮化气体除未经等离子体化的氮化气体之外,还包含等离子体化的氮化气体。
向如此孵育时间彼此不同的各基底膜分别供给原料气体、氮化气体时,源自其孵育时间的差异,与各基底膜接触而分别形成的SiN膜的膜厚会产生波动。而且,对于上述本实施方式的晶圆B上所形成的W膜、SiO2膜和Si膜之间,SiN膜的孵育时间不同。具体而言,使W膜和SiO2膜为第1膜、Si膜为第2膜时,第1膜孵育时间长于第2膜的孵育时间。
如此,对SiN膜的孵育不同的各膜进行成膜时,如后述的评价试验所示那样,通过使晶圆B暴露于N2气体的等离子体,从而有时进行使各膜的表面状态一致的前处理。进行暴露于该N2气体的等离子体的前处理后,例如通过ALD形成SiN膜,但N2气体的等离子体的氮化力较高。因此,对上述晶圆B如此用N2气体的等离子体进行处理时,例如关于Si膜,从其表面至深处被氮化,会成为SiN,有使由晶圆B制造的半导体制品的成品率降低的担心。
因此,本实施方式中,关于为了抑制该孵育时间之差的影响以使该SiN膜的膜厚一致的前处理,如抑制上述Si膜的氮化那样进行。具体而言,首先,在不使六氯化二硅(Si2Cl6)气体和NH3气体(第2氮化气体)等离子体化的情况下,向晶圆B交替地供给六氯化二硅(Si2Cl6)气体和NH3气体(第2氮化气体),形成SiN的薄层。之后,供给等离子体化的NH3气体,将SiN的薄层进行改性。
然后,在进行了这样的前处理的基础上,进行使用了Si2Cl6气体、和等离子体化的NH3气体(第1氮化气体)的ALD(原子层沉积(Atomic Layer Deposition)),在上述SiN的薄层上成膜SiN膜。需要说明的是,对于Si2Cl6(六氯二硅烷(Hexachlorodisilane)),以后有时记作HCD。如上述,HCD气体为用于进行前处理的处理气体,且为用于成膜SiN膜的原料气体。另外,本说明书中,对于硅氮化物,无论化学计量比均记作SiN。因此,所谓SiN的记载中包含例如Si3N4。进而,上述基底膜是指,除晶圆B上所形成的膜之外,还包括晶圆B本身的情况。因此,例如对于上述Si膜,可以为硅晶圆上所形成的膜,也可以为硅晶圆本身。
以下,对作为实施上述成膜方法的装置的一实施方式的成膜装置1,参照图1的纵切侧视图和图2的横切俯视图进行说明。成膜装置1具备扁平的大致圆形的真空容器(处理容器)11,真空容器11由构成侧壁和底部的容器主体11A、和顶板11B构成。图中12为水平地设置于真空容器11内的圆形的旋转台。图中12A为支撑旋转台12的背面中央部的支撑部。图中13为旋转机构,借助支撑部12A使旋转台12沿其圆周方向俯视顺时针地旋转。需要说明的是,图中的X表示旋转台12的旋转轴。
在旋转台12的上表面,沿着旋转台12的圆周方向(旋转方向)设有6个圆形的凹部14,在各凹部14中收纳有晶圆B。亦即,以通过旋转台12的旋转而公转的方式,各晶圆B被载置于旋转台12。另外,图1中15为加热器,在真空容器11的底部以同心圆状设有多个,将载置于旋转台12的晶圆B加热。图2中16为在真空容器11的侧壁开口的晶圆B的输送口,通过未作图示的闸阀,开关自由地构成。通过未作图示的基板输送机构,晶圆B借助输送口16在真空容器11的外部与凹部14内之间被传递。
在旋转台12上,朝向旋转台12的旋转方向下游侧,沿着该旋转方向依次设有:喷头2、等离子体形成单元3A、等离子体形成单元3B和等离子体形成单元3C。作为第1气体供给部的喷头2向晶圆B供给上述SiN膜的成膜和前处理中分别使用的HCD气体。作为第2气体供给部的等离子体形成单元3A~3C为如下单元:将供给至旋转台12上的等离子体形成用气体等离子体化,对晶圆B进行等离子体处理,以可以分别形成H2气体单独的等离子体、NH3气体和H2气体的等离子体的方式构成。而且,在真空容器11中的旋转台12的外侧的下方且在第2等离子体形成单元3B的外侧,用于排气由等离子体形成单元3A~3C供给的等离子体形成用气体的排气口51开口。该排气口51与排气机构50连接。
