Multi-type test data optimized transmission system and methodTechnical Field
The application relates to the field of communication, in particular to a multi-type test data optimized transmission system and method.
Background
In the full-scale aircraft structure strength test process based on the 5G + industrial Internet of things technology, aircraft structure response data are collected by each independent system and are transmitted to a data center through the 5G + industrial Internet to be stored and analyzed in a unified mode. The structural response data comprises seven types of force feedback, strain, displacement, acoustic emission, grating optical fiber, piezoelectricity, video and the like, and each type of data has different requirements on network bandwidth and real-time property: the force feedback, strain and displacement data have high real-time requirements and less data volume; acoustic emission, grating fiber and piezoelectric data have low real-time requirements and large data volume, and need one-time batch transmission; the video data has high real-time requirement and extremely large data volume. The uplink rate of the 5G network is low, if the uplink rate is not controlled, the test equipment uploads respective response data at will, the network is blocked, network paralysis is caused, the monitoring work of test data is seriously influenced, and even the test safety is threatened.
Therefore, it is necessary to research a multi-type test data optimized transmission method.
Disclosure of Invention
In order to solve the technical problems, the application provides a multi-type test data optimized transmission system and method, which can avoid the problem that data blocks a network, ensure the safe operation of test data analysis and ensure the safety of tests.
In a first aspect, the present application provides a multi-type test data optimized transmission system, where the system includes a transmission control server, a data center, and a data monitoring server, where:
the input of the transmission control server is respectively connected with the control system, the measurement system, the health monitoring system and the field monitoring system through a fifth generation mobile communication technology (5G, 5th generation mobile networks) network or an industrial internet, and the output of the transmission control server is connected with the input of the data center; the output of the data center is connected with the data monitoring server.
In a second aspect, the present application provides a method for optimized transmission of multiple types of test data, where the method is applied to the above system for optimized transmission of multiple types of test data, and the method includes:
the control system sends the force feedback information to a transmission control server through a 5G uplink network; the measurement system sends the strain information and the displacement information to a transmission control server through a 5G uplink network; the field monitoring system sends the video information to a transmission control server through a 5G uplink network;
if the health monitoring system needs to upload data, judging whether the current time is longer than the last time of uploading the data by the health monitoring system or not;
if the health monitoring system judges that the current time is longer than the time of uploading data by the health monitoring system last time, the on-site monitoring system immediately interrupts sending of the video information to the transmission control server and caches the video information to a preset position within preset interrupt cache time; and the health monitoring system sends the grating optical fiber information, the acoustic emission information and the piezoelectric information to a transmission control server through a 5G uplink network within preset interrupt transmission time.
Preferably, the interrupt transmission time is less than the interrupt buffering time.
Preferably, the method further comprises:
and if the health monitoring system judges that the current time is less than or equal to the interrupt interval time from the time of uploading data of the last health monitoring system, the on-site monitoring system continues to send the video information to the transmission control server.
Preferably, the method further comprises:
and after the interruption cache time, the health monitoring system continuously sends the cached video information to the transmission control server.
Preferably, the interrupt transmission time is 8 minutes.
Preferably, the interrupt buffering time is 10 minutes.
Preferably, the interruption interval is 120 minutes.
In summary, the application provides an optimized transmission method for multi-type test data, and by designing a data transmission control program, on the premise of ensuring test safety and normal data monitoring work, the time for each test device to transmit data through a 5G network and the amount of transmitted data are controlled. Control full-scale aircraft structural strength test response data transmission based on 5G + industry internet of things, rational utilization 5G network goes upward the bandwidth, avoids data block up the network problem, guarantees that experimental data analysis work safety goes on, guarantees experimental safety.
Drawings
Fig. 1 is a schematic structural diagram of a multi-type test data optimized transmission system according to an embodiment of the present application;
fig. 2 is a schematic transmission time diagram of a monitoring system according to an embodiment of the present disclosure;
fig. 3 is a schematic diagram of priority of structural response data according to an embodiment of the present application.
Detailed Description
Example one
As shown in fig. 1, in order to avoid the problem that the structure response data is uploaded in an unordered manner and blocks 5G and an industrial internet network, an embodiment of the present application provides a multi-type test data optimized transmission system, which includes a transmission control server, a data center, and a data monitoring server. The connection relation is that the transmission control server is connected with the control system, the measurement system, the health monitoring system and the field monitoring system in front and then connected with the data center; the data center is connected with the transmission control server in front and connected with the data monitoring server in back; the data monitoring server is connected with the data center. The transmission control program is used for controlling data transmission work and finishing the work of writing data into a data center.
It should be explained that the on-site monitoring system designs a cache to ensure that data can be completely cached within 10 minutes after system transmission is interrupted, and immediately transmits the currently acquired video data after data transmission is replied, and transmits the data in the cache by using the residual network bandwidth to complete the data within the interruption time.
It should be noted that, in the data transmission process of the health monitoring system, the longest data transmission amount is designed not to exceed the data amount calculated within 8 minutes at the current average network speed, and the shortest transmission time interval is designed to be 120 minutes, so as to ensure the data caching and completion operation of the on-site monitoring system, as shown in fig. 2.
Example two
The embodiment of the application provides a multi-type test data optimized transmission method, which comprises the following steps:
the method comprises the following steps: the control system sends the force feedback information to a transmission control server through a 5G uplink network; the measurement system sends the strain information and the displacement information to a transmission control server through a 5G uplink network; the field monitoring system sends the video information to a transmission control server through a 5G uplink network;
step two: if the health monitoring system needs to upload data, judging whether the current time is longer than the last time of uploading the data by the health monitoring system or not;
step three: if the health monitoring system judges that the current time is longer than the time of uploading data by the health monitoring system last time, the on-site monitoring system immediately interrupts sending of the video information to the transmission control server and caches the video information to a preset position of the on-site monitoring system within a preset interrupt cache time; the health monitoring system sends the grating optical fiber information, the acoustic emission information and the piezoelectric information to a transmission control server through a 5G uplink network within a preset interrupt transmission time;
and if the health monitoring system judges that the current time is less than or equal to the interrupt interval time from the time of uploading data of the last health monitoring system, the on-site monitoring system continues to send the video information to the transmission control server.
It should be noted that the interrupt transmission time is less than the interrupt buffering time.
It should be noted that the preset displacement writing and reading authority of the data cache of the on-site monitoring system is only opened to the transmission control program.
In practical applications, the interrupt transmission time may be set to 8 minutes, the interrupt buffering time may be set to 10 minutes, and the interrupt interval time may be set to 120 minutes. The specific settings of the interrupt transmission time, the interrupt cache time and the interrupt interval time are not limited.
Step four: when the transmission stopping time of the on-site monitoring system exceeds the interruption cache time, judging that the data transmission of the health monitoring system is finished, starting to send the continuous video information at the current moment to the transmission control server by the on-site monitoring system, and continuously sending the cached video information to the transmission control server by utilizing the residual uplink bandwidth of the 5G network; and after the cache information is sent, emptying the cache to ensure that enough space is available for caching data when the transmission is interrupted next time.
It can be understood that, the data have different transmission priorities, as shown in fig. 3, the control system has a smaller data amount, the data has the highest priority, which is the first-level priority, and the transmission cannot be interrupted by other data; the data quantity of the measurement system is less, the data priority is the second-level priority, and the data can not be interrupted by other data; the health monitoring system has larger data volume, the data priority is the third level, and a burst batch transmission mode is adopted; the data volume of the on-site monitoring system is maximum, the priority is lowest, and the priority is four-level priority.