对于作为处理气体供给部且作为原料气体供给部的喷头2,也边参照作为纵切侧视图的图3和作为仰视图的图4边进行说明。喷头2在俯视下、形成为随着从旋转台12的中央侧向周缘侧,沿旋转台12的圆周方向扩展的扇状,该喷头2的下表面与旋转台12的上表面邻近地对置。在喷头2的下表面,气体排出口21、排气口22和吹扫气体排出口23开口。为了容易识别,图4中,对排气口22和吹扫气体排出口23标注多个点来表示。上述气体排出口21多个排列于比喷头2的下表面的周缘部还靠近内侧的扇状区域24。而且,该气体排出口21在旋转台12的旋转中向下方以喷淋状排出HCD气体,以对晶圆B的表面整体供给该HCD气体的方式开口。
在上述扇状区域24中,从旋转台12的中央侧向旋转台12的周缘侧设有3个区域24A、24B、24C。以可以向设置于各区域24A、区域24B、区域24C的气体排出口21各自独立地供给HCD气体的方式,在喷头2上设有彼此区分的气体流路25A、25B、25C。气体流路25A、25B、25C的各上游侧分别借助配管与HCD气体的供给源26连接,在各配管上,夹设有由阀和质量流量控制器构成的气体供给设备27。利用气体供给设备27,进行HCD气体向配管的下游侧的供给/切断和流量的调整。需要说明的是,后述的气体供给设备27以外的各气体供给设备也与该气体供给设备27同样地构成,进行气体向下游侧的供给/切断和流量的调整。
上述排气口22和吹扫气体排出口23以包围扇状区域24、且朝向旋转台12的上表面的方式,在喷头2的下表面的周缘部分别以环状开口,吹扫气体排出口23位于排气口22的外侧,以包围该排气口22的方式形成。旋转台12上的排气口22的内侧区域形成进行HCD对晶圆B表面的吸附的吸附区域R0。吹扫气体排出口23向旋转台12上排出作为吹扫气体的例如Ar(氩气)气体。
从气体排出口21排出HCD气体的过程中,同时进行从排气口22的排气和从吹扫气体排出口23的吹扫气体的排出。由此,图3中如箭头所示那样,朝向旋转台12排出的原料气体和吹扫气体在旋转台12的上表面朝向排气口22从该排气口22被排气。通过如此进行吹扫气体的排出和排气,从而作为第1区域的吸附区域R0的气氛从外部的气氛分离,可以向该吸附区域R0限定性地供给原料气体。即,可以抑制供给至吸附区域R0的HCD气体、与后述如通过等离子体形成单元3A~3C向吸附区域R0的外部供给的各气体混合,可以进行上述基于ALD的成膜处理。图3中28为借助配管用于进行从排气口22的排气的排气机构。图3中29为作为吹扫气体的Ar气体的供给源,借助配管将该Ar气体供给至吹扫气体排出口23。在该配管上夹设有气体供给设备20。
接着,对于等离子体形成单元3B,边参照图1、图2边进行说明。等离子体形成单元3B对向等离子体形成单元3B的下方排出的等离子体形成用气体(H2气体或H2气体与NH3气体的混合气体)供给微波,在旋转台12上产生等离子体。等离子体形成单元3B具备用于供给上述微波的天线31,该天线31包含电介质板32和金属制的导波管33。
电介质板32形成为随着从俯视旋转台12的中央侧朝向周缘侧扩展的大致扇状。在真空容器11的顶板11B,以对应于上述电介质板32的形状的方式,大致扇状的贯通口开口,该贯通口的下端部的内周面向贯通口的中心部侧稍突出,形成支撑部34。上述电介质板32从上侧阻塞该扇状的贯通口,与旋转台12对置,电介质板32的周缘部由支撑部34所支撑。
导波管33设置于电介质板32上,具备在顶板11B上延伸存在的内部空间35。图中36为构成导波管33的下部侧的槽板,具有多个槽孔36A,与电介质板32接触地设置。导波管33的旋转台12的中央侧的端部被阻塞,在旋转台12的周缘部侧的端部,例如连接有向导波管33供给约2.35GHz的微波的微波发生器37。该微波通过槽板36的槽孔36A到达电介质板32,向电介质板32的下方供给所供给的等离子体形成用气体,在该电介质板32的下方限定性地形成等离子体,对晶圆B进行处理。如此电介质板32的下方以等离子体形成区域构成,作为R2表示。
而且,等离子体形成单元3B具有位于上述支撑部34的气体排出孔41、和气体排出孔42。气体排出孔41从旋转台12的中心部侧向外周部侧排出等离子体形成用气体,气体排出孔42从旋转台12的外周部侧向中心侧排出等离子体形成用气体。气体排出孔41和气体排出孔42借助具备气体供给设备45的配管系统分别连接于H2气体供给源43和NH3气体供给源44。需要说明的是,等离子体形成单元3A、3C与等离子体形成单元3B同样地构成,相当于等离子体形成单元3A、3C中的等离子体形成区域R2的区域分别作为等离子体形成区域R1、R3表示。等离子体形成区域R1~R3为第2区域,等离子体形成单元3A~3C构成改性用气体供给部、氮化气体供给部和等离子体形成机构。
如图1所示那样,成膜装置1上设有由计算机构成的控制部10,控制部10中存储有程序。对于该程序,向成膜装置1的各部发送控制信号,控制各部的工作,以执行上述前处理和SiN膜的成膜处理的方式组入步骤组。具体而言,基于旋转机构13的旋转台12的转速、各气体供给设备的工作、基于各排气机构28、50的排气量、微波从微波发生器37向天线31的供给/切断、对加热器15的供电等由该程序所控制。对加热器15的供电的控制即为晶圆B的温度的控制,基于排气机构50的排气量的控制即为真空容器11内的压力的控制。该程序被存储于硬盘、光盘、DVD、存储卡等存储介质,安装于控制部10。
以下,对于由成膜装置1进行的前处理和SiN膜的成膜处理,边参照作为晶圆B的纵切侧视图的图5~图8、和作为成膜装置1的工作的流程图的图9边进行说明。图5示出对成膜装置1输送的晶圆B的一例,在该晶圆B上,形成有向上方依次层叠该Si膜61、SiO2膜62、W膜63、SiO2膜64的层叠体。在该层叠体中形成有凹部65,凹部65的侧面由SiO2膜62、W膜63、SiO2膜64构成,凹部65的底面由Si膜61构成。因此,如上述,Si膜、SiO2膜、W膜在晶圆B的表面分别露出。
在旋转台12的凹部14分别载置有6张该图5所示的晶圆B。然后,关闭设置于真空容器11的输送口16的闸阀,该真空容器11内形成气密,晶圆B利用加热器15加热至例如200℃~600℃、更具体而言例如550℃。然后,通过从排气口51的排气,使真空容器11内形成为例如53.3Pa~666.5Pa的真空气氛,且旋转台12以例如3rpm~60rpm进行旋转,各晶圆B公转。
利用等离子体形成单元3A~3C,在等离子体形成区域R1~R3中,进行NH3气体的供给。但是,不供给微波,该NH3气体未经等离子体化。另一方面,在喷头2中,分别从气体排出口21排出HCD气体、从吹扫气体排出口23排出Ar气体,且从排气口22进行排气(图9中,步骤S1)。如此,喷头2和等离子体形成单元3A~3C工作,从而对公转的各晶圆B交替地重复进行HCD气体的供给与NH3气体的供给。
原料气体中的Si与SiO2膜62、64和构成Si膜61的Si、构成W膜63的W容易吸附。亦即,在SiO2膜62、64和W膜63的表面存在有氧原子,但对于作为原料气体的HCD气体,包含2个Si原子,从而对这些SiO2膜62、64、Si膜61、W膜63具有高的吸附性。因此,在吸附区域R0中可以使HCD气体效率良好地吸附于这些各膜。然后,向等离子体形成区域R1~R3中吸附后的HCD气体供给NH3气体,通过热而彼此反应,形成SiN的薄层66。继续晶圆B的公转,SiN的薄层66的厚度增加(图6)。
自从喷头2的HCD气体的供给和基于等离子体形成单元3A~3C的NH3气体的供给开始起,使旋转台12旋转预先设定的次数、例如30次时,从喷头2的HCD气体的供给停止。如此HCD气体的供给停止,另一方面,向等离子体形成区域R1~R3供给H2气体和NH3气体,且供给微波,形成这些气体的等离子体(步骤S2)。然后,继续晶圆B的公转,各晶圆B在等离子体形成区域R1~R3中重复通过。由此,构成等离子体的NH3气体的活性物质(NH2自由基、NH自由基等)作用于SiN的薄层66,构成HCD气体的氯等杂质被释放,且进行该薄层66固化的改性。通过该改性,薄层66的特性变得接近于之后形成的SiN膜67的特性。
自H2气体和NH3气体的等离子体的形成开始起,使旋转台12预先旋转设定的次数时,再次开始HCD气体从喷头2向吸附区域R0的供给。另外,在等离子体形成区域R1、R2中,NH3气体的供给停止,另一方面,H2气体继续被供给,形成该H2气体的等离子体。等离子体形成区域R3中继续供给H2气体和NH3气体,形成这些气体的等离子体(步骤S3)。
然后,晶圆B继续公转,依次重复进行吸附区域R0中的HCD气体的供给、等离子体形成区域R1、R2中的等离子体化的H2气体的供给、等离子体形成区域R3中的等离子体化的H2气体和NH3气体的供给。吸附区域R0中吸附于晶圆B的HCD气体中的Si在等离子体形成区域R3中被氮化,成为SiN。然后,在等离子体形成区域R1、R2中,利用H2气体的等离子体,进行沉积后的SiN的改性。具体而言,进行对SiN中的悬挂键的H的键合和从沉积后的SiN去除Cl,从而成为致密且杂质含量少的SiN。
如上述,引起SiN的核的形成和生长,基底为与该核相同的SiN的薄层66,因此,该核的形成和生长较迅速地进行。然后,在Si膜61、SiO2膜62、64和W膜63的各膜上,形成这样的相同的SiN的薄层66,可以说这些各膜的表面的状态一致。因此,在这些各膜上同样地引起核的形成和生长,成膜SiN的薄层(SiN膜67)。亦即,在Si膜61、SiO2膜62、64和W膜63的各膜上,如同统一孵育时间那样进行SiN膜67的成膜(图7)。
持续晶圆B的公转,SiN膜67的膜厚增加,且该SiN膜67的改性进行。如上述,在Si膜61、SiO2膜62、64、W膜63的各膜上,以同样的时机开始SiN膜67的成膜,因此,在这些各膜间该SiN膜67以均匀性高的膜厚生长。步骤S3中的HCD气体的供给和等离子体形成区域R1~R3中的各气体的等离子体化开始后,使旋转台12旋转预先设定的次数,形成期望膜厚的SiN膜67时,SiN膜67的成膜处理结束(图8)。亦即,各气体的供给、微波的供给、旋转台12的旋转分别停止,成膜处理结束。然后,晶圆B由基板输送机构从真空容器11搬出。
根据如此使用成膜装置1的处理,Si膜61、SiO2膜62、64和W膜63间的SiN膜67的孵育时间的差异的影响被抑制,可以使成膜开始的时机一致。作为其结果,可以以在各膜上成为均匀性高的膜厚的方式,成膜该SiN膜67。而且,形成用于抑制该孵育时间的影响的SiN的薄层66时,由未经等离子体化的NH3气体进行吸附于晶圆B的HCD的氮化,之后,由等离子体化的NH3气体进行改性。亦即,薄层66的形成中不使用等离子体,因此,可以抑制晶圆B被暴露于等离子体化的NH3气体的时间,或者形成NH3的等离子体时在等离子体与各膜61~64之间变得夹设有薄层66。因此,各膜61~64的氮化被抑制。特别是如后述的评价试验所示那样,对于Si膜61,具有较容易被氮化的性质,但对于该Si膜61的氮化,可以抑制。另外,如上述,可以抑制晶圆B被暴露于等离子体化的气体的时间,因此,还有可以抑制各膜61~64所受到的等离子体的损伤的优点。
上述步骤S1中,不限定于使用NH3气体进行氮化,例如也可以使用N2气体等。另外,作为该步骤S1中使用的包含硅的处理气体,为了如上述对各膜担保高的吸附性,可以使用通过具有Si-Si键而在一分子中具有多个Si原子的卤化硅气体。作为这样的卤化硅气体,除HCD气体以外,还可以使用例如八氯三硅烷(Si3Cl8)气体。
另外,上述步骤S2中暴露于等离子体,从而如上述,只要可以进行SiN的薄层66的改性即可,因此,不限定于使用NH3气体的等离子体。但是,使用NH3气体的等离子体,对薄层66进行处理,从而对于该薄层66的膜质,可以形成与之后形成的SiN膜67等同的膜质,故优选。
而且,SiN的薄层66的改性后的SiN膜67的形成不限定于用ALD进行,还可以用CVD(化学气相沉积(ChemicalVaporDeposition))进行。该SiN膜67的形成中,只要可以将原料气体中的硅进行氮化即可,因此,也不限定于使用等离子体化的NH3气体,例如也可以使用未经等离子体化的NH3气体。另外,作为成膜该SiN膜67的原料气体,例如也可以使用如DCS(二氯硅烷)气体那样的、不具有Si-Si键的气体。
上述处理例中,在作为金属膜的W膜63上形成SiN膜,但不限定于W膜63,例如在Ti(钛)、Ni(镍)等的金属膜上形成SiN膜68的情况下,本手法也是有效的。亦即,作为成为SiN膜的基底的金属膜,不限定于W膜。需要说明的是,此次公开的实施方式在全部方面为示例,应认为没有限制。上述实施方式可以在不脱离所附的权利要求书和其主旨的情况下,以各种形态省略、置换、变更。
以下,对关于本技术进行的评价试验进行说明。
作为评价试验1,各准备多张由Si构成且表面裸露的状态的晶圆(裸晶圆)、和由Si构成且在表面形成有SiO2膜的晶圆(记作SiO2晶圆)。然后,对裸晶圆、SiO2晶圆分别进行包含上述实施方式中说明的步骤S1~S3的一系列的处理(前处理和SiN膜67的成膜处理)。该一系列的处理中的步骤S3的SiN膜67的成膜处理的时间设定为180秒或360秒。一系列的处理结束后,测定形成的SiN膜67的膜厚。
而且,作为比较试验1,向等离子体形成区域R1~R3供给N2气体代替进行上述步骤S1的处理,使该N2气体等离子体化,进行使裸晶圆、SiO2晶圆的表面分别氮化的处理。该氮化后,对各晶圆进行上述步骤S2和步骤S3的各处理,作为步骤S3的原料气体,使用DCS气体代替HCD气体。除这样的不同之处之外,比较试验1的处理与评价试验1的处理同样。
分别地,图10的图示出评价试验1的结果,图11的图示出比较试验1的结果。关于各图,横轴为步骤S3的SiN膜67的成膜时间(单位:秒),纵轴为SiN膜67的膜厚各图中,标绘测定的SiN膜67的膜厚而示出,且分别示出连接关于裸晶圆标绘的各点的实线的直线、连接关于SiO2晶圆标绘的各点的实线的直线。进一步图中,关于将上述各实线的直线延伸至横轴的成膜时间成为0秒的位置或者纵轴的SiN膜67的膜厚成为的位置的延长线,用虚线表示。需要说明的是,将膜的孵育时间作为以与该膜直接接触的方式成膜SiN膜时直至开始成膜所需的时间而定义,无论其定义如何,在该评价试验中,将观察上述虚线的延长线而膜厚为时的成膜时间作为孵育时间。
关于评价试验1,SiN膜67的成膜时间为180秒、360秒时的任意者中,在SiO2晶圆与裸晶圆之间的、SiN膜67的膜厚的差异均较小。关于SiO2晶圆得到的上述实线的直线与关于裸晶圆得到的上述实线的直线彼此大致平行。而且,观察基于各点线的延长线时,SiO2晶圆的SiN膜67的膜厚为时,孵育时间为大致0秒,此时,裸晶圆的SiN膜67的膜厚为
另一方面,对于比较试验1,SiN膜67的成膜时间为180秒、360秒时的各自的情况下,在SiO2晶圆与裸晶圆之间,在SiN膜67的膜厚上可见较大的差异。关于SiO2晶圆得到的上述实线的直线与关于裸晶圆得到的上述实线的直线彼此大致平行,但其间隔较大。而且,观察基于各点线的延长线时,关于SiO2晶圆的孵育时间大致为0秒,但关于裸晶圆,成膜时间为0秒时,SiN膜67的膜厚为
评价试验1、比较试验1中,在成膜时间为0秒时在裸晶圆上形成SiN膜67的原因是,在实施步骤S3之前的处理中已经进行了氮化。而且,根据评价试验1可知,与比较试验1相比,该氮化被抑制。因此,由该评价试验的结果可以确认到上述实施方式的效果